Thinas E\IGW

Java Programmer

Qlflou\d KI0W

Edited by Kevlin Henney
& Trisha Gee

9

Preface
a. Permissions
b. O’Reilly Online Learning
c. How to Contact Us

d. Acknowledgments

. 1. All You Need Is Java

a. Anders Noras

2. Approval Testing
a. Emily Bache

3. Augment Javadoc with AsciiDoc
a. James Elliott

4. Be Aware of Your Container Surroundings
a. David Delabassee

5. Behavior Is “Easy”; State Is Hard
a. Edson Yanaga

6. Benchmarking Is Hard—JMH Helps
a. Michael Hunger

7. The Benefits of Codifying and Asserting Architectural
Quality

a. Daniel Bryant
8. Break Problems and Tasks into Small Chunks

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

a. Jeanne Boyarsky
9. Build Diverse Teams
a. Ixchel Ruiz
10. Builds Don’t Have To Be Slow and Unreliable
a. Jenn Strater
11. “But It Works on My Machine!”
a. Benjamin Muschko
12. The Case Against Fat JARs
a. Daniel Bryant
13. The Code Restorer
a. Abraham Marin-Perez
14. Concurrency on the JVM
a. Mario Fusco
15. CountDownLatch—Friend or Foe?
a. Alexey Soshin
16. Declarative Expression Is the Path to Parallelism
a. Russel Winder
17. Deliver Better Software, Faster
a. Burk Hufnagel
18. Do You Know What Time It Is?

a. Christin Gorman

20.

21.

22.

23.

24.

25.

26.

27,

28.

19. Don’t hIDE Your Tools
a. Gail Ollis
20. Don’t Vary Your Variables
a. Steve Freeman
1. Assign Once
ii. Localize Scope
21. Embrace SQL Thinking
a. Dean Wampler
22, Events Between Java Components
a. A.Mahdy AbdelAziz
23. Feedback Loops
a. Liz Keogh
24. Firing on All Engines
a. Michael Hunger
25. Follow the Boring Standards
a. Adam Bien
26. Frequent Releases Reduce Risk
a. Chris O’Dell
i. What Is Risk?

ii. Large, Infrequent Releases Are Riskier

27. From Puzzles to Products

a. Jessica Kerr

209.

30.

31.

32.

33-

34.

35-

28. “Full-Stack Developer” Is a Mindset
a. Maciej Walkowiak
29. Garbage Collection Is Your Friend
a. Holly Cummins
30. Get Better at Naming Things
a. Peter Hilton
31. Hey Fred, Can You Pass Me the HashMap?
a. Kirk Pepperdine
32. How to Avoid Null
a. Carlos Obregon
i. Avoid Initializing Variables to Null
ii. Avoid Returning Null

iii. Avoid Passing and Receiving Null
Parameters

iv. Acceptable Nulls
33. How to Crash Your JVM
a. Thomas Ronzon

34. Improving Repeatability and Auditability with
Continuous Delivery

a. Billy Korando

i. Repeatable
ii. Auditable

36. 35.In the Language Wars, Java Holds Its Own
a. Jennifer Reif
i. My History with Java
ii. Java’s Design and Background
iii. Java’s Downsides
iv. Why I Like Java
v. What Does It Mean for Developers?
37. 36. Inline Thinking
a. Patricia Aas
38. 37. Interop with Kotlin
a. Sebastiano Poggi
39. 38. It’s Done, But...
a. Jeanne Boyarsky
i. 1. Communication and Clarity
ii. 2. Perception
iil. 3. There’s No Partial Credit for Done
40. 39. Java Certifications: Touchstone in Technology
a. Mala Gupta
41. 40.Java Is a’9os Kid
a. Ben Evans

42. 41.Java Programming from a JVM Performance
Perspective

43.

44.

45.

47.

a. Monica Beckwith

i. Tip #1: Don’t Obsess Over Garbage

ii. Tip #2: Characterize and Validate Your
Benchmarks

iii. Tip #3: Allocation Size and Rate Still
Matter

iv. Tip #4: An Adaptive JVM Is Your Right
and You Should Demand It

42. Java Should Feel Fun
a. Holly Cummins

43. Java’s Unspeakable Types
a. Ben Evans

44. The JVM Is a Multiparadigm Platform: Use This to
Improve Your Programming

a. Russel Winder

. 45. Keep Your Finger on the Pulse

a. Trisha Gee
46. Kinds of Comments
a. Nicolai Parlog

1. Javadoc Comments for Contracts
1. Block Comments for Context
iii. Line Comments for Weird Things

iv. Last Words

48.

49.

50.

51.

52.

53-

54.

05-

o7/

47. Know Thy flatMap
a. Daniel Hinojosa
48. Know Your Collections
a. Nikhil Nanivadekar
49. Kotlin Is a Thing
a. Mike Dunn
50. Learn Java Idioms and Cache in Your Brain
a. Jeanne Boyarsky
51. Learn to Kata and Kata to Learn
a. Donald Raab
52. Learn to Love Your Legacy Code
a. Uberto Barbini
53. Learn to Use New Java Features
a. Gail C. Anderson
54. Learn Your IDE to Reduce Cognitive Load
a. Trisha Gee

55. Let’s Make a Contract: The Art of Designing a Java
API

a. Mario Fusco
56. Make Code Simple and Readable

a. Emily Jiang

. 57. Make Your Java Groovier

59-

60.

61.

62.

63.

66.

a. Ken Kousen
58. Minimal Constructors
a. Steve Freeman
59. Name the Date
a. Kevlin Henney
60. The Necessity of Industrial-Strength Technologies
a. Paul W. Homer
61. Only Build the Parts That Change and Reuse the Rest
a. Jenn Strater
62. Open Source Projects Aren’t Magic
a. Jenn Strater
63. Optional Is a Lawbreaking Monad but a Good Type
a. Nicolai Parlog
i. Monad Definition

1i. Monad Laws

iii. So What?

. 64. Package-by-Feature with the Default Access Modifier

a. Marco Beelen
65. Production Is the Happiest Place on Earth

a. Josh Long

. 66. Program with GUTs

a. Kevlin Henney

68.

70.

71.

72.

73-

74.

75

67. Read OpenJDK Daily

a. Heinz M. Kabutz

. 68. Really Looking Under the Hood

a. Rafael Benevides

69. The Rebirth of Java
a. Sander Mak

70. Rediscover the JVM Through Clojure
a. James Elliott

71. Refactor Boolean Values to Enumerations
a. Peter Hilton

72. Refactoring Toward Speed-Reading
a. Benjamin Muskalla

73. Simple Value Objects
a. Steve Freeman

74. Take Care of Your Module Declarations
a. Nicolai Parlog

i. Keep Module Declarations Clean
ii. Comment Module Declarations

1ii. Review Module Declarations

. 75. Take Good Care of Your Dependencies

a. Brian Vermeer

i. Vulnerable Dependencies

77-

79-

8o.

81.

82.

83.

ii. Updating Dependencies
iii. A Strategy for Your Dependencies
76. Take “Separation of Concerns” Seriously
a. Dave Farley
77. Technical Interviewing Is a Skill Worth Developing
a. Trisha Gee
78. Test-Driven Development
a. Dave Farley
i. Red
ii. Green
iii. Refactor
79. There Are Great Tools in Your bin/ Directory
a. Rod Hilton
80. Think Outside the Java Sandbox
a. Ian F. Darwin
81. Thinking in Coroutines
a. Dawn Griffiths and David Griffiths
82. Threads Are Infrastructure; Treat Them as Such

a. Russel Winder

. 83. The Three Traits of Really, Really Good Developers

a. Jannah Patchay

. 84. Trade-Offs in a Microservices Architecture

a. Kenny Bastani
86. 85. Uncheck Your Exceptions
a. Kevlin Henney

87. 86. Unlocking the Hidden Potential of Integration
Testing Using Containers

a. Kevin Wittek

88. 87. The Unreasonable Effectiveness of Fuzz Testing
a. Nat Pryce

89. 88. Use Coverage to Improve Your Unit Tests
a. Emily Bache

i. When You're Writing New Code

ii. When You Have to Change Code You
Didn’t Write

iii. When You're Working in a Team

90. 89. Use Custom Identity Annotations Liberally

a. Mark Richards
91. 90. Use Testing to Develop Better Software Faster

a. Marit van Dijk
92. 91. Using Object-Oriented Principles in Test Code

a. Angie Jones

i. Encapsulation

ii. Inheritance

93-

94.

95.

96.

97

08.

99.

iii. Polymorphism
iv. Abstraction

92. Using the Power of Community to Enhance Your
Career

a. Sam Hepburn
i. The Silver Lining
ii. How Can Community Help?
iii. Looking for Your Next Challenge?
93. What Is the JCP Program and How to Participate
a. Heather VanCura
94. Why I Don’t Hold Any Value in Certifications
a. Colin Vipurs
95. Write One-Sentence Documentation Comments
a. Peter Hilton
96. Write “Readable Code”
a. Dave Farley
97. The Young, the Old, and the Garbage
a. Maria Arias de Reyna

i. The Garbage Collector
ii. GC Strategies
iii. References

Contributors

100. Index

97 Things Every Java
Programmer Should Know

Collective Wisdom from the Experts

Kevlin Henney and Trisha Gee

97 Things Every Java
Programmer Should Know

by Kevlin Henney and Trisha Gee
Copyright © 2020 O’Reilly Media Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or

corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade
Developmental Editor: Corbin Collins
Production Editor: Beth Kelly
Copyeditor: Piper Editorial

Proofreader: Sonia Saruba

http://oreilly.com

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery

Ilustrator: Rebecca Demarest

June 2020: First Edition
Revision History for the First Edition

e 2020-05-15: First Release

See http://oreilly.com/catalog/errata.csp ?isbn=9781491952696 for

release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 97
Things Every Java Programmer Should Know, the cover image, and

related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not
represent the publisher’s views. While the publisher and the authors
have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the
authors disclaim all responsibility for errors or omissions, including
without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your

responsibility to ensure that your use thereof complies with such

http://oreilly.com/catalog/errata.csp?isbn=9781491952696

licenses and/or rights.
978-1-491-95269-6

[LSI]

Dedication

To the memory of those who shaped us

through their wisdom and compassion

Preface

The mind is not a vessel that needs filling, but wood that needs
igniting.
—Plutarch

What should every Java programmer know? It depends. It depends on
who you ask, why you ask, and when you ask. There are at least as
many suggestions as there are points of view. In a language, platform,
ecosystem, and community that affects the software and lives of so
many people, and has done so from one century to the next, from one
core to many, from megabytes to gigabytes, it depends on more than

you could ever hope to cover in a single book by a single author.

Instead, in this book, we draw on some of those many perspectives to
collect together for you a cross section and representation of the
thinking in the Java-verse. It’s not every thing, but it is 97 of them from
73 contributors. To quote the preface of 97 Things Every Programmer
Should Know (O’Reilly):

With so much to know, so much to do, and so many ways of doing so,
no single person or single source can lay claim to “the one true
way.” The contributions do not dovetail like modular parts, and
there is no intent that they should—if anything, the opposite is true.
The value of each contribution comes from its distinctiveness. The
value of the collection lies in how the contributions complement,
confirm, and even contradict one another. There is no overarching
narrative: it is for you to respond to, reflect on, and connect together
what you read, weighing it against your own context, knowledge,

http://shop.oreilly.com/product/9780596809492.do

and experience.

What should every Java programmer know? In the 97 things we have
sampled, the answers span the language, the JVM, testing techniques,
the JDK, community, history, agile thinking, implementation know-
how, professionalism, style, substance, programming paradigms,
programmers as people, software architecture, skills beyond code,

tooling, GC mechanics, non-Java JVM languages...and more.

Permissions

In the spirit of the first 97 Things books, each contribution in this
volume follows a nonrestrictive, open source model. Each contribution
is licensed under a Creative Commons Attribution 4.0 license. Many of
the contributions also first appeared in the 97 Things Medium

publication.

All these things are fuel and fire for your thoughts and your code.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and
business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge
and expertise through books, articles, and our online learning platform.

O’Reilly’s online learning platform gives you on-demand access to live

https://oreil.ly/zPsKK
https://medium.com/97-things
http://oreilly.com

training courses, in-depth learning paths, interactive coding
environments, and a vast collection of text and video from O’Reilly
and 200+ other publishers. For more information, visit

http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the

publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and
any additional information. You can access this page at
https://oreil.ly/97Tejpsk.

Email bookquestions@oreilly.com to comment or ask technical

questions about this book.

Visit http://oreilly.com for news and information about our books and

courses.

http://oreilly.com
https://oreil.ly/97Tejpsk
mailto:bookquestions@oreilly.com
http://oreilly.com

Find us on Facebook: http://facebook.com/oreilly.

Follow us on Twitter at http://twitter.com/oreillymedia, and also check
out http://twitter.com/97_Things.

Watch us on YouTube: http://youtube.com/oreillymedia.

Acknowledgments

Many people have contributed their time and their insight, both directly
and indirectly, to the 97 Things Every Java Programmer Should Know

project. They all deserve credit.

We would like to thank all those who took the time and effort to
contribute to this book. We are also grateful for the additional

feedback, comments, and suggestions provided by Brian Goetz.

Thanks to O’Reilly for the support they have provided for this project,
including Zan McQuade and Corbin Collins for their guidance and for
nurturing contributors and content, and Rachel Roumeliotis, Susan

Conant, and Mike Loukides for their contributions on this journey.

Kevlin would also like to thank his wife, Carolyn, for making sense of
his nonsense, and his sons, Stefan and Yannick, for making sense of

their parents.

Trisha would like to add thanks to her husband, Isra, for helping her to
see that stressing about not doing enough was not helping her to do
anything, and her daughters, Evie and Amy, for providing

unconditional love and cuddles.

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://twitter.com/97_Things
http://www.youtube.com/oreillymedia

We hope this book will be informative, insightful, and inspirational.

Enjoy!

All You Need Is Java

Anders Nords

(B
(B

' =

While working on the first major revision of Visual Studio, the team at
Microsoft introduced the world to three developer personas: Mort,

Elvis, and Einstein.

Mort was the opportunistic developer, doing quick fixes and making
things up as he went along. Elvis was the pragmatic programmer,
building solutions for the ages while learning on the job. Einstein was
the paranoid programmer, obsessed with designing the most efficient

solution and figuring everything out before writing his code.

On the Java side of the religious divide of programming languages, we
laughed at Morts, and we wanted to be Einsteins building frameworks

to make sure the Elvises wrote their code the “right way.”

This was the dawn of the age of the frameworks, and unless you were
proficient with the latest, greatest object relational mapper and
inversion of control framework, you weren’t a proper Java
programmer. Libraries grew into frameworks with prescripted

architectures. And as these frameworks became technology

ecosystems, many of us forgot about the little language that could

—Java.

Java is a great language and its class library has something for every
occasion. Need to work with files? java.ni10’s got you covered.
Databases? java.sql is the place to go. Almost every Java
distribution even sports a full-blown HTTP server, even if you have to
climb off the Java-named branch and onto

com.sun.net. httpserver.

As our applications move toward serverless architectures, where the
deployment units can be single functions, the benefits we get from
application frameworks diminish. This is because we’ll likely spend
less time on handling technical and infrastructural concerns, focusing
our programming efforts toward the business capabilities our programs

realize.

As Bruce Joyce put it:

We have to reinvent the wheel every once in a while, not because we
need a lot of wheels; but because we need a lot of inventors.

Many have set out to build generic business logic frameworks to
maximize reuse. Most have failed since there really aren’t any generic
business problems. Doing something special in a specific way is what
sets one business apart from the next. This is why you’re guaranteed to
be writing business logic on just about every project. In the name of
coming up with something generic and reusable, one might be tempted
to introduce a rules engine or similar. At the end of the day,

configuring a rules engine is programming, often in a language inferior

to Java. Why not try to just write Java instead? You’ll be surprised to
find that the end result will be easy to read, which in turn makes the

code easy to maintain—even by non-Java programmers.

Quite often you’ll find that Java’s class library is a little limited, and
you might need something to make working with dates, networking, or
something else a little more comfortable. That’s fine. Use a library. The
difference is that you’ll now be using that library because a specific
need occurred, not because it was part of the stack you’ve always been

using.

The next time an idea for a small program springs to mind, awaken
your knowledge of the Java class library from hibernation rather than
reaching for that JHipster scaffold. Hipsterism is passé; living a simple

life is where it’s at now. I bet Mort loved the simple life.

Approval Testing

Emily Bache

Have you ever written a test assertion with a dummy or blank

expectation? Something like this:

asserteEquals("", functionCall())

Where functionCall is returning a string and you’re not sure
exactly what that string should be, but you’ll know it’s right when you
see it? When you run the test the first time, of course, it fails because
functionCall returns a string that isn’t empty. (You might have
several tries, until the return value looks correct.) Then you paste this
value instead of the empty string in the assertEquals. Now the test
should pass. Result! That’s what I’d call approval testing.

The crucial step here is when you decide the output is correct and use it
as the expected value. You “approve” a result—it’s good enough to
keep. I expect you’ve done this kind of thing without really thinking
about it. Perhaps you call it by a different name: it’s also called
snapshot testing or golden master testing. In my experience, if you

have a testing framework specifically designed to support it, then a lot

of things fall into place and testing this way gets easier.

With a classic unit testing framework like JUnit, it can be a bit painful
to update those expected strings when they change. You end up pasting
stuff around in the source code. With an approval testing tool, the
approved string gets stored in a file instead. That immediately opens up
new possibilities. You can use a proper diff tool to go through changes
and merge them one by one. You can get syntax highlighting for JSON
strings and such. You can search and replace updates across several
tests in different classes.

So, what are good situations for approval testing? Here are a few:

Code without unit tests that you need to change
If the code is in production, then anything it does is, by default,
considered correct and can be approved. The hard part about
creating tests turns into a problem of finding seams and carving out
pieces of logic that return something interesting you can approve.

REST APIs and functions that return JSON or XML
If the result is a longer string, then storing it outside the source
code is a big win. JSON and XML can both be formatted with
consistent white space so they are easy to compare against an
expected value. If there are values in the JSON or XML that vary a
lot—dates and times, for example—you might need to check them
separately before replacing them with a fixed string and approving
the remainder.

Business logic that builds a complex return object
Start by writing a Printer class that can take your complex
return object and format it as a string. Think of a Receipt ora
Prescription oran Order. Any of those could be represented
well as a human-readable multiline string. Your Printer can

choose to only print a summary—traverse the object graph to pull
out relevant details. Your tests will then exercise various business
rules and use the Printer to create a string for approval. If you have
a noncoding product owner or business analyst, they could even
read the test results and verify that they are correct.

If you already have tests that make assertions about strings that are
longer than one line, then I recommend finding out more about

approval testing and starting to use a tool that supports it.

Augment Javadoc with
AsciiDoc

James Elliott

Java developers already know Javadoc. Those who’ve been around a
long time remember how transformative it was, as Java became the
first mainstream language to integrate a documentation generator right
into the compiler and standard toolchain. The resulting explosion of
API documentation (even if not always great or polished) has hugely
benefited us all, and the trend has spread to many other languages. As
James Gosling reported, Javadoc was initially controversial because “a
good tech writer could do a lot better job”—but there are vastly more
APIs than tech writers to document them, and the value of having

something universally available has been well established.

Sometimes you need more than API documentation, though—much
more than you can fit in the package and project overview pages
Javadoc offers. End-user-focused guides and walk-throughs, detailed
background on architecture and theory, explanations of how to fit
together multiple components...none of these fit comfortably within

Javadoc.

https://oreil.ly/Y_7rk

So what can we use to meet these other needs? The answers have
changed over time. FrameMaker was a groundbreaking cross-platform
GUI technical document powerhouse in the *80s. Javadoc even used to
include a MIF Doclet for generating attractive printed API
documentation with FrameMaker—but only a vestigial Windows
version remains. DocBook XML offers similar structural and linking
power, with an open specification and cross-platform toolchain, but its
raw XML format is impractical to work with directly. Keeping up with
its editing tools became expensive and tedious, and even the good ones

felt clunky and hampered the flow of writing.

I’'m thrilled to have found a better answer: AsciiDoc offers all the
power of DocBook in an easy-to-write (and read) text format, where
doing simple things is trivial and doing complex things is possible.
Most AsciiDoc constructs are as immediately readable and accessible
as other lightweight markup formats like Markdown, which are
becoming familiar through online discussion forums. And when you
need to get fancy, you can include complex equations using MathML
or LaTeX formats, formatted source code listings with numbered and
linked callouts to text paragraphs, admonition blocks of different kinds,

and more.

AsciiDoc was introduced with a Python implementation in 2002. The
current official implementation (and steward of the language) is
Asciidoctor, released in 2013. Its Ruby code can also be run in the
JVM through Asciidoctor] (with Maven and Gradle plug-ins) or
transpiled to JavaScript, all of which work nicely in continuous
integration environments. When you need to build an entire site of

related documentation (even from multiple repositories), tools like

https://oreil.ly/NYrJI
https://oreil.ly/aRRvG
https://oreil.ly/UT8EP
https://oreil.ly/E_6qn

Antora make it shockingly easy. The community is friendly and
supportive, and watching its growth and progress over the past year has
been inspiring. And, if it matters to you, the process of standardizing a

formal AsciiDoc specification is underway.

I like creating rich, attractive documentation for the projects that I
share. AsciiDoc has made that so much easier, and given me such rapid
turnaround cycles, that polishing and perfecting that documentation has
become fun. I hope you find the same. And, coming full circle, if you
decide to go all in with AsciiDoc, there’s even a Doclet named

Asciidoclet that lets you write Javadoc using AsciiDoc!

https://antora.org
https://oreil.ly/PtWwa
https://oreil.ly/BaXa8
https://oreil.ly/H_rSW
https://oreil.ly/7sbtj
https://oreil.ly/9KgQq

Be Aware of Your Container
Surroundings

David Delabassee

o
%
\ =

There is a danger to containerizing legacy Java applications as is, with

their legacy Java Virtual Machine (JVM), because the ergonomics of
those older JVMs will be fooled when running inside Docker

containers.

Containers have become the de facto runtime packaging mechanism.
They provide many benefits: a certain level of isolation, improved
resource utilization, the ability to deploy applications across different
environments, and more. Containers also help reduce the coupling
between an application and the underlying platform, as that application
can be packaged into a portable container. This technique is sometimes
used to modernize legacy applications. In the case of Java, a container
embeds a legacy Java application along with its dependencies,

including an older version of the JVM used by that application.

The practice of containerizing legacy Java applications with their

environments can certainly help keep older applications running on

modern, supported infrastructure by decoupling them from older,
unsupported infrastructure. But the potential benefits of such a practice

come with their own set of risks due to the JVM ergonomics.

JVM ergonomics enables the JVM to tune itself by looking at two key
environmental metrics: the number of CPUs and the available memory.
With these metrics, the JVM determines important parameters such as
which garbage collector to use, how to configure it, the heap size, the
size of the ForkJoinPool, and so on.

Linux Docker container support, added in JDK 8 update 191, allows
the JVM to rely on Linux cgroups to get the metrics of resources
allocated to the container it runs in. Any JVM older than that is not
aware that it is running within a container and will access metrics from
the host OS and not from the container itself. And, given that in most
cases a container is configured to only use a subset of the host
resources, the JVM will rely on incorrect metrics to tune itself. This
quickly leads to an unstable situation in which the container will likely
get killed by the host as it tries to consume more resources than are

available.

The following command shows which JVM parameters are configured
by the JVM ergonomics:

java -XX:+PrintFlagsFinal -version | grep ergonomic

JVM container support is enabled by default but can be disabled by
using the -XX: -UseContainerSupport JVM flag. Using this

JVM flag in a container with restricted resources (CPU and memory)

https://oreil.ly/h3hTh
https://oreil.ly/C_1AW
https://oreil.ly/nDIwb

allows you to observe and explore the impact of JVM ergonomics with

and without container support.

Running legacy JVMs in Docker containers is clearly not
recommended. But if that is the only option, the legacy JVM should at
least be configured to not exceed the resources allocated to the
container it runs in. The ideal, obvious solution is to use a modern,
supported JVM (for example, JDK 11 or later) that will not only be
container-aware by default but will also provide an up-to-date and

secure runtime.

Behavior Is “Easy”; State Is
Hard

Edson Yanaga

ERRVERT Y

When I was first introduced to object-oriented programming, some of
the very first concepts taught were the triple of polymorphism,
inheritance, and encapsulation. And to be honest, we spent quite some
time trying to understand and code with them. But, at least for me, too
much emphasis was given to the first two, and very little to the third

and most important of all: encapsulation.

Encapsulation allows us to tame the growing state and complexity that
is a constant in the software development field. The idea that we can
internalize the state, hide it from other components, and offer only a
carefully designed API surface for any state mutation is core to the

design and coding of complex information systems.

But, at least in the Java world, we have failed to spread some of the
best practices about the construction of well-encapsulated systems.
JavaBean properties on anemic classes that simply expose internal state

through getters and setters are common, and with Java Enterprise

architectures we seem to have popularized the concept that most—if
not all—business logic should be implemented in service classes.
Within them we use getters to extract the information, process them to

get a result, and then put the result back into our objects with setters.

And when the bugs bite, we dig through log files, use debuggers, and
try to figure out what’s happening with our code in production. It’s
fairly “easy” to spot bugs caused by behavior issues: pieces of code
doing something they’re not supposed to do. On the other hand, when
our code seems to be doing the right thing and we still have bugs, it
becomes much more complicated. From my experience, the hardest
bugs to solve are the ones caused by inconsistent state. You’ve reached
a state in your system that shouldn’t happen, but there it is—a
NullPointerException for a property that was never supposed

to be null, a negative value that should only be positive, and so on.

The odds of finding the steps that led to such an inconsistent state are
low. Our classes have surfaces that are too mutable and too easily
accessed: any piece of code, anywhere in the system, can mutate our

state without any kind of checks or balances.

We sanitize user-provided inputs through validation frameworks, but
that “innocent” setter is still there allowing any piece of code to call it.
And I won’t even discuss the likelihood of someone using UPDATE
statements directly on the database to change some columns in

database-mapped entities.

How can we solve this problem? Immutability is one of the possible

answers. If we can guarantee that our objects are immutable, and the

state consistency is checked on object creation, we’ll never have an
inconsistent state in our system. But we have to take into account that
most Java frameworks do not cope very well with immutability, so we
should at least aim to minimize mutability. Having properly coded
factory methods and builders can also help us to achieve this minimally

mutable state.

Therefore, don’t generate your setters automatically. Take time to think
about them. Do you really need that setter in your code? And if you
decide that you do, perhaps because of some framework requirement,
consider using an anticorruption layer to protect and validate your

internal state after those setter interactions.

Benchmarking Is Hard—JMH
Helps

Michael Hunger

Benchmarking on the JVM, especially microbenchmarking, is hard. It’s
not enough to throw a nanosecond measurement around a call or loop
and be done. You have to take into account warm-up, HotSpot
compilation, code optimizations like inlining and dead code

elimination, multithreading, consistency of measurement, and more.

Fortunately, Aleksey Shipilév, the author of many great JVM tools,
contributed JMH, the Java Microbenchmarking Harness, to the
OpenJDK. It consists of a small library and a build system plug-in. The
library provides annotations and utilities to declare your benchmarks as
annotated Java classes and methods, including a BlackHole class to
consume generated values to avoid code elimination. The library also

offers correct state handling in the presence of multithreading.

The build system plug-in generates a JAR with the relevant
infrastructure code for running and measuring the tests correctly. That

includes dedicated warm-up phases, proper multithreading, running

https://oreil.ly/gR0fd

multiple forks and averaging across them, and much more.

The tool also outputs important advice on how to use the gathered data
and limitations thereof. Here is an example for measuring the impact of

presizing collections:

public class MyBenchmark {
static final int COUNT = 10000;
@Benchmark
public List<Boolean> testFillEmptyList() {
List<Boolean> list = new ArraylList<>();
for (int 1i=0;i<COUNT;i++) {
list.add(Boolean.TRUE);

}

return list;
}
@Benchmark

public List<Boolean> testFillAllocatedList() {
List<Boolean> list = new ArrayList<>(COUNT);
for (int 1i=0;i<COUNT;i++) {
list.add(Boolean.TRUE);
}

return list;

To generate the project and run it, you can use the JMH Maven

archetype:

mvn archetype:generate \
-DarchetypeGroupId=org.openjdk.jmh \
-DarchetypeArtifactId=jmh-java-benchmark-archetype \
-DinteractiveMode=false -DgroupId=com.example \
-DartifactId=coll-test -Dversion=1.0

cd coll-test

add com/example/MyBenchmark.java

mvn clean install

java -jar target/benchmarks.jar -w 1 -r 1

JMH version: 1.21

Warmup: 5 iterations, 1 s each

Measurement: 5 iterations, 1 s each

Timeout: 10 min per iteration

Threads: 1 thread, will synchronize iterations
Benchmark mode: Throughput, ops/time

Benchmark: com.example.MyBenchmark.testFillEmptyList

H H H H H HF -

Result "com.example.MyBenchmark.testFillEmptyList":

30966.686 £(99.9%) 2636.125 ops/s [Average]

(min, avg, max) = (18885.422, 30966.686, 35612.643),
stdev = 3519.152

CI (99.9%): [28330.561, 33602.811] (assumes normal
distribution)

Run complete. Total time: 00:01:45

REMEMBER: The numbers below are just data. To gain
reusable insights,

you need to follow up on

why the numbers are the way they are. Use profilers
(see -prof,

-1lprof), design factorial

experiments, perform baseline and negative tests that
provide

experimental control, make sure

the benchmarking environment is safe on JVM/0S/HW
level, ask for

reviews from the domain experts.

