
Misc
Template

1 #include <bits/stdc++.h>
2 #define all(x) begin(x),end(x)
3 using namespace std;
4 using ll = long long;
5

6 int main() {
7 ios_base::sync_with_stdio(false);
8 cin.tie(nullptr);
9 }

Optimization Pragma

1 #pragma GCC optimize("Ofast")

Compilation Script

1 #!/bin/bash
2 g++ --std=c++17 -Wall -Wshadow -Wno-conversion -ftrapv -g $1 -o ${1%.cpp}.bin

Run Script

Usage: ./run.sh path/to/sample/folder ./solution.bin

1 #!/bin/bash
2 folder=$1;shift
3 for f in $folder/*.in; do
4 echo $f
5 pre=${f%.in}
6 out=$pre.out
7 $* < $f > $out
8 diff $out $pre.ans

Polynomial Hash

1 using lll = __int128_t;
2 ll P = 12233720368547789LL;
3 ll B = 260;
4 struct PolyHash {
5 vector<ll> hashes, ex;
6 PolyHash(const string& s) : hashes(s.size() + 1), ex(s.size() + 1) {
7 hashes[0] = 1; ex[0] = 1; ex[1] = B;
8 for (size_t i = 0; i < s.size(); i++) {
9 hashes[i + 1] = ((hashes[i] * B) % P + s[i] + 1) % P;

10 ex[i + 1] = (ex[i] * B) % P;
11 }
12 }
13 ll hash(ll lo, ll hi) {
14 return ((lll)hashes[hi] - (lll)hashes[lo] * (lll)ex[hi - lo] % P + P) % P;
15 }
16 };

Binary Search

1 while (lo < hi) {
2 ll mid = lo + (hi - lo) / 2;
3 if (f(mid)) // f should be false, then true
4 hi = mid;
5 else
6 lo = mid + 1;
7 }
8 //lo is now the first index where f is true

1

Geometry
Geometry Template

1 def vecsub(a, b):
2 return (a[0] - b[0], a[1] - b[1])
3 def vecadd(a, b):
4 return (a[0] + b[0], a[1] + b[1])
5 def dot(a, b):
6 return a[0] * b[0] + a[1] * b[1]
7 def cross(a, b, o = (0, 0)):
8 return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0])
9 def len2(a):

10 return a[0] ** 2 + a[1] ** 2
11 def dist2(a, b):
12 return len2(vecsub(a, b))
13 def sign(x):
14 return (x > 0) - (x < 0)
15 def zero(x):
16 return abs(x) < 1E-9

Distance between point and line segment

Returns the distance from the point p to the line segment starting at s and ending at e.
1 def distPS(s, e, p):
2 if s == e:
3 return sqrt(dist2(p, s))
4 se, sp = vecsub(e, s), vecsub(p, s)
5 d = len2(se)
6 t = min(d, max(0, dot(vecsub(p, s), vecsub(e, s))))
7 return sqrt(dist2((sp[0] * d, sp[1] * d), (se[0] * t, se[1] * t))) / d

Distance between point and line

Returns the signed distance from the point p to the line passing through the points a and b.
1 def distPL(a, b, p):
2 return cross(b, p, a) / sqrt(dist2(a, b))

Check if point is on line segment

1 def onSegment(s, e, p):
2 # return zero(distPS(s, e, p)) if floating-point is OK
3 return cross(s, e, p) == 0 and dot(vecsub(s, p), vecsub(e, p)) <= 0

Project point to line (or reflect)

Projects the point p onto the line passing through a and b.
Set refl=True to get reflection of point p across the line instead.

1 def projPL(a, b, p, refl = False):
2 v = vecsub(b, a)
3 s = (1 + refl) * cross(b, p, a) / len2(v)
4 return (p[0] + v[1] * s, p[1] - v[0] * s)

Intersection between two lines

If a unique intersection point of the lines going through s1,e1 and s2,e2 exists (1,point) is returned.
If no intersection point exists (0,(0,0)) is returned and if infinitely many exist (-1,(0,0)) is returned.

1 def intersectLL(s1, e1, s2, e2):
2 d = cross(vecsub(e1, s1), vecsub(e2, s2))
3 if zero(d): # parallel
4 return (-zero(cross(e1, s2, s1)), (0, 0))
5 p, q = cross(e1, e2, s2), cross(e2, s1, s2)
6 return (1, ((s1[0] * p + e1[0] * q) / d, (s1[1] * p + e1[1] * q) / d))

2

Intersection between two line segments

If a unique intersection is found, returns a list with only this point. If the segments intersect in many points, returns a list
of 2 elements containing the start and end of the common line segment. If no intersection, returns an empty list

1 def intersectSS(s1, e1, s2, e2):
2 oa, ob, oc, od = cross(e2, s1, s2), cross(e2, e1, s2), cross(e1, s2, s1), cross(e1, e2, s1)
3 if sign(oa) * sign(ob) < 0 and sign(oc) * sign(od) < 0:
4 div = ob - oa
5 return [((s1[0] * ob - e1[0] * oa) / div, (s1[1] * ob - e1[1] * oa) / div)]
6 s = set()
7 if onSegment(s2, e2, s1):
8 s.add(s1)
9 if onSegment(s2, e2, e1):

