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Abstract

I tried intuitive visualizations of important concepts introduced in “Linear Algebra for Everyone”.”

This is aimed at promoting understanding of vector/matrix calculations and algorithms from the
perspectives of matrix factorizations. They include Column-Row (CR), Gaussian Elimination (LU),
Gram-Schmidt Orthogonalization (QR), Eigenvalues and Diagonalization (QAQ™), and Singular Value
Decomposition (UXZVT).

Foreword

I am happy to see Kenji Hiranabe’s pictures of matrix operations in linear algebra ! The pictures are an
excellent way to show the algebra. We can think of matrix multiplications by row - column dot products,
but that is not all — it is “linear combinations” and “rank 1 matrices” that complete the algebra and the art.
I am very grateful to see the books in Japanese translation and the ideas in Kenji’s pictures.

— Gilbert Strang
Professor of Mathematics at MIT
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1 Viewing a Matrix — 4 Ways

A matrix (m x n) can be seen as 1 matrix, mn numbers, n columns and m rows.
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L2 [
(1 4] 1 4] [174]
A =|1265(=25|=|25
361 L3 6] 136
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Figure 1: Viewing a Matrix in 4 Ways
a1 a2 | \ —al—
A= laz ax| = |a1 az| = |-a3—
asi  asz | —a%—

Here, the column vectors are in bold as aj.

Row vectors include * as in aj. Transposed vectors and
matrices are indicated by T as in a™ and AT.

2 Vector times Vector — 2 Ways

Hereafter I point to specific sections of “Linear Algebra for Everyone” and present graphics which illustrate
the concepts with short names in colored circles.

e Sec. 1.1 (p.2) Linear combination and dot products
e Sec. 1.3 (p.25) Matrix of Rank One

e Sec. 1.4 (p.29) Row way and column way

== = ® Dotproduct (number) [-] = | = | e o | RanklMatrix

vl ||

Dot product (a - b) is expressed as aTh in
matrix language and yields a number.

X1 11 [*1
[1 2 3]|x2|=|2]|*%2|= x4 +2x5 + 3x5
X3 31 Ix3

v2
® o

abT is a matrix (ab™ = A). If neither a, b are 0,
the result A is a rank 1 matrix.

1 x y
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3 3x 3y

Figure 2: Vector times Vector - (v1), (v2)



3 Matrix times Vector — 2 Ways

A matrix times a vector creates a vector of three dot products (Mvl) as well as a linear combination (Mv2)
of the column vectors of A.

e Sec. 1.1 (p.3) Linear combinations

e Sec. 1.3 (p.21) Matrices and Column Spaces

Mv1l - [ } = T Mv2 [‘:| = + ¢
[ E °
[ .-
The row vectors of A are multiplied by a vector x The product Ax is a linear combination of the
and become the three dot-product elements of Ax. column vectors of 4.
1 2], (x1+2x3) 127 o, 1 2
Ax = |3 4'] [ = (3x1 +4'x2) Ax= (3 4 [xz] =X 3 + X2 4
5 6 (5x; + 6x5) 5 6 5 6

Figure 3: Matrix times Vector - (Mv1l), (Mv2)

At first, you learn (Mv1). But when you get used to viewing it as (Mv2), you can understand Az as a
linear combination of the columns of A. Those products fill the column space of A denoted as C(A). The
solution space of Az = 0 is the nullspace of A denoted as N(A).

The four subspaces consists of N(A) + C(AT) (which are perpendicular to each other) in R® and N(AT)
+ N(A) in R™ (which are perpendicular to each other).

e Sec. 3.5 (p.124) Dimentions of the Four Subspaces

A € RMX1
R > R™

c(aT)
dim=r

cA)
dim=r

row space

all ATy

column space

all Ax

nullspace

Ax =10

left nullspace

N(4) N(AT) ATy =0

dm=n-r dm=m-r

Figure 4: The Four Subspaces

See A= CR (Sec 6.1) for the rank r.



4 Matrix times Matrix — 4 Ways
“Matrix times Vector” naturally extends to “Matrix times Matrix”.

e Sec. 1.4 (p.35) Four Ways to Multiply AB = C

e Also see the back cover of the book

® =03 ® Pan- Ll

Every element becomes a dot product of row vector Ax and Ay are linear combinations of columns of 4.
and column vector.

F ‘2}] [xl y1] . (e1+2x3)  (y11+2y2)
X2 Y2l ™
5 6

(Bx1+4x2)  (By1+4y2)
(5%1+6x3)  (5y1+6Y2)

v = ‘_ i H: r+r

1 2
[ Al e e

Bl = | = |
| B
B B | . Multiplication AB is broken down to a sum of rank 1 matrices.