Do not assume the numbers tell you what you want them
to tell.

Benchmark Mode Cnt Score
Error Units

MyBenchmark.testFillAllocatedList thrpt 25 56786.708
+ 1609.633 o0ps/s

MyBenchmark.testFillEmptyList thrpt 25 30966.686
+ 2636.125 ops/s

So we see that our preallocated collection is almost twice as fast as the
default instance because it doesn’t have to be resized during the

addition of elements.

JMH is a powerful tool in your toolbox to write correct
microbenchmarks. If you run them in the same environment, they are
even comparable, which should be the main way of interpreting their
results. They can also be used for profiling purposes, as they provide
stable, repeatable results. Aleksey has much more to say about the

topic if you’re interested.

https://oreil.ly/5zWU1

The Benefits of Codifying and
Asserting Architectural

Quality

Daniel Bryant

Your continuous delivery build pipeline should be the primary location
where agreed-upon architectural qualities for your applications are
codified and enforced. However, these automated quality assertions
shouldn’t replace continued team discussions about standards and
quality levels, and they should definitely not be used to avoid intra- or
inter-team communication. That said, checking and publishing quality
metrics within the build pipeline can prevent the gradual decay of

architectural quality that might otherwise be hard to notice.

If you’re wondering why you should test your architecture, the
ArchUnit motivation page has you covered. It starts with a familiar
story: once upon a time, an architect drew a series of nice architectural
diagrams that illustrated the components of the system and how they
should interact. Then the project got bigger and use cases more

complex, new developers dropped in and old developers dropped out.

https://oreil.ly/q1OCY

This eventually led to new features being added in any way that fit.
Before long, everything depended on everything, and any change could
have an unforeseeable effect on any other component. I’m sure many

readers will recognize this scenario.

ArchUnit is an open source, extensible library for checking the
architecture of your Java code by using a Java unit-test framework like
JUnit or TestNG. ArchUnit can check for cyclic dependencies and
check dependencies between packages and classes, and layers and
slices, and more. It does all this by analyzing Java bytecode and

importing all classes for analysis.

To use ArchUnit in combination with JUnit 4, include the following

dependency from Maven Central:

<dependency>
<groupId>com.tngtech.archunit</groupId>
<artifactId>archunit-junit</artifactId>
<version>0.5.0</version>
<scope>test</scope>

</dependency>

At its core, ArchUnit provides infrastructure to import Java bytecode
into Java code structures. You can do this using
ClassFileImporter. You can make architectural rules such as

“services should be accessed only by controllers” by using a DSL-like

fluent API, which can in turn be evaluated against imported classes:

import static
com.tngtech.archunit.lang.syntax.ArchRuleDefinition;
// ...

@Test

public void

https://www.archunit.org

Services_should_only_be_accessed_by_Controllers() {

JavaClasses classes =
new

ClassFileImporter().importPackages('"com.mycompany.myap
p");

ArchRule myRule = ArchRuleDefinition.classes()
.that().resideInAPackage("..service..")
.should().onlyBeAccessed()
.byAnyPackage("..controller..", "..service..");

myRule.check(classes);

Extending the preceding example, you can also enforce more layer-
based access rules using this test:

@ArchTest

public static final ArchRule
layer_dependencies_are_respected =
layeredArchitecture()
.layer("Controllers").definedBy("com.tngtech.archunit.
eg.controller..")
.layer("Services").definedBy("com.tngtech.archunit.eg.
service..")
.layer("Persistence").definedBy("com.tngtech.archunit.
eg.persistence..")

.whereLayer ("Controllers").mayNotBeAccessedByAnylLayer (
)

.whereLayer ("Services").mayOnlyBeAccessedByLayers('"Con
trollers")

.whereLayer ("Persistence").mayOnlyBeAccessedByLayers("
Services");

You can also ensure that naming conventions such as class name
prefixes are followed, or specify that a class named a certain way must
be in an appropriate package. GitHub contains a host of ArchUnit
examples to get you started and give you ideas.

You could attempt to detect and fix all of the architectural issues

https://oreil.ly/Xv8CI

mentioned here by having an experienced developer or architect look at
the code once a week, identify violations, and correct them. However,
humans are notorious for not acting consistently and, when the
inevitable time pressures are placed on a project, often the first thing to

be sacrificed is manual verification.

A more practical method is to codify the agreed-upon architectural
guidelines and rules using automated tests, using ArchUnit or another
tool, and include them as part of your continuous integration build.
Any issues can then be quickly detected and fixed by the engineer who
caused the issue.

Break Problems and Tasks
Into Small Chunks

Jeanne Boyarsky

You’'re learning to program. You receive a small assignment. You
write under a thousand lines of code. You type it in and test. Then you
add print statements or use a debugger. Maybe you get coffee. Then

you puzzle over what you were thinking.

Sound familiar? And that’s just a toy problem. Work tasks and systems
are far larger. Big problems take time to solve. And worse, there is too

much to hold in your brain’s RAM.

A good way to deal with this is to break the problem into small chunks.
The smaller the better. If you can get that one small piece working,
then you don’t have to think about it anymore and can move on to the
next piece. When doing this well, you want to write automated tests for
each small problem. You should also commit frequently. That gives

you a rollback point when things don’t work as expected.

I remember helping out a teammate who was stuck. I asked when he

had last committed, because the easiest fix would be to roll back and
reapply the change. The answer was “a week ago.” Then he had two
problems: the original one and that I wouldn’t help him debug a week’s

worth of work.

After that experience, I ran a training session for my team on how to
break tasks into smaller chunks. I was told by the senior developers
that their tasks were “special” and “couldn’t possibly be broken up.”
When you hear the word special in relation to a task, you should

immediately be suspicious.

I decided to schedule a second meeting. Everyone was responsible for
bringing an example of a “special” task, and I would help them break it
up. The first example was a screen that was scheduled to take two

weeks to develop. I split it up like this:
o Create a hello world screen at the right URL—no fields, just
prints hello world.
e Add functionality to display a list from a database.
e Add a text area.
e Add a select pull-down.

e <A long list of more tiny tasks>

And guess what? After each of these tiny tasks, there could be a

commit. This means commits could happen many times a day.

Then I was told that this could be done for screens, but file processing
was “special.” Now what did I say about the word special? I split that

up as well:

Read a line from the file.

Validate the first field, including the database call.

Validate the second field and transform it using business logic.
<A bunch of fields later>

Apply the first business logic rule to all fields.

<A bunch of rules later>

Add a message to the queue.

Again, the task wasn’t special. If you think a task is special, pause and

think about why. Often you will find this technique still applies.

Finally, a developer told me he couldn’t commit his code in any less

than a week. The task wound up being reassigned to me. I did some

extra committing to make a point. Counting, I committed 22 times in

the 2 days it took to me complete the task. Maybe if he’d committed

more frequently, it would have been done faster!

Build Diverse Teams

Ixchel Ruiz

Years ago, a good doctor knew it all, did it all: set a fracture, performed
surgery, drew blood. A good doctor was independent and self-

sufficient, and autonomy was highly valued.

Fast forward to today. Knowledge has exploded, surpassing the
individual and bringing about specialization. In order to provide an
adequate solution from beginning to end, many specialists will be

involved, and different teams will have to interact.
This is true in software development as well.

Cooperation is now one of the highest-valued traits in “good”
professionals. In the past, independence and self-sufficiency was
enough to be “good.” Now we all need to behave like pit crews: team

members.
The challenge is to build teams that are both successful and diverse.

Four types of diversity—industry background, country of origin, career

path, and gender—positively correlate with innovation. In a
homogenous team, regardless of academic background, there may be
redundant perspectives. Women, for example, bring disruptive

innovation.

How big is the impact? In management teams with a high gender
diversity, an increase of 8% in revenue from innovation has been

observed.

Differences among group members can also be a source of insight—
members with different backgrounds, experiences, and ideas increase
the pool of information, skills, and networks. With more perspectives,
reaching consensus requires constructive debate. If the environment
where ideas are exchanged is positive, creative solutions will emerge

naturally.

But increasing group diversity is not an easy task. Conflict can arise
when heterogeneous groups don’t communicate effectively or divide
themselves into factions. People prefer to collaborate with those similar
to them. A close-knit group will develop its own language and culture,
and outsiders will be distrusted. Distance, along with the pitfalls of
mishaps in digital communication, make software teams especially

prone to the problems of “us versus them” and incomplete information.
So how do we get the benefits of diversity and avoid the drawbacks?

The key in collaboration is developing psychological safety and trust

within your team.

When we are surrounded with people we can trust, even if they are
different from us, we’re more confident to take risks and experiment.
When we trust each other, we can look to others to provide information
or perspective that will help solve a challenging problem, thus creating
opportunities for cooperation. We can overcome vulnerable situations

when feedback is requested.

In teams with psychological safety, it’s easier for people to believe that
the benefits of speaking up outweigh the costs. Participation leads to
less resistance to change, and the more frequently people participate,

the more likely they are to offer novel ideas.

Personality matters in software development, too; it’s equally
important to build an environment of trust for different personalities.
We all have a colleague who is willing to test every new library,
framework, or tool, someone thinking how to use or explore the new
shiny red toy, sometimes with surprising results. Some are inclined to
establish new processes, code format styles, or templates for commit
messages, and will remind us when we are not following proper
procedure. You may have teammates who will underpromise and
overdeliver, and ones who are thinking of everything that can go
wrong: updating dependencies, installing patches, security risks, etc.

Consider everyone’s differences, and don’t push too hard.

We can increase diversity in our teams in two dimensions: background
and personality. If we have good team dynamics and continue to build

trust in each other, we will be more successful as programmers.

Builds Don’t Have To Be Slow
and Unreliable

Jenn Strater

A while back, I was working at an early-stage start-up where the
codebase and development team were growing every day. As we added
more and more tests, the builds were taking longer and longer to run.
At around the eight-minute mark I started to notice it, which is why I
remember that specific number. From eight minutes, build times nearly
doubled. At first, it was kinda nice. I would kick off a build, go grab a
coffee, and chat with coworkers on other teams. But after a few
months, it became irritating. I’d had enough coffee and I knew what
everyone was working on, so I would check Twitter or help other
developers on my team while waiting for my builds to finish. I would

then have to context switch when I went back to my work.

The build was also unreliable. As is normal for any software project,
we had a number of flaky tests. The first, albeit naive, solution was to
turn off the tests (i.e., @Ignore) that were failing. Eventually, it got to
the point where it was easier to push the changes and rely on the

continuous integration (CI) server than to run the tests locally. The

problem with this tactic was that it moved the problem further down
the line. If a test failed at the CI step, it took much longer to debug.
And if a flaky test passed initially and only showed up after merging, it
blocked the entire team until we determined whether it was a legitimate

issue.

Frustrated, I tried to fix some of the problematic tests. One test in
particular stands out in my mind. It only appeared when the entire test
suite ran, so each time I made a change, I had to wait 15-plus minutes
for feedback. These incredibly long feedback cycles and a general lack

of relevant data meant I wasted days tracking down this bug.

This isn’t just about one company, though. One of the advantages of
being a job hopper is that I’ve seen the way many different teams
work. I thought these issues were normal until I started at a company

where we work on exactly these problems.

Teams that follow Developer Productivity Engineering, the practice
and philosophy of improving developer experience through data, are
able to improve their slow and unreliable builds. These teams are

happier and have higher throughput, making the business happier too.

No matter what build tool they are using, the people responsible for
developer productivity can effectively measure build performance and
track outliers and regressions for both local and CI builds. They spend
time analyzing the results and finding bottlenecks in the build process.
When something does go wrong, they share the reports (e.g., Gradle
build scans) with teammates and compare failing and passing builds to

pinpoint the exact problem—even if they can’t reproduce the issues on

their own machines.

With all this data, they can actually do something to optimize the
process and reduce the frustration developers are facing. This work is
never done, so they keep iterating to maintain developer productivity.
It’s not an easy task, but the teams who work at it are able to prevent
the problems I described from happening in the first place.

“But It Works on My
Machine!”

Benjamin Muschko

Have you ever joined a new team or project and had to try to find your
way around the infrastructure needed to build the source code on your
developer’s machine? You’re not alone, and you may have had

questions:

e What JDK version and distribution are required to compile the
code?

e What if I'm running Linux, but everyone else is on Windows?
e What IDE do you use, and which version do I need?

e What version of Maven or other build tool do I need to install
to properly run through developer workflows?

I hope the answer you got to these questions wasn’t “Let me have a
look at the tools installed on my machine”—every project should have
a clearly defined set of tools that are compatible with the technical
requirements to compile, test, execute, and package the code. If you’re

lucky, these requirements are documented in a playbook or wiki,

although as we all know, documentation easily becomes outdated, and
keeping the instructions in sync with the latest changes takes concerted
effort.

There’s a better way to solve the problem. In the spirit of infrastructure
as code, tooling providers came up with the wrapper, a solution that
helps with provisioning a standardized version of the build tool runtime
without manual intervention. It wraps the instructions required to
download and install the runtime. In the Java space, you’ll find the
Gradle Wrapper and the Maven Wrapper. Even other tooling, like
Bazel, Google’s open source build tool, provides a launching

mechanism.

Let’s see how the Maven Wrapper works in practice. You have to have
the Maven runtime installed on your machine to generate the so-called
Wrapper files. Wrapper files represent the scripts, configuration, and
instructions every developer of the project uses to build the project
with a predefined version of the Maven runtime. Consequently, those
files should be checked into SCM alongside the project source code for

further distribution.

The following runs the Wrapper goal provided by the Takari Maven
plug-in:

mvn -N io.takari:maven:0.7.6:wrapper

The following directory structure shows a typical Maven project
augmented by the Wrapper files, marked in bold:

https://oreil.ly/CmZP1
https://oreil.ly/xu50T
https://oreil.ly/OY7R7
https://oreil.ly/sI2pO

— .mvn
L— wrapper
—— MavenWrapperDownloader. java
—— maven-wrapper.jar
—— maven-wrapper.properties

—— mvnw
—— mvnw.cmd
—— pom.xml

— src
I_ LI B]

With the Wrapper files in place, building the project on any machine is
straightforward: run your desired goal with the mvnw script. The script
automatically ensures the Maven runtime will be installed with the
predefined version set in maven-wrapper.properties. Of course, the
installation process is only invoked if the runtime isn’t already

available on the system.

The following command execution uses the script to run the goals

clean and install on a Linux, Unix, or macOS system:

./mvnw clean install

On Windows, use the batch script ending with the file extension .cmd:

mvnw.cmd clean install

What about running typical tasks in the IDE or from your CI/CD
pipeline? You’ll find other execution environments derive the same
runtime configuration from the Wrapper definition as well. You just

have to ensure the Wrapper scripts are called to invoke the build.

Gone are the days of “But it works on my machine!”—standardize

once, build everywhere! Introduce the wrapper concept to any JVM

project to improve build reproducibility and maintainability.

The Case Against Fat JARs

Daniel Bryant

In modern Java web development, the thought of packaging and
running applications in anything other than a fat JAR is almost
becoming heretical. However, there can be distinct disadvantages to
building and deploying these artifacts. One obvious issue is the
typically large size of fat JARs, which can consume excess storage
space and network bandwidth. In addition, the monolithic build process
can take a long time and cause developers to context switch while
waiting. The lack of shared dependencies can also cause inconsistency
across the use of utilities, such as logging, and challenges with

integration of communication or serialization across services.

The use of fat JARs for deploying Java applications became popular
alongside the rise of the microservice architecture style, DevOps, and
cloud-native technologies, such as public cloud, containers, and
orchestration platforms. As applications were being decomposed into a
collection of smaller services that were being run and managed
independently, it made sense from an operational perspective to bundle
all of the application code into a single executable binary. A single

artifact is easier to keep track of, and the standalone execution removes

the need to run additional application servers. However, some

organizations are now bucking the trend and creating “skinny JARs.”

The HubSpot engineering team has discussed how the challenges listed
above were impacting their development life cycle in a blog post, “The
Fault in Our JARs: Why We Stopped Building Fat JARs”. They
ultimately created a new Maven plug-in: SlimFast. This plug-in differs
from the classic Maven Shade plug-in that the majority of Java
developers are familiar with, in that it separates the application code
from the associated dependencies and accordingly builds and uploads
two separate artifacts. It may sound inefficient to build and upload the
application dependencies separately, but this step occurs only if the
dependencies have changed. With many applications the dependencies
change infrequently, and so this step is often a no-op; the package
dependencies’ JAR file is uploaded to remote storage only a minimal

number of times.

The SlimFast plug-in uses the Maven JAR plug-in to add a Class-
Path manifest entry to the skinny JAR that points to the
dependencies’ JAR file, and generates a JSON file with information
about all the dependency artifacts in S3 so that these can be
downloaded later. At deploy time, the build downloads all of the
application’s dependencies, but then caches these artifacts on each of
the application servers, so this step is usually a no-op as well. The net
result is that at build time, only the application’s skinny JAR is
uploaded to the remote storage, which is typically only a few hundred
kilobytes. At deploy time, only this same thin JAR needs to be
downloaded to the target deployment environment, which takes a

fraction of a second.

https://oreil.ly/WqX2D
https://oreil.ly/3Kf5Y

One of the core ideas behind the emergence of DevOps is that the
development and operations team (and all the other teams) should work
together for a common goal. The choice of deployment artifact format
is an important decision within the goal of being able to continuously
deploy functionality to end users. Everyone should collaborate in order
to understand the requirements in relation to how this impacts the
developer experience and ability to manage resources involved in

deploying.

The SlimFast plug-in is currently tied to AWS S3 for the storage of
artifacts, but the code is available on GitHub, and the principles can be

adapted for any type of external storage.

The Code Restorer

Abraham Marin-Perez

Always remember, the person we’re really working for is the person
who’s restoring the piece a hundred years from now. He’s the one
we want to impress.

That quote is from Hobie, a character in Donna Tartt’s novel The
Goldfinch. Hobie is an antique furniture restorer. I am particularly
thankful for this quote because it beautifully expresses what I've
always thought about code: the best code is written thinking about the

programmers that come after.

I think current software practices suffer from an illness caused by too
much haste. Much like trees in a crowded jungle, the aim is to outgrow
the competition. Trees competing for light often overstretch
themselves, growing tall and thin and becoming susceptible to small
disturbances. Strong winds or mild disease can make them collapse.
I’m not saying we don’t need to look at short-term benefits—in fact, I

encourage it—just not at the expense of long-term stability.

Today’s software industry is like these trees. Many “modern” teams

focus only on the next week or month. Companies struggle just to live
another day, another sprint, another cycle. And nobody seems to worry
about this. Developers can always find another job, and so can
managers. Entrepreneurs can try and cash out before the company has
lost its value. So can the VC that backed the initial investment. Too
often, the key to success lies in timing the exit so as to leave just before

people realize that the amazing growth was just a tumor.

On the other hand, maybe that’s not so bad. Some pieces of furniture
are meant to last hundreds of years, and some will likely crumble
within a decade. You can spend thousands at Sotheby’s on a china
cabinet—or go to IKEA and probably furnish your whole house.
Maybe we just need to understand this new economy we’ve created,
where everything is ephemeral and transient. Assets aren’t expected to
last long, just long enough. We aren’t supposed to create things that

stand the test of time, just the test of profit.

And yet I believe there is a middle point, a new role beginning to take
form: the code restorer. Doing something that lasts forever at the first
go is so expensive that it isn’t worth it, but focusing only on short-term
profit will create code that collapses under its own weight. This is
where the code restorer comes in, somebody whose job isn’t to
“recreate the same thing but better” (a common wish that almost
always fails), but rather to take the existing codebase and slowly
reshape it to make it manageable again. Add some tests here, break
down that ugly class there, remove unused functionality, and give it

back improved.

We, as programmers, have to decide what kind of software we want to

build. We can focus on profit for a while, build up something that
holds, but at some point we have to choose between durability,
carefully reshaping the code, or profit, abandoning it and starting

afresh. After all, profits are essential, but some things are bigger than
money.

Concurrency on the JVM

Mario Fusco

Originally, raw threads were the only concurrency model available on
the JVM, and they’re still the default choice for writing parallel and
concurrent programs in Java. When Java was designed 25 years ago,
however, the hardware was dramatically different. The demand for
running parallel applications was lower, and the concurrency
advantages were limited by the lack of multicore processors—tasks

could be decoupled, but not executed simultaneously.

Nowadays, the availability and expectation of parallelization has made
the limitations of explicit multithreading clear. Threads and locks are
too low-level: using them correctly is hard; understanding the Java
Memory Model even harder. Threads that communicate through shared
mutable state are unfit for massive parallelism, leading to
nondeterministic surprises when access isn’t properly synchronized.
Moreover, even if your locks are arranged correctly, the purpose of a
lock is to restrict threads running in parallel, thus reducing the degree

of parallelism of your application.

Because Java does not support distributed memory, it’s impossible to

scale multithreaded programs horizontally across multiple machines.
And if writing multithreaded programs is difficult, testing them
thoroughly is nearly impossible—they frequently become a

maintenance nightmare.

The simplest way to overcome the shared memory limitations is to
coordinate threads via distributed queues instead of locks. Here,
message passing replaces shared memory, which also improves
decoupling. Queues are good for unidirectional communication but

may introduce latency.

Akka makes the actor model, popularized by Erlang, available on the
JVM, and is more familiar to Scala programmers. Each actor is an
object responsible for manipulating only its own state. Concurrency is
implemented with message flow between actors, so they can be seen as
a more structured way of using queues. Actors can be organized in
hierarchies, providing for built-in fault tolerance and recovery through
supervision. Actors also have some drawbacks: untyped messages
don’t play well with Java’s current lack of pattern matching, message
immutability is necessary but cannot currently be enforced in Java,
composition can be awkward, and deadlocking between actors is still

possible.

Clojure takes a different approach with its built-in software
transactional memory, turning the JVM heap into a transactional data
set. Like a regular database, data is modified with (optimistic)
transactional semantics. A transaction is automatically retried when it
runs into some conflict. This has the advantage of being nonblocking,

eliminating many problems associated with explicit synchronization.

This makes them easy to compose. Additionally, many developers are
familiar with transactions. Unfortunately, this approach is inefficient in
massively parallel systems where concurrent writes are more likely. In
these situations retries are increasingly costly and performance can

become unpredictable.

Java 8 lambdas promote the use of functional programming properties
in code, such as immutability and referential transparency. While the
actor model reduces the consequences of mutable state by preventing
sharing, functional programming makes the state shareable because it
prohibits mutability. Parallelizing code made of pure, side-effect-free
functions can be trivial, but a functional program can be less time
efficient than its imperative equivalent and may place a bigger burden
on the garbage collector. Lambdas also facilitate the use of the reactive
programming paradigm in Java consisting in asynchronous processing

of streams of events.

There is no silver bullet for concurrency, but there are many different
options with different trade-offs. Your duty as a programmer is to

know them and choose the one that best fits the problem at hand.

CountDownLatch—Friend or
Foe?

Alexey Soshin

Let’s imagine a situation in which we’d like to launch multiple
concurrent tasks, and then wait on their completion before proceeding
further. The ExecutorService makes the first part easy:

ExecutorService pool =

Executors.newFixedThreadPool(8);

Future<?> future = pool.submit(() -> {
// Your task here

+);

But how do we wait for all of them to complete? CountDownLatch
comes to our rescue. A CountDownLatch takes the number of

invocations as a constructor argument. Each task then holds a reference
to it, calling the countDown method when the task completes:

int tasks = 16;
CountDownLatch latch = new CountDownLatch(tasks);
for (int i = 0; i < tasks; i++) {

Future<?> future = pool.submit(() -> {

try {
// Your task here

}
finally {

latch.countbDown();

}
1)
}

if (!'latch.await(2, TimeUnit.SECONDS)) {
// Handle timeout
3

This example code will launch 16 tasks, then wait for them to finish
before proceeding further. There are some important points to take note
of, though:

1. Make sure that you release the latch in a finally block.
Otherwise, if an exception occurs, your main thread may wait
forever.

2. Use the await method that accepts a timeout period. That
way, even if you forget about the first point, your thread will
wake up sooner or later.

3. Check the return value of the method. It returns false if the
time has elapsed, or true if all the tasks managed to
complete on time.

As mentioned earlier, CountDownLatch receives its count on

creation. It can be neither increased nor reset. If you’re looking for
capabilities that are similar to those of CountDownLatch but with

the ability to reset the count, you should check out CyclicBarrier

instead.

CountDownLatch is useful in many different situations. It becomes

especially useful when you’re testing your concurrent code, since it

allows you to make sure that all the tasks are complete before checking

their results.

Consider the following real-world example. You have a proxy and an
embedded server, and you’d like to test that when the proxy is called, it

invokes the correct endpoint on your server.

Obviously, it doesn’t make much sense to issue a request before both
the proxy and server have started. One solution is to pass a

CountDownLatch to both methods, and continue with the test only

when both parties are ready:

CountDownLatch latch = new CountDownLatch(2);

Server server = startServer(latch);

Proxy proxy = startProxy(latch);

boolean timedOut = !latch.await(1, TimeUnit.SECONDS);
assertFalse(timedOut, "Timeout reached");

// Continue with test if assertion passes

You just need to make sure that both the startServer and
startProxy methods call latch.countDown once they have

successfully started.

CountDownLatch is very useful, but there’s one important catch:

you shouldn’t use it in production code that makes use of concurrent
libraries or frameworks, such as Kotlin’s coroutines, Vert.x, or Spring
WebFlux. This is because CountDownLatch blocks the current

thread. Different concurrency models don’t play well together.

Declarative Expression Is the
Path to Parallelism

Russel Winder

In the beginning, Java was an imperative, object-based programming
language. Indeed, it still is. Over the years, though, Java has evolved, at
each stage becoming more and more a language of declarative
expression. Imperative is all about the code explicitly telling the
computer what to do. Declarative is about the code expressing a goal
abstracting over the way in which the goal is achieved. Abstraction is
at the heart of programming, and so the move from imperative code to

declarative code is a natural one.

At the core of declarative expression is the use of higher-order
functions, functions that take functions as parameters and/or return
functions. This was not an integral part of Java originally, but with
Java 8 it moved front and center: Java 8 was a turning point in the
evolution of Java, allowing replacement of imperative expression with

declarative expression.

An example—trivial but nonetheless indicative of the main issue—is to

write a function that returns a List containing the squares of the

argument List to the function. Imperatively, we might write:

List<Integer> squareImperative(final List<Integer>
datum) {
var result = new ArrayList<Integer>();
for (var i = 0; i < datum.size(); i++) {
result.add(i, datum.get(i) * datum.get(i));
)

return result;

}

The function creates an abstraction over some low-level code, hiding

the details from the code that uses it.

With Java 8 and beyond, we can use streams and express the algorithm

in a more declarative way:

List<Integer> squareDeclarative(final List<Integer>
datum) {
return datum.stream()
.map(i -> i * i)
.collect(Collectors.tolList());

This sets out at a higher level of expression of what is to be done; the
details of how are left to the library implementation. Classic
abstraction. True, the implementation is within a function that already
abstracts and hides, but which would you rather maintain: the low-level
imperative implementation or the high-level declarative

implementation?

Why is this such a big deal? The above is a classic example of an

embarrassingly parallel computation. The evaluation of each result

depends only on one item of input; there is no coupling. So we can

write:

List<Integer> squareDeclarative(final List<Integer>
datum) {
return datum.parallelStream()
.map(i -> i * i)
.collect(Collectors.tolList());

Doing so, we will get the maximum parallelism that the library is able
to extract from the platform. Because we are abstracting away from the
details of how, focusing only on the goal, we can turn a sequential

data-parallel computation into a parallel one trivially.

It will be left as an exercise for the reader to (attempt to) write a
parallel version of the imperative code should they so wish. Why?
Because for data parallel problems, using Streams is the right

abstraction. To do anything else is to deny the Java 8 evolution of Java.

Deliver Better Software,
Faster

Burk Hufnagel

For me, Deliver Better Software, Faster is a guiding principle, and one
I strongly recommend you adopt because it describes what must
happen to keep your users happy. In addition (and perhaps more
importantly), following it can result in a more enjoyable and interesting

career. To see how, let’s examine the three parts of this important idea:

1. Deliver means taking responsibility for more than just writing
and debugging code. Despite appearances, you aren’t paid to
write code. You’re paid to make it easier for your users to do
something they find valuable, and until your code is running in
production, they won’t benefit from your hard work.

Changing your focus from writing code to delivering software
requires understanding the overall process for getting your
changes into production and then doing two key things:

e Making sure you aren’t doing things that hinder the
process, like guessing the meaning of a vague
requirement instead of asking for clarification before
implementing it.

e Making sure you are doing things that speed up the
process, like writing and running automated tests to
show your code meets the acceptance criteria.

2. Better Software is shorthand for two ideas you should already
be familiar with: “building the right thing” and “building the
thing right.” The first means ensuring that what you’ve written
meets all the requirements and acceptance criteria. The second
is about writing code that is easily understood by another
programmer so they can successfully fix bugs or add new
features.