10 s.add(e1)
11 if onSegment(s1, e1, s2):
12 s.add(s2)
13 if onSegment(s1, e1, e2):
14 s.add(e2)
15 return list(s)

Point inside polygon

Returns true if the point pt lies within the polygon poly. If strict is true, returns false for points on the boundary.
1 def pointInPolygon(poly, pt, strict = True):
2 c = False
3 for i in range(len(poly)):
4 q = poly[i - 1]
5 if onSegment(q, poly[i], pt):
6 return not strict
7 c ^= ((pt[1] < q[1]) - (pt[1] < poly[i][1])) * cross(q, poly[i], pt) > 0
8 return c

Polygon area

Returns twice the signed area of a polygon. Clockwise enumeration gives negative area.
1 def polygonArea2(v):
2 return sum(map(lambda i: cross(v[i - 1], v[i]), range(len(v))))

Intersection between two circles

Computes the pair of points at which two circles intersect. Returns None in case of no intersection.
1 def intersectCC(c1, c2, r1, r2):
2 if c1 == c2:
3 assert(r1 != r2)
4 return None
5 vec = vecsub(c2, c1)
6 d2, sm, dif = len2(vec), r1 + r2, r1 - r2
7 if sm ** 2 < d2 or dif ** 2 > d2:
8 return None
9 p = (d2 + r1 ** 2 - r2 ** 2) / (d2 * 2)

10 h2 = r1 ** 2 - p * p * d2
11 mid = (c1[0] + vec[0] * p, c1[1] + vec[1] * p)
12 plen = sqrt(max(0, h2) / d2)
13 per = (-vec[1] * plen, vec[0] * plen)
14 return (vecadd(mid, per), vecsub(mid, per))

3

Convex hull (python)

Returns a list of points on the convex hull in counter-clockwise order. Points on the edge of the hull between two other
points are not considered part of the hull. Time complexity:O(n log n)

1 def convexHull(pts):
2 if len(pts) <= 1:
3 return pts
4 pts.sort()
5 t, s, h = 0, 0, [0] * (len(pts) + 1)
6 for i in range(2):
7 for p in pts:
8 while t >= s + 2 and cross(h[t - 1], p, h[t - 2]) <= 0:
9 t -= 1

10 h[t], t = p, t + 1
11 s = t = t - 1
12 pts.reverse()
13 return h[:t - (t == 2 and h[0] == h[1])]

Convex hull (C++)

1 using Point = pair<ll, ll>;
2 ll cross(Point a, Point b, Point c) {
3 return (a.first - c.first) * (b.second - c.second) -
4 (b.first - c.first) * (a.second - c.second);
5 }
6 vector<Point> convexHull(vector<Point> pts) {
7 if (pts.size() <= 1) return pts;
8 sort(all(pts));
9 vector<Point> h(pts.size() + 1);

10 ll t = 0, s = 0;
11 for (ll i = 0; i < 2; i++) {
12 for (Point p : pts) {
13 while (t >= s + 2 && cross(h[t - 1], p, h[t - 2]) <= 0)
14 t--;
15 h[t++] = p;
16 }
17 s = --t;
18 reverse(all(pts));
19 }
20 h.erase(h.begin() + t - (t == 2 && h[0] == h[1]), h.end());
21 return h;
22 }

Data Structures
Segment Tree (C++)

1 struct SegTree {
2 using T = ll; // use pair of value and index to get index from queries
3 T f(T a, T b) { return a + b; }
4 static constexpr T UNIT = 0; // neutral value for f
5

6 vector<T> s; ll n;
7 SegTree(ll len) : s(2 * len, UNIT), n(len) {}
8 void set(ll pos, T val) {
9 for (s[pos += n] = val; pos /= 2;)

10 s[pos] = f(s[pos * 2], s[pos * 2 + 1]);
11 }
12 T query(ll lo, ll hi) { // query lo to hi (hi not included)
13 T ra = UNIT, rb = UNIT;
14 for (lo += n, hi += n; lo < hi; lo /= 2, hi /= 2) {
15 if (lo % 2) ra = f(ra, s[lo++]);
16 if (hi % 2) rb = f(s[--hi], rb);
17 }
18 return f(ra, rb);
19 }
20 };

4

Segment Tree (python)

1 class SegTree:
2 def f(a, b):
3 return a + b
4 UNIT = 0 # neutral value for f
5

6 def __init__(self, n):
7 self.s = [self.UNIT] * (2 * n)
8 self.n = n
9 def set(self, pos, val):

10 pos += self.n
11 self.s[pos] = val
12 while pos > 1:
13 pos //= 2
14 self.s[pos] = SegTree.f(self.s[pos * 2], self.s[pos * 2 + 1])
15 def query(self, lo, hi): # query lo to hi (hi not included)
16 ra, rb, lo, hi = self.UNIT, self.UNIT, lo + self.n, hi + self.n
17 while lo < hi:
18 if lo % 2:
19 ra = SegTree.f(ra, self.s[lo])
20 lo += 1
21 if hi % 2:
22 hi -= 1
23 rb = SegTree.f(self.s[hi], rb)
24 lo, hi = lo // 2, hi // 2
25 return SegTree.f(ra, rb)