1 2 *
= = bll blZ - bl _— * *
The produced rows are linear combinations of rows. [3 4’] [b21 bzz] =la1 az] [b;] = a1b; + azb;

5 6
. . 1 2 biy by 2by;  2by,
1 2 a a1 X
3 4 [x1 3’1] N a; X = a;X . 3] [bi1  bia] +|4| [b21 b22] = [3b11 3b1z | + [4b21 4bzz]
5 6 X2 Y2 a aiX 5 6 5by;  5byp 6by1  6by;

Figure 5: Matrix times Matrix - (MM1), (MM2), (MM3), (MM4)



5 Practical Patterns

Here, I show some practical patterns which allow you to capture the coming factorizations more intuitively.

o — =eo Heo o using
P1 123 |e 11 1 1 2 3 MZMM\,Z
°
Operations from the right act on the = + +
columns of the matrix. This 2 1 2 3

expression can be seen as the three
linear combinations in the right in

one formula. = + _|_
3 1 2 3
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P2 s 2 “3;8
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0 i fi he left h
s of the matrix. This expression (] = o[ — - — - o —

can be seen as the three linear
combinations in the right in one
formula.

Figure 6: Pattern 1, 2 - (P1), (P1)
Pattern 1 is a combination of (MM2) and (Mv2). Pattern 2 is an extention of (MM3). Note that Pattern

1 is a column operation (multiplying a matrix from right), whereas Pattern 2 is a row operation (multiplying
a matrix from left).

P1’ e = P2 ° N —
® o0 ° [
° o | R
Applying a diagonal matrix from the right Applying a diagonal matrix from the left
scales each column. scales each row.
d, d, 1 dib;
AD =[a; a; agz] d, =[dia; dya, d;az] DB = d, b5 | = |d,b3
ds; d3l|b} d;b3

Figure 7: Pattern 1, 2’ - (P1), (P2/)

(P1’) multipies the diagonal numbers to the columns of the matrix, whereas (P2’) multipies the diagonal
numbers to the row of the matrx. Both are variants of (P1) and (P2).
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This pattern makes another combination of columns.
You will encounter this in differential /recurrence equations.

d1 Cl
XDc=[X1 X2 X3]| d, ] chI = ¢1d1X1 + Cpdy x5+ C3d3 X3
d3 C3

Figure 8: Pattern 3 - (P3)

This pattern appears when you solve differential equations and recurrence equations:

e Sec. 6 (p.201) Eigenvalues and Eigenvectors

e Sec. 6.4 (p.243) Systems of Differential Equations

du(t)
dt
Upt1 = AUy, U = U

= Au(t), u(0)=1ug

In both cases, the solutions are expressed with eigenvalues (A1, A2, A3), eigenvectors X = [acl T :133}

of A, and the coefficients ¢ = [cl Co 03]T which are the coordinates of the initial condition w(0) = ug in
terms of the eigenvectors X.

Ug = €11 + C2x2 + C3T3

C1
c= |eo| = X T
C3

and the general solution of the two equations are:

w(t) = eMuy = XeMX lug = XeMe = reMtay + cpe’tay + czelas

Uy, = AMug = XA"X tug = XAN'c =1 \[x1 + co Ao + cs\fxs

See Figure 8: Pattern 3 (P3) above again for X Dec.
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A matrix is broken down to a sum of rank 1 matrices,
as in singular value/eigenvalue decomposition.

T
01 vl
uzvT =[us uz u3l| o, ||v}|=0uv] + o,u,vl+ o3uzvl
o T
3 V3
Figure 9: Pattern 4 - (P4)

This pattern (P4) works in both eigenvalue decomposition and singular value decomposition. Both de-
compositions are expressed as a product of three matrices with a diagonal matrix in the middle, and also a
sum of rank 1 matrices with the eigenvalue/singular value coefficients.

More details are discussed in the next section.



6 The Five Factorizations of a Matrix
e Preface p.vii, The Plan for the Book.

A=CR,A=LUA=QR,A=QAQT A=UXVT are illustrated one by one.

[ ] Independent column vectors times
A — CR ] row echelon form to show
row rank = column rank
N i LU decomposition as
— L U . Gaussian elimination

L =

1 1 [o @ o] @R decomposition as
A — Q R PPy Gram-Schmidt orthogonalization

®

® Eigenvalue decomposition of a

Q AQ T [ symmetric matrix §
T I | | e [ ] Singular value decomposition
Uxv .

th
|

of all matrices A

S
|

Figure 10: The Five Factorizations



6.1 A=CR
e Sec.1.4 Matrix Multiplication and A = CR (p.29)

All general rectangular matrices A have the same row rank as the column rank. This factorization is the
most intuitive way to understand this theorem. C' consists of independent columns of A, and R is the row
reduced echelon form of A. A = CR reduces to r independent columns in C' times r independent rows in R.

A=CR
1 2 3] (1 211 01
2 3 5/ |2 3/[|0 1 1
Procedure: Look at the columns of A from left to right. Keep independent ones, discard dependent ones
which can be created by the former columns. The column 1 and the column 2 survive, and the column 3

is discarded because it is expressed as a sum of the former two columns. To rebuild A by the independent
columns 1, 2, you find a row echelon form R appearing in the right.

[A}=[ICZJ[:R }=[°1+'2 1+] ivE|

Figure 11: Column Rank in CR

Now you see the column rank is two because there are only two independent columns in C' and all the
columns of A are linear combinations of the two columns of C.