While this may sound easy to do, especially if you follow a
practice like test-driven development (TDD), many teams tend
to lean one way or the other:

e Nonprogrammers might push developers to take
shortcuts to deliver new features sooner, with
promises to come back and “do it right” later.

e Sometimes programmers who just learned something
will try to use it everywhere possible, even if they
know a simpler solution would work just as well.

In either case, the balance is lost and the resulting technical
debt increases the time needed to deliver value to your users
until the balance is regained.

3. Faster refers to both Deliver and Better Software, and could
be a challenging goal because people trying to do complicated
things quickly tend to make mistakes. To me, the obvious
solution includes:

e Using a process like TDD to create automated tests,
then regularly running the automated unit,
integration, and user acceptance tests to verify the
system’s behavior.

¢ Building and running an automated process that runs
all the tests in multiple environments and, assuming
they all pass, deploys the code to production.

Both of these processes will be done multiple times and
require great attention to detail—just the sort of task a
computer does faster and more accurately than a person.
That’s good because I have one more recommendation: deploy
changes to production more often so each deployment has
fewer changes and is therefore less likely to have problems,
and your users get the benefits of your work sooner.

Adopting Deliver Better Software, Faster as a guiding principle is both
challenging and fun. Be aware that it will take time to find and fix all

the places that need work, but the rewards are worth it.

Do You Know What Time It
ISs?

Christin Gorman

> =

At what time does the Scandinavian Airlines plane from Oslo to
Athens arrive on Monday? Why are questions that seem so easy in day-
to-day life so difficult in programming? Time should be simple, just

seconds passing, something a computer is very good at measuring:

System.currentTimeMillis() = 1570964561568

Although correct, 1570964561568 is not what we want when we
ask what time it is. We prefer 1:15 p.m., October 13, 2019.

It turns out that time is two separate things. On the one hand, we have
seconds passing. On the other, we have an unhappy marriage between
astronomy and politics. Answering the question “What time is it?”
depends on the location of the sun in the sky relative to your position
along with the political decisions made in that region up to that point in

time.

Many of the problems we have with date and time in code come from

mixing these two concepts. Using the latest java. time library (or

Noda Time in .NET) will help you. Here are three main concepts to
help you reason correctly about time: LocalDateTime,

ZonedDateTime, and Instant.

LocalDateTime refers to the concept 1:15 p.m., October 13, 2019.
There can be any number of these on the timeline. Instant refers to
a specific point on the timeline. It is the same in Boston as in Beijing.
To get from a LocalDateTime to an Instant, we need a
TimeZone, which comes with Coordinated Universal Time (UTC)
offsets and daylight saving time (DST) rules at the time.
ZonedDateTime isa LocalDateTime with a TimeZone.

Which ones do you use? There are so many pitfalls. Let me show you a
few. Let’s say we’re writing software to organize an international

conference. Will this work?

public class PresentationEvent {
final Instant start, end;
final String title;

}

Nope.

Although we need to represent a particular point in time, for future
events, even when we know the time and the time zone, we cannot
know the instant ahead of time because DST rules or UTC offsets
might change between now and then. We need a ZonedDateTime.

How about regularly occurring events, like a flight? Will this work?

https://nodatime.org

public class Flight {
final String flightReference;
final ZonedDateTime departure, arrival;

}

Nope.

This can fail twice a year. Imagine a flight leaving Saturday at 10:00
p.m. and arriving Sunday at 6:00 a.m. What happens when we move
the clock back an hour because of daylight savings? Unless the aircraft
circles uselessly during the extra hour, it’s going to land at 5:00 a.m.,
not 6:00 a.m. When we move ahead one hour, it’ll arrive at 4:00 a.m.
For recurring events with duration, we cannot fix both the start and the

end. Here’s what we need:

public class Flight {
final String flightReference
final ZonedDateTime departure;
final Duration duration;

}

What about events that start at 2:30 a.m.? Which one? There may be
two, or it might not exist at all. In Java, the following methods handle

the autumnal DST transition:

ZonedDateTime.withEarlierOffsetAtOverlap()
ZonedDateTime.withLaterOffsetAtOverlap()

In Noda Time, specify both DST transitions explicitly with
Resolvers.

I have only scratched the surface of potential issues, but as they say,
good tools are half the work. Use java.time (or Noda Time), and

you’ve saved yourself a lot of errors.

Don’t hIDE Your Tools

Gail Ollis

What is the one essential tool every Java programmer needs? Eclipse?
IntelliJ IDEA? NetBeans? No. It’s javac. Without it, all you have is
files of weird-looking text. It is possible to do the job without
integrated development environments (IDEs)—ask people like me who
programmed in the olden days. It is not possible to program without

essential development tools.

Given that they are central to the task, it’s surprising how rarely people
use tools like javac directly. While knowing how to make effective use
of an IDE is important, understanding what it is doing, and how, is

crucial.

Once upon a time, I worked on a project with two subsystems, one in
C++ and the other in Java. C++ programmers worked with their editor
of choice and the command line. Java programmers used an IDE. One
day, the incantation to interact with the version control system
changed. It was a simple command-line change for the C++
programmers, who went on their way without delay. The Java team

spent the whole morning wrestling with their Eclipse configuration.

They finally got back to productive work in the afternoon.

This unfortunate story doesn’t reflect well on the Java team’s mastery
of their chosen tools. But it also illustrates how distanced they were in
their day-to-day work from the essential tools of their trade by working
exclusively in an IDE. Information hiding is a great principle for
enabling focus on a useful abstraction rather than a mass of detail, for
sure. But it implies a choice to delve into details only when relevant,

not ignorance of the details.

Relying solely on an IDE can undermine a programmer’s mastery of
their tools because the IDE purposely hides the nuts and bolts. The
configuration—often just a case of following someone else’s
instructions—can be forgotten as soon as it’s done. There are many

advantages to also knowing how to use the essential tools directly:

e “It works on my machine” scenarios are less likely and
simpler to resolve if you understand the relationships among
tools, source code, other resources, and generated files. It also
helps with knowing what to package for installation.

e It’s extraordinarily quick and easy to set different options.
Start with commands like javac --help so you can see
what those options are.

e Familiarity with the essential tools is valuable when helping
people who use a different environment. It also helps when
something goes wrong; it’s hard to troubleshoot when
integrated tools are not working. Visibility is better on the
command line and you can isolate parts of the process, just as
you would when debugging code.

e You have access to a richer tool set. You can integrate any

combination of tools that have a command-line interface (for
example, scripts or Linux commands), not just those supported
in the IDE.

e End users will not run your code in an IDE! In the interest of
good user experience, test from the start by running the code
as it will be run on a user’s machine.

None of this denies the benefits of an IDE. But to be truly skilled at

your craft, understand your essential tools and don’t let them get rusty.

Don’t Vary Your Variables

Steve Freeman

I

I try to make as many variables as possible final because I find it
easier to reason about immutable code. It makes my coding life
simpler, which is a high priority for me—I’ve spent too much time
trying to figure out exactly how the contents of a variable change
throughout a block of code. Of course, Java’s support for immutability
is more limited than some other languages, but there are still things we

can do.

Assign Once

Here’s a small example of a structure I see everywhere:

Thing thing;
if (nextToken == MakeIt) {
thing = makeTheThing();
} else {
thing = new SpecialThing(dependencies);
b

thing.doSomethingUseful();

To me this doesn’t irrevocably express that we’re going to set the value

of thing before we use it and not change it again. It takes me time to
walk through the code and figure out that it won’t be null. It’s also an
accident waiting to happen when we need to add more conditions and
don’t quite get the logic right. Modern IDEs will warn about an unset
thing—but then lots of programmers ignore warnings. A first fix would

be to use a conditional expression:

final var thing = nextToken == MakeIt
? makeTheThing()
new SpecialThing(dependencies);
thing.doSomething();

The only way through this code is to assign thing a value.

A next step is to wrap up this behavior in a function to which I can give
a descriptive name:

final var thing = aThingFor (nextToken);
thing.doSomethingUseful();

private Thing aThingFor (Token aToken) {
return aToken == MakeIt
? makeTheThing()
new SpecialThing(dependencies);

Now the life cycle of thing is easy to see. Often this refactoring

shows that thing is only used once, so I can remove the variable:

aThingFor (aToken).doSomethingUseful();

This approach sets us up for when, inevitably, the condition becomes

more complicated; note that the switch statement is simpler without

the need for repeated break clauses:

private Thing aThingFor (Token aToken) {
switch (aToken) {
case MakelIt:
return makeTheThing();
case Special:
return new SpecialThing(dependencies);
case Green:
return mostRecentGreenThing();
default:
return Thing.DEFAULT;

Localize Scope

Here’s another variant:

var thing = Thing.DEFAULT;
// lots of code to figure out nextToken
if (nextToken == MakeIt) {

thing = makeTheThing();

b
thing.doSomethingUseful();

This is worse because the assignments to thing aren’t close together

and might not even happen. Again, we extract this into a supporting
method:
final var thing = theNextThingFrom(aStream);
private Thing theNextThingFrom(Stream aStream) {
// lots of code to figure out nextToken
if (nextToken == MakeIt) {
return makeTheThing();
}

return Thing.DEFAULT;

Alternatively, separating concerns further:

final var thing =
aThingForToken(nextTokenFrom(aStream));

Localizing the scope of anything that is variable into a supporting
method makes the top-level code predictable. Finally, although some

coders aren’t used to it, we could try a streaming approach:

final var thing = nextTokenFrom(aStream)
.filter(t -> t == MakeIt)
.findFirst()
.map(t -> makeTheThing())
.0rElse(Thing.DEFAULT);

I’ve regularly found that trying to lock down anything that does not
vary makes me think more carefully about my design and flushes out
potential bugs. It forces me to be clear about where things can change

and to contain such behavior into local scopes.

Embrace SQL Thinking

Dean Wampler

Look at this query:

SELECT c.id, c.name, c.address, o.items FROM customers
C

JOIN orders o

ON o.customer_id = c.id

GROUP BY c.id

We acquire all the customers who have orders, including their names
and addresses, along with the details of their orders. Four lines of code.
Anyone with a little SQL experience, including nonprogrammers, can

understand this query.

Now think about a Java implementation. We might declare classes for
Customer and Order. I remember well-meaning consultants saying
we should also create classes to encapsulate collections of them, rather
than use “naked” Java collections. We still need to query the database,
so we pull in an object-relational mapper (ORM) tool and write code
for that. Four lines of code quickly turn into dozens or even hundreds
of lines. The few minutes it took to write and refine the SQL query

stretch into hours or days of editing, writing unit tests, code reviews,

and so on.

Can’t we just implement the whole solution with only the SQL query?
Are we sure we can’t? Even if we really can’t, can we eliminate waste

and write only what’s essential? Consider the qualities of the SQL

query:

We don’t need a new table for the join output, so we don’t create one.
The biggest failing of applied object-oriented programming has
been the belief that you should faithfully reproduce your domain
model in code. In reality, a few core type definitions are useful for
encapsulation and understanding, but tuples, sets, arrays, and so
forth are all we need the rest of the time. Unnecessary classes
become a burden as the code evolves.

The query is declarative.
Nowhere does it tell the database how to do the querys; it just states
the relational constraints the database must satisfy. Java is an
imperative language, so we tend to write code that says what to do.
Instead, we should declare constraints and desired outcomes, and
then isolate the how implementation in one place or delegate to a
library that can implement it for us. Like functional programming,
SQL is declarative. In functional programming, equivalent
declarative implementations are achieved using composable
primitives, such as map, filter, reduce, and so on.

The domain-specific language (DSL) is well matched to the problem.
DSLs can be somewhat controversial. It’s very hard to design a
good one, and the implementations can be messy. SQL is a data
DSL. It’s quirky, but its longevity is proof of how well it expresses
typical data-processing needs.

All applications are really data applications. At the end of the day,

everything we write is a data manipulation program, whether or not we

think of it that way. Embrace that fact and the unnecessary boilerplate

will reveal itself, allowing you to write only what’s essential.

Events Between Java
Components

A.Mahdy AbdelAziz

One of the core concepts of object orientation in Java is that every class
can be considered to be a component. Components can be extended or
included to form bigger components. The final application is also
considered a component. Components are like Lego blocks that build

up a bigger structure.

An event in Java is an action that changes the state of a component. For
example, if your component is a button, then clicking on that button is

an event that changes the state of the button to be clicked.

Events do not necessarily happen only on visual components. For
example, you can have an event on a USB component that a device is
connected. Or an event on a network component that data is
transferred. Events help to decouple the dependencies between

components.

Assume we have an Oven component and a Person component.

These two components exist in parallel and work independently of one
another. We should not make Person part of Oven, nor the other way

around. To build a smart house, we want the Oven to prepare food

once Person is hungry. Here are two possible implementations:

1. Oven checks Person in fixed, short intervals. This annoys
Person and is also expensive for Oven if we want it to
check on multiple instances of Person.

2. Person comes with a public event, Hungry, to which Oven
is subscribed. Once Hungry is fired, Oven is notified and
starts preparing food.

The second solution uses the event architecture to handle the listening
and communication between components efficiently and without a
direct coupling between Per son and Oven, because Person will
fire the event, and any component, such as Oven, Fridge, and
Table, can listen to that event without any special handling from the

Person component.

Implementing events for a Java component can take different forms,
depending on how they are expected to be handled. To implement a
minimal HungerListener in the Person component, first, create

a listener interface:

@FunctionalInterface

public interface HungerListener {
void hungry();

}

Then, in the Person class, define a list to store the listeners:

private List<HungerlListener> listeners = new
ArraylList<>();

Define an API to insert a new listener:

public void addHungerListener (HungerListener listener)

{
b

listeners.add(listener);

You can create a similar API for removing a listener. Also, add a
method to trigger the action of being hungry to notify all listeners of

the event:

public void becomesHungry() {
for (HungerListener listener : listeners)
listener.hungry();

Finally, from the Oven class, add code that listens to the event and

implements the action when the event is fired:
Person person = new Person();
person.addHungerListener(() -> {

System.err.println("The person is hungry!");
// Oven takes action here

+);

And to try it out:

person.becomesHungry();

For fully decoupled code, the last section should be in an independent
class that has an instance of Person and Oven, and handles the logic

between them. Similarly, we can add other actions for Fridge,

Table, and so on. They all will get notified only once the Person
becomesHungry.

Feedback Loops

Liz Keogh

e Because our product managers don’t know what they want,
they find out from the customers. They sometimes get this
wrong.

e Because our product managers don’t know everything about
systems, they invite other experts to become stakeholders in
the project. The stakeholders get it wrong.

e Because I don’t know what to code, I find out from our
product managers. We sometimes get this wrong.

e Because | make mistakes while writing code, I work with an
IDE. My IDE corrects me when I’m wrong.

e Because | make mistakes in understanding the existing code, I
use a statically typed language. The compiler corrects me
when I’'m wrong.

e Because | make mistakes while thinking, I work with a pair.
My pair corrects me when I’m wrong.

e Because my pair is human and also makes mistakes, we write
unit tests. Our unit tests correct us when we’re wrong.

e Because we have a team that is also coding, we integrate with
their code. Our code won’t compile if we’re wrong.

Because our team makes mistakes, we write acceptance tests
that exercise the whole system. Our acceptance tests will fail if
we’re wrong.

Because we make mistakes writing acceptance tests, we get
three amigos together to talk through them. Our amigos will
tell us if we’re wrong.

Because we forget to run the acceptance tests, we get our build
to run them for us. Our build will tell us if we’re wrong.

Because we didn’t think of every scenario, we get testers to
explore the system. Testers will tell us if it’s wrong.

Because we only made it work on Henry’s laptop, we deploy
the system to a realistic environment. The tests will tell us if
it’s wrong.

Because we sometimes misunderstand our product manager
and other stakeholders, we showcase the system. Our
stakeholders will tell us if we’re wrong.

Because our product manager sometimes misunderstands the
people that want the system, we put the system in production.
The people who want it tell us if we’re wrong.

Because people notice things going wrong more than things
going right, we don’t just rely on opinions. We use analytics
and data. The data will tell us if we’re wrong.

Because the market keeps changing, even if we were right
before, eventually we’ll be wrong.

Because it costs money to get it wrong, we do all these things
as often as we can. That way we are only ever a little bit
wrong.

Don’t worry about getting it right. Worry about how you’ll
know it’s wrong, and how easy it will be to fix when you find

out. Because it’s probably wrong.

e It’s OK to be wrong.

Firing on All Engines

Michael Hunger

Traditional Java profilers use either byte code instrumentation or

sampling (taking stack traces at short intervals) to determine where
time was spent. Both approaches add their own skews and oddities.
Understanding the output of those profilers is an art of its own and

requires quite some experience.

Fortunately, Brendan Gregg, a performance engineer at Netflix, came
up with flame graphs, an ingenious kind of diagram for stack traces

that can be gathered from almost any system.

A flame graph sorts and aggregates the traces up to each stack level, so
that their count per level represents the percentage of the total time
spent in that part of the code. Rendering those blocks as actual blocks
(rectangles) with the width being proportional to the percentage and

stacking the blocks onto each other turned out to be very useful.

https://oreil.ly/dhd5O
https://oreil.ly/2kCDd

Flame Graph

The “flames” represent from bottom to top the progression from the
entry point of the program or thread (main or an event loop) to the
leaves of the execution in the tips of the flames. Note that the left-to-
right order has no significance; often, it’s just alphabetical sorting. The
same is true for colors. Only the relative widths and stack depths are

relevant.

You can immediately see if certain parts of the program take an
unexpectedly large amount of time. The higher up in the diagram that
happens, the worse it is. Especially if you have a flame that’s very wide
on top, you know you’ve found a bottleneck that is not delegating work

elsewhere. After fixing the issue, measure again, and if the overall

performance issue persists, revisit the diagram for new indications.

To address the shortcomings of traditional profilers, many modern
tools make use of an internal JVM feature (AsyncGetCallTrace)

that allows the gathering of stack traces outside of safepoints.
Additionally, they combine measurement of JVM operations with
native code and system calls to the operating system so that time spent
in network, input/output (I/0O), or garbage collection can become part

of the flame graph as well.

Tools like Honest Profiler, perf-map-agent, async-profiler, and even
IntelliJ IDEA make capturing the information and generating flame

graphs really easy.

In most cases, you just download the tool, provide the process ID (PID)
of your Java process, and tell the tool to run for a certain amount of

time and generate the interactive scalable vector graphics (SVG):

download and unzip async profiler for your 0S from:
https://github.com/jvm-profiling-tools/async-
profiler

./profiler.sh -d <duration> -f flamegraph.svg -s -0
svg <pid> && \

open flamegraph.svg -a "Google Chrome"

The SVG that the tools produce is not just colorful but also interactive.

You can zoom into sections, search for symbols, and more.

Flame graphs are an impressively powerful tool to quickly get an
overview of the performance characteristics of your programs; you can

see hotspots immediately and focus on those. Including non-JVM

aspects also helps with the bigger picture.

Follow the Boring Standards

Adam Bien

At the beginning of the Java age, there were dozens of incompatible
application servers on the market, and the server vendors followed
completely different paradigms. Some servers were even partially
implemented in native languages like C++. Understanding multiple
servers was hard, and porting an application from one server to another

was nearly impossible.

APIs like JDBC (introduced with JDK 1.1), JNDI (introduced with
JDK 1.3), IMS, JPA, or Servlets abstracted, simplified, and unified
already established products. EJBs and CDI made the deployment and
programming models vendor agnostic. J2EE, later Java EE and now
Jakarta EE, and MicroProfile defined a minimal set of APIs an
application server had to implement. With the advent of J2EE, a
developer only had to know a set of J2EE APIs to develop and deploy
an application.

Although the servers evolved, the J2EE and Java EE APIs remained
compatible. You never had to migrate your application to run on a

newer release of the application server. Even upgrading to a higher

Java EE version was painless. You only had to re-test the application
without even recompiling it. Only if you wanted to take advantage of
newer APIs did you have to refactor the application. With the
introduction of J2EE, developers could master multiple application

servers without delving too deep into their specifics.

We have a very similar situation in the web/JavaScript ecosystem right
now. Frameworks like jQuery, Backbone.js, AngularJS 1, Angular 2+
(completely different from AngularJS 1), ReactJS, Polymer, Vue.js,
and Ember.js follow completely different conventions and paradigms.
It has become hard to master multiple frameworks at the same time.
The initial goal of many frameworks was to address incompatibility
issues among different browsers. As browsers became surprisingly
compatible, frameworks started to support data binding, unidirectional

data flow, and even enterprise Java features like dependency injection.

At the same time, browsers became not only more compatible but also
provided features previously available only with third-party
frameworks. The function querySelector is available in all
browsers and provides comparable functionality to jQuery’s DOM
access capabilities. Web Components with Custom Elements, Shadow
DOM, and Templates enable developers to define new elements
containing UI and behavior, and even to structure entire applications.
As of ECMAScript 6, JavaScript became more similar to Java, and ES6
modules made bundling optional. The MDN (Mozilla Developer’s
Framework) became a unified effort from Google, Microsoft, Mozilla,

W3C, and Samsung to provide a home for web standards.

Now it’s possible also to build frontends without frameworks.

Browsers have an excellent track record for being backward
compatible. All the frameworks have to use the browser APIs
regardless, so by learning the standards you also understand the
frameworks better. As long as browsers don’t introduce any breaking
changes, just relying on web standards without any frameworks is

enough to make your application last.

Focusing on standards allows you to gain knowledge incrementally
over time—an efficient way to learn. Evaluating popular frameworks is
exciting, but the gained knowledge isn’t necessarily applicable to the
next “hot thing.”

Frequent Releases Reduce
Risk

Chris O’Dell

“Frequent releases reduce risk”—this is something you hear all the
time in conversations about continuous delivery. How exactly is this
the case? It sounds counterintuitive. Surely, releasing more often is
introducing more volatility into production? Isn’t it less risky to hold
off releasing as long as possible, taking your time with testing to
guarantee confidence in the package? Let’s think about what we mean

by risk.

What Is Risk?

Risk is a factor of the likelihood of a failure happening combined with

the worst-case impact of that failure:

Risk = Likelihood of failure x Worst-case impact of failure

Therefore, an extremely low-risk activity is when failure is incredibly
unlikely to happen and the impact of the failure is negligible. Low-risk

activities also include those where either of these factors—Ilikelihood

or impact—is so low that it severely reduces the effect of the other.

Playing the lottery is low-risk: the chance of failing (i.e., not winning)
is very high, but the impact of failing (i.e., losing the cost of the ticket)

is minimal, so playing the lottery has few adverse consequences.

Flying is also low-risk due to the factors being balanced the opposite
way. The chance of a failure is extremely low—flying has a very good
safety record—but the impact of a failure is extremely high. We fly

often, as we consider the risk to be very low.

High-risk activities are when both sides of the product are high—a high
likelihood of failure and high impact. For example, they include

extreme sports such as free solo climbing and cave diving.

Large, Infrequent Releases Are Riskier

Rolling a set of changes into a single release package increases the
likelihood of a failure occurring—a lot of change is happening all at

once.

The worst-case impact of a failure includes the release causing an
outage, or severe data loss. Each change in a release could cause this to

happen.

The reaction to try and test for every failure is a reasonable one, but it
is impossible. We can test for the known scenarios, but we can’t test
for scenarios we don’t know about until they are encountered (the

“unknown unknowns”).

This is not to say that testing is pointless—on the contrary, it provides
confidence that the changes have not broken expected, known
behavior. The tricky part is balancing the desire for thorough testing
against the likelihood of tests finding a failure, and the time taken to

perform and maintain them.

Build up an automated suite of tests that protect against the failure
scenarios you know about. Each time a new failure is encountered, add
it to the test suite. Increase your suite of regression tests, but keep them

light, fast, and repeatable.

No matter how much you test, production is the only place where
success counts. Small, frequent releases reduce the likelihood of a
failure. A release containing as small a change as possible reduces the

likelihood that the release will contain a failure.

There’s no way to reduce the impact of a failure—the worst case is still
that the release could bring the whole system down and incur severe

data loss—but we lower the overall risk with the smaller releases.

Release small changes often to reduce the likelihood of a failure

and, therefore, the risk of change.

From Puzzles to Products

Jessica Kerr

I went into programming because it was easy. I solved puzzles all day,
then went home at five thirty and hung out with my friends. Twenty

years later, I stay in software because it is hard.

It is hard because I moved from solving puzzles to growing products,

from obsessing over correctness to optimizing for change.

Early in my career, I focused on one area of the system. My team
leader gave me requirements for new features. This defined “correct,”

and when the code achieved it, my task was done.

The available means were restricted: we worked in C, with the standard
library plus Oracle. For bonus points, we made the code look like

everyone else’s.

Within a few years, my perspective broadened: I met with customers; I
participated in the negotiation between design and implementation. If a
particular new feature took the code in an awkward direction, then we

went back to the customer with other suggestions to solve the same

problem. I now help define the puzzles, as well as solve them.

Puzzle solving is a prerequisite, not the essence of my work. The
essence of my work is to provide a capability to the rest of the

organization (or to the world); I do this by operating a useful product.

Puzzles have an end state as a goal—like a game of baseball, there is a
fixed end. With products, the goal is to continue being useful—like a

career in baseball, we want to keep playing.

Puzzles have defined means, like a board game. Growing products, we
have the world of libraries and services, a plethora of puzzles solved

for us. It is more like a game of pretend, open to what we can find.
Later in my career, my perspective broadened.

When I push satisfactory code, this is only the beginning of my work. I
want more than code change: I aim for system change. A new feature
in my app must work with the current systems that depend on mine. I
work with the people who own those systems to help them start using

the new feature.
Now I see my job as designing change, not code. Code is a detail.

Designing change means feature flags, backward compatibility, data
migrations, and progressive deployment. It means documentation,

helpful error messages, and social contact with adjacent teams.

A plus: all those 1T statements for feature flags, deprecated methods,

and backward compatibility handling? These are no longer ugly. They

express change—and change is the point, not some particular state of
the code.

Designing change means building in observability so I can tell who is
still using the deprecated feature, and who is getting value from the
new one. In puzzle solving, I didn’t have to care whether people liked
the feature, or even whether it was in production. Growing a product, I
care very much. From experience in production, we learn how to make

our products more useful.

Products don’t have one definition of “correct.” Many things are
definitely not correct, so we can be careful about “not broken.” Beyond

that, we aim for “better.”

Growing a product is hard in different ways than solving puzzles.
Instead of hard work followed by a feeling of accomplishment, there is
a slog of mushy work, through ambiguity and politics and context. The
reward is more than a feeling, though: it can have a real impact on your
company and thereby the world. That is more satisfying than ordinary

fun.

“Full-Stack Developer” Is a
Mindset

Maciej Walkowiak

In 2007—the year I started working my first job as a Java developer—
the spectrum of technologies involved in day-to-day web development
was quite narrow. Relational databases were in most cases the only
type of database a developer needed to know. Frontend development
was limited to HTML and CSS, spiced with a bit of JavaScript. Java
development itself meant primarily working with Hibernate plus either
Spring or Struts. This set of technologies covered almost everything
necessary for building applications at that time. Most Java developers
were actually full-stack developers, though that term had not yet been

coined.

Things have changed significantly since 2007. We started building
more and more complex user interfaces and handling this complexity
with advanced JavaScript frameworks. We now use NoSQL databases,
and almost every one of them is very different from the others. We
stream data with Kafka, message with RabbitMQ, and do a lot more. In

many cases, we also are responsible for setting up or maintaining the

infrastructure with Terraform or CloudFormation, and we use or even
configure Kubernetes clusters. Overall complexity has grown to the
point that we have separate positions for frontend developer, backend
developer, and DevOps engineer. Is it still possible to be a full-stack

developer? That depends on how you understand the term.

You can’t be an expert in everything. Considering how much the Java
ecosystem has grown, it’s hard to even be an expert in Java itself. The
good thing is that you don’t have to be one. For many projects,
especially in smaller companies, the most beneficial team setup is
when each area of expertise is covered by at least one expert, but these
experts don’t limit themselves to working only on that one area.
Developers specialized in developing backend services can write
frontend code—even if the code isn’t perfect—and the same thing goes
for frontend developers. This helps move projects forward more
quickly, as one person can develop a change that requires touching
every layer of the application. It also leads to greater engagement
during refinement meetings, as there are no tasks isolated only to a

certain group of people.

Most importantly, not being strictly limited to one area changes how
you approach tasks. There are no “It’s not my job” discussions
anymore—developers are encouraged to learn. Having one person go
on vacation is not an issue because there are always others who can
cover for them—maybe not as efficiently, and maybe with results that
aren’t quite as good, but enough to keep things moving forward. It also
means that when there is a need to introduce a new technology to the
stack, you don’t need to find a new team member, because existing

team members are already comfortable leaving the comfort zone of

their expertise.

Full-stack developer is therefore a mindset. It’s being senior and junior

at the same time, with a can-do attitude.

Garbage Collection Is Your
Friend

Holly Cummins

Poor old garbage collection. One of the unsung heroes of Java, often
blamed, rarely praised. Before Java made garbage collection
mainstream, programmers had little choice but to track all the memory
they’d allocated manually, and deallocate it once nothing was using it
anymore. This is hard. Even with discipline, manual deallocation is a

frequent cause of memory leaks (if too late) and crashes (if too early).