Fenwick Tree
1 struct FenwickTree {
2 FenwickTree(ll n) : v(n + 1, 0) { }
3 ll lsb(ll x) { return x & (-x); }
4 ll prefixSum(ll n) { //sum of the first n items (nth not included)
5 ll sum = 0;
6 for (; n; n -= lsb(n))
7 sum += v[n];
8 return sum;
9 }

10 void adjust(ll i, ll delta) {
11 for (i++; i < v.size(); i += lsb(i))
12 v[i] += delta;
13 }
14 vector<ll> v;
15 };

Sparse Table
1 struct SparseTable {
2 using T = ll;
3 ll node(ll l, ll i) { return i + l * n; }
4 ll n; vector<T> v;
5 SparseTable(vector<T> values) : n(values.size()), v(move(values)) {
6 ll d = log2(n);
7 v.resize((d + 1) * n);
8 for (ll L = 0, s = 1; L < d; L++, s *= 2) {
9 for (ll i = 0; i < n; i++) {

10 v[node(L + 1, i)] = min(v[node(L, i)], v[node(L, min(i + s, n - 1))]);
11 }
12 }
13 }
14 T query(ll lo, ll hi) { assert(hi > lo);
15 ll l = (ll)log2(hi - lo);
16 return min(v[node(l, lo)], v[node(l, hi - (1 << l))]);
17 }
18 };

5

Lazy Segment Tree

Segment tree with support for range updates. Use T = pair of value and index to get index from queries.
All ranges are (lo, hi] (hi is not included). fQuery defines the function to be used for queries (currently min) and fUpdate
defines the function to be used for updates (currently addition).

1 struct LazyST {
2 using T = ll;
3 T f(T a, T b) { return min(a, b); }
4 static const T QUERY_UNIT = LLONG_MAX; // neutral value for f
5

6 struct Node {
7 T val = QUERY_UNIT; // current value of this segment
8 optional<T> p; // value being pushed down into this segment
9 };

10 int len; vector<Node> nodes;
11 LazyST(int l) : len(pow(2, ceil(log2(l)))), nodes(len * 2) { }
12 void update(int lo, int hi, T val) { u(lo, hi, val, 1, 0, len); }
13 T query(int lo, int hi) { return q(lo, hi, 1, 0, len); }
14 private:
15 #define LST_NEXT int l = n * 2; int r = l + 1; int mid = (nlo + nhi) / 2
16 void push(int n, int nlo, int nhi) {
17 if (!nodes[n].p) return;
18 LST_NEXT;
19 u(nlo, nhi, *nodes[n].p, l, nlo, mid);
20 u(nlo, nhi, *nodes[n].p, r, mid, nhi);
21 nodes[n].p = {};
22 }
23 void u(int qlo, int qhi, T val, int n, int nlo, int nhi) {
24 if (nhi <= qlo || nlo >= qhi) return;
25 if (nlo >= qlo && nhi <= qhi) {
26 //for interval set:
27 nodes[n].p = val;
28 nodes[n].val = val; // val * (nhi - nlo) for sum queries
29 //for interval add:
30 nodes[n].p = nodes[n].p.get_or(0) + val;
31 nodes[n].val += val; // val * (nhi - nlo) for sum queries
32 } else {
33 push(n, nlo, nhi); LST_NEXT;
34 u(qlo, qhi, val, l, nlo, mid);
35 u(qlo, qhi, val, r, mid, nhi);
36 nodes[n].val = f(nodes[l].val, nodes[r].val);
37 }
38 }
39 T q(int qlo, int qhi, int n, int nlo, int nhi) {
40 if (nhi <= qlo || nlo >= qhi) return QUERY_UNIT;
41 if (nlo >= qlo && nhi <= qhi) return nodes[n].val;
42 push(n, nlo, nhi); LST_NEXT;
43 return f(q(qlo, qhi, l, nlo, mid), q(qlo, qhi, r, mid, nhi));
44 }
45 };

Line Container

Container where you can add lines of the form kx + m, and query maximum values at points x. All operations are
O(log(n)). For doubles, use inf = 1/.0 and div(a,b) = a/b

1 struct Line {
2 mutable ll k, m, p;
3 bool operator<(const Line& o) const { return k < o.k; }
4 bool operator<(ll x) const { return p < x; }
5 };
6 struct LineContainer : multiset<Line, less<>> {
7 const ll inf = LLONG_MAX;
8 ll div(ll a, ll b) { // floored division
9 return a / b - ((a ^ b) < 0 && a % b);

10 }
11 bool isect(iterator x, iterator y) {
12 if (y == end()) { x->p = inf; return false; }
13 if (x->k == y->k) x->p = x->m > y->m ? inf : -inf;
14 else x->p = div(y->m - x->m, x->k - y->k);
15 return x->p >= y->p;

6

16 }
17 void add(ll k, ll m) {
18 auto z = insert({k, m, 0}), y = z++, x = y;
19 while (isect(y, z)) z = erase(z);
20 if (x != begin() && isect(--x, y)) isect(x, y = erase(y));
21 while ((y = x) != begin() && (--x)->p >= y->p) isect(x, erase(y));
22 }
23 ll query(ll x) { assert(!empty());
24 auto l = *lower_bound(x);
25 return l.k * x + l.m;
26 }
27 };