[=] =[. .M ! ]= . i :. z using

Figure 12: Row Rank in CR

And you see the row rank is two because there are only two independent rows in R and all the rows of A
are linear combinations of the two rows of R.



6.2 A=LU

Solving Ax = b via Gaussian elimination can be expressed as a LU factorization. Usually, you apply
elementary row operation matrices (F) from left of A to make upper trianglar U.

EA=U
A=E"'U
let L=E"', A=LU

Now solve Az = b in 2 steps: 1) forward Le = b and 2) back Uz = c.
e Sec.2.3 (p.57) Matrix Computations and A = LU

Here, we directly calculate L and U from A.

| 000 | | 00 0
A=|h| [Fui-]+ |0 | =|b| [Fui-]+ || [Fui-]+ |0 0 0| =LU
| U | | 0 0 4
A L U
= + + = ® Lo

Figure 13: Recursive Rank 1 Matrix Peeling from A

To find L and U, peel off the rank 1 matrix made of the first row and the first column of A. This leaves
As. Do this recursively and decompose A into the sum of rank 1 matrices.

o = + + gt
1 e r :
e 00 |

Figure 14: LU rebuilds A

To rebuild A from L times U is easy.

10



6.3 A=QR
A = QR changes the columns of A into perpendicular columns of @, keeping C'(A) = C(Q).

e Sec.4.4 Orthogonal matrices and Gram-Schmidt (p.165)

In Gram-Schmidt, the normalized a, is picked up as q; first and then as is adjusted to be perpendicular

to g1 to create g, and this procedure goes on.

q1 = ai/|a|
@ =as— (gFa)q1, @ =q2/|qo|
a3 = a3 — (g az)q1 — (g3 a3)q2, g3 = gs/|qs|

or you can write:

ai; = 7111491
az = Ti12q1 + 72292

az = r13q1 + r23q2 + 133493

The original A becomes QR: orthogonal times triangular.

| | | 11 T2 T13

A=|q1 q g3 roo To3| = QR
. 733
QT =QTQ=1
A Q R a, a; as
= e e 0 _ ® o +o 4o using
123 o0 ° Y N 2 1 2 3 P1
®

Figure 15: A= QR
The column vectors of A can be adjusted into an orthonormal set: the column vectors of (). Each column

vector of A can be rebuilt from ) and the upper triangular matrix R .
See Pattern 1 (P1) again for the graphic interpretation.
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6.4 S=QAQT

All symmetric matrices S must have real eigenvalues and orthogonal eigenvectors. The eigenvalues are the
diagonal elementes of A and the eigenvectors are in Q.

e Sec.6.3 (p.227) Symemtric Positive Definite Matrices

i (A B B I VY —q] —
S=0QAQ" = |a1 q2 gq3 A2 —q3 —

o As] [—a5 -

| | |
=M @ | [-aF—] + X |@2| [T -] + X3 |a3| [-aF ]
| | |
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Pi=qqf, P2=qqy, Ps=q3q7

s Q A QT Ma197 224293 34393 yging
= ° 1 = o NN | PN L s P4
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Figure 16: S = QAQT

A symmetric matrix S is diagonalized into A by an orthogonal matrix @ and its transpose. And it is
broken down into a combination of rank 1 projection matrices P = qqT. This the spectral theorem.
Note that Pattern 4 (P4) is working for the decomposition.

S =8T=XNP1+XPy+ \sPs
QRT =P+ P+ P=1
PPy = P,P3 = P3P, = O
Pl=P =P, P;=P,=P, P;=P;=P;
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6.5 A=UXVT

All matrices including rectangular ones have a singular value decomposition (SVD).
A =UXVT has the singular vectors of A in U and V. And its singular values in A.

e Sec.7.1 (p.259) Singular Values and Singular Vecrtors

T
A U 2 %4 a1 u1‘v1 gy uzvz USing

- - P4
123 ® 2

Figure 17: A=UXVT

I
L
=

You can find V as an orthonormal basis of R" (eigenvectors of ATA), and U as an orthonormal basis of
R™ (eigenvectors of AAT). Together they diagonalize A into . This is also expressed as a combination of
rank 1 matrices.

] (e T | |
A=USVT = |u; uy wug o2 [ ’Ulr ] =01 |u| [-of =] + 02 |ug| [—vF -]
| |

T T
= 01U1V] + 02UV,

Note that:

vut =1,
vvT =1,

See Pattern 4 (P4) for the graphic notation.

Conclusion and Acknowledgements

I presented systematic visualizations of matrix/vector multiplication and their application to the Five Matrix
Factorizations. I hope you enjoyed them and will use them in your understanding of Linear Algebra.

Ashley Fernandes helped me with beautifying this paper in typesetting and made it much more consistent
and professional.

To conclude this paper, I'd like to thank Prof. Gilbert Strang for publishing “Linear Algebra for Every-
one”. It guides us through a new vision to these beautiful landscapes in Linear Algebra. Everyone can reach a
fundamental understanding of its underlying ideas in a practical manner that introduces us to contemporary
and also traditional data science and machine learning. An important part of the matrix world.
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