Java GC (garbage collection) is often thought of as a necessary cost,
and “reduce time spent in GC” is common performance guidance.
However, modern garbage collection can be faster than
malloc/free, and time spent in GC can speed everything up. Why?
Garbage collectors do more than memory deallocation: they also
handle the allocation of memory and the arrangement of objects in
memory. A good memory management algorithm can make allocation
efficient by reducing fragmentation and contention. It can also boost

throughput and lower response times by rearranging objects.

Why does the location of an object in memory affect application
performance? A high proportion of a program’s execution time is spent
stalled in hardware, waiting for memory access. Heap access is
geologically slow compared to instruction processing, so modern
computers use caches. When an object is fetched into a processor’s
cache, its neighbors are also brought in; if they happen to be accessed
next, that access will be fast. Having objects that are used at the same
time near each other in memory is called object locality, and it’s a

performance win.

The benefits of efficient allocation are more obvious. If the heap is
fragmented, when a program tries to create an object, it will have a
long search to find a chunk of free memory big enough, and allocation
becomes expensive. As an experiment, you can force GC to compact
more; it will massively increase GC overhead, but often application

performance will improve.

GC strategies vary by JVM implementation, and each JVM offers a
range of configurable options. JVM defaults are usually a good start,
but it is worth understanding some of the mechanics and variations
possible. Throughput may be traded off against latency, and workload

affects the optimum choice.

Stop-the-world collectors halt all program activity so they can collect
safely. Concurrent collectors offload collection work to application
threads, so there are no global pauses; instead, each thread will
experience tiny delays. Although they do not have obvious pauses,
concurrent collectors are less efficient than stop-the-world ones, so

they’re suitable for applications where pauses would be noticed (such

as music playback or a GUI).

Collection itself is done by copying or by marking and sweeping. With
mark-and-sweep, the heap is crawled to identify free space, and new
objects get allocated into those gaps. Copying collectors divide the
heap into two areas. Objects are allocated in the “new space.” When
that space is full, its nongarbage contents are copied to the reserve
space and the spaces are swapped. In a typical workload, most objects
die young (this is known as the generational hypothesis). With short-
lived objects, the copying step will be super fast (there’s nothing to
copy!). However, if objects hang around, collection will be inefficient.
Copying collectors are great for immutable objects and a disaster with
object pooling “optimizations” (usually a bad idea anyway). As a
bonus, copying collectors compact the heap, which allows near-instant

object allocation and fast object access (fewer cache misses).

When evaluating performance, it should be related to business value.
Optimize transactions per second, mean service time, or worst-case
latency. But don’t try to micro-optimize time spent in GC, because

time invested in GC can actually help program speed.

Get Better at Naming Things

Peter Hilton

What is above all needed is to let the meaning choose the word, and
not the other way around...the worst thing one can do with words is
surrender to them.

—George Orwell

Getting better at naming things improves the maintainability of the
code you write more than anything else. There’s more to maintainable
code than good naming, but naming things is famously hard, and

usually neglected. Fortunately, programmers like a challenge.

First, avoid names that are meaningless (f00) or too abstract (data),
duplicated (data?2) or vague (DataManager), abbreviated or short
(dat). Single letters (d) are the worst of all. These names are

ambiguous, which slows everyone down because programmers spend

more time reading code than writing code.

Next, adopt guidelines for better names—words with precise meanings

that make the code say what it means.

Use up to four words for each name, and don’t use abbreviations

(except for 1d and those you adopt from the problem domain). One
word is rarely enough; using more than four is clumsy and stops adding
meaning. Java programmers use long class names but often prefer short

local variable names, even when they’re worse.

Learn and use problem domain terminology—domain-driven design’s
ubiquitous vocabulary. This is often concise: in publishing, the correct
term for text changes might be revision or edit, depending on who
makes the change. Instead of making words up, read the topic’s
Wikipedia page, talk to people who work in that domain, and add the
words they use to your glossary.

Replace plurals with collective nouns (e.g., rename
appointment_list to calendar). More generally, enlarge your
English vocabulary so you can make names shorter and more precise.
This is harder if you’re a non-native English speaker, but everyone has

to learn the domain jargon anyway.

Rename pairs of entities with relationship names (for instance, rename
company_person to employee, owner, shareholder). When
this is a field, you’re naming the relationship between the field’s type

and the class it’s a member of. In general, it’s often worth extracting a

new variable, method, or class just so you can explicitly name it.

Java helps you with good naming because you name classes separately
from objects. Don’t forget to actually name your types instead of
relying on primitive and JDK classes: instead of String, you should
usually introduce a class with a more specific name, such as

CustomerName. Otherwise, you need comments to document

unacceptable strings, such as empty ones.

Don’t mix up class and object names: rename a date field called
dateCreated to created, and a Boolean field called 1sValid to
valid, to avoid duplicate type noise. Give objects different names:
instead of a Customer called customer, use a more specific name,
such as recipient when sending a notification or reviewer when

posting a product review.

The first step in naming is to apply the basic naming conventions, such
as using noun phrases for class names. The next step is good naming
technique using guidelines like these. But guidelines have limits. The
JavaBeans specification taught a generation of Java programmers to
break object encapsulation and use vague method names, like
setRating when rate might be better, for example. You don’t
need to name methods that aren’t imperative with verb phrases, as in
builder APIs like
Customer.instance().rating(FIVE_STARS).active().

In the end, naming mastery is about choosing which rules to break.

Hey Fred, Can You Pass Me
the HashMap?

Kirk Pepperdine

ey |

Picture the scene: an old, cramped office with several old wooden
desks set back-to-back. Each desk equipped with an old black rotary
phone and ashtrays dotted about. On one of the desks is a black
HashMap that contains an ArrayList filled with customer data.
Sam, needing to contact Acme Inc., scans the office looking for the
HashMap. Eyes darting, he spots the HashMap and shouts out, “Hey
Fred, can you please pass me the HashMap?” Can you picture that...
yup, I didn’t think so...

An important part of writing a program is the development of a
vocabulary. Each word in that vocabulary should be an expression of
something that is part of the domain we’re modeling. After all, it is this
code expression of our model that others will have to read and
understand. Consequently, our choice of vocabulary can either help or
hinder understanding of our code. Oddly enough, the choice of
vocabulary impacts much more than readability: the words we use

affect how we think about the problem at hand, which, in turn, impacts

the structure of our code, our choice of algorithms, how we shape our
APIs, how well the system will fit our purpose, how easily it will be
maintained and extended, and, finally, how well it will perform. Yes,
the vocabulary we develop when writing code matters a lot. So much
so that keeping a dictionary at hand can be strangely useful when

writing code.

Returning to the ridiculous example, of course, no one would ask for
the HashMap. You’d most likely draw a blank stare from Fred if you
asked him to pass the HashMap. Yet when we look at how to model
the domain, we hear about the need to look up customer contact data
that is organized by name. That screams HashMap. If we dig deeper
into the domain, then we’ll likely discover that the contact information
is written on an index card that is neatly packed away in a Rolodex.
Replacing the word HashMap with the word Rolodex not only offers
a better abstraction in our code but it will also have an immediate
impact on how we think about the problem at hand, and it offers a

better way to express our thoughts to the reader of our code.

The takeaway here is that technical classes rarely have a place in the
vocabulary of the domains we’re working in. Instead, what they offer
are building blocks for deeper, more meaningful abstractions. The need
for utility classes should be a red flag that you’re missing an
abstraction. Additionally, technical classes in APIs should also be a red
flag.

For example, consider the case where a method signature takes a

String to represent a first name and a String for a last name.

These are used to look up data held in a HashMap:

return listOfNames.get(firstName + lastName);

The question is, what is the missing abstraction? Having two fields
forming a key is commonly known as a composite key. Using this
abstraction we get:

return listOfNames.get(new CompositeKey(firstName,
lastName));

When you make this change in a benchmark, the code runs three times
faster. I would argue it is also more expressive: using

CompositeKey better expresses the essence of the problem at hand.

How to Avoid Null

Carlos Obregon

Tony Hoare calls null the “billion-dollar mistake.” It’s a mistake, and

that’s why you should get in the habit of forbidding code from using
null. If you have a reference to an object that might be null, you

have to remember to do a null check before trying to call any method
of it. But since there’s no obvious difference between a null
reference and a non-null one, it’s too easy to forget and get a

NullPointerException.

The most future-proof way to avoid issues is to use an alternative when

possible.

Avoid Initializing Variables to Nuli

It is usually not a good idea to declare a variable until you know what
value it should hold. For complex initialization, move all the

initialization logic to a method. For example, instead of doing this:

public String getEllipsifiedPageSummary(Path path) {
String summary = null;
Resource resource = this.resolver.resolve(path);

if (resource.exists()) {
ValueMap properties = resource.getProperties();
summary = properties.get("summary");

} else {
summary = "";

}

return ellipsify(summary);

Do the following:

public String getEllipsifiedPageSummary(Path path) {
var summary = getPageSummary(path);
return ellipsify(summary);

b
public String getPageSummary(Path path) {

var resource = this.resolver.resolve(path);
if (!resource.exists()) {

return "";
}
var properties = resource.getProperties();
return properties.get("summary");

Initializing a variable to null might leak null unintentionally if you
are not careful with your error-handling code. Another developer might
change the control flow without realizing the issue—and that other

developer might be you three months after the code was first written.

Avoid Returning Null

When you read the signature of a method, you should be able to
understand if it always returns a T or if sometimes it doesn’t.
Returning an Optional<T> is a better option that makes the code
more explicit. Optional’s API makes it very easy to deal with the

scenario where no T was produced.

Avoid Passing and Receiving Null Parameters

If you need a T, ask for it; if you can get by without one, then don’t ask

for it. For an operation that can have an optional parameter, create two

methods: one with the parameter and one without.

For example, the method drawImage from the Graphics class in
the JDK has a version that receives five parameters and a sixth
parameter, an ImageObserver, which is optional. If you don’t have
an ImageObserver, you need to pass null like this:

g.drawImage(original, X_COORD, Y_COORD, IMG_WIDTH,
IMG_HEIGHT, null);

It would have been better to have another method with just the first five

parameters.

Acceptable Nulls

When is it acceptable to use null, then? As an implementation detail

of a class, i.e., the value of an attribute. The code that needs to be
aware of that absence of value is contained to the same file, and it’s

much more simple to reason about it and not leak null.

So remember, unless you have an attribute, it’s always possible to

avoid using null using a superior construct in your code. If you stop
using Nnull where you don’t need it, then it becomes impossible to
leak null and have a NullPointerException. And if you avoid

these exceptions, you’ll be part of the solution to the billion-dollar

problem instead of being part of it.

How to Crash Your JVM

Thomas Ronzon

There are so many new APIs, cool libraries, and must-try techniques

you need to know that it can be hard to stay up-to-date.

But is this really all you need to know as a Java developer? What about
the environment your software is running in? Couldn’t it be that a
problem here could crash your software, and you wouldn’t even be
able to understand or find that problem because it’s outside the world
of libraries and code? Are you prepared to consider another

perspective?

Here is a challenge: try to find ways to crash your Java Virtual
Machine! (Or, at least, bring its normal execution to a sudden and
unexpected stop.) The more ways you know, the better you understand
your surroundings and appreciate what can go wrong with a running

software system.

Here are a few to get you started:

1. Try to allocate as much memory as you can. RAM is not

10.

endless—if no more RAM can be allocated, your allocation
will fail.

. Try to write data to your hard disk until it is full. Same

problem as with RAM: though bigger than RAM, disk space is
not endless either.

. Try to open as many files as you can. Do you know the

maximum number of file descriptors for your environment?

Try to create as many threads as you can. On a Linux system,
you can look at /proc/sys/kernel/pid_max and you

will see how many processes may be running on your system.
How many threads are you allowed to create on your system?

. Try to modify your own .class files in the filesystem—the

current run of your application will be its last!

. Try to find your own process ID, and then try to kill it by

using Runtime.exec (e.g., by calling kill -9 on your
process 1D).

Try to create a class at runtime that only calls
System.exit, load that class dynamically via the class
loader, then call it.

. Try to open as many socket connections as possible. On a

Unix system, the maximum number of possible socket
connections equals the maximum number of file descriptors
(often 2,048). How many are available where your application
is running?

. Try to hack your system. Download an exploit via code or by

using wget. Execute the exploit, and then call shutdown -
h as root on a Unix system or shutdown /s as
administrator on a Windows system.

Try jumping without a safety net. Part of Java’s safety comes

from its language design and part from the bytecode
verification in your JVM. Run your JVM with -noverify
or -Xverify:none, which disables all bytecode
verification, and write something that would otherwise not be
allowed to run.

11. Try using Unsafe. This backdoor class is used to get access
to low-level facilities such as memory management. All the
syntax of Java, all the safety of C!

12. Try going native. Write some native code. All the syntax of C,
all the safety of C!

Try to find your own ways to crash your JVM and ask colleagues for
their ideas. Also consider asking job interview candidates how they
might go about this. Whatever their answer, you will soon learn
whether the interviewee is able to see the world outside their IDE

window.

P.S. If you find other creative ways to crash a JVM, please let me

know!

Improving Repeatability and
Auditability with Continuous
Delivery

Billy Korando

Handcrafting is valued because of the time and effort involved and
small imperfections that give character and uniqueness. While these
qualities might be valued in food, furniture, or art, when it comes to
delivering code, these qualities are serious impediments to an

organization’s success.

Humans are not well suited to performing repetitive tasks. No matter
how detail-oriented a person might be, mistakes happen when
performing the series of complex steps required to deploy an
application. A step might be skipped, run in the wrong environment, or

otherwise performed incorrectly, leading to a deployment failure.

When deployment failures happen, a considerable amount of time can
be spent investigating what went wrong. This investigative process is
hindered as manual processes often lack a central point of control and

can be opaque. When a root cause is determined, the typical resolution

is to add more layers of control to prevent the problem from happening
again, but this usually only succeeds in making the deployment process

more complicated and painful!

Organizations struggling to deliver code is not news, so to address this,
organizations have begun to migrate to continuous delivery (CD). CD
is an approach of automating the steps of delivering code to
production. From the time when a developer commits a change to
when that change is deployed to production, any step that can be
automated, should be—testing, change control, the process of

deployment, etc.

When migrating to CD, a primary motivation is to reduce the time and
effort required to deploy code. While reduced time and effort are
significant advantages to CD, they aren’t the only ones! CD also
improves the repeatability and auditability of your deployment process.

Here is why you should care about these qualities.

Repeatable

Automating the steps to deploy code means scripting each step so it
can be executed by a computer instead of a human. This greatly
improves the repeatability of the deployment process, as computers

excel at performing repetitive tasks.

A repeatable process is inherently less risky, which can encourage
organizations to release more often and with smaller changesets. This
can lead to second-order benefits of targeting a release to fix specific

issues, such as performance. A release can contain only performance

changes, which can make it possible to measure if those changes

improved, degraded, or had no impact on performance.

Auditable

Automating deployments greatly improves transparency, which
naturally improves auditability. The scripts used to execute steps and
values supplied to them can be stored in version control, allowing for
easy review. Automated deployments can also generate reports that can
also help with auditing. The improved auditability of the deployment
process is what moves CD from a niche concept for start-ups and non-
mission-critical applications to essential in even the most tightly

regulated and controlled industries.

When I first heard about CD, I found the deployments on demand
concept intoxicating. After reading Continuous Delivery by Jez
Humble and David Farley (Addison-Wesley), I learned that the
reduced time and effort are in many ways secondary to the repeatability
and auditability that CD offers. If your organization has been
struggling to deliver code to production, I hope this can help build your

case to management for why you should switch to CD.

In the Language Wars, Java
Holds Its Own

Jennifer Reif

We all pick our favorites and downplay other options (colors, cars,
sports teams, and so on). Programming language choice is not exempt.
Whether it’s the one we are most comfortable with or the one that got

us a job, we cling to that choice.

Today, we will focus on Java. There are perfectly valid complaints and
praises for this language. These are my experiences, and others may

see things differently.

My History with Java

First, let’s see the lens through which I view this language.

My introduction to programming applications was in college using—
wait for it—Java. Prior to that, I had a couple of intro classes using
HTML, Alice, and Visual Basic. None of those was designed to dive

into complex code structures.

So, Java was my first exposure to programming for enterprise
environments and critical processes. I’ve since had experience with

many other languages, but I still go back to Java.

Java’s Design and Background

Java was created in 1995 with a C-like syntax and following the
WORA principle (write once, run anywhere). Its goal was to simplify
complex programming required in C-family languages and achieve

platform independence via the JVM.

I think knowing a language’s history helps put positives and negatives
into context, as understanding the background shows what the creators

sacrificed to reach other goals.

Java’s Downsides

Most complaints are that deployables are larger and the syntax is
verbose. While valid, I think the previous paragraph on Java’s history

explains why these exist.

First, Java deployables are larger overall. As we saw in Java’s history,
it was created to “write once, run anywhere” so the same application
could run on any JVM. This means all dependencies have to be
included for deployment, whether rolled into a single JAR or across
various components (WAR file + app server + JRE + dependencies).

This affects the size of the deployment.

Second, Java is verbose. Again, I attribute this to its design. It was

created when C and similar languages ruled the space, which required

developers to specify low-level details. Java’s goal was to be more

user-friendly by abstracting some of those details.

Why | Like Java

e Java tells me what I am building and how. With other
languages, I may be able to write something in fewer lines, but
I’m less sure what it’s doing under the hood, which I don’t
like as much.

e It’s a widely applicable skill. Dealing with Java in various
capacities has given me knowledge in both the business and
the technical market. Java is not the only language with this
benefit, but it seems the most enduring one with this property.

e Java allows me to play with technology in all stacks and areas.
It seems to bridge all those. I like to dabble and explore, and
Java has enabled that.

What Does It Mean for Developers?

The market is diverse, with many options fitting business needs. One
size does not (and should not) fit all, so each developer needs to decide
the best language for the job. Even if you don’t favor Java as a primary

language, I still think it’s a valuable skill to have.

Inline Thinking

Patricia Aas

Computers changed. They changed in many ways, but for the purpose
of this text they changed in one significant way: the relative cost of

reading from RAM became extremely high.

This was something that happened gradually, until RAM accesses
could completely dominate the performance metrics of an application.
The CPU was constantly waiting for memory accesses to finish. And as
the cost of going to RAM, relative to registers, grew and grew, chip
manufacturers introduced more and more levels of cache and made

them bigger and bigger.
And caches are great! If what you need is in them...

Caches are complex, but as a rule they will predict that a subsequent
memory access will be close to, or preferably adjacent to, a recent,
previous access. This is done by fetching a bit more than needed from
memory and storing this excess in the cache, often called prefetching.
If a later access can get its value from the cache instead of RAM, it is

referred to as a “cache-friendly” access.

Imagine that you need to iterate through a big array of relatively small
objects, maybe a bunch of triangles. In Java today, you don’t really
have an array of triangles; you have an array of pointers to triangle
objects because regular objects in Java are “reference types,” meaning
you access them through Java pointers/references. So even though the
array is probably a contiguous section of memory, the triangle objects
themselves can be anywhere on the Java heap. Looping through this
array will be “cache-unfriendly” since we will be jumping around in
memory from triangle object to triangle object, and the cache

prefetching will probably not help us much.

Imagine instead that the array contained the actual triangle objects, not
pointers to them. Now they are close in memory, and looping over
them is much more “cache-friendly.” The next triangle might be
waiting for us right there in the cache. Object types that can be stored
directly into an array like that are called “value types” or “inline
types.” Java already has several inline types, for example int and

char, and will soon have user-defined ones, probably called “inline

classes.” These will be similar to regular classes but simpler.

Another way to be cache-friendly is to store objects in your stack frame
or directly in registers. A difference between inline types and reference
types is that you don’t have to allocate inline types on the heap. This is
useful for objects that live only for the scope of this method call. Since
the relevant parts of the stack are probably in the cache, access to
objects on the stack will tend to be cache-friendly. As a bonus, objects
that are not allocated on the Java heap do not need to be garbage

collected.

These cache-friendly behaviors are already present in Java when using
so-called “primitive types,” like 1nts and chars. Primitive types are
inline types and come with all of their advantages. So even though
inline types may seem foreign in the beginning, you have worked with
them before; you just might not have thought of them as objects. So,
when “inline classes” seem confusing, you could try thinking, “What
would an int do?”

Interop with Kotlin

Sebastiano Poggi

In recent years, Kotlin has been a hot-button topic in the JVM
community; the usage of the language is constantly increasing, from
mobile to backend projects. One of Kotlin’s advantages is its great

degree of interoperability with Java right off the bat.

Calling into any Java code from Kotlin just works. Kotlin understands
Java perfectly well, but there’s one minor annoyance that may present
itself if you’re not following Java best practices to the letter: the lack of
non-nullable types in Java. If you don’t apply nullability annotations in
Java, Kotlin assumes all those types have unknown nullability—they’re
so-called platform types. If you’re certain they will never be null,
you can coerce them into a non-null type with the ! ! operator or by
casting them to a non-null type. In either case, you’ll get a crash if
the value is null at runtime. The best way to handle this scenario is
to add nullability annotations such as @Nullable and @NotNull to
your Java APIs. There are a variety of supported annotations:
JetBrains, Android, JSR-305, FindBugs, and more. This way, Kotlin

will know the type nullability, and when coding in Java you’ll receive

https://oreil.ly/hKoXx

additional IDE insights and warnings about potential nulls. Win-win!

When invoking Kotlin code from Java, you should find that while the
majority of the code will work just fine, you may see quirks with some
advanced Kotlin language features that don’t have a direct equivalent
in Java. The Kotlin compiler has to adopt some creative solutions to
implement them in bytecode. These are hidden when in Kotlin, but
Java isn’t aware of these mechanisms and lays them bare, resulting in a
usable but suboptimal API.

Top-level declarations are an example. Since the JVM bytecode
doesn’t support methods and fields outside of classes, the Kotlin
compiler puts them in a synthetic class with the same name as the file
they’re in. For example, all top-level symbols in a FluxCapacitor.kt file
will appear as static members of the FluxCapacitorKt class, from
Java. You can change the synthetic class name to something nicer by
annotating the Kotlin file with
@file:JvmName("FluxCapacitorFuncs").

You may expect members defined in a (Companion) object to be
static in bytecode, but that’s not the case. Kotlin under the hood moves
them into a field named INSTANCE, or a synthetic Companion inner

class. If you need to access them as static members, just annotate them
with @JvmStatic. You can also make (companion) object

properties appear as fields in Java by annotating them as @JvmField.

Lastly, Kotlin offers optional parameters with default values. It’s a
very convenient feature, but unfortunately, Java doesn’t support it. In

Java, you need to provide values for all the parameters, including the

ones that are supposed to be optional. To avoid this, you can use the
@JvmOverloads annotation, which tells the compiler to generate
telescopic overloads for all optional parameters. Ordering of the
parameters is important as you don’t get all possible permutations in
the overloads, but rather one extra overload for each optional

parameter, in the order in which they appear in Kotlin.

To summarize, Kotlin and Java are almost entirely interoperable out of
the box: that’s one of Kotlin’s advantages over other JVM languages.
In some scenarios, though, a minute of work on your APIs will make
its usage much more pleasant from the other language. There’s really
no reason not to go the extra mile, given how big of an impact you can

make with such little effort!

It’s Done, But...

Jeanne Boyarsky

How many times have you been to a stand-up, daily Scrum or status
meeting and heard the phrase “It’s done, but...”? When I hear that, my
first thought is “So, it’s not done.” There are three issues with using the

word done when it isn’t done.

1. Communication and Clarity

Ideally your team has a definition of done. But even if they don’t, there
is probably some expectation of what done means. And, even better,
the person reporting on status knows that. Otherwise, we wouldn’t

have a disclaimer on the task’s done-ness.

Common things that aren’t done include writing tests, documentation,
and edge cases. Take a moment and see if you can think of any more.
Similarly, I don’t like the term done done. It implicitly blesses the idea
that done doesn’t actually mean done. Be a clear communicator. If

something isn’t done, don’t say it’s done.

This is an opportunity for you to convey more information. For

example, “I coded the happy path and next I will add validation” or “I
finished all the code—the only thing remaining is for me to update the
user manual” or even “I thought I was done and then discovered the
widget doesn’t work on Tuesdays.” All of these give information to

your team.

2. Perception

Managers like hearing the word done. It means you are free to take on
more work. Or help a teammate. Or pretty much anything that does not
include spending more time on the task. As soon as they hear done, that
becomes the perception. The but either gets forgotten or becomes a
small thing.

Now you are moving on to the next thing when you didn’t finish the
first thing. That’s where technical debt comes from! Sometimes
technical debt is a choice. However, making that choice by discussing
it is far better than having it made for you because you claimed to be

done.

OK. I’'m done with this article, but I still have to write the last part. See

how that worked? I’'m not actually done at all.

3. There’s No Partial Credit for Done

Done is a binary state. It’s either done or it isn’t. There’s no such thing
as half done. Suppose you are building a pair of stilts and say you are
50% done. Think about what that means. It could mean you have one
stilt. Not particularly useful. More likely it means that you think you

have one stilt but still have to build the other one and then test. Testing

is likely to reveal that you have to go back and change something. This

rework means you weren’t even 50% done. You were optimistic.

Remember: don’t say you are done until you are done!

Java Certifications:
Touchstone in Technology

Mala Gupta

Imagine you need to undergo a robotic surgery. The surgeon is
experienced and qualified but has no credentials with robotic
equipment for surgery. Would you still move forward with the robotic
surgery with that surgeon? Unless I was convinced of the surgeon’s

skills on robotic equipment, [wouldn’t.

Taking the analogy further, how would you ascertain a candidate’s
skills before adding them to your critical projects? A university degree
in computer science is not enough. The gap in skills gained through a

university curriculum and a job’s requirements is wide.

Independent skill training organizations are stepping in to bridge this
gap. But it is not enough. Who would measure the quality of their

content and how? This is where the industry steps in.

An apt metaphor would be the touchstone—the wonderstone used in

ancient times to measure the purity of gold and other precious metals

that were used as currency. A metal coin was rubbed against a dark
siliceous stone like jasper, and a colorful residue would be indicative of

the metal’s purity.

Organizations like Oracle have defined these benchmarks in the form
of professional certifications, to play the role of touchstones, measuring

IT skills in a standardized manner.

People often ask whether these professional certifications are necessary
for computer science graduates or postgraduates. Has the university
curriculum covered the content already? Here one needs to put the
short-term and long-term objectives in perspective. Graduation or
postgraduation in computer science at a university can be a strategic
choice to chalk out a long-term career path, whereas earning
professional certifications are tactical choices to gain proven skills in
technologies that need to be applied in immediate projects and achieve

short-term goals.

Professional certifications in Java by the Oracle Corporation are in
great demand. They are awarded when a candidate meets the defined
requirements. Depending on the certification, a candidate may be
required to complete a course or project, or pass an examination. The
purpose is to establish that the individual is qualified to hold certain
types of positions or work on certain projects. Certified skills bridge
the gap between their existing skills and skills required by the industry,
resulting in a higher rate of success on projects. These certifications are

regularly updated.

Oracle offers multiple options in Java certifications, which define

topics and a pathway to be followed by developers. Developers can

choose the right certification as per their interest.

Validated skills establish the credibility of an individual’s ability in
programming in a particular language or their understanding of a
platform, methodology, or practice to prospective employers. They
help professionals to clear the initial hurdle of résumé reviews and

selections for interviews.

Java certifications help an individual advance in their career. When
people are searching for jobs and organizations and teams are trying to

find talent with verified skills, these certifications can be a first step.

Java ls a '90s Kid

Ben Evans

There are only two kinds of languages: the ones people complain
about and the ones nobody uses.

—Bjarne Stroustrup

Whether Stroustrup’s insight says more about programming languages
or human nature, I’m not sure. However, it does draw attention to the
often-forgotten truism that the design of programming languages is a
human endeavor. As such, languages always carry traces of the

environment and context in which they were created.

So it shouldn’t come as a surprise that traces of the late 1990s can be

seen everywhere in the design of Java, if you know where to look.

For example, the sequence of bytes to load an object reference from

local variable O onto the temporary evaluation stack is this two-byte

sequence:

19 00 // aload 00

However, the JVM’s bytecode instruction set provides a variant form

that is one byte shorter:

2A // aload 0

One byte saved may not sound like much, but it can start to add up

over an entire class file.

Now, remember, in the late ’90s, Java classes (often applets) were
downloaded over dial-up modems, incredible devices that were capable
of reaching blistering speeds of 14.4 kilobits per second. With that kind
of bandwidth, saving bytes wherever possible was a huge motivation

for Java.

You could even argue that the entire concept of primitive types is a
combination of a performance hack and a sop to C++ programmers
newly arrived in the Java world—products of the 1990s, when Java

was created.

Even the “magic number” (the first few bytes of a file, which allow the
operating system to identify the file type) for all Java class files feels
dated:

CA FE BA BE

“Cafe babe” is maybe not a great look for Java today. Unfortunately,

it’s not something that can realistically be changed now.

It’s not only the bytecode: in the Java standard library (especially the
older parts of it), APIs that replicate equivalent C APIs are everywhere.