Treap

1 struct Treap {
2 Treap *l = 0, *r = 0;
3 int val, y, c = 1;
4 Treap(int v) : val(v), y(rand()) { }
5 };
6 int trCount(Treap* n) { // returns the number of nodes in treap n
7 return n ? n->c : 0;
8 }
9 void trRecount(Treap* n) {

10 n->c = trCount(n->l) + trCount(n->r) + 1;
11 }
12 Treap* trAt(Treap* n, int idx) { // returns the treap node at the specified index
13 if (!n || idx == trCount(n->l)) return n;
14 if (idx > trCount(n->l))
15 return trAt(n->r, idx - trCount(n->l) - 1);
16 return trAt(n->l, idx);
17 }
18 template<class F> void trForeach(Treap* n, F f) { // invokes f for every item in the treap n
19 if (n) { trForeach(n->l, f); f(n->val); trForeach(n->r, f); }
20 }
21 pair<Treap*, Treap*> trSplit(Treap* n, int k) { // splits the treap n on index (or value) k
22 if (!n) return {};
23 if (trCount(n->l) >= k) { // use "if (n->val >= k) {" to split on value instead of index
24 auto pa = trSplit(n->l, k);
25 n->l = pa.second;
26 trRecount(n);
27 return {pa.first, n};
28 } else {
29 // use "auto pa = trSplit(n->r, k);" to split on value instead of index
30 auto pa = trSplit(n->r, k - trCount(n->l) - 1);
31 n->r = pa.first;
32 trRecount(n);
33 return {n, pa.second};
34 }
35 }
36 Treap* trJoin(Treap* l, Treap* r) {
37 if (!l) return r;
38 if (!r) return l;
39 if (l->y > r->y) {
40 l->r = trJoin(l->r, r);
41 trRecount(l);
42 return l;
43 } else {
44 r->l = trJoin(l, r->l);
45 trRecount(r);
46 return r;
47 }
48 }
49 // inserts the treap n into t at index pos (or value pos, depending on implementation of trSplit)
50 Treap* trInsert(Treap* t, Treap* n, int pos) {
51 auto pa = trSplit(t, pos);
52 return trJoin(trJoin(pa.first, n), pa.second);
53 }

7

Graph Algorithms
Dijkstra’s Algorithm

1 template<typename T> vector<T> dijkstra(ll start, const vector<vector<pair<ll, T>>>& adj) {
2 vector<T> dist(adj.size(), numeric_limits<T>::max());
3 dist[start] = 0;
4 priority_queue<pair<T, ll>, vector<pair<T, ll>>, greater<>> pq;
5 pq.emplace(dist[start], start);
6 while (!pq.empty()) {
7 ll cn = pq.top().second; pq.pop();
8 for (auto [n, d] : adj[cn]) {
9 T nd = dist[cn] + d;

10 if (nd < dist[n]) pq.emplace(dist[n] = nd, n);
11 }
12 }
13 return dist;
14 }

Bellman Ford

Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf;
nodes reachable through negative-weight cycles get dist = -inf. AssumesV 2 max |wi| < 263. Time complexity:O(V E)

1 const ll inf = 1LL << 62;
2 struct Ed {
3 int a, b, w;
4 int s() { return a < b ? a : -a; }
5 };
6 struct Node { ll dist = inf; int prev = -1; };
7 void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int s) {
8 nodes[s].dist = 0;
9 sort(all(eds), [] (Ed a, Ed b) { return a.s() < b.s(); });

10 int lim = nodes.size() / 2 + 2;
11 for(int i = 0; i < lim; i++)
12 for(auto& ed : eds) {
13 Node cur = nodes[ed.a], &dest = nodes[ed.b];
14 if (abs(cur.dist) == inf) continue;
15 ll d = cur.dist + ed.w;
16 if (d < dest.dist) {
17 dest.prev = ed.a;
18 dest.dist = (i < lim - 1 ? d : -inf);
19 }
20 }
21 for(int i = 0; i < lim; i++)
22 for(auto& e : eds)
23 if (nodes[e.a].dist == -inf)
24 nodes[e.b].dist = -inf;
25 }

Floyd Warshall (python)

Calculates all-pairs shortest path in a directed graph. As output, m[i][j] is set to the shortest distance between i and j,
inf if no path, or -inf if the path goes through a negative-weight cycle. Time complexity:O(N3).

1 from math import inf
2 def floydWarshall(m): # m[i][j] should be inf if i and j are not adjacent
3 for i in range(len(m)):
4 m[i][i] = min(m[i][i], 0)
5 for k in range(len(m)):
6 for i in range(len(m)):
7 for j in range(len(m)):
8 if m[i][k] != inf and m[k][j] != inf:
9 m[i][j] = min(m[i][j], max(m[i][k] + m[k][j], -inf))

10 #only needed if weights can be negative:
11 for k in range(len(m)):
12 if m[k][k] < 0:
13 for i in range(len(m)):
14 for j in range(len(m)):
15 if m[i][k] != inf and m[k][j] != inf:
16 m[i][j] = -inf

8

Floyd Warshall (C++)

1 const ll inf = 1LL << 62;
2 void floydWarshall(vector<vector<ll>>& m) { // m[i][j] should be inf if i and j are not adjacent
3 int n = m.size();
4 for(int i = 0; i < n; i++)
5 m[i][i] = min(m[i][i], 0LL);
6 for(int k = 0; k < n; k++)
7 for(int i = 0; i < n; i++)
8 for(int j = 0; j < n; j++)
9 if (m[i][k] != inf && m[k][j] != inf)

10 m[i][j] = min(m[i][j], max(m[i][k] + m[k][j], -inf));
11 //only needed if weights can be negative:
12 for(int k = 0; k < n; k++)
13 if (m[k][k] < 0)
14 for(int i = 0; i < n; i++)
15 for(int j = 0; j < n; j++)
16 if (m[i][k] != inf && m[k][j] != inf)
17 m[i][j] = -inf;
18 }

Maximum Flow (Dinic’s Algorithm)

Constructor takes number of nodes, call addEdge to add edges and calc to find maximum flow. To obtain the actual flow,
look at positive values of Edge::cap only.
Time complexity:O(V E logU) whereU = max |cap|.O(min(E1/2, V 2/3)E) ifU = 1.
O(
√
V E) for bipartite matching.

1 struct Dinic {
2 struct Edge { ll to, rev, cap, flow; };
3 vector<vector<Edge>> adj;
4 Dinic(ll n) : lvl(n), ptr(n), q(n), adj(n) {}
5 void addEdge(ll a, ll b, ll cap, ll rcap = 0) {
6 adj[a].push_back({b, adj[b].size(), cap, 0});
7 adj[b].push_back({a, adj[a].size() - 1, rcap, 0});
8 }
9 ll calc(ll src, ll snk) {

10 ll flow = 0; q[0] = src;
11 for(ll L = 0; L < 31; L++) do {
12 lvl = ptr = vector<ll>(q.size());
13 ll qi = 0, qe = lvl[src] = 1;
14 while (qi < qe && !lvl[snk]) {
15 ll v = q[qi++];
16 for(auto& e : adj[v])
17 if (!lvl[e.to] && (e.cap - e.flow) >> (30 - L))
18 q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;
19 }
20 while (ll p = dfs(src, snk, LLONG_MAX)) flow += p;
21 } while (lvl[snk]);
22 return flow;
23 }
24 vector<ll> lvl, ptr, q;
25 ll dfs(ll v, ll t, ll f) {
26 if (v == t || !f) return f;
27 for (ll& i = ptr[v]; i < adj[v].size(); i++) {
28 Edge& e = adj[v][i];
29 if (lvl[e.to] == lvl[v] + 1)
30 if (ll p = dfs(e.to, t, min(f, e.cap - e.flow))) {
31 e.flow += p, adj[e.to][e.rev].flow -= p;
32 return p;
33 }
34 }
35 return 0;
36 }
37 };

9

Minimum Cost Bipartite Matching

Cost matrix must be square! L and R are outputs describing the matching. Negate costs for max cost. Time complexity:
O(n3)

1 template <typename T>
2 T minCostMatching(const vector<vector<T>>& cost, vector<int>& L, vector<int>& R) {
3 int n = cost.size(), mated = 0;
4 vector<T> dist(n), u(n), v(n);
5 vector<int> dad(n), seen(n);
6 for(int i = 0; i < n; i++) {
7 u[i] = cost[i][0];
8 for(int j = 1; j < n; j++) u[i] = min(u[i], cost[i][j]);
9 }

10 for(int j = 0; j < n; ++j) {
11 v[j] = cost[0][j] - u[0];
12 for(int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);
13 }
14 L = R = vector<int>(n, -1);
15 for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) {
16 if (R[j] != -1) continue;
17 if (fabs(cost[i][j] - u[i] - v[j]) < 1E-10) {
18 L[i] = j; R[j] = i; mated++; break;
19 }
20 }
21 for (; mated < n; mated++) {
22 int s = 0;
23 while (L[s] != -1) s++;
24 fill(all(dad), -1); fill(all(seen), 0);
25 for(int k = 0; k < n; k++)
26 dist[k] = cost[s][k] - u[s] - v[k];
27 int j = 0;
28 while (true) {
29 j = -1;
30 for(int k = 0; k < n; k++){
31 if (seen[k]) continue;
32 if (j == -1 || dist[k] < dist[j]) j = k;
33 }
34 seen[j] = 1;
35 int i = R[j];
36 if (i == -1) break;
37 for (int k = 0; k < n; k++) {
38 if (seen[k]) continue;
39 auto new_dist = dist[j] + cost[i][k] - u[i] - v[k];
40 if (dist[k] > new_dist) {
41 dist[k] = new_dist;
42 dad[k] = j;
43 }
44 }
45 }
46 for (int k = 0; k < n; k++) {
47 if (k == j || !seen[k]) continue;
48 auto w = dist[k] - dist[j];
49 v[k] += w, u[R[k]] -= w;
50 }
51 u[s] += dist[j];
52 while (dad[j] >= 0) {
53 int d = dad[j];
54 R[j] = R[d];
55 L[R[j]] = j;
56 j = d;
57 }
58 R[j] = s; L[s] = j;
59 }
60 T value = 0;
61 for (int i = 0; i < n; i++) value += cost[i][L[i]];
62 return value;
63 }

10

Minimum Cost Maximum Flow

Calculates min-cost max-flow. cap[i][j]!=cap[j][i] is allowed; double edges are not. To obtain the actual flow, look at
positive values only. Time complexity: ApproximatelyO(E2).
If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported.