Every programmer who’s been forced to read the contents of a file by

hand knows that only too well. Worse yet, the mere mention of
java.util.Date is enough to break many Java programmers out in

a rash.

Through the lens of 2020 and beyond, Java is sometimes seen as a
mainstream, middle-of-the-road language. What that narrative misses is
that the world of software has radically changed since Java’s debut.
Big ideas such as virtual machines, dynamic self-management, JIT
compilation, and garbage collection are now part of the general

landscape of programming languages.

Though some may view Java as The Establishment, it’s really the
mainstream that has moved to encompass the space where Java has
always been. Underneath the veneer of enterprise respectability, Java is
still a *90s kid.

Java Programming from a
JVM Performance Perspective

Monica Beckwith

Tip #1: Don’t Obsess Over Garbage

I find that sometimes Java developers obsess over the amount of
garbage their applications produce. Very few cases warrant this sort of
obsession. A garbage collector (GC) helps the Java Virtual Machine
(JVM) in memory management. For OpenJDK HotSpot VM, the GC
along with the dynamic just-in-time (JIT) tiered compiler (client (C1) +
server class (C2)) and the interpreter make up its execution engine.
There are a slew of optimizations that a dynamic compiler can perform
on your behalf. For example, C2 can utilize dynamic branch prediction
and have a probability (“always” or “never”) for code branches taken
(or not). Similarly, C2 excels in optimizations related to constants,

loops, copies, deoptimizations, and so on.

Trust the adaptive compiler, but when in doubt verify using

b N9

“serviceability,” “observability,” logging, and all the other such tools

that we have thanks to our rich ecosystem.

What matters to a GC is an object’s liveness/age, its “popularity,” the
“live set size” for your application, the long-lived transients, allocation
rate, marking overhead, your promotion rate (for the generational

collector), and so forth.

Tip #2: Characterize and Validate Your
Benchmarks

A peer of mine once brought in some observations of a benchmarking
suite with various sub-benchmarks. One of these was characterized as a
“start-up and related” benchmark. After taking a look at the
performance numbers and the premise that was the comparison
between OpenJDK 8u and OpenJDK 11u LTS releases, I realized that
the difference in numbers could have been due to the default GC
changing from Parallel GC to G1 GC. So, it seems that the (sub-
)benchmark either was not properly characterized or wasn’t validated.
Both are important benchmarking exercises and help identify and
isolate the “unit of test” (UoT) from other components of the test

system that could act as detractors.

Tip #3: Allocation Size and Rate Still Matter

In order to be able to get to the bottom of the issue discussed above, I
asked to see the GC logs. Within minutes, it was clear that the (fixed)
region size, which is based on the heap size of the application, was
categorizing the “regular” objects as “humongous.” For the G1 GC,
humongous objects are objects that span 50% or more of a G1 region.
Such objects don’t follow the fast path for allocations and are allocated

out of the old generation. Hence, allocation size matters for

regionalized GCs.

A GC keeps up with the live object graph mutation and moves objects
from the “From” space into the “To” space. If your application is
allocating at a rate faster than your GC’s (concurrent) marking
algorithm can keep up with, then that can become a problem. Also, a
generational GC may prematurely promote short-lived objects or not
age transients properly due to the influx of allocations. OpenJDK’s G1
GC is still working on not being dependent on its fallback, fail-safe,
nonincremental, full heap traversing, (parallel) stop-the-world

collector.

Tip #4: An Adaptive JVM Is Your Right and
You Should Demand It

It’s great to see an adaptive JIT and all the advancements geared
toward start-up, ramp-up, JIT availability, and footprint optimizations.
Similarly, various GC-level algorithmic smartness is available. Those
GCs that aren’t there yet should get there soon, but that won’t happen
without our help. As Java developers, please provide feedback on your
use case to the community and help drive innovation in this area. Also,
do test out the features that are continually getting added to the JIT.

Java Should Feel Fun

Holly Cummins

I started my Java career using J2EE 1.2. I had questions. Why were
there four classes and hundreds of lines of generated code for each
bean? Why did compiling tiny projects take half an hour? It wasn’t
productive, and it wasn’t fun. Those two often go together: things feel
un-fun because we know they’re waste. Think about meetings where

nothing is decided, status reports no one reads...

If un-fun is bad, what is fun? Is it good? And how do we get it? Fun

can have different faces:

e Exploration (focused investigation)
e Play (for its own sake, no goal)

e Puzzles (rules and a goal)

e Games (rules and a winner)

e Work (a satisfying goal)

Java allows all of these—the work part is obvious, and anyone who’s
debugged a Java program knows about the puzzle part. (Debugging

isn’t necessarily fun, but finding the solution is great.) We learn
through exploration (when we’re new to something) and play (when

we know enough to do stuff).

Leaving aside the fun we can have with it, is Java inherently fun? Java
is verbose compared to younger languages. Boilerplate isn’t fun, but
some of it is fixable. For example, Lombok neatly generates getters and
setters, as well as hashCode and equals methods (tedious and
error-prone otherwise). Manually writing entry and exit trace is un-fun,
but aspects or tracing libraries can instrument dynamically (and

massively improve code readability).

What makes something fun to use? In part it’s about being expressive
and understandable, but there’s more to it than that. I’m not convinced
lambdas are generally shorter or clearer than class-based alternatives.
But they’re fun! When Java 8 came out, developers dove into lambdas
like kids in a ball pit. We wanted to learn how it worked (exploration)
and the challenge of expressing algorithms in a functional style

(puzzles).

With Java, the fun thing to do is often also the best thing (win).
Autoinstrumenting trace bypasses un-fun, eliminating method-name
copy-and-paste errors and improving clarity. Or consider performance.
For niche scenarios, weird, complicated code is needed to scrape every
inch of speed. In most cases, however, the simplest code is also the
fastest. (Which is not necessarily true for languages like C.) The Java
JIT optimizes code as it runs; it’s smartest for clean, idiomatic code.

Straightforward code is nicely readable, so errors will be more obvious.

Misery-making code has a knock-on effect. Psychological research
shows happiness and workplace success go together. One study
showed that people with a positive mindset were 31% more productive
than those with neutral or negative mindsets. You’ll achieve less using
poorly designed libraries, and then you’ll continue to achieve less

afterward because the bad code made you miserable.

Is “fun is good” an excuse to be irresponsible? Not at all! Consider
whether everyone is having fun: everyone includes customers,
colleagues, and future maintainers of your code. Compared to
dynamically typed scripting languages, which can be fast and loose,
Java already ticks the safe and responsible box. But the programs we

write also need to be responsibly coded.

The good news is that for almost all boring tasks, computers can do the
job faster and more correctly than people. Computers don’t expect to
have fun (yet), so take advantage of them! Don’t accept tedium. If
something seems un-fun, look for a better way. If there isn’t one,

invent one. We’re programmers: we can fix boring.

https://oreil.ly/pmfaZ

Java’s Unspeakable Types

Ben Evans

What is null?

New Java programmers often struggle with this idea. A simple example

reveals the truth:

String s = null;
Integer i = null;
Object o = null;

The symbol null must therefore be a value.

As every value in Java has a type, null must therefore have a type.
What is it?

It obviously cannot be any type that we ordinarily encounter. A
variable of type String cannot hold a value of type Object—the

Liskov substitution properties simply do not work that way.

Nor does Java 11 local variable type inference help:

jshell> var v = null;

Error:

cannot infer type for local variable v
(variable initializer is 'null')

var v = null;

The pragmatic Java programmer may simply scratch their head and
decide, as many have done, that it doesn’t really matter all that much.

Instead, they can pretend “null is merely a special literal that can be

of any reference type.”

However, for those of us who find this approach unsatisfying, the true
answer can be found in the Java Language Specification (JLS), in
Section 4.1:

There is also a special null type, the type of the expression null
(§3.10.7, §15.8.1), which has no name.

Because the null type has no name, it is impossible to declare a
variable of the null type or to cast to the null type.

There it is. Java allows us to write down values whose types we cannot
declare as the types of variables. We might call these “unspeakable

types” or, formally, nondenotable types.

As null shows, we’ve actually been using them all along. There are

two more obvious places where this sort of types appear. The first

arrived in Java 7, and the JLS has this to say about them:

An exception parameter may denote its type as either a single class
type or a union of two or more class types (called alternatives).

The true type of a multicatch parameter is the union of the distinct

possible types being caught. In practice, only code that conforms to the
API contract of the nearest common supertype of the alternatives will
compile. The real type of the parameter is not something we can use as

the type of a variable.

In the following, what is the type of 0?

jshell> var o = new Object() {
...> public void bar() { System.out.println("bar!"); }

o>
0 ==> $0@3bfdc050jshell> o.bar();

bar!

It can’t be Object, because we can call bar () on it, and the
Object type has no such method. Instead, the true type is

nondenotable—it doesn’t have a name we can use as the type of a
variable in Java code. At runtime, the type is just a compiler-assigned

placeholder ($0 in our example).

By using var as a “magic type,” the programmer can preserve type
information for each distinct usage of var, until the end of the method.

We cannot carry the types from method to method. To do so, we would

have to declare the return type—and that’s precisely what we can’t do!

The applicability of these types is therefore restricted—Java’s type
system remains very much a nominal system, and it seems unlikely that

true structural types will ever appear in the language.

Finally, we should point out that many of the more advanced uses of
generics (including the mysterious “capture of ?” errors) are really best

understood in terms of nondenotable types as well—but that’s another

story.

The JVM Is a Multiparadigm
Platform: Use This to Improve
Your Programming

Russel Winder

I’_’.:-

Java is an imperative language: Java programs tell the JVM what to do
and when to do it. But computing is all about building abstractions.
Java is touted as an object-oriented language: the abstractions of Java
are objects, methods, and message passing via method call. Over the
years, people have built larger and larger systems using objects,
methods, updatable state, and explicit iteration, and the cracks have
appeared. Many are “papered over” using high quality testing, but still

programmers end up “hacking” to get around various problems.

With the arrival of Java 8, Java underwent an extremely revolutionary
change: it introduced method references, lambda expressions, default
methods on interfaces, higher order functions, implicit iteration, and
various other things. Java 8 introduced a very different way of thinking

about the implementation of algorithms.

Imperative and declarative thinking are very different ways of

expressing algorithms. During the 1980s and 1990s, these mindsets
were seen as being distinct and irreconcilable: we had the object-
oriented versus functional programming war. Smalltalk and C++ were
the champions of object-orientation, and Haskell was the champion of
functional. Later, C++ stopped being an object-oriented language and
marketed itself as a multiparadigm language; Java took over as the
champion of object-oriented. With Java 8, though, Java has become

multiparadigm.

Back in the early 1990s, the JVM was constructed as the way of
making Java portable—we can gloss over the history of the Green
project and the Oak programming language. Initially, this was for
making web browser plug-ins, but it rapidly moved to creating server-
side systems. Java compiles to hardware-independent JVM bytecode,
and an interpreter executes the bytecode. Just-in-time (JIT) compilers
enable the whole interpretation model to execute much faster without

changing the computational model of the JVM.

As the JVM became the hugely popular platform it is, other languages
were created that made use of the bytecode as a target platform:
Groovy, JRuby, and Clojure are dynamic languages using the JVM for
execution; Scala, Ceylon, and Kotlin are static languages. Scala, in
particular, showed in the late 2000s that object-orientation and
functional programming can be integrated into a single, multiparadigm
language. While Clojure is a functional language, Groovy and JRuby
were multiparadigm from the outset. Kotlin is taking the lessons of
Java, Scala, Groovy, etc. to create languages for the 2010s and 2020s
on the JVM.

To use the JVM to its best effect, we should choose the right
programming language for the problem. This doesn’t necessarily mean
one language for the whole problem: we can use different languages
for different bits—all because of the JVM. So, we can use Java or
Kotlin for the bits that are best expressed as static code, and Clojure or
Groovy for the bits that are best handled by dynamic code. Trying to
write dynamic code in Java is a pain, so use the right tool for the job

given that all the programming languages can interoperate on the JVM.

Keep Your Finger on the
Pulse

Trisha Gee

I learned Java version 1.1 at university (I wish this was because my
university was using old technology instead of it being because I’'m
old). At that time Java was small enough, and I was naive enough, that
it was possible to believe I had learned all the Java I needed to know,

and that I was set for life as a Java programmer.

During my first job, while I was still at university and had been using
Java for less than a year, Java 1.2 was released. It had an entirely
different user interface (UI) library, called Swing, so I spent that
summer learning Swing in order to use it to provide our users with a

better experience.

A couple of years later, in my first job as a graduate, I discovered that
applets were out and servlets were in. I spent the next six months
learning about servlets and JSPs so we could give our users an online

registration form.

https://oreil.ly/6bJM0
https://oreil.ly/G_LNk

In my next job, I found out that apparently we didn’t use Vector any
more—we used ArrayList. This shook me to my core. How can the
very fundamentals of the language, the data structures themselves, be
changing underneath me? My first two discoveries involved learning
additions to the language. This third one was about changes to things I
thought I already knew. If I wasn’t at university anymore being taught

things, how was I supposed to just know this stuff?

I was fortunate in those early jobs to have people around me who were
aware of the technology changes that impacted the Java projects I
worked on. That should be the role of senior team members—not
simply to do what they’re told but to make suggestions on how to do it

and to help the rest of the team improve too.

To survive as a Java programmer, you need to accept that Java is not a
stationary language. It evolves, not only into new versions but as
libraries, frameworks, and even new JVM languages. At first, this can
be intimidating and overwhelming. But staying up-to-date doesn’t
mean you have to learn everything that’s out there—it just means
keeping your finger on the pulse, listening for common keywords, and
understanding technology trends. You only need to drill down deeper
when it’s relevant for your job or when it’s something that’s personally

interesting to you (or ideally both).

Knowing what’s available in the current version of Java and what is
planned for upcoming ones can help you implement features or
functionality that will help your users do what they need to do. Which
means it helps you as a developer be more productive. Java now

releases a new version every six months. Keeping your finger on that

https://oreil.ly/uFBk4
https://oreil.ly/VrWT3

pulse can actually make your life easier.

Kinds of Comments

Nicolai Parlog

Assume you want to put some comments into your Java code. Do you
use /**,/*, or //? And where exactly do you put them? Beyond

syntax, there are established practices that attach semantics to which is

used where.

Javadoc Comments for Contracts

Javadoc comments (the ones enclosed in /** ... */)are
exclusively used on classes, interfaces, fields, and methods and are

placed directly above them. Here is an example from Map: :size:

/**
* Returns the number of key-value mappings in this
map. If the

* map contains more than Integer.MAX_VALUE elements,

returns
* Integer.MAX_VALUE.

*

* @return the number of key-value mappings in this
map

*/
int size();

The example demonstrates syntax as well as semantics: a Javadoc
comment is a contract. It promises API users what they can expect
while keeping the type’s central abstraction intact by not talking about
implementation details. At the same time, it binds implementers to

provide the specified behavior.

Java 8 relaxed this strictness a little while formalizing different
interpretations by introducing the (nonstandardized) tags @apiNote,
@implSpec, and @implNote. The prefixes, api or impl, specify
whether the comment addresses users or implementers. The suffixes,
Spec or Note, clarify whether this is actually a specification or only
for illustration. Notice how @apiSpec is missing? That’s because the

comment’s untagged text is supposed to fulfill that role: specifying the
API.

Block Comments for Context

Block comments are enclosed in /* ... */ . There are no

restrictions on where to put them, and tools usually ignore them. A
common way to use them is at the beginning of a class or even a
method to give insights into its implementation. These can be technical
details but can also outline the context in which the code was created
(the famous why from code tells you what, comments tell you why) or
paths not taken. A good example for providing implementation details
can be found in HashMap, which starts like this:

/*
* Implementation notes.
*

* This map usually acts as a binned (bucketed) hash

table,
* but when bins get too large, they are transformed
into bins
* of TreeNodes, each structured similarly to those in
* java.util.TreeMap.

LR
*/

As a rule of thumb, when your first solution isn’t your last, when you
make a trade-off, or when a weird requirement or a dependency’s
awkward API shapes your code, consider documenting that context.

Your colleagues and your future self will thank you. (Silently.)

Line Comments for Weird Things

Line comments start with a //, which must be repeated on every line.
There are no restrictions on where to use them, but it is common to put
them above the commented line or block (as opposed to at the end).
Tools ignore them—many developers do as well. Line comments are
often used to narrate what the code does, which has rightfully been
identified as a bad practice in general. It can still be helpful in specific
cases, such as where the code has to use arcane language features or is

easy to break in a subtle way (concurrency is the prime example for
this).

Last Words

e Make sure to pick the right kind of comment.
e Don’t break expectations.

e Comment your &#!*@$ code!

Know Thy flatMap

Daniel Hinojosa

Job titles morph constantly. As in the medical community, where the
focus may be broader or more specialized, some of us who were once
just programmers are now filling other job titles. One of the newest
specialized disciplines is data engineer. The data engineer shepherds in
the data, building pipelines, filtering data, transforming it, and molding
it into what they or others need to make real-time business decisions

with stream processing.

Both the general programmer and data engineer must master the

flatMap, one of the most important tools for any functional, capable

language like our beloved Java, but also for big data frameworks and
streaming libraries. flatMap, like its partners map and filter,is

applicable for anything that is a “container of something”—for
example, Stream<T> and CompletableFuture<T>. If you want
to look beyond the standard library, there is also Observable<T>
(RXJava) and F1ux<T> (Project Reactor).

In Java, we will use St ream<T>. The idea for map is simple—take

all elements of a stream or collection and apply a function to it:

Stream.of(1, 2, 3, 4).map(x -> x *
2).collect(Collectors.toList())

This produces:

[21 4/ 6’ 8]

What happens if we do the following?

Stream.of (1, 2, 3, 4)
.map(x -> Stream.of(-x, X, x + 1))
.collect(Collectors.toList())

Unfortunately, we get a L1st of St ream pipelines:

[java.
java.
java.
java.

util.
util.
util.
util.

stream
stream
stream
stream

.ReferencePipeline$Head@3532ec19,
.ReferencePipeline$Head®@68c4039c,
.ReferencePipeline$Head@ae45eb6,
.ReferencePipeline$Head@59f99ea]

But, thinking about it, of course for every element of the St ream

we’re creating another St ream. And take a deeper look in the map (X

-> Stream.of(...)). For every singular element, we’re creating

a plural. If you perform a map with a plural, it’s time to break out the
flatMap:

Stream.of (1, 2, 3, 4)
.flatMap(x -> Stream.of(-x, X, x+1))
.collect(Collectors.toList())

That will produce what we were aiming for:

['11 1/ 2/ '21 2/ 31 '31 31 4/ '41 4/ 5]
The opportunities for using flatMap are immense.

Let’s move on to something more challenging that is apt for any
functional programming or data engineering task. Consider the

following relationship, where getters, setters, and toString are
elided:

class Employee {
private String firstName, lastName;
private Integer yearlySalary;
// getters, setters, toString

}

class Manager extends Employee {
private List<Employee> employeelist;
// getters, setters, toString

Suppose we are given only a Stream<Manager> and our goal is to
determine all the salaries of all employees, including Managers and
their Employees. We might be tempted to jump right to the
forEach and start digging through those salaries. This, unfortunately,
would model our code to the structure of the data and would cause
needless complexity. A better solution would be to go the opposite way
and structure the data to that of our code. That is where flatMap

comes in;

List.of(managerl, manager2).stream()
.flatMap(m ->
Stream.concat(m.getEmployeelList().stream(),
Stream.of(m)))
.distinct()
.mapToInt(Employee: :getYearlySalary)

.sum();

This code takes every manager and returns a plural—the manager and
their employees. We then flatMap these collections to make one
Stream and perform a distinct to filter out all duplicates. Now we
can treat them all as one collection. The rest is easy. First we perform a
Java-specific call, mapToInt, that extracts their yearlySalary
and returns an IntStream, a specialized Stream type for integers.
Finally, we sum the St ream. Concise code.

Whether you use St ream or another kind of C<T>, where C is any
stream or collection, keep processing your data using map, filter,
flatMap, or groupBy before reaching for the forEach or any
other terminal operation like collect. If you go with the terminal

operation prematurely, you’ll lose any laziness and optimization that

Java Streams, streaming libraries, or big data frameworks grant you.

Know Your Collections

Nikhil Nanivadekar

Collections are a staple in any programming language. They constitute
one of the basic building blocks of commonly developed code. The
Java language introduced the Collections framework a long time ago in
JDK 1.2. Many programmers reach for ArrayList as their de facto
collection to use. However, there’s more to collections than
ArraylList, so let’s explore.

Collections can be classified as ordered or unordered. Ordered
collections have a predictable iteration order; unordered collections do
not have a predictable iteration order. Another way to classify
collections is sorted or unsorted. The elements in a sorted collection
are sequenced from start to end based on a comparator; unsorted
collections have no particular sequence based on elements. Although
sorted and ordered have similar meanings in English, they cannot
always be used interchangeably for collections. The important
distinction is that ordered collections have a predictable iteration order
but no sort order. Sorted collections have a predictable sort order,
hence they have a predictable iteration order. Remember: all sorted

collections are ordered collections, but not all ordered collections are

sorted collections. There are various ordered, unordered, sorted, and

unsorted collections in the JDK. Let’s take a look at a few of them.

List is an interface for ordered collections with a stable indexing
order. Lists allow duplicate elements to be inserted and provide a
predictable iteration order. The JDK offers List implementations like
ArrayList and LinkedList. To find a particular element, the
contains method can be used. The contains operation traverses
the list from the beginning, hence finding elements in a List is an

O(n) operation.

Map is an interface that maintains key-to-value relationships, and

retains only unique keys. If the same key and different value is added
to a map, the old value is replaced by the new value. The JDK offers
Map implementations like HashMap, LinkedHashMap, and

TreeMap. A HashMap is unordered, whereas a LinkedHashMap is
ordered; both rely on hashCode and equals to determine unique
keys. A TreeMap is sorted: the keys are sorted according to a
comparator or by the sort order of Comparable keys. TreeMap
relies on compareTo to determine sort order and uniqueness of keys.
To find a particular element, Map provides the containsKey and
containsValue methods. For HashMap, containsKey looks up
the key in the internal hash table. If the look-up results in a non-null
object, it is checked for equality with the object passed to
containsKey. The containsValue operation traverses all the
values from the beginning. Hence, finding keys in a HashMap is an
O(1) operation, whereas finding values in a HashMap is an O(n)

operation.

Set is an interface for collections of unique elements. In the JDK, sets

are backed by maps where the keys are the elements and values are
null. The JDK offers Set implementations like HashSet (backed by

HashMap), LinkedHashSet (backed by LinkedHashMap), and
TreeSet (backed by TreeMap). To find a particular element, the

contains method can be used for Set. The contains method on
a Set delegates to containsKey of a Map and therefore is an O(1)

operation.

Collections are an important piece of a software puzzle. To use them
effectively, it is necessary to understand their functionality, their
implementation, and last but not least, the implications of using an
iteration pattern. Remember to read the documentation, and write tests

while using these versatile and basic building blocks of code.

Kotlin Is a Thing

Mike Dunn

Java is maybe the most mature and vetted language still in common
use, and that is unlikely to change dramatically in the foreseeable
future. To facilitate modern notions of what a programming language
should do, some smart folks decided to write a new language that did
all the Java Things, plus some cool new Things that would be fairly
painless to learn and be largely interoperable. Someone like me, who’s
been working on the same huge Android app for years, can decide to
write a single class in Kotlin without committing to a complete

migration.

Kotlin is meant to let you write shorter, cleaner, more modern code.
While modern and preview versions of Java do address a lot of the
issues Kotlin manages, Kotlin can be especially useful for Android

developers, who are stuck somewhere between Java 7 and Java 8.

Let’s look at a few examples, like Kotlin’s property constructor pattern
for models, starting with a simple example of what a Java model may
look like:

public class Person {
private String name;
private Integer age;
public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}
public Integer getAge() {

return age;

}
public void setAge(int age) {
this.age = age;
}
}

We could create a special constructor to take some initial values:

public class Person {
public Person(String name, Integer age) {
this.name = name;
this.age = age;

}

Not too bad, but you can probably see how a few more properties could
make the definition for this pretty simple class get bloated really
quickly. Let’s take a look at that class in Kotlin:

class Person(val name:String, var age:Int)

That’s it! Another neat example is delegation. Kotlin delegates allow
you to provide logic for any number of read operations. One example is
the lazy initialization, a concept sure to be familiar to Java developers.
It might look like this:

public class SomeClass {
private SomeHeavyInstance someHeavyInstance = null;
public SomeHeavylInstance getSomeHeavyInstance() {
if (someHeavyInstance == null) {
someHeavyInstance = new SomeHeavyInstance();

}

return someHeavyInstance;

}
}

Again, not too terrible, done simply and without configuration, but
chances are you’ll repeat this same code several times in your code,
violating the DRY principle (Don’t Repeat Yourself). Also, not thread-

safe. Here’s the Kotlin version:
val someHeavyInstance by lazy {

return SomeHeavyInstance()
b

Short and sweet and readable. All that boilerplate is tucked away nicely
under the covers. Oh, and it’s thread-safe too. null safety is also a big

upgrade. You’ll see a lot of question mark operators following a

nullable reference in Kotlin:

val something = someObject?.someMember?.anotherMember

Here’s the same thing in Java:

Object something = null;
if (someObject !'= null) {

if (someObject.someMember != null) {
if (someObject.someMember.anotherMember != null) {
something = someObject.someMember.anotherMember;
b
}

}

The null-check operator (?) will stop evaluating immediately and

return NUl1 as soon as any of the referents in the chain resolve to
null.

Let’s close out with another killer feature: coroutines. In a nutshell, a
coroutine performs work asynchronous to the calling code, although
that work may be handed off to some number of threads. It’s important
to note that even if a single thread handles multiple coroutines, Kotlin
performs some context-switching magic that runs multiple jobs
concurrently. While specific behavior is configurable, coroutines
naturally use a dedicated thread pool, but use context switching within
a single thread (so hot). Since they’re Kotlin, they also can be fancy
and sophisticated and overengineered, but by default they’re also super

simple:

launch {
println("Hi from another context")
b

Be aware of the differences between threads and coroutines though—
for example, an object .wait () invocation in one job will pause all
the other jobs working in the containing thread. Give Kotlin a spin and

see what you think.

Learn Java Idioms and Cache
In Your Brain

Jeanne Boyarsky

As programmers, there are some tasks we need to do frequently. For
example, going through data and applying a condition are common.

Here are two ways to count how many positive numbers are in a list:

public int loopImplementation(int[] nums) {
int count = 0;
for (int num : nums) {
if (num > 0) {
count++;
}
)

return count;

}

public long streamImplementation(int[] nums) {
return Arrays.stream(nums)
.filter(n -> n > 0)
.count();

Both of these accomplish the same thing, and they both use common

Java idioms. An idiom is a common way of expressing some small

piece of functionality that the community has general agreement on.
Knowing how to write these quickly without having to think about
them enables you to write code much faster. As you write code, look
for patterns like these. You can even practice them to get faster and

learn them by heart.

Some idioms, like looping, conditions, and streams, apply to all Java
programmers. Others are more specific to the types of code you work
on. For example, I do a lot with regular expressions and file I/O. The
following idiom is one I commonly use in file I/O. It reads a file,

removes any blank lines, and writes it back:

Path path = Paths.get("words.txt");
List<String> lines = Files.readAllLines(path);
lines.removelIf(t -> t.trim().isEmpty());
Files.write(path, lines);

If I were on a team where files didn’t fit in memory, I’d have to use a
different programming idiom. However, I deal with small files where
this is not an issue, so the convenience of four lines to do something

powerful is worth it.

Notice with these idioms that much of the code is common regardless
of your task. If I want to get negative numbers or odd numbers, I just
change the if statement or filter. If I want to remove all lines that are
more than 60 characters long, I just change the condition in
removeIf:

lines.removeIf(t -> t.length() <= 60);

Regardless, I’m thinking about what I want to accomplish. I’'m not

looking up how to read a file or how to count values. That’s an idiom I

learned long ago.

An interesting thing about idioms is that you don’t always learn them
intentionally. I never sat down and decided to learn the idiom for
reading/writing a file. I learned it from using it a lot. Looking up
information repeatedly helps you learn it. Or at least helps you know
where to find it. For example, I have trouble remembering the regular
expression flags. I know what they do, but mix up ?s and ?m. I have
looked it up enough times that I know I should google “javadoc

pattern” to get the answer.

In conclusion, let your brain serve as a cache. Learn the idioms and
common library API calls. Know where to look up the rest quickly.

This will free you up to let your brain work on the hard stuff!

Learn to Kata and Kata to
Learn

Donald Raab

Every Java developer needs to learn new skills and keep their existing
skills sharp. The Java ecosystem is enormous and continues to evolve.
With so much to learn, the prospect of keeping up may seem daunting.
We can help each other keep up in this rapidly changing space if we
work together as a community, sharing knowledge and practice.
Taking, creating, and sharing code katas is one of the ways we can do
this.

A code kata is a hands-on programming exercise that helps you hone
specific skills through practice. Some code katas will provide you
structure to validate that a skill has been acquired by getting unit tests
to pass. Code katas are a great way for developers to share practice

exercises with their future selves and other developers to learn from.

Here’s how to create your first code kata:

1. Select a topic you want to learn.

6.