1 #include <bits/extc++.h>
2 const ll INF = LLONG_MAX / 4;
3 struct MCMF {
4 int N;
5 vector<vector<int>> ed, red;
6 vector<vector<ll>> cap, flow, cost;
7 vector<int> seen;
8 vector<ll> dist, pi;
9 vector<pair<int, int> > par;

10 MCMF(int N) : N(N), ed(N), red(N), cap(N, vector<ll>(N)),
11 flow(cap), cost(cap), seen(N), dist(N), pi(N), par(N) { }
12 void addEdge(int from, int to, ll cap, ll cost) {
13 this->cap[from][to] = cap;
14 this->cost[from][to] = cost;
15 ed[from].push_back(to);
16 red[to].push_back(from);
17 }
18 void path(int s) {
19 fill(all(seen), 0);
20 fill(all(dist), INF);
21 dist[s] = 0; ll di;
22 __gnu_pbds::priority_queue<pair<ll, int>> q;
23 vector<decltype(q)::point_iterator> its(N);
24 q.push({0, s});
25 auto relax = [&](int i, ll cap, ll cost, int dir) {
26 ll val = di - pi[i] + cost;
27 if (cap && val < dist[i]) {
28 dist[i] = val;
29 par[i] = {s, dir};
30 if (its[i] == q.end())
31 its[i] = q.push({-dist[i], i});
32 else
33 q.modify(its[i], {-dist[i], i});
34 }
35 };
36 while (!q.empty()) {
37 s = q.top().second; q.pop();
38 seen[s] = 1;
39 di = dist[s] + pi[s];
40 for (auto& i : ed[s]) if (!seen[i])
41 relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
42 for (auto& i : red[s]) if (!seen[i])
43 relax(i, flow[i][s], -cost[i][s], 0);
44 }
45 for(int i = 0; i < N; i++)
46 pi[i] = min(pi[i] + dist[i], INF);
47 }
48 pair<ll, ll> maxflow(int s, int t) {
49 ll totflow = 0, totcost = 0;
50 while (path(s), seen[t]) {
51 ll fl = INF;
52 for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
53 fl = min(fl, r ? cap[p][x] - flow[p][x] : flow[x][p]);
54 totflow += fl;
55 for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p) {
56 if (r) flow[p][x] += fl;
57 else flow[x][p] -= fl;
58 }
59 }
60 for(int i = 0; i < N; i++)
61 for(int j = 0; j < N; j++)
62 totcost += cost[i][j] * flow[i][j];
63 return { totflow, totcost };
64 }
65 void setpi(int s) { // optional, if some costs can be negative, call this before maxflow
66 fill(all(pi), INF); pi[s] = 0;

11

67 int it = N, ch = 1; ll v;
68 while (ch-- && it--)
69 for(int i = 0; i < N; i++) if (pi[i] != INF)
70 for(auto& to : ed[i]) if (cap[i][to])
71 if ((v = pi[i] + cost[i][to]) < pi[to])
72 pi[to] = v, ch = 1;
73 assert(it >= 0); // negative cost cycle
74 }
75 };

2-SAT

Calculates a valid assignment to boolean variables in a 2-SAT problem. Negated variables are represented by bit-inversions
(~x). Time complexity:O(N + E), whereN is the number of boolean variables, andE is the number of clauses.

1 struct TwoSat {
2 int N;
3 vector<vector<int>> gr;
4 vector<int> values; // 0 = false, 1 = true
5 TwoSat(int n = 0) : N(n), gr(2 * n) {}
6 void either(int f, int j) {
7 f = max(2 * f, -1-2*f);
8 j = max(2 * j, -1-2*j);
9 gr[f].push_back(j ^ 1);

10 gr[j].push_back(f ^ 1);
11 }
12 void set_value(int x) { either(x, x); }
13 vector<int> val, comp, z; int time = 0;
14 int dfs(int i) {
15 int low = val[i] = ++time, x;
16 z.push_back(i);
17 for(auto& e : gr[i])
18 if (!comp[e])
19 low = min(low, val[e] ?: dfs(e));
20 if (low == val[i]) do {
21 x = z.back(); z.pop_back();
22 comp[x] = low;
23 if (values[x>>1] == -1)
24 values[x>>1] = x&1;
25 } while (x != i);
26 return val[i] = low;
27 }
28 bool solve() {
29 values.assign(N, -1);
30 val.assign(2 * N, 0); comp = val;
31 for (int i = 0; i < 2 * N; ++i)
32 if (!comp[i])
33 dfs(i);
34 for (int i = 0; i < N; ++i)
35 if (comp[2 * i] == comp[2 * i + 1])
36 return 0;
37 return 1;
38 }
39 /* optional */ int add_var() {
40 gr.emplace_back();
41 gr.emplace_back();
42 return N++;
43 }
44 /* optional */ void at_most_one(const vector<int>& li) {
45 if (li.size() <= 1) return;
46 int cur = ~li[0];
47 for(size_t i = 2; i < li.size(); i++) {
48 int next = add_var();
49 either(cur, ~li[i]);
50 either(cur, next);
51 either(~li[i], next);
52 cur = ~next;
53 }
54 either(cur, ~li[1]);
55 }
56 };

12

Biconnected Components

Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. Note that a node can
be in several components. An edge which is not in a component is a bridge. Time complexity:O(E + V)

1 vector<int> num, st;
2 vector<vector<pair<int, int>>> ed;
3 int Time;
4 template<class F> int dfs(int at, int par, F& f) {
5 int me = num[at] = ++Time, top = me;
6 for(auto& pa : ed[at]) {
7 if (pa.second == par) continue;
8 auto [y, e] = pa;
9 if (num[y]) {

10 top = min(top, num[y]);
11 if (num[y] < me) st.push_back(e);
12 } else {
13 int si = st.size();
14 int up = dfs(y, e, f);
15 top = min(top, up);
16 if (up == me) {
17 st.push_back(e);
18 f(vector<int>(st.begin() + si, st.end()));
19 st.resize(si);
20 }
21 else if (up < me) st.push_back(e);
22 else { /* e is a bridge */ }
23 }
24 }
25 return top;
26 }
27 template<class F>
28 void bicomps(F f) {
29 num.assign(ed.size(), 0);
30 for(int i = 0; i < (int)ed.size(); i++)
31 if (!num[i]) dfs(i, -1, f);
32 }

Usage example:
1 int eid = 0; ed.resize(N);
2 for each edge (a,b) {
3 ed[a].emplace_back(b, eid);
4 ed[b].emplace_back(a, eid++);
5 }
6 bicomps([&](const vector<int>& edgelist) {...});

Strongly Connected Components

Finds strongly connected components in a directed graph. Usage: scc(graph, [&](vector<int>& v) { ... })} visits all
components in reverse topological order. comp[i] holds the component index of a node (a component only has edges
to components with lower index). ncomps will contain the number of components. Time complexity:O(E + V)

1 vector<int> val, comp, z, cont; int Time, ncomps;
2 template<class G, class F> int dfs(int j, G& g, F& f) {
3 int low = val[j] = ++Time, x; z.push_back(j);
4 for(auto& e : g[j]) if (comp[e] < 0)
5 low = min(low, val[e] ?: dfs(e,g,f));
6 if (low == val[j]) {
7 do {
8 x = z.back(); z.pop_back();
9 comp[x] = ncomps;

10 cont.push_back(x);
11 } while (x != j);
12 f(cont); cont.clear();
13 ncomps++;
14 }
15 return val[j] = low;
16 }
17 template<class G, class F> void scc(G& g, F f) {
18 val.assign(g.size(), 0);
19 comp.assign(g.size(), -1);

13

20 Time = ncomps = 0;
21 for(size_t i = 0; i < g.size(); i++)
22 if (comp[i] < 0) dfs(i, g, f);
23 }

Usage example:
1 TwoSat ts(number of boolean variables);
2 ts.either(0, ~3); // Var 0 is true or var 3 is false
3 ts.set_value(2); // Var 2 is true
4 ts.at_most_one({0,~1,2}); // <= 1 of vars 0, ~1 and 2 are true
5 ts.solve(); // Returns true iff it is solvable. ts.values holds the assigned values to the variables

Math
Fast Fourier Transform

fft(a) computes f̂(k) =
∑

x a[x] exp(2πi · kx/N) for all k.
Useful for convolution: conv(a, b)=c, where c[x] =

∑
a[i]b[x− i].

Rounding is safe if (
∑
a2i +

∑
b2i) log2N < 9 · 1014 (in practice 1016; higher for random inputs).

Time complexity:O(N logN) withN = |A|+ |B| (about 1s forN = 4 · 106)
1 typedef complex<double> C;
2 void fft(vector<C>& a) {
3 int n = a.size(), L = 31 - __builtin_clz(n);
4 static vector<complex<long double>> R(2, 1);
5 static vector<C> rt(2, 1); // (^ 10% faster if double)
6 for (int k = 2; k < n; k *= 2) {
7 R.resize(n); rt.resize(n);
8 auto x = polar(1.0L, M_PIl / k);
9 for (int i = k; i < 2 * k; i++)

10 rt[i] = R[i] = i & 1 ? R[i / 2] * x : R[i / 2];
11 }
12 vector<int> rev(n);
13 for (int i = 0; i < n; i++)
14 rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
15 for (int i = 0; i < n; i++)
16 if (i < rev[i]) swap(a[i], a[rev[i]]);
17 for (int k = 1; k < n; k *= 2)
18 for (int i = 0; i < n; i += 2 * k)
19 for(int j = 0; j < k; j++) {
20 auto x = (double*)&rt[j + k], y = (double*)&a[i + j + k];
21 C z(x[0] * y[0] - x[1] * y[1], x[0] * y[1] + x[1] * y[0]);
22 a[i + j + k] = a[i + j] - z;
23 a[i + j] += z;
24 }
25 }
26 vector<double> conv(const vector<double>& a, const vector<double>& b) {
27 if (a.empty() || b.empty()) return { };
28 vector<double> res(a.size() + a.size() - 1);
29 int L = 32 - __builtin_clz(res.size()), n = 1 << L;
30 vector<C> in(n), out(n);
31 copy(all(a), begin(in));
32 for (size_t i = 0; i < a.size(); i++)
33 in[i].imag(b[i]);
34 fft(in);
35 for (C& x : in) x *= x;
36 for (int i = 0; i < n; i++)
37 out[i] = in[-i & (n - 1)] - conj(in[i]);
38 fft(out);
39 for (size_t i = 0; i < res.size(); i++)
40 res[i] = imag(out[i]) / (4 * n);
41 return res;
42 }