. Write a passing unit test that demonstrates some piece of

knowledge.

Refactor the code repeatedly until you are satisfied with the
final solution. Make sure the test passes after each refactoring.

Delete the solution in the exercise and leave a failing test.

Commit the failing test with supporting code and build
artifacts to a version control system (VCS).

Open source the code to share with others.

Now I’ll demonstrate how to create a small kata by following the first

four steps:

1.

Topic: Learn how to join strings ina L1St.

2. Write a passing JUnit test that shows how to join strings in a

List:

@Test
public void joinStrings() {
List<String> names =
Arrays.asList("Sally", "Ted", "Mary");
StringBuilder builder = new
StringBuilder();
for (int i = 0; 1 < names.size();
i++) {
if (i > 0) {
builder.append(", "); }
builder.append(names.get(1i));
b
String joined = builder.toString();
Assert.assertEquals("Sally, Ted,
Mary", joined);

3. Refactor the code to use StringJoiner in Java 8. Rerun
the test:

StringJoiner joiner = new

StringJoiner(", ");

for (String name : names) {
joiner.add(name);

}

String joined = joiner.toString();

Refactor the code to use Java 8 streams. Rerun the test:

String joined =
names.stream().collect(Collectors.joinin

a(", ")),
Refactor the code to use String. join. Rerun the test:

String joined = String.join(", "
names) ;

4

4. Delete the solution and leave a failing test with a comment:

@Test
public void joinStrings() {
List<String> names =
Arrays.asList("Sally", "Ted", "Mary");
// Join the names and separate them
by ||’ n
String joined = null;
Assert.assertEquals("Sally, Ted,

Mary", joined);

}

Pay it forward—I’ll leave steps 5 and 6 as an exercise for the reader.

This example should be simple enough to illustrate how to create your
own katas of varying complexity, leveraging unit tests to provide the

structure necessary to build confidence and understanding.

Value your own learning and knowledge. When you learn something
useful, write it down. Saving practice exercises to recall how things
work can be quite helpful. Capture your knowledge and exploration in
code katas. Katas you have used to sharpen your own skills may also

be valuable to others.

We all have things to learn and that we can teach. When we share what
we learn with others, we improve the whole Java community. This is
vitally important to helping ourselves and our fellow Java developers

collectively improve our coding skills.

Learn to Love Your Legacy
Code

Uberto Barbini

el ol

What is a legacy system? It is old software that is very hard to
maintain, to extend, and to improve. On the other hand, it is also a
system that is working and is serving the business; otherwise, it would

not have survived.

Perhaps, when it was first created, a legacy system had an excellent
design, a design so good that people started to say, “OK, maybe we can
use it also for this, and this, and this.” It becomes overloaded with
technical debt, but it still works. These systems can be amazingly

resilient.

Still, developers hate working on legacy systems. It can seem there’s
more technical debt than anybody could ever repay. Perhaps we should

just declare bankruptcy and move on. Much easier.

What if you really have to maintain it? What do you do when you have

to fix a bug?

Solution number one: duct tape. Hold your nose, fix the defect—“OK,
we may regret this one day, but let’s do this copy—paste now, just to fix
it.” From there it will only get worse. Like in an abandoned building, it
may stay undamaged for a long time, but as soon as there is a single
broken window, it will soon be left without any windows intact. Just
seeing one broken window encourages people to break others. This is

the law of broken windows.

Solution number two: forget the old system and rewrite from scratch.
Can you imagine what the problem with this solution is? More often
than not, the rewrite will not work or it will never be finished. This
comes from survival bias. You see the old system code and say, “Oh,
come on, if whoever wrote this terrible code was able to make it work,
it must be quite easy.” But it’s not. You may consider the code
horrible, but it’s code that has already survived many battles. When
you start from scratch, you don’t know the battle stories, and you’ve

lost a lot of knowledge about the domain.

So what should we do? In Japan, there is an art called kintsugi. When a
precious object breaks, instead of throwing it away, it is put back
together using gold powder along its cracking lines. The gold

emphasizes that it was broken, but it’s still beautiful.

Perhaps we are looking at the legacy code from the wrong point of
view? I am not saying we should goldplate the old code, but we should

learn how to fix it in a way that makes us proud of it.

The strangler pattern allows us to do precisely this. It is named for a fig

tree (not for homicide!) that wraps around other trees. Its growth

https://oreil.ly/lKSDd
https://oreil.ly/F4AZX
https://oreil.ly/SWJFc
https://oreil.ly/jficR

progressively surrounds the host tree, which withers away until all that

is left are the fig vines around a hollow core.

Similarly, we start replacing a smelly line of code with a new, clean
one that has been thoroughly tested. And then, proceeding from there,
we create a new application that creeps on top of the previous one until

it completely replaces the old one.

But even if we don’t complete it, the mix of new and old is much better
than letting the old one rot. It is much safer than a complete rewrite
because we will validate the new behavior continuously, and we can

always roll back the latest version in case we introduced bugs.

Legacy code deserves a little love.

Learn to Use New Java
Features

Gail C. Anderson

Java 8 introduced lambdas and streams, two game-changing features
that give Java programmers significant language constructs. From Java
9 onward, release cycles occur every six months with more features
popping up in each release. You should care about these new features
because they help you write better code. And, your skills will improve
as you incorporate new language paradigms into your programming

arsenal.

Much has been written about streams and how they support a
functional programming style, reduce bulky code, and make code more
readable. So, let’s look at an example with streams, not so much to
convince you to use streams everywhere but to entice you to learn

about this and other Java features introduced since Java 8.

Our example computes the maximum, average, and minimum for
systolic, diastolic, and pulse values from collected blood-pressure

monitoring data. We want to visualize these computed summary

statistics with a JavaFX bar chart.

Here’s a portion of our BPData model class, showing just the getter

methods we need:

public class BPData {

public final Integer getSystolic() {
return systolic.get();

}
public final Integer getDiastolic() {

return diastolic.get();

}
public final Integer getPulse() {

return pulse.get();

}

The JavaFX bar chart creates the magic for this visualization. First, we
need to build the correct series and feed our transformed data to the bar
chart object. Since the operation is repeated for each series, it makes
sense to create a single method to parameterize both the bar chart series
and the specific BPData getter required to access this data. Our source
data is stored in the variable sortedList, a date-sorted collection of
BPData elements. Here’s the computeStatData method that

builds our chart data:

private void computeStatData(
XYChart.Series<String, Number> targetlList,
Function<BPData, Integer> f) {
// Set Maximum

targetList.getData().get(MAX).setYValue(sortedList.str
eam()
.mapToInt(f::apply)

.max()
.OrElse(1));
// Set Average

targetList.getData().get(AVG).setYValue(sortedList.str
eam()
.mapToInt(f::apply)
.average()
.OrElse(1.0));
// Set Minimum

targetList.getData().get(MIN).setYValue(sortedList.str
eam()

.mapToInt(f::apply)

.min()

.OrElse(1));

Parameter targetList is the bar chart series data that corresponds
to one of systolic, diastolic, or pulse data. We want to create a bar chart
with the maximum, average, and minimum corresponding to each of
these series. Thus, we set the chart’s Y-value to these computed values.
The second parameter is the specific getter from BPData, passed as a
method reference. We use this in the stream mapToInt method to
access the specific values for that series. Each stream sequence returns
the maximum, average, or minimum of the source data. Each
terminating stream method returns orelse, an Optional object,
making our bar chart display a placeholder value of 1 (or 1.0) if the

source data stream is empty.

Here’s how to invoke this computeStatData method. The

convenient method reference notation makes it easy to specify which

BPData getter method to invoke for each data series:

computeStatData(systolicStats, BPData::getSystolic);
computeStatData(diastolicStats, BPData::getDiastolic);
computeStatData(pulseStats, BPData::getPulse);

Prior to Java 8, this code was much more tedious to write. So, learning
and using new Java features is a worthwhile skill to embrace as Java

continues to improve.

For your next feature, how about checking out Java 14’s record

syntax, a preview feature, to simplify the BPData class?

Learn Your IDE to Reduce
Cognitive Load

Trisha Gee

I work for a firm that sells IDEs, so of course I’'m going to say you
should know how your IDE works and use it properly. Before that, I
spent 15 years working with multiple IDEs, learning how they help
developers create something useful and how to use them to easily

automate tasks.

We all know IDEs provide code highlighting and show errors and
potential problems, but any Java IDE can do so much more than that.
Learning what your IDE is capable of and using the features that apply

to your daily work can help level up your productivity.

For example, your IDE:

e Can generate code for you so you don’t have to type it. Getters
and setters, equals and hashCode, and toString are the
most frequent examples.

e Has refactoring tools that can automatically move your code in
a particular direction while keeping the compiler happy.

e Can run your tests and help you debug problems. If you’re
using System. out for debugging, it’s going to take you
much longer than if you’re inspecting the values of objects at
runtime.

e Should integrate with your build and dependency management
system so your development environment works the same way
as your testing and production environments.

e Can even help you with tools or systems external to your
application code—for example, version control, database
access, or code review (remember, the I in IDE stands for
integrated). You don’t have to leave the tool to work with all
aspects of your software delivery pipeline.

Using the IDE, you can navigate through the code naturally—finding

the methods that call this piece of code, or moving into the method that
this code calls. You can move directly to files (or even to specific code
snippets) using a few keystrokes instead of the mouse to navigate a file

structure.

The tool you choose to write code in should be helping you focus on
what you’re developing. You shouldn’t be thinking about the
intricacies of how you code it. By offloading the tedious stuff onto the
IDE, you reduce your cognitive load and can spend more brain power

on the business problem you’re trying to solve.

Let’'s Make a Contract: The
Art of Designing a Java API

Mario Fusco

44

i

An API is what developers use to achieve some task. More precisely, it
establishes a contract between them and the designers of the software,
exposing its services through that API. In this sense, we’re all API
designers: our software doesn’t work in isolation but becomes useful
only when it interacts with other software written by other developers.
When writing software, we’re not only consumers but also providers of
one or more APIs, which is why every developer should know the

characteristics of good APIs and how to achieve them.

Firstly, a good API should be easily understandable and discoverable.
It should be possible to start using it and, ideally, learn how it works
without reading its documentation. To this end, it’s important to use
consistent naming and conventions. This sounds pretty obvious;
nevertheless, it’s easy to find, even in the standard Java API, situations
where this suggestion hasn’t been followed. For instance, since you can

invoke skip(n) to skip the first n items of a Stream, what could be a

good name for the method that skips all the Stream’s items until one of

them doesn’t satisfy a predicate p? A reasonable name could be
skipWhile(p), but actually this method is called dropwhile(p).
There’s nothing wrong with the name dropwWhile per se, but it isn’t
consistent with skip performing a very similar operation. Don’t do

this.

Keeping your API minimal is another way to make it easy to use. This
reduces both the concepts to be learned and its maintenance costs.
Once again, you can find examples breaking this simple principle in
the standard Java API. Optional has a static factory method

of (object) that creates an Optional wrapping the object passed
to it. Incidentally, using factory methods instead of constructors is
another valuable practice since it allows greater flexibility: doing so,
you can also return an instance of a subclass or even a null when the
method is called with illegal arguments. Unfortunately,
Optional.of throws a NullPointerException when invoked
with null, something unexpected from a class designed to prevent
NullPointerExceptions (NPEs). This not only breaks the
principle of least astonishment—another thing to consider when
designing your API—but requires the introduction of a second method
ofNullable returning an empty Optional when called with
null. The of method has an inconsistent behavior and, if
implemented correctly, the ofNullable one could have been left

out.

Other good hints that could improve your API are: break apart large
interfaces into smaller pieces; consider implementing a fluent API, for

which, this time, Java Streams is a very good example; never return

null, use empty collections and Optional instead; limit usage of
exceptions, and possibly avoid checked ones. Regarding method
arguments: avoid long lists of them, especially of the same type; use
the weakest possible type; keep them in consistent order among
different overloads; consider varargs. Moreover, the fact that a good
API is self-explanatory doesn’t mean that you shouldn’t document it

clearly and extensively.

Finally, don’t expect to write a great API the first time. Designing an
API is an iterative process, and dogfooding is the only way to validate
and improve it. Write tests and examples against your API and discuss
them with colleagues and users. Iterate multiple times to eliminate

unclear intentions, redundant code, and leaky abstraction.

Make Code Simple and
Readable

Emily Jiang

I am a big fan of simple and readable code. Every line of code should
be as self-explanatory as possible. Every line of code should be
necessary. To achieve readable and simple code, there are two aspects:
format and content. Here are some tips to help you write code that is

readable and simple:

Use indentation to lay out your code clearly.
Use it consistently. If you work in a project, there should be a code
template. Everyone on the team should adopt the same code format.
Don’t mix spaces with tabs. I always have the IDE configured to
display spaces and tabs so that I can spot the mix and fix them.
(Personally, I love spaces.) Choose either spaces or tabs, and stick
to it.

Use meaningful variable names and method names.
The code is much easier to maintain if it is self-explanatory. With
meaningful identifiers, your code can talk for itself instead of
needing a separate comment line to explain what it does. Steer clear
of single-letter variable names. If your variable and method names
have clear meaning, you will not normally need comments to

explain what your code does.

Comment your code if necessary.
If the logic is very complex, such as regex queries, etc., use
documentation to explain what the code is trying to do. Once there
are comments, you need to ensure they are maintained.
Unmaintained comments cause confusion. If you need to warn a
maintainer about something, make sure you document it and make
it stand out, such as adding “WARNING” at the start of a
comment. Sometimes a bug can be spotted and fixed more easily if
the original author expresses their intention or puts a warning
somewhere.

Don’t check in commented-out code.
Delete it to improve the readability. One of the common arguments
for the commented-out code is that some day the commented-out
code might be needed. The truth is that it might stay there for years,
unmaintained and causing confusion. Even if one day you want to
uncomment it, the code block might not compile or work as
expected as the base might have changed significantly. Don’t
hesitate. Just delete it.

Don’t overengineer by adding might-be-useful-in-the-future code.
If you are tasked to deliver some functionality, don’t overdo it by
including additional speculative logic. Any extra code runs the risk
of introducing bugs and maintenance overhead.

Avoid writing verbose code.
Aim to write fewer lines of code to achieve a task. More lines
introduce more bugs. Prototype first via brainstorming to get the
task done, and then polish the code. Make sure each line has a
strong reason to exist. If you are a manager or architect, don’t judge
your developers by how many lines of code they deliver but by
how clean and readable their code is.

Learn functional programming, if you have not already.
One of the advantages of using features introduced in Java 8, such

as lambdas and streams, is that these features can help to improve
your code readability.

Adopt pair programming.
Pair programming is a great way for a junior developer to learn
from someone who is more experienced. It is also a great way to
write meaningful code, as you need to explain your choices and
reasoning to the other person. A great process encourages you to
write code with care instead of dumping code.

Code will have fewer bugs if it is simple and readable: code that is
complex is likely to have more bugs; code that is not easily understood
is likely to have more bugs. Hopefully, these tips can help you to
improve your skills and your code, to deliver code that is simple and

readable!

Make Your Java Groovier

Ken Kousen

The screen was the color of a cyberpunk novel opened to the first line.
I stared at it, worried I would never finish tonight. There was a knock

on the wall of my cubicle. My boss stood there, waiting.
“How’s it going?” she said.

“Java is so verbose,” I sighed. “I just want to download some data from
a service and save it to a database. I’'m swimming in builders, factories,
library code, try/catch blocks...”

“Just add Groovy.”

“Huh? How would that help?”
She sat down. “Mind if I drive?”
“Please.”

“Let me give you a quick demo.” She opened a command prompt and
typed groovyConsole. A simple GUI appeared on the screen. “Say

you want to know how many astronauts are in space at the moment.

There’s a service at Open Notify that gives you that.”

She executed the following in the Groovy console:

def jsonTxt = 'http://api.open-
notify.org/astros.json'.toURL().text

The JSON response came back with the number of astronauts, a status

message, and nested objects relating each astronaut to a craft.

“Groovy adds toURL to String to generate a java.net.URL, and
getText to URL to retrieve the data, which you access as text.”

“Sweet,” I said. “Now I have to map that to Java classes and use a

library like Gson or Jackson—"

“Nah. If all you want is the number of people in space, just use a
JsonSlurper.”

“A what?”

She typed:

def number = new
JsonSlurper().parseText(jsonTxt).number

“The parseText method returns Object,” she said, “but we don’t

care about the type here, so just drill down.”

It turned out there were six people in space, all aboard the International

https://oreil.ly/oysGk

Space Station.

“OK,” I said. “Say I want to parse the response into classes. What
then? Is there a port of Gson to Groovy?”

She shook her head. “Don’t need it. It’s all bytecodes under the hood.

Just instantiate the Gson class and invoke methods as usual:

@Canonical

class Assignment { String name; String craft }
@Canonical

class Response { String message; int number;
Assignment[] people }

new Gson().fromJson(jsonTxt, Response).people.each {
println it }

“The Canonical annotation adds toString, equals,
hashCode, a default constructor, a named argument constructor, and

a tuple constructor to each class.”
“Awesome! Now how do I save the astronauts in a database?”

“Easy enough. Let’s use H2 for this sample:

Sgl sgl = Sgl.newInstance(url: 'jdbc:h2:~/astro’,

driver: 'org.h2.Driver')
sql.execute '''

create table if not exists ASTRONAUTS(
id int auto_increment primary key,
name varchar(50),
craft varchar(50)

)

response.people.each {
sql.execute "insert into ASTRONAUTS(name, craft)" +
"values ($it.name, $it.craft)"

¥
sql.close()

“The Groovy Sql class creates a table using a multiline string and
inserts values using interpolated strings:
sql.eachRow('select * from ASTRONAUTS') {

row -> println "${row.name.padRight(20)} aboard
${row.craft}"

}

“Done,” she said, “with a formatted print and everything.”

I stared at the result. “Do you have any idea how many lines of Java

that would have been?” I asked.

She smirked. “A lot. By the way, all exceptions in Groovy are
unchecked, so you don’t even need a try/catch block. If we use
withInstance rather than newInstance, the connection will

close automatically too. Good enough?”
I nodded.

“Now just wrap the different parts into a class, and you can call it from

Java.”

She left, and I looked forward to making the rest of my Java groovier.

Minimal Constructors

Steve Freeman

A pattern I regularly see is significant work done in the constructor:
take in a set of arguments and convert them into values for the fields. It
often looks like this:

public class Thing {
private final Fixed fixed;
private Detaills details;
private NotFixed notFixed;
// more fields

public Thing(Fixed fixed,
Dependencies dependencies,
OtherStuff otherStuff) {
this.fixed = fixed;
setup(dependencies, otherStuff);

I assume that setup initializes the remaining fields based on
dependencies and otherStuff, but it’s not clear to me from the
constructor signature exactly what values are necessary to create a new
instance. It’s also not obvious which fields can change during the life

of the object, as they cannot be made final unless they’re initialized

in a constructor. Finally, this class is harder to unit test than it should
be because instantiating it requires creating the right structure in the

arguments to be passed to setup.

Worse, I occasionally used to see constructors like this:

public class Thing {
private Weather currentWeather;
public Thing(String weatherServiceHost) {
currentWeather =
getWeatherFromHost (weatherServiceHost);

}
}

which requires an internet connection and a service to create an

instance. Thankfully, this is now rare.

All of this was done with the best of intentions to make creating
instances easier by “encapsulating” behavior. I believe this approach is
a legacy from C++ where programmers can use constructors and
destructors creatively to control resources. It’s easier to combine
classes in an inheritance hierarchy if each manages its own internal

dependencies.

I prefer to use an approach inspired by my experience of Modula-3,
which is that all a constructor does is assign values to fields: its only
job is to create a valid instance. If there’s more work to do, I use a

factory method:

public class Thing {
private final Fixed fixed;
private final Details details;
private NotFixed notFixed;

https://oreil.ly/t2t4G

public Thing(Fixed fixed, Details details,
NotFixed notFixed) {
this.fixed = fixed;
this.details = details;
this.notFixed = notFixed;

}

public static Thing forInternationalShipment (

Fixed fixed,
Dependencies dependencies,
OtherStuff otherStuff) {

final var intermediate =

convertFrom(dependencies, otherStuff);
return new Thing(fixed,
intermediate.details(),

intermediate.initialNotFixed());

}

public static Thing forLocalShipment(Fixed fixed,
Dependencies
dependencies) {
return new Thing(fixed,

localShipmentDetails(dependencies),
NotFixed.DEFAULT_VALUE);

}
}

final var internationalShipment =
Thing.forInternationalShipment(fixed,

dependencies, otherStuff);

final var localShipment =

Thing.forLocalShipment(fixed, dependencies);

The advantages are that:

e I’m now very clear about the life cycle of the instance fields.

e [’ve separated code for the instantiation of an object from its

use.

e The name of the factory method describes itself, unlike a
constructor.

e The class and its instantiation are easier to unit test separately.

There is a disadvantage around not being able to share constructor
implementation in inheritance hierarchies, but that can be addressed by
making the supporting helper methods accessible and, more usefully,
by taking the hint to avoid deep inheritance.

Finally, to me, this is also a reason to be careful about how to work
with dependency injection frameworks. If creating an object is
complicated, then putting everything in the constructor because that
makes reflection-based tooling easier to use feels backward to me. One
can usually register the factory method instead as a way to create new
instances. Similarly, using reflection to set private fields directly for
“encapsulation” (or to avoid writing a constructor) breaks the type
system and makes unit testing more difficult; it’s better to set the fields
through a minimal constructor. Use @Inject or @Autowired

cautiously and make everything explicit.

Name the Date

Kevlin Henney

As java.util.Date is slowly but surely deprecated into the Sun-
set, with java. time taking up its mantle, it’s worth pausing to learn

some lessons from its troubled life before letting it rest in peace.

The most obvious lesson is that date—time handling is harder than
people expect—even when they’re expecting it. It is a truth universally
acknowledged that a single programmer in possession of the belief they
understand dates and times must be in want of a code review. But
that’s not what I want to focus on here, nor is it the importance of
immutability for value types, what makes a class (un)suitable for
subclassing, or how to use classes rather than integers to express a rich
domain.

Source code is made up of spacing, punctuation, and names. All these
convey meaning to the reader, but names are where most meaning is

carried (or dropped). Names matter. A lot.

Given its name, it would be nice if a Date represented a calendar date,

i.e., a specific day...but it doesn’t. It represents a point in time that can

be viewed as having a date component. This is more commonly
referred to as a date—time or, if you want to put it into code, a

DateTime. Time also works, as it is the overarching concept.

Sometimes finding the right name is hard; in this case it’s not.

Now we understand what we mean by date, date—time, and Date, what
does getDate do? Does it return the whole date—time value? Or
perhaps just the date component? Neither: it returns the day of the
month. In programming circles, this value is more commonly and
specifically referred to as day of month, not date, a term normally

reserved for representing a calendar date.

And while we’re here, yes, getDay would have been better named
getDayOfWeek. Not only is it important to choose a name that is

correct but it is important to recognize and resolve ambiguous terms
such as day (of week, of month, of year...?). Note that it is better to
resolve naming issues by choosing a better name rather than by

Javadoc.

Names are tied to conventions, and conventions are tied to names.
When it comes to conventions, prefer one (not many), prefer to express
it clearly, and prefer one that is widely recognized and easy to use

rather than one that is niche and error-prone (yeah, C, I’'m looking at

you).

For example, Apollo 11 landed on the moon at 20:17 on the twentieth
day of July (the seventh month) in 1969 (CE, UTC, etc.). But if you
call getTime, getDate, getMonth, and getYear expecting

these numbers, expect disappointment: getTime returns a negative

number of milliseconds from the start of 1970; getDate returns 20
(as expected, it counts from 1); getMonth returns 6 (months count
from 0); and getYear returns 69 (years count from 1900, not 0 and
not 1970).

Good naming is part of design. It sets expectations and communicates a
model, showing how something should be understood and used. If you
mean to tell the reader getMillisSincel1970, don’t say
getTime. Specific names inspire you to consider alternatives, to
question whether you’re capturing the right abstraction in the right
way. It’s not just labeling, and it’s not just java.util.Date: this is

about the code you write and the code you use.

The Necessity of Industrial-
Strength Technologies

Paul W. Homer

Java may have been called the next COBOL, but that’s not necessarily
a bad thing.

COBOL has been an incredibly successful technology. Reliable,
consistent, and easy to read, it has been the workhorse of the
Information Age, managing the bulk of the world’s mission-critical
systems. If the syntax requires lots of extra typing, that is offset by the

sheer number of readers that have had to ponder its behavior.

Trendy software stacks sound cool—and, as most are quite immature,
there is always plenty to learn—but the world needs reliable industrial-
strength software to function. A new clever idiom or slightly
obfuscated paradigm can be great fun to play with, but by definition
they are shrouded in unknowns. We’re obsessed with finding some
magical way to just snap our fingers and will the next enterprise-class
system into existence, but we keep forgetting that over three decades

ago Frederick Brooks Jr. said those kinds of magic bullets—silver or

otherwise—just can’t exist.

We don’t need the next trendy toy to solve real problems for people.
We need to put in the thinking and the work to fully understand and
codify reliable solutions. Systems that only work on sunny days, or that
need to be rewritten every year or so, don’t satisfy our growing needs
for managing the complexities of modern society. It doesn’t matter
how it works if it is unpredictable when it fails. Instead, we have to
fully encapsulate our knowledge into reliable, reusable, recomposable
components, leveraging them for as long as possible to keep up with
the chaotic nature of our current period in history. If the code doesn’t

last, it probably wasn’t worth writing.

Java is a great technology for this purpose: new enough to contain
modern language features, but mature enough to be trustworthy. We’ve
gotten better at organizing large codebases well, and there is a great
enough wealth of supporting products, tools, and ecosystems to shift
the focus back to real business problems and away from the purely
technical ones. It’s a strong stack for decoupling the systems from their
environments, yet standard enough to find experienced staff. If it isn’t
the talk of the town, it is at least a very reliable, stable platform on
which to build systems that last for decades, and that, it seems, is what

we both want and need for our current development efforts.

Fashion should not dictate engineering. Software development is a
discipline of knowledge and organization. If you don’t know how the
parts will behave, you can’t ensure that the whole will behave. If the
solution is unreliable, then it really just adds to the problem rather than

solving it. It may be fun just to toss together some code that kinda

works, but it is only professional if we build stuff that can withstand

reality and keep humming along.

Only Build the Parts That
Change and Reuse the Rest

Jenn Strater

As Java programmers, we spend a lot of time waiting for builds to run,
often because we don’t run them efficiently. We can make small
improvements by changing our behavior. For example, we could only
run a submodule instead of the entire project, and not run clean before
every build. To make a bigger difference, we should take advantage of
the build caching offered by our build tools, namely Gradle, Maven,

and Bazel.

Build caching is the reuse of results from a previous run to minimize
the number of build steps (e.g., Gradle tasks, Maven goals, Bazel
actions) executed during the current run. Any build step that is
idempotent, meaning that it produces the same output for a given set of

inputs, can be cached.

The output of Java compilation, for example, is the tree of class files
generated by the Java compiler, and the inputs are factors that impact

the produced class files, such as the source code itself, Java version,

operating system, and any compiler flags. Given the same run
conditions and source code, the Java compilation step produces the
same class files every time. So instead of running the compilation step,
the build tool can look in the cache for any previous runs with the same

inputs and reuse the output.

Build caching isn’t limited to compilation. Build tools define standard
inputs and outputs for other common build steps, like static analysis
and documentation generation, and also allow us to configure the

inputs and outputs for any cacheable build step.

This type of caching is especially useful for multimodule builds. In a
project with 4 modules, each of which has 5 build steps, a clean build
must execute 20 steps. Most of the time, though, we are only
modifying the source code in one module. If no other projects depend
on that module, then that means we only need to execute the steps
downstream from source code generation; in this example, only 4: the
outputs of the other 16 steps can be pulled from the cache, saving time

and resources.

Gradle’s incremental build, which we see as UP-TO-DATE in the
build output, implements build caching at the project level. A local
cache, like the one built into Gradle and available as an extension to
Maven, works even when changing workspaces, Git branches, and

command-line options.

The collaborative effect of remote build caching available in Gradle,
Maven, and Bazel adds additional benefits. One of the common use

cases for remote caching is the first build after pulling from a remote

version control repository. After we pull from the remote, we have to
build the project on our machine to take advantage of those changes.
But since we have never built those changes on our machine, they
aren’t in our local cache yet. However, the continuous integration
system has already built those changes and uploaded the results to the
shared remote cache so we get a cache hit from the remote cache,

saving the time required to execute those build steps locally.

By using build caching in our Java builds, we can share the results
across our local builds, the agents of the CI server, and the entire team,
resulting in faster builds for everyone and fewer resources computing

the same operations over and over again.

Open Source Projects Aren’t
Magic

Jenn Strater

One of my biggest pet peeves is hearing people say that X technology,
language, build tool, etc., works by magic. If that project is open
source, then what I hear is “I’m too lazy to look up how it works,” and
I’m reminded of Clarke’s Third Law that “any sufficiently advanced

technology is indistinguishable from magic.”*

In the days of the modern web, it is easier than ever before to look up
the reference guides and source code and find out how that technology
works. Many open source projects like the Apache Groovy
programming language, for example, have a website (in this case,

groovy-lang.org) that lists where you can find the documentation,

reference guides, bug tracker, and even links to the source code itself.

If you’re looking for help getting started, guides and tutorials are a
great place to begin. If you are more of a visual or hands-on learner,
many online learning platforms offer introductory courses for learning

new languages through labs, exercises, and group work. Sometimes

https://groovy-lang.org

these are even freely available so that the technologies will be more

widely known.

After learning the basic syntax and data structures and starting to use
them in your own projects, you’ll likely start encountering unexpected
behaviors or even bugs. No matter which ecosystem you choose, this
will happen at some point. It’s just a part of the world we live in. You
should first look for an issue tracker like Jira or GitHub issues to see if
others are having the same problem. If so, there may be workarounds, a

fix in a newer version, or a timeline for when this issue will be fixed.

It may take a little work to find out where your technology’s
community collaborates. Sometimes it is in chat rooms, forums, or
mailing lists. Projects in the Apache foundation, in particular, tend to
use Apache infrastructure rather than commercial products. Finding

this place is the best way to move from “magic” to clarity.

Even after you master a particular technology, learning is a continuous
process and you’ll need to keep doing it. New releases may add new
features or change behaviors in ways you will need to understand. Join
the mailing list or attend conferences with the open source committers
to learn what you need for upgrading your projects. If you are already a
subject matter expert, this is a great way you can also contribute to

uncovering the “magic” for everyone else.

Lastly, if you find something is unclear or missing, many projects are
happy to accept contributions, especially to documentation. The project
leads are often people with regular day jobs and other priorities, so they

may not respond right away, but this is the best way to help everyone

succeed and to uncover the “magic” for the next generation of users.

Arthur C. Clarke, Profiles of the Future: An Inquiry into the Limits of the

1 Ppossible. (London: Pan Books, 1973). Now, yes, there is a formal definition
in computer science that refers to hiding the implementation details through
abstraction, but most people misuse the term “magic” to describe any
technology that they find difficult to understand.

Optional Is a Lawbreaking
Monad but a Good Type

Nicolai Parlog

In most programming languages, empty-or-not-empty types are well-
behaved monads. (Yes, I used the M-word—don’t worry, no math.)
This means their mechanics fulfill a couple of definitions and follow a

number of laws that guarantee safe (de)composition of computations.

Optional’s methods fulfill these definitions but break the laws. Not

without consequences...

Monad Definition

You need three things to define a monad—in Optional’s terms:

1. The type Optional<T> itself

2. The method ofNullable(T) that wraps a value T into an
Optional<T>

3. The method flatMap(Function<T, Optional<U>>)
that applies the given function to the value that is wrapped by
the Optional on which it is called

There’s an alternative definition using map instead of flatMap, but

it’s too long to fit here.

Monad Laws

Now it gets interesting—a monad has to fulfill three laws to be one of
the cool kids. In Optional’s terms:

1. Fora Function<T, Optional<U>> f and avaluev,
f.apply(Vv) must equal
Optional.ofNullable(v).flatMap(f). This left
identity guarantees it doesn’t matter whether you apply a
function directly or let Optional do it.

2. Calling flatMap(Optional::ofNullable) returns an
Optional that equals the one you called it on. This right
identity guarantees applying no-ops doesn’t change anything.

3. Foran Optional<T> o0 and two functions Function<T,
Optional<U>> f and Function<U, Optional<v>>
g, theresults of 0. flatMap(f).flatMap(g) and
o.flatMap(v -> f.apply(v).flatMap(g)) must
be equal. This associativity guarantees that it doesn’t matter
whether functions are flat-mapped individually or as a
composition.

While Optional holds up in most cases, it doesn’t for a specific edge

case. Have a look at flatMap’s implementation:

public <U> Optional<U> flatMap(Function<T,
Optional<u>> f) {
if (!'isPresent()) {
return empty();
} else {
return f.apply(this.value);

You can see that it doesn’t apply the function to an empty Optional,

which makes it easy to break left identity:

Function<Integer, Optional<String>> f =

1 -> Optional.of(i == null ? "NaN" : i.toString());
// the following are not equal
Optional<String> containsNaN = f.apply(null);
Optional<String> isEmpty =
Optional.ofNullable(null).flatMap(f);

That’s not great, but it’s even worse for map. Here, associativity means
that given an Optional<T> o0 and two functions Function<T,
U> f and Function<U, V> g, the results of
o.map(f).map(g) and o.map(f.andThen(g)) must be equal:

Function<Integer, Integer> f =31 ->1i == 0 ? null : 1i;
Function<Integer, String> g = i -> i == null ? "NaN"
i.toString();

// the following are not equal

Optional<String> containsNaN =
Optional.of(@).map(f.andThen(g));

Optional<String> isEmpty =
Optional.of(0).map(f).map(g);

So What?

The examples may seem contrived and the importance of the laws
unclear, but the impact is real: in an Optional chain, you can’t
mechanically merge and split operations because that may change the
code’s behavior. That is unfortunate because proper monads let you

ignore them when you want to focus on readability or domain logic.

But why is Optional a broken monad? Because null-safety is more
important! To uphold the laws, an Optional would have to be able
to contain Null while being nonempty. And it would have to pass it to
functions given to map and flatMap. Imagine if everything you did
in map and flatMap had to check for null! That Optional would

be a great monad, but provide zero null-safety.

No, I’m happy we got the Optional that we got.

Package-by-Feature with the
Default Access Modifier

Marco Beelen

. t:y r
[(- AL“
A lot of business applications are written using a three-tier architecture:

view, business, and data layers, and all model objects are used by all

three layers.

In some codebases, the classes for these applications are organized by
layer. In some applications, which have the need to register various
users and the company they work for, the code structure would result in

something like:

tld.domain.project.model.Company
tld.domain.project.model.User
tld.domain.project.controllers.CompanyController
tld.domain.project.controllers.UserController
tld.domain.project.storage.CompanyRepository
tld.domain.project.storage.UserRepository
tld.domain.project.service.CompanyService
tld.domain.project.service.UserService

Using such a package-by-layer structure for your classes requires a lot
of methods to be public. The UserService needs to be able to read

and write Users into storage and, since the UserRepository isin
another package, almost all methods of the UserRepository would
need to be public.

The organization might have a policy to send an email to a user to
notify them when their password has been changed. Such a policy
might be implemented in the UserService. Since the methods in the
UserRepository are public, there is no protection against another
part of the application invoking a method in UserRepository,
which changes the password but does not trigger the notification to be

sent.

When this application is updated to include some customer-care
module or a web-care interface, some of the features in those modules
might want to reset the password. Since these features are built at a
later point in time, perhaps after new developers have joined the team,
these developers might be tempted to access the UserRepository
directly from a CustomerCareService instead of calling the
UserService and triggering the notification.

The Java language provides a mechanism to prevent this: access
modifiers.

The default access modifier means we do not explicitly declare an
access modifier for a class, field, method, etc. A variable or method
declared without any access control modifier is available only to other

classes in the same package. This is also called package-private.

In order to benefit from that access protection mechanism, the code

base should be organized into a package-by-feature package hierarchy.

The same classes as before would be packaged like this:

tld.domain.project.company.Company
tld.domain.project.company.CompanyController
tld.domain.project.company.CompanyService
tld.domain.project.company.CompanyRepository
tld.domain.project.user.User
tld.domain.project.user.UserController
tld.domain.project.user.UserService
tld.domain.project.user.UserRepository

When organized like this, none of the methods in the
UserRepository would have to be public. They all could be

package-private and still be available to the UserService. The
methods of the UserService could be made public.

Any developer building the CustomerCareService, in the
package tld.domain.project.support, would not be able to
invoke methods on the UserRepository and should call the
methods of the UserService. This way the code structure and the

access modifiers help to ensure that the application still adheres to the

policy to send the notification.

This strategy for organizing the classes in your codebase will help

reduce the coupling in your codebase.

Rediscover the JVM Through
Clojure

James Elliott

Sometime around 2007, my office book club read Java Concurrency in
Practice by Brian Goetz (Addison-Wesley). We weren’t far past the

preface of this important book when we panicked about how wrong our
naive understanding of Java’s memory model had been, and how easily
bugs are introduced into multithreaded code. There were audible gasps,

and at least one reported nightmare.

In developing a highly concurrent cloud offering, we needed a
language that wouldn’t litter our codebase with landmines of shared,
mutable state. We chose Clojure: it has solid concurrency answers and
favors functional, efficient transformation of immutable data. It runs on
the familiar JVM, interoperating smoothly with the huge ecosystem of
Java libraries. Though some were hesitant about the unfamiliar Lisp
syntax and about relearning how to program without mutating

variables, it was a great decision.

We discovered the benefits of a REPL-centric (read—eval—print loop)

workflow:

e No rebuilding or relaunching to test changes
e Exploring the running system and trying variations instantly

e Building and refining ideas incrementally

We appreciated Clojure’s bias toward working with data using standard
structures and its rich, opinionated core library. You don’t have to
create lots of classes—each with its own mutually incompatible API—

to model anything.

I rediscovered joy and energy in programming. A talk at the Strange
Loop conference about live-coding musical performances in Clojure
using Overtone made me wonder: if Clojure was fast enough to make
music, surely it could run stage lighting? That led to Afterglow, a
project that consumed me for a while. Figuring out how to write
lighting effects in a functional style was a puzzle, but Overtone’s
functional metronome inspired my effect functions, mapping musical

time to lighting positions, colors, and intensities.

I relearned trigonometry and linear algebra to aim different lights at the
same point in space. I discovered how to create a desired color using a
fixture’s different-hued LEDs. Live-coding stage lighting is a ton of
fun.

Then I wanted to synchronize Afterglow’s metronome with tracks
playing on the CDJs (today’s digital DJ turntables) I use to mix music.
Their protocol is proprietary and undocumented, but I was determined.

I set up a network sniffer and figured it out. Early success led to

https://oreil.ly/VcM79
https://oreil.ly/L9wjF
https://oreil.ly/utaDV
https://oreil.ly/FIIIk

excited contributions from around the world, so I wrote the library Beat
Link to make using what we learned easy. I wrote it in Java to be
widely understandable but discovered that using Clojure had made

writing Java feel cumbersome.

People built on it and ported it to other languages. I created a quick
demo for a show producer on using Beat Link to trigger MIDI events
that his video software and lighting console could respond to. It
became my most popular project because it’s useful to
nonprogrammers. Artists are still doing cool new things with Beat Link
Trigger all the time, and as a guest at music festivals and touring
shows, I’ve seen the results. Since it’s Clojure, users can extend it, and
their code gets byte-compiled and loaded into the JVM as if it were
part of the project all along—another secret weapon Clojure can give

you.

I encourage anyone working in Java to take a serious look at Clojure,

and see how it can change your experience of life on the JVM.

https://oreil.ly/fhvT2
https://oreil.ly/JEK1H

Production Is the Happiest
Place on Earth

Josh Long

W a4
R E
Production is my first favorite place on the internet. I love production.
You should love production. Go as early and often as possible. Bring

the kids. Bring the family. The weather is amazing. It’s the happiest
place on Earth. It’s better than Disneyland!

Getting there isn’t always easy, but trust me: once you get there, you’re
going to want to stay. It’s like Mauritius. You’ll love it! Here are some

tips to make your journey as pleasant as possible:

Take the continuous delivery highway.
There’s no faster way to production. Continuous delivery lets you
move quickly and consistently from the latest Git commit to
production. In a continuous delivery pipeline, code moves
automatically from developer to deployment, and every step in
between, in one smooth motion. Continuous integration tools like
Travis CI or Jenkins help, but try to mine information gleaned
while in production. Canary releases are a technique to reduce the
risk of introducing a new software version in production by slowly
rolling out the change to a small cross-section of users. Continuous

delivery tools like Netflix’s Spinnaker can automate this sort of
nuanced deployment strategy.

Production can be surprising.
Be prepared! Services will fail. Don’t leave your clients in the
lurch. Specify aggressive client-side timeouts. Service-level
agreements (SLAs) dominate a lot of technical discussions. Use
service-hedging—a pattern in which multiple idempotent calls to
identically configured service instances on discrete nodes are
launched and all but the fastest response discarded—to meet SLAs.
Failures will happen. Use circuit breakers to explicitly define
failure modes and isolate failures. Spring Cloud has an abstraction,
Spring Cloud Circuit Breaker, that supports reactive and
nonreactive circuits.

In production, nobody can hear your application scream.
Embrace observability from the get-go. Production is a busy place!
If everything goes well, you’ll have more users and demand than
you’ll know what to do with. As demand increases, scale. Cloud
infrastructure like Cloud Foundry, Heroku, and Kubernetes have
long supported horizontal scale out by fronting an ensemble of
nodes with a load balancer. This is particularly easy if you're
building stateless, 12-Factor-style microservices. This strategy
works even if your application monopolizes otherwise precious
resources like threads.

Your code shouldn’t monopolize threads.
Threads are super expensive. The best solutions to this problem—
cooperative multithreading—are about giving signals to the runtime
about when it can move work on and off a finite set of actual,
operating-system threads. Learn about things like reactive
programming as supported by Project Reactor (fairly common on
the server side) and Spring Webflux and RxJava (fairly common on
Android). If you understand how reactive programming works, it’s
a natural next step to embrace things like Kotlin’s coroutines.
Cooperative multithreading lets you multiply the number of users
supported or divide infrastructure costs.

Autonomy is a key to success.
Microservices enable small, singly-focused teams, able to release
software to production autonomously.

Ninety percent of your application is mundane.
Embrace frameworks like Spring Boot to let you focus on the
bottom-line production deliverables, and not on supporting code. Is
the Java programming language not your cup of tea—er—coffee?
The JVM ecosystem is rich with productive alternatives like Kotlin.

Remove the friction of going to production. Eschew what Amazon

CTO Werner Vogels calls “undifferentiated heavy lifting.”* Clear the
path to production and people will want to go early and often. They’ll
yearn for what has been called Antoine de Saint-Exupéry’s “vast and

endless seas.”

Divina Paredes, “Amazon CTO: Stop Spending Money on ‘Undifferentiated
1 Heavy Lifting,”” CIO, June 9, 2013.

https://oreil.ly/M0cyS

Program with GUTs

Kevlin Henney

So you’re writing unit tests? Great! Are they any good? To borrow a
term from Alistair Cockburn, do you have GUTs? Good unit tests? Or
have you landed someone (future you?) with interest-accumulating
technical debt in their testbase?

What do I mean by good? Good question. Hard question. Worth an

dnswer.

Let’s start with names. Reflect what is being tested in the name. Yup,
you don’t want testl, test2, and test3 as your naming scheme.
In fact, you don’t want test in your test names: @Test already does

that. Tell the reader what you’re testing, not that you’re testing.

Ah, no, I don’t mean name it after the method under test: tell the reader
what behavior, property, capability, etc. is under test. If you’ve got a
method addItem, you don’t want a corresponding addItemIsOK
test. That’s a common test smell. Identify the cases of behavior, and
test only one case per test case. Oh, and no, that doesn’t mean
addItemSuccess and addItemFailure.

Let me ask you, what’s the purpose of your test? To test that “it
works”? That’s only half the story. The biggest challenge in code is not
to determine whether “it works,” but to determine what “it works”
means. You have the chance to capture that meaning, so try

additionOfItemwWithUniqueKeyIsRetained and
additionOfItemwithExistingKeyFails.

Because these names are long, and also aren’t production code,
consider using underscores to improve readability—camel case doesn’t
scale—so
Addition_of_item_with_unique_key_1is_retained.
With JUnit 5 you can use
DisplayNameGenerator.ReplaceUnderscores with

@ iplayName

Gener ation to pretty-print as “Addition of item with unique key is
retained.” You can see that naming as a proposition has a nice
property: if the test passes, you have some confidence the proposition

might be true; if it fails, the proposition is false.

Which is a good point. Passing tests don’t guarantee that the code
works. But, for a unit test to be good, the meaning of failure should be
clear: it should mean the code doesn’t work. Like Dijkstra said,
“Program testing can be used to show the presence of bugs, but never

to show their absence!”!

In practice, this means a unit test shouldn’t depend on things that can’t
be controlled within the test. Filesystem? Network? Database?

Asynchronous ordering? You may have influence, but not control. The

unit under test shouldn’t depend on things that could cause failure

when the code is correct.

Also, watch out for overfitting tests. You know the ones: brittle
assertions on implementation details rather than required features. You
update something—spelling, a magic value, a quality outcome—and
tests fail. They fail because the tests were at fault, not the production

code.

Oh, and keep your eyes open for underfitting tests too. They’re vague,

passing at the drop of a hat, even with code that’s wildly and obviously
wrong. You successfully add your first item. Don’t just test the number
of items is greater than zero. There’s only one right outcome: one item.

Many integers are greater than zero; billions are wrong.

Speaking of outcome, you may find many tests follow a simple three-
act play: arrange—act—assert, aka given—when—then. Keeping this in
mind helps you focus on the story that the test is trying to tell. Keeps it
cohesive, suggests other tests, and helps with the name. Oh, and as
we’re back on names, you may find names get repetitive. Factor out the
repetition. Use it to group tests into inner classes with @Nested. So,
you could nest with_unique_key_1is_retained and
with_existing_key_fails inside Addition_of_1item.

I hope that’s been useful. You’re off to revisit some tests? OK, catch

you later.

Edsger W. Dijkstra, “Notes on Structured Programming.” In Structured
1 programming, O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, eds. (London

and New York: Academic Press, 1972), 6.

Read OpenJDK Daily

Heinz M. Kabutz

OpenJDK consists of millions of lines of Java code. Almost every class
violates some “clean code” guidelines. The real world is messy. There
is no such thing as “clean code,” and we will struggle to even define
what that is.

Experienced Java programmers can read code that follows different
styles. OpenJDK has over a thousand authors. Even though there is

some consistency in the formatting, they code in disparate ways.

For example, consider the Vector .writeObject method:

private void writeObject(java.io.0ObjectOutputStream s)
throws java.io.IOException {
final java.io.ObjectOutputStream.PutField fields =
S.putFields();
final Object[] data;
synchronized (this) {
fields.put("capacityIncrement",
capacityIncrement);
fields.put("elementCount", elementCount);
data = elementData.clone();

}
fields.put("elementData", data);

s.writeFields();

Why did the programmer mark the local variables fields and data
as final? There is no reason why this was necessary. It is a coding

style decision. Good programmers can read code equally well, whether

the local variables are final or not. It does not bother them either

way.

Why is fields.put("elementData", data) outside of the
synchronized block? This may have been due to a premature
optimization, wanting to reduce the serial section of code. Or perhaps
the programmer was careless? It is easy to want to optimize everything

we see, but we need to resist this urge.

Here is another method from the Spliterator inside ArrayList:

public Spliterator<E> trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi)
>>> 1;
return (lo >= mid) ? null : // divide range 1in
half unless too small
new RandomAccessSpliterator<>(this, 1lo,
index = mid);

}

This method would definitely raise all sorts of “clean code” warning
bells. Those in love with final would complain that hi, 10, and

mid could be final. Yeah, they could. But they are not. In OpenJDK

they generally do not mark local variables as final.

Why do we have this obscure (10 + hi) >>> 1? Could we not

rather say (1o + hi) / 2? (Answer: it’s not exactly the same.)

And why are all three local variables declared on a single line? Is that

not violating all that is good and proper?

Turns out, according to research, the number of bugs is in proportion to
the lines of code. Spread out your method the way that your university
professor asked you to, and you have more lines of code (LOC). And
with more LOC, you also end up with more bugs for the same
functionality. It can also be that rookie programmers tend to spread

their code over many pages. Experts write tight, compact code.

We need to learn to read many different styles of coding, and for that, I
recommend OpenJDK. Read the java.utill classes, java. 10, and

so many others out there.

Really Looking Under the
Hood

Rafael Benevides

Java is a complete platform and should be treated that way. In my Java
development career, I’ve met hundreds of developers who are deeply
familiar with the language’s syntax. They understand lambdas and
streams and know every API from String to nio off the top of their
heads. But understanding the following would make them more

complete professionals:

Garbage collection algorithms
The JVM GC has improved a lot since its first versions. The JVM’s
ergonomics allow it to automatically adjust to have optimal
parameters for the detected environment. A good understanding of
what is going on can sometimes improve the JVM performance
further.

JVM profilers
JVM tuning is not a guessing game. You should understand how
the application is behaving before you make any changes. Knowing
how to connect and interpret the profiler’s data will help you tune
the JVM for better performance, find memory leaks, or understand

why a method is taking so long to execute.

Cloud-native applications make it clear that code can be executed on
multiple machines across a network over different operating systems.
Knowing the following can help Java pros develop a resilient and

portable application:

Character encoding
Different OSs can work with different character encodings.
Understanding what they are and how to set them up can prevent
your application from presenting weird characters.

TCP/IP networking
Cloud-native applications are distributed systems. In a world of
cloud, internet, and network, understanding how to route tables,
latency, firewalls, and everything related to TCP/IP networking is
important, especially when things don’t work as expected.

HTTP protocol
In a world where the browser is the client, understanding how
HTTP 1.1 and 2.0 work can help you design your application
better. Knowing what happens when you store your data in an
HTTP session, especially in a multiclustered environment, can be
quite helpful.

It’s even good to know what frameworks are doing under the hood.
Here we can take object relational mapping (ORM) frameworks like

JPA and Hibernate as examples:

Enable SQL output during development
With SQL output enabled, you can see what commands are being
sent to the database before finding out an odd SQL call is behaving
badly.

Query fetch size

Most JPA/Hibernate implementations have a default fetch size of
one (1). That means that if your query brings 1,000 entities from
the database, 1,000 SQL commands will be executed to populate
those entities. You can tune the fetch size to reduce the number of
SQL instructions performed. You can identify this problem by
having the SQL output enabled (see previous item).

One-to-many and many-to-one relationships
Although one-to-many relationships are lazy loaded by default,
some developers make the mistake of changing the relationship to
eager load the entities or manually initialize them before returning
the collection of entities. Be careful about doing that because each
eager-loaded entity can also create the many-to-one relationship,
causing you to fetch almost every table/entity from the database.
Enabling SQL output can help you to identify this problem as well
(again, see first item).

In short, don’t let yourself be controlled—be in control!

The Rebirth of Java

Sander Mak

Java has been declared dead perhaps more than any other programming
language, it seems. Perhaps unsurprisingly, reports of its death are
greatly exaggerated. Java has an enormous footprint in backend
development, and most enterprises develop systems in Java. However,
there’s a kernel of truth in every rumor—Java was a slow-moving
language in the age of dynamic languages like Ruby and JavaScript.
Traditionally, major Java releases spanned three to four years of
development. It’s hard to keep up with other platforms at this pace.

In 2017, all this changed. Oracle—Java’s steward—announced the
Java platform would be released twice a year. Java 9, released toward
the end of 2017, was the last big and long-awaited release. After Java
9, every year in March and September a new major Java release is

delivered. Like clockwork.

Switching to this time-based release schedule has many consequences.
Releases can no longer wait on features that are not yet complete. Also,
because there’s less time between releases and the team developing

Java remains the same size, fewer features make it into a release. But

that’s OK—we get another release in only six months. A steady stream

of new features and improvements is what we can count on.

Interestingly, new language features are now also delivered
incrementally. The Java language is now evolving in a more agile
manner. For example, Java 12 shipped Switch Expressions as a
preview language feature, with the express intent of later extending this

feature to support full pattern matching.

One of the reasons why Java releases took so much time and effort is
that the platform became somewhat ossified in its 20-plus years of
existence. In Java 9, the platform is fully modularized. Every part of
the platform is now put into its own module, with explicit
dependencies on other parts. The module system introduced in Java 9

ensures this platform architecture is adhered to from now on.

Platform internals are now safely encapsulated inside modules,
preventing (ab)use by application and library code. Previously, many
applications and libraries depended on these platform internals, making
it hard to evolve Java without breaking lots of existing code. It’s also
possible to use the module system for your own applications. It can
make your codebase more maintainable, flexible, and future-proof as

well.

Moving from a long and unpredictable release cycle to regular

calendar-based releases is a great achievement by the Java team.
Adapting to this new reality has definitely taken time for us as a
developer community. Fortunately, the changes in Java are now

smaller and more incremental. These more frequent and regular

releases are easier to adopt and adapt to.

For slower movers, a version of Java is marked as L.ong-Term
Supported (LTS) every six releases, starting with Java 11. Meaning,
you can move between LTS releases every three years if you want. It’s
important to understand that the LTS commitment is offered by
vendors like Oracle, Red Hat, or even Amazon, and is not necessarily
free of charge. In any case, the vendor-neutral OpenJDK project keeps
producing supported builds for the latest Java release that is developed.
Many things may and will change in releases between the LTS
releases, though. If you can, hop on the frequent-release train and enjoy

a steady stream of better Java. It’s not as scary as it may sound.

Refactor Boolean Values to
Enumerations

Peter Hilton

You wouldn’t use “magic numbers” in your code, so don’t use magic
Booleans either! Boolean literals are worse than hardcoded numbers: a
42 in the code might look familiar, but false could be anything, and

anything could be false.

When two variables are both true, you don’t know whether that’s a

coincidence or whether they’re both “true” for the same reason and
should change together. This makes the code harder to read, and causes
bugs when you read it wrong. As with magic numbers, you should

refactor to named constants.

Refactoring 42 to an ASCII_ASTERISK or EVERYTHING constant
improves code readability, and so does refactoring true to a Boolean
constant called AVAILABLE in a Product class, for example.

However, you probably shouldn’t have any Boolean fields in your

domain model: some Boolean values aren’t really Boolean.

Suppose your Product entity has a Boolean available field, to

indicate whether the product is currently being sold. This isn’t really a
Boolean: it’s an optional “available” value, which isn’t the same thing
because “not available” really means something else, like “out of

stock.”

When a type has two possible values, that’s a coincidence, and can
change—by adding a “discontinued” option, for example. The existing

Boolean field cannot accommodate the additional value.

Beware: using null to mean something is the worst possible way to
implement a third value. You’ll end up needing a code comment like
“true when the product is available, false when out of stock, null when

discontinued.” Please don’t do that.

The most obvious model for products you no longer sell is a Boolean
discontinued field, in addition to the available field. This
works, but is harder to maintain because there’s no hint that these fields

are related. Fortunately, Java has a way to group named constants.

Refactor related Boolean fields like these to a Java enum type:

enum ProductAvailability {
AVAILABLE, OUT_OF_STOCK, DISCONTINUED, BANNED
by

Enum types are great because then you get more things to name. Also,
the values are more readable than a true that means that the value is
really some other value, such as AVATLABLE. Enum types also turn

out to be more convenient than you might expect, which makes

laziness a weak excuse for not refactoring.

The enum type can still have Boolean convenience methods, which you
might want if your original code had lots of conditional checks for
available products. In fact, enum types go further than simply grouping
constants, with fields, constructors, and methods. A less obvious but
more important benefit is that you now have a destination for other
refactorings that move availability-related logic to the
ProductAvailability type.

Serializing an enum type is more work, e.g., than using JSON or a
database. However, it’s less than you might expect. You’re probably
already using a library that handles this nicely and lets you choose how

to serialize to a Single Value Object representation.

Domain models often suffer from primitive obsession—overuse of Java
primitive types. Refactoring numbers and dates to domain classes
allows your code to become more expressive and readable, and the new
types provide a better home for related code, such as validations and

comparisons.

In the problem domain’s language, Boolean types are false, and

enumerated types are the truth.

Refactoring Toward Speed-
Reading

Benjamin Muskalla

A casual reader usually reaches 150-200 wpm (words per minute) with
a good comprehension rate. People who are into speed-reading can
easily reach up to 700 wpm. But don’t worry, we don’t need to set a
new world record for speed-reading to learn the basic concepts and
apply them to our code. We’ll look at three areas that are particularly
helpful when it comes to reading code: skimming, meta guiding, and

visual fixation.

So what makes speed-reading that fast? One of the first steps is to
suppress subvocalization. Subvocalization? Exactly. That voice in your
head that just tried to properly articulate that word. And yes, you’re
now aware of that voice. But don’t worry, it will go away soon!
Subvocalization can be unlearned and is an essential first step to

seriously improve reading speed.

Let’s look at this method with three parameters, which all need

validating. One way to read the code is to follow where and how the

input parameters are used:

public void printReport(Header header, Body body,
Footer footer) {
checkNotNull(header, "header must not be null");
validate(body);
checkNotNull(footer, "footer must not be null");

}

After locating header, we have to find the next parameter, body,

which requires us to look down and left. We can start with a simple
refactoring to align the first and third check so we only break the

horizontal flow once:

public void printReport(Header header, Body body,
Footer footer) {
checkNotNull(header, "header must not be null");
checkNotNull(footer, "footer must not be null");
validate(body);

}

Alternatively, given that checking for null is a validation of the
parameter as well, we could extract the checkNotNull method calls
into their own properly named methods to help guide the reader.
Whether these are the same or overloaded version of the method

depends on the code at hand:

public void printReport(Header header, Body body,
Footer footer) {
validateReportElement (header);
validateReportElement (body);
validateReportElement (footer);

}

Meta guiding is another technique for speed-reading. Instead of trying

to read word by word in a book, you try to capture the whole line at
once. Children usually do that by using their finger to keep track of the
word they’re reading. Using some sort of guidance helps us to keep
moving forward and avoid jumping back a word or two. Funny enough,
code itself can act as such a device as it has an inherent structure that

we can leverage to guide our eye:

List<String> items = new ArraylList<>(zeros);
items.add("one");

items.add("two");

items.add("three");

How many items are in the list? One, two, three! Actually, it’s four.
Maybe more. Oops, missed that zeros argument too? The structure
that should help us actually gets in our way. While we have allowed
our reader to be guided by the alignment of the add methods, we

totally misguided the eye and missed the constructor argument.
Rewriting this allows the reader to follow the guide easily without

missing any important information:

List<String> items = new ArrayList<>();
items.addAll(zeros);

items.add("one");

items.add("two");

items.add("three");

Next time you write a piece of code, see if you can speed-read it. Keep
in mind the basics about visual fixation and meta guiding. Try to find a
structure that makes logical sense while guiding the eye to see the

relevant information. Not only will it help you to read code faster in the

future but it also helps keep you in the flow.