14

Solve Linear System of Equations

Solves Ax = b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or −1 if no solutions. Time
complexity:O(n2m)

1 int solveLinear(vector<vector<double>> A, vector<double> b, vector<double>& x) {
2 const double eps = 1e-12;
3 int n = A.size(), m = x.size(), rank = 0, br, bc;
4 if (n) assert((int)A[0].size() == m);
5 vector<int> col(m); iota(all(col), 0);
6 for(int i = 0; i < n; i++) {
7 double v, bv = 0;
8 for(int r = i; r < n; ++r) for(int c = i; c < m; c++)
9 if ((v = fabs(A[r][c])) > bv)

10 br = r, bc = c, bv = v;
11 if (bv <= eps) {
12 for(int j = i; j < n; j++)
13 if (fabs(b[j]) > eps) return -1;
14 break;
15 }
16 swap(A[i], A[br]);
17 swap(b[i], b[br]);
18 swap(col[i], col[bc]);
19 for(int j = 0; j < n; j++)
20 swap(A[j][i], A[j][bc]);
21 bv = 1 / A[i][i];
22 for(int j = i + 1; j < n; j++) {
23 double fac = A[j][i] * bv;
24 b[j] -= fac * b[i];
25 for(int k = i+1; k < (m); ++k)
26 A[j][k] -= fac*A[i][k];
27 }
28 rank++;
29 }
30 x.assign(m, 0);
31 for (int i = rank; i--;) {
32 b[i] /= A[i][i];
33 x[col[i]] = b[i];
34 for (int j = 0; j < i; j++)
35 b[j] -= A[j][i] * b[i];
36 }
37 return rank;
38 }

Extended Euclidean Algorithm (python)

Finds the Greatest Common Divisor to the integers a and b. Also finds two integers x and y, such that ax+ by = gcd(a, b).
Returns a tuple of (gcd(a, b), x, y). If a and b are coprime, then x is the inverse of a (mod b).

1 def extEuclid(a, b):
2 if b:
3 d, x, y = extEuclid(b, a % b)
4 return (d, y, x - a // b * y)
5 return (a, 1, 0)

Extended Euclidean Algorithm (C++)

1 ll extEuclid(ll a, ll b, ll& x, ll& y) {
2 if (b) {
3 ll d = extEuclid(b, a % b, y, x);
4 return y -= a / b * x, d;
5 }
6 return x = 1, y = 0, a;
7 }

15

Chinese Remainder Theorem (python)

Finds the smallest number x satisfying a system of congruences, each in the form x ≡ ri (mod mi). All pairs ofmi must
be coprime. eq is a list of tuples describing the equations, the i:th of which should be (ri,mi).

1 def crt(eq):
2 p, res = 1, 0
3 for rem, md in eq:
4 p *= md
5 for rem, md in eq:
6 pp = p // md
7 res = (res + rem * extEuclid(pp, md)[1] * pp) % p
8 return res

Chinese Remainder Theorem (C++)

Similar to python version. Make sure that the product of allmi is less than 262.
1 ll crt(const vector<pair<ll, ll>>& eq) {
2 ll p = 1, res = 0;
3 for (auto e : eq) p *= e.second;
4 for (auto e : eq) {
5 ll pp = p / e.second, ppi, y;
6 extEuclid(pp, e.second, ppi, y);
7 res = (res + e.first * ppi * pp) % p;
8 }
9 return res;

10 }

Polynomial Roots

Finds the real roots of a polynomial. Time complexity:O(n2 log(1/ε)).
Usage (solves x2 − 3x+ 2 = 0): poly_roots({{ 2, -3, 1 }},-1e9,1e9)

1 struct Poly {
2 vector<double> a;
3 double operator()(double x) const {
4 double val = 0;
5 for(int i = a.size(); i--;)
6 (val *= x) += a[i];
7 return val;
8 }
9 void diff() {

10 for (size_t i = 1; i < a.size(); i++)
11 a[i - 1] = i * a[i];
12 a.pop_back();
13 }
14 };
15 vector<double> poly_roots(Poly p, double xmin, double xmax) {
16 if (p.a.size() == 2) return { -p.a[0] / p.a[1] };
17 vector<double> ret;
18 Poly der = p;
19 der.diff();
20 auto dr = poly_roots(der, xmin, xmax);
21 dr.push_back(xmin - 1);
22 dr.push_back(xmax + 1);
23 sort(all(dr));
24 for (size_t i = 0; i < dr.size() - 1; i++) {
25 double l = dr[i], h = dr[i + 1];
26 bool sign = p(l) > 0;
27 if (sign ^ (p(h) > 0)) {
28 for (int it = 0; it < 60; it++) {
29 double m = (l + h) / 2, f = p(m);
30 if ((f <= 0) ^ sign) l = m;
31 else h = m;
32 }
33 ret.push_back((l + h) / 2);
34 }
35 }
36 return ret;
37 }

16