Simple Value Objects

Steve Freeman

Classes that represent Value Objects don’t need getters or setters. Java
developers are usually taught to use getters for accessing fields, like
this:

public class Coordinate {
private Latitude latitude;
private Longitude longitude;

public Coordinate(Latitude latitude, Longitude
longitude) {
this.latitude = latitude;
this.longitude = longitude;

}

/**
* @return the latitude of the Coordinate
*/
public Latitude getLatitude() {
return latitude;

}

/**
* @return the longitude of the Coordinate
*/
public Longitude getLongitude() {
return longitude;

}

System.out.println(thing.getLatitude());

The idea is that getters encapsulate how values are represented in an
object, providing a consistent approach across a codebase. It also
allows for protection against aliasing, for example, by cloning

collections before returning them.

The style has its origins in the early days of JavaBeans, when there was
a lot of interest in graphical tooling using reflection. There might also
have been some influence from Smalltalk (the classic object-oriented
language), in which all fields are private unless exposed via an

accessor; read-only fields have getters, but no setters.

In practice, not all classes play the same role and, lacking an alternative
structure in the language, many coders write Java classes that are
actually Value Objects: a simple set of fields that never change, where
equality is based on value rather than identity. In our example, two
Coordinate objects that have the same latitude and longitude are
effectively the same. I can use instances of Coordinate as constants

throughout my code because they’re immutable.

Some years ago, I, like many of my colleagues, started to tire of the
boilerplate duplication that getters require and simplified my style for
Value Objects. I made all the fields public final, likea C
struct:

public class Coordinate {
public final Latitude latitude;

public final Longitude longitude;

public Coordinate(Latitude latitude, Longitude
longitude) {
this.latitude = latitude;
this.longitude = longitude;

}

System.out.println(coordinate.latitude);

I can do this because the object is immutable (again, one has to be
careful about aliasing if any of the values are structured), and I tend to
avoid inheritance or implementing much behavior. This represents a
change in approach from the earlier days of Java. For example,
java.awt.Point is mutable, and the move method updates its X
and Yy fields in place. Nowadays, after twenty years of improvements in
the JVM and wider adoption of functional programming, such transient
objects are cheap enough that we would expect move to return a new
immutable copy with the new location. An example for our
Coordinate would be:

public class Coordinate {
public Coordinate atlLatitude(Latitude latitude) {
return new Coordinate(latitude,
this.longitude);

}
}

I’ve found simplified Value Objects to be a useful convention for
clarifying the role of a type, with less distracting noise in the code.
They’re easy to refactor into and often provide a useful target for
accumulating methods that express the domain of the code better.

Occasionally, the behavioral features of a Value Object become more

significant, and I find I can express what I need with methods and

make the fields private.

It also turns out that the Java language team has recognized this too and
introduced a record structure in Java 14. Until this is widespread, we’ll

have to rely on convention.

Take Care of Your Module
Declarations

Nicolai Parlog

If you’re creating Java modules, your module declarations (module-
info.java files) are easily your most important source files. Each one
represents an entire JAR and governs how it interacts with other JARs,
so take good care of your declarations! Here are a few things to look

out for.

Keep Module Declarations Clean

Module declarations are code and should be treated as such, so make
sure your code style is applied. Beyond that, rather than placing
directives randomly, structure your module declarations. Here’s the
order the JDK uses:

1. Requires, including static and transitive
. Exports

. Exports to

A WN

. Opens

5. Opens to
6. Uses

7. Provides

Whatever you decide, if you have a document defining your code style,
record the decision there. If you have your IDE, build tool, or code
analyzer check such things for you, even better. Try to bring it up to
speed so it can automatically check—or even apply—your chosen

style.

Comment Module Declarations

Opinions on code documentation, like Javadoc or inline comments,
vary wildly, but whatever your team’s position on comments is, extend
it to module declarations. If you like abstractions to have a sentence or
two explaining their meaning and importance, add such a Javadoc
comment to each module. Even if that’s not your style, most people
agree that it’s good to document why a specific decision was made. In a

module declaration, that could mean adding an inline comment to:

e An optional dependency to explain why the module might be
absent

e A qualified export to explain why it isn’t public API, but is
partially accessible

e An open package explaining which frameworks are expected
to access it

Module declarations present a new opportunity: never before has it
been this easy to document the relationships of your project’s artifacts

in code.

Review Module Declarations

Module declarations are the central representation of your modular
structure, and examining them should be an integral part of any kind of
code review you do. Whether it’s looking over your changes before a
commit or before opening a pull request, wrapping up after a pair-
programming session, or during a formal code review, anytime you

inspect a body of code, pay special attention to module-info.java:

e Are new module dependencies necessary (consider
replacement with services) and in line with the project’s
architecture?

e Is the code prepared to handle the absence of optional
dependencies?

e Are new package exports necessary? Are all public classes in
there ready for use? Can you reduce the API surface area?

e Does it make sense that an export is qualified, or is it a cop-
out to get access to an API that’s not ready to be public?

e Were changes made that could cause problems for
downstream consumers that are not part of the build process?

Investing time into diligently reviewing module descriptors might
sound like waste, but I see it as an opportunity: never before has it been
this easy to analyze and review the relationships of your project’s
artifacts and its structure. And not the photographed whiteboard sketch
that was uploaded to your wiki a few years ago; no, the real deal, the
actual relationships between your artifacts. Module declarations show

the naked reality instead of outdated good intentions.

Take Good Care of Your
Dependencies

Brian Vermeer

Modern Java development is heavily dependent on third-party libraries.
By using Maven or Gradle, we have easy mechanisms in place to
import and use published packages. As developers do not want to
create and maintain boilerplate functionality but rather focus on the
specific business logic, using frameworks and libraries can be a wise

choice.

When looking at an average project, the amount of your code can be as
little as 1%, and the rest will be imported libraries and frameworks. A
lot of code that is put into production is simply not ours, but we do

depend on it heavily.

As we look at our code and the way we treat contributions by team
members, we often turn to processes like code reviews before we
merge new code into our master branch as a first-pass quality assurance
measure. Alternatively, this quality control process might also be

covered by practicing pair programming. The way we treat our

dependencies, however, is very different from how we treat our own
code. Dependencies are often just used without any form of validation.
Importantly, the top-level dependencies, on many occasions, in turn
pull in transitive dependencies that can go many levels deep. For
example, a 200-line Spring application with 5 direct dependencies can
end up using 60 dependencies in total, which amounts to almost half a

million lines of code being shipped to production.

By only using these dependencies we blindly trust other people’s code,

which is odd compared to how we handle our own code.

Vulnerable Dependencies

From a security point of view, you should scan your dependencies for
known vulnerabilities. If a vulnerability in a dependency is found and
disclosed, you should be aware of this and replace or update those
dependencies. Using outdated dependencies with known vulnerabilities

can be disastrous if you look at some examples in the past.

By scanning your dependencies during every step in your development
process, you might prevent that vulnerable dependency surprise before

you ship your code to production.

You should also keep scanning your production snapshot, as new
vulnerabilities may be disclosed while you are already using it in your

production environment.

Updating Dependencies

You should choose your dependencies wisely. Look at how well a

library or framework is maintained and how many contributors are
working on it. Depending on outdated or poorly maintained libraries is
a large risk. If you want to stay up-to-date, you can use your package
manager to help you detect if newer versions are available. By using
the Maven or Gradle version plug-in, you can use the following

commands to check for newer versions:

e Maven: mvn versions:display-dependency-
updates

e Gradle: gradle dependencyUpdates -
Drevision=release

A Strategy for Your Dependencies

When handling dependencies in your system, you should have a
strategy in place. Questions about dependency health and the reason
why a particular dependency is used should be made explicit. Next,
you should also carefully think about what your update strategy should
be. Updating often is considered less painful in general. Last, but not
least, you should have tooling in place that scans your libraries for

known vulnerabilities to prevent being breached.

In any case, you should take good care of your dependencies and

choose the right library with the right version for the right reason.

Take “Separation of
Concerns” Seriously

Dave Farley

If you studied computer science, you may have learned about an idea
called separation of concerns.t This is best characterized by the sound
byte “One class one thing, one method one thing.” The idea is that your
classes and methods (and functions) should always be focused on a

single outcome.

Think carefully about the responsibilities of your classes and methods.
I sometimes teach classes in test-driven design. I use adding fractions
as a simple coding kata to explore TDD. The most common first test I

see people write often looks something like this:

assertEquals("2/3", Fractions.addFraction("1/3",
II1/3II));

For me, this test is screaming “poor design.” First, where is the
fraction? It only exists implicitly, presumably inside the
addFraction function.

Worse than this, let’s think about what is going on here. How would
we describe the behavior of the addFraction function? Perhaps
something like “It takes two strings, parses them, and calculates their
sum.” As soon as you see, or think, the word “and” in the description
of a function, method, or class, you should hear alarm bells ringing
inside your head. There are two concerns here: one is string parsing,

and the other is fraction adding.

What if we wrote our test like this instead:

Fraction fraction = new Fraction(1, 3);
assertEquals(new Fraction(2,3), fraction.add(new
Fraction(1, 3)));

How would we describe the add method in this second example?
Perhaps, “It returns the sum of the two fractions.” This second solution
is simpler to implement, simpler to test, and the code inside will be
simpler to understand. It is also significantly more flexible because it is
more modular and therefore more composable. For example, if we
wanted to add three fractions instead of two, how would that work? In
the first example, we would have to add a second method or refactor

the first, so we could call something like:

assertkEquals("5/6", Fractions.addFraction("1/3",
Il1/3II’ "1/6"));

In the second case, no code changes are necessary:

Fraction fractionil
Fraction fraction2
Fraction fraction3

new Fraction(1, 3);
new Fraction(1, 3);
new Fraction(1, 6);

assertEquals(new Fraction(5,6),

fractionl.add(fraction2).add(fraction3));

Let’s imagine that we did want to start with a string representation. We
could add a new, second class called something like
FractionParser or StringToFraction:

assertEquals(new Fraction(1, 3),

StringFractionTranslator.createFraction("1/3"));

StringFractionTranslator.createFraction converts a
string representation of a fraction into a Fraction. We could imagine
other methods on this class that take a Fraction and render a
String. Now we can test this code more thoroughly, and we can test

it separately from the complexity of adding fractions, or multiplying

them or anything else.

Test-driven development is very helpful in this respect because it
highlights issues of poor separation of concerns clearly. It is often the
case that if you are finding it difficult to write a test, it is a result of

either poor coupling in your design or poor separation of concerns.

Separating concerns is a very effective design strategy to employ in
any code. Code with good separation of concerns is, by definition,
more modular, and it’s usually much more composable, flexible,

testable, and readable too.

Always strive to make every single method, class, and function focused
on a single outcome. As soon as you notice that your code is trying to

do two things, pull out a new class or method to make it simpler and

clearer.

“Separation of concerns” was first mentioned by Edsger W. Dijkstra in his

1 1974 paper “On the Role of Scientific Thought,” which was published in
Selected Writings on Computing: A Personal Perspective (New Y ork:
Springer-Verlag, 1982), 60—66.

https://oreil.ly/Hyfse

Technical Interviewing Is a
Skill Worth Developing

Trisha Gee

I’m going to let you into a secret: our industry is horrible at
interviewing developers. What’s really silly is that we almost never sit
a candidate down to write actual code in the actual environment they’re
going to be developing in. That’s like testing a musician on theory but

never listening to them play.

The good news is that interviewing is a skill like any other, meaning it
can be learned. As with acquiring any other skill, you can research
what’s involved and practice, practice, practice. If you get rejected
during interviews, it doesn’t mean you’re not a good developer. It
might just mean you’re not good at interviews. That’s something you
can improve on, and each interview is another opportunity to gather

more data and to practice.

Interviewers will often ask similar sorts of questions. Here are three

that are fairly typical:

Multithreading gotchas
It’s still common to be asked to inspect code with
synchronized scattered liberally around and find the race
condition or deadlock. Organizations with this sort of code have
bigger problems than hiring developers (although if they show that
code in interviews, they’ll definitely have a problem hiring
developers), so maybe you don’t want to work there anyway.
Having a working understanding of concurrency in Java will help
you navigate most of these interview questions. If you don’t know
old-school Java concurrency, talk about how modern Java has
abstracted away these problems and explain how you might use
Fork/Join or parallel streams instead.

Compiler gotchas
“Does this code compile?” Well, I dunno, that’s what a computer
and IDE are for—the tools can answer the question while I worry
about other things. If you get asked these sorts of questions in
interviews, use some of the Java Certification study materials (for
example, actual books) to learn how to answer them.

Data structures
Java data structures are fairly straightforward: understanding the
difference between a LiSt, a Set, and a Map is a good place to

start. Knowing what a hash code is for helps, and so does how
equals is used in the contexts of collections.

A quick web search for common java interview questions will also give

you a good set of topics to research.

Is this cheating? If you learn just enough to get through the interview,
will you really know enough to do the job? Remember: our industry is
horrible at interviewing developers. The interview experience is often
miles away from the job experience. Ask plenty of questions to see if

you can get a glimpse of what working there is really like. You can

https://oreil.ly/n54xA
https://oreil.ly/CEQjL
https://oreil.ly/epUKa
https://oreil.ly/tc6p4
https://oreil.ly/KP1BA
https://oreil.ly/37mGa
https://oreil.ly/DvSYa
https://oreil.ly/QvlLo

learn new technologies easily enough—that’s what we do all the time.
It’s all that people-related stuff that often determines whether you’ll

succeed. But that’s a topic for another article.

Test-Driven Development

Dave Farley

Test-driven development (TDD) is widely misunderstood. Before
TDD, the only thing that applied pressure for high quality in software
was the knowledge, experience, and commitment of a programmer.

After TDD, there was something else.

High quality in software is widely agreed to include the following

properties in code:

e Modularity

e [.oose coupling

e Cohesion

e Good separation of concerns

e Information hiding

Testable code has those properties. TDD is development (design)
driven by tests. In TDD, we write the test before writing code that

makes the test pass. TDD is much more than “good unit testing.”

Writing the test first is important; it means that we always end up with

“testable” code. It also means that coverage is never an issue. If we
write the test first, we always have great coverage and don’t need to

worry about it as a metric—and it is a poor metric.

TDD amplifies the talent of a software developer. It doesn’t make bad

programmers great, but it makes any programmer better.

TDD is very simple—the process is Red, Green, Refactor:

e We write a test and see it fail (Red).

e We write the minimum code to make it pass and see it pass
(Green).

e We refactor the code, and the test, to make them as clean,
expressive, elegant, and simple as we can (Refactor).

These steps represent three distinct phases in the design of our code.

We should be thinking differently during each of these steps.

Red

Focus on expressing the behavioral intent of your code. Concentrate
only on the public interface of your code. That is all that we are

designing at this point—nothing else.

Think only about how to write a nice, clear test that captures just what

you would like your code to do.

Focus on the design of the public interface by making the test simple to
write. If your ideas are easy to express in your test, they will also be

easy to express when someone uses your code.

Green

Do the simplest thing that makes the test pass. Even if that simple thing
seems naive. As long as the test is failing, your code is broken, and you
are at an unstable point in the development. Get back to safety (Green)

as quickly and simply as you can.

Your tests should grow to form a “behavioral specification” for your
code. Adopting the discipline of writing code only when you have a

failing test helps to better elaborate and evolve that specification.

Refactor

Once back to Green, you can safely refactor. This keeps you honest
and stops you from wandering off into the weeds and getting lost!
Make small simple steps, and then rerun the tests to confirm that

everything still works.

Refactoring is not an afterthought. This is an opportunity to think more
strategically about your design. If the setup of your tests is too
complex, your code probably has poor separation of concerns and may
be too tightly coupled to other things. If you need to include too many

other classes to test your code, perhaps your code is not very cohesive.

Practice a pause for refactoring every time you achieve a passing test.
Always look and reflect, “Could I do this better?” The three phases of
TDD are distinct, and your mental focus should also be distinct to

maximize the benefit of each phase.

There Are Great Tools in Your
bin/ Directory

Rod Hilton

Every Java developer is familiar with javac for compiling, java for
running, and probably jar for packaging Java applications. However,

many other useful tools come installed with the JDK. They are already
on your computer in your JDK’s bin/ directory and are invokable from
your PATH. It’s good to get acquainted with some of these tools so

you know what’s at your disposal:

Jps
If you’ve ever found yourself running ps aux | grep java
to find the running JVMSs, you probably just want to run jps. This
dedicated tool lists all the running JVMs, but instead of showing
you a lengthy command with CLASSPATHSs and arguments, jps
simply lists the process ID and the application’s main class name,
making it far easier to figure out which process is which. jps -1

will list the fully qualified main class name, jps -m will show the
arguments passed to the main method, and jps -V will show all
the arguments passed to the JVM itself.

javap

The JDK comes with a Java class file disassembler. Run javap
<class file> to see that class file’s fields and methods, which

can often be very enlightening for understanding what code written
in JVM-based languages such as Scala, Clojure, or Groovy is
turned into under the hood. Run javap -c <class file>to
see the complete bytecode of those methods.

Jmap
Running jmap -heap <process id> will print a summary of
the JVM process’s memory space, such as how much memory is
being used in each of the JVM’s memory generations, as well as
the heap configuration and type of GC being used. jmap -histo

<process 1id> will print a histogram of each class in the heap,
how many instances there are of that class, and how many bytes of
memory are consumed. Most critically, running jmap -

dump: format=b, file=<filename> <process 1id>will
dump a snapshot of the entire heap to a file.

Jjhat
Running jhat <heap dump file> will take the file generated
by jmap and run a local web server. You can connect to this server

in a browser to explore the heap space interactively, grouped by
package name. The “Show instance counts for all classes
(excluding platform)” link shows only instances of classes outside
of Java itself. You can also run “OQL” queries, allowing you to
query the heap space via SQL-esque syntax.

jinfo
Run jinfo <process 1id> to see all system properties the
JVM loaded with and JVM command-line flags.

jstack
Running jstack <process id> will print stack traces for all
current Java threads running in a JVM.

jconsole and jvisualvm

These are graphical tools that allow connecting to JVMs and
interactively monitoring running JVMs. They offer visual graphs
and histograms of various aspects of a running process and are a
mouse-friendly alternative to many of the tools listed above.

jshell

As of Java 9, Java has an honest-to-goodness REPL—a great tool
to check syntax, run quick Java-based commands, or try out code
and experiment without building full programs.

Many of these tools can run not only locally but against JVM processes
running on remote machines as well. These are only some of the useful
programs you already have installed; take some time to see what else is
in your JDK’s directory of executables and read their man pages—it’s

always handy to know what tools are in your toolbelt.

Think Outside the Java
Sandbox

Ian F. Darwin

/
) 04

“Java is the best language ever, for every purpose.” If you believe this,

L

3

you need to get out more. Sure, Java’s a great language, but it’s not the
only good language, nor the best for every purpose. In fact, every so
often you should—as a professional developer—take the time to learn
and use a new language, either at work or on your own. Go deep
enough to recognize how it differs in some fundamental way from what
you’re used to and whether it might be useful in your projects. In other
words: try it, you might like it. Here are a few languages you may want

to learn:

e JavaScript is the language of the browser. Despite similar
names and a dozen or so keywords, JavaScript and Java are
very different. JavaScript comes with hundreds of different
web frameworks, some of which go beyond the frontend. For
example, Node.js lets you run JavaScript server-side, which
opens up many new possibilities.

e Kotlin is a JVM language that, like most of these languages,
has a more relaxed syntax than Java, along with other features

https://nodejs.org
https://kotlinlang.org

that can give it an advantage over Java. Google uses Kotlin for
much of its work in Android and encourages its use in
Android apps. 'Nuff said!

Dart and Flutter: Dart is a compiled scripting language from
Google. Originally for web programming, it didn’t blossom
until Flutter began using Dart for Android and iOS apps (and
browser-side, someday) from one codebase.

Python, Ruby, and Perl have been around for decades and
remain among the most popular languages. The first two have
JVM implementations, Jython and JRuby, though the former
isn’t being actively maintained.

Scala, Clojure, and Frege (an implementation of Haskell) are
JVM functional programming (FP) languages. FP has a long,
narrow history, but has been making inroads into the
mainstream in recent years. Many FP languages don’t run on
the JVM as of this writing, such as Idris and Agda. Learning
FP may help you to use the functional facilities in Java 8+, if
you’re not really comfortable there.

R is an interpreted language for data manipulation. Cloned
from Bell Labs’ S for statisticians, R is now popular with data
scientists or anyone going “beyond the spreadsheet.” Lots of
stats, math, and graphics functions built-ins and add-ons.

Rust is a compiled language aimed at systems development
with features for concurrency and strong typing.

Go (“Golang”) is a compiled language invented at Google by
Robert Griesemer, Rob Pike, and Ken Thompson (cocreator of
Unix). There are multiple compilers, targeting different
operating systems natively and web development by
compiling down to JavaScript and WebAssembly.

C is ancestral to C++, Objective-C, and, to some extent, Java,

https://dartlang.org
https://flutter.dev
https://www.python.org
https://oreil.ly/jtdUQ
https://www.perl.org
https://oreil.ly/iJX8Q
http://clojure.org
https://oreil.ly/vXlmZ
https://www.haskell.org
https://oreil.ly/u0BQX
https://oreil.ly/YS0vJ
https://oreil.ly/X8wti
https://oreil.ly/eh0Tw
https://oreil.ly/PbWQW
https://oreil.ly/yDxJZ
https://oreil.ly/Shxzu
https://golang.org

C#, and Rust. (C gave these languages the basic syntax of
built-in types, method syntax, and curly braces for code blocks
and is the language to blame for int 1 = 077; having the
value 63 in Java.) If you didn’t learn assembly language, “C
level” is a place to start understanding memory models that
will give you an appreciation for Java’s way of doing things.

e JShell isn’t a language, per se—it’s a different way of doing
Java. Instead of having to write out public class
Mumble {and public static void
main(String[] args) { justto try out an expression or

some new API, just forget all the ceremony and boilerplate
and use JShell.

So go on. Step outside of Java.

https://oreil.ly/vkgl3

Thinking in Coroutines

Dawn Griffiths and David Griffiths

Coroutines are functions or methods that can be suspended and
resumed. In Kotlin, they can be used in place of threads for
asynchronous work because many coroutines can run efficiently on a
single thread.

To see how coroutines work, we’re going to create an example

program that plays these drum sequences in parallel:

Instrument Sequence
Toms X=-X-X-X-X-X-X-X-
High hat X=X=X===X=-X=-X-==-
Crash cymbal ~ ---------------- X----

We could use threads to do this, but in most systems, the sound is
played by the sound subsystem, while the code pauses until it can play
the next sound. It’s wasteful to block a valuable resource like a thread

in this way.

Instead, we’re going to create a set of coroutines: one for each of the
instruments. We’ll have a method called playBeats, which takes a

drum sequence and the name of a sound file. The full code is at

https://oreil.ly/6x0GK; a simplified version looks like this:

suspend fun playBeats(beats: String, file: String) {
for (...) { // for each beat

playSound(file)

delay(<time in milliseconds>)

Call this with playBeats("x-X-X---X-x-x---",
"high_hat.aiff"), and it will play the sequence using the
high_hat.aiff sound file. There are two things in this code that you find

in any Kotlin coroutine:

o [t begins with the suspend keyword, which means that the
function can suspend its operation at some point until some
external code restarts it.

e [t includes a nonblocking call to the delay function.

The delay function is analogous to something like Thread.sleep,

except it works by handing back control to the outside world, with a

request to resume again after the specified pause.

If that’s what a coroutine looks like, how do you call it? What calls the
coroutine, copes with it suspending, and then reschedules it when it

needs to restart? The launch function takes care of everything for us.

https://oreil.ly/6x0GK

The main method to run the coroutines looks like this:

fun main() {
runBlocking {

launch { playBeats("X-X-X-X-X-X-X-x-",
"toms.aiff") }

launch { playBeats("X-X-X---X-X-Xx---",
"high_hat.aiff") }

launch { playBeats("---------------- X----",
"crash_cymbal.aiff") }

}
}

Each call to launch accepts a block of code that calls the coroutine. A
block of code in Kotlin is like a lambda in Java. The launch function

registers the coroutine call with a scope provided by the
runBlocking function.

runBlocking runs a scheduling loop on the main thread, which
coordinates the calls to each of the coroutines. It calls each of the

playBeats coroutines in turn and waits for it to suspend by calling
delay. runBlocking then waits until some other playBeats
coroutine needs to resume. runBlocking does this until all the

coroutines complete.

You can think of coroutines as lightweight threads: they allow you to
mentally split work into separate simple tasks, which appear to run

concurrently while running on the same thread.

Coroutines are invaluable when writing code for Android, which
enforces a strict threading model in which some operations must run on

the main UI thread. But they’re also useful for creating scalable server-

side applications that must make efficient use of existing threads.

Threads Are Infrastructure;
Treat Them as Such

Russel Winder

How many Java programmers manage—or even think about—stack
use during their programming? More or less none. The vast majority of
Java programmers leave stack management to the compiler and

runtime system.

How many Java programmers manage—or even think about—heap use
during their programming? Very few. The majority of Java
programmers assume the garbage collection system will deal with all

heap management.

So why are so many Java programmers managing all their threads
manually? Because that is what they were taught to do. From the
beginning, Java supported shared memory multithreading, which was

almost certainly a big error.

Almost all that most Java programmers know about concurrency and

parallelism is founded on the theory of constructing operating systems

from the 1960s. If you are writing an operating system then this is all
good stuff, but are most Java programs actually operating systems? No.

So a rethink is in order.

If your code has any synchronized statements, locks, mutexes—all the
paraphernalia of operating systems—then in all likelihood, you are
doing it wrong. This is the wrong level of abstraction for most Java
programmers. Just as stack space and heap space are managed
resources, threads should be considered managed resources. Instead of
creating threads explicitly and managing them, construct tasks and
submit them to a thread pool. Tasks should be single threaded—
obviously! If you have many tasks that need to communicate with one
another, then rather than using shared memory, use a thread-safe queue

instead.

All of this was already known in the 1970s, culminating in Sir Charles
Antony (Tony) Richard Hoare creating Communicating Sequential
Processes (CSP) as an algebra for describing concurrent and parallel
computation. Sadly, it was ignored by the majority of programmers in
the rush to use shared memory multithreading, with every program
being a new operating system. During the 2000s, though, many looked
to get back to sequential processes communicating. Perhaps the most
high profile advocate of this in recent years has been the Go
programming language. It is all about sequential processes

communicating, made to execute via an underlying thread pool.

Many use the terms actors, dataflow, CSP, or active objects, all of
which are variations on the sequential process and communication

theme. Akka, Quasar, and GPars are all frameworks providing various

forms of task over a thread pool. The Java platform comes with the
Fork/Join framework, which can be used explicitly and also underpins

the Streams library, the revolution of Java introduced in Java 8.

Threads as a managed resource is the correct level of abstraction for the
vast majority of Java programmers. Actors, dataflow, CSP, and active
objects are the abstractions for the vast majority of programmers to

use. Giving up manual control over threads releases Java programmers

to write simpler, more comprehensible, more maintainable systems.

The Three Traits of Really,
Really Good Developers

Jannah Patchay

My undergraduate degree was in computer science and math, and the
first few years of my career were spent working as a Java developer. I
really enjoyed my time as a developer. Like many mathematicians, I
had an obsession with writing clean and elegant code, and I would
refactor my code for ages until it was as near to perfection as it could
get. [was aware of the end users, but only to the extent that they
provided the requirements that created the challenges that I would then

have to solve.

Fast-forward to 20 years after I graduated, and I’m now on a
completely different path, consulting on financial markets regulation
and market structure, with a particular interest in financial innovation,
which also keeps me in touch with my techie roots. I’ve worked with
many developers over the years, from the other side of the fence as the
person who provides and clarifies the requirements. And over time,
I’ve developed a greater appreciation of certain traits that really, really

good developers have that go beyond technical ability.

The first and most important is curiosity. The same drive that causes
you to want to solve problems, to understand how things work, and to
build new things, can and should be applied to your interactions with
your clients and stakeholders. It’s great when developers ask lots of
questions about the business domain because it shows that they really
want to understand and to learn. It also leads to a better understanding
of the business domain and the ability to address the problems of end
users more effectively. I've encountered loads of development
managers who actively dissuade their teams from “bothering” the

business too much with questions. That’s so wrong.

The second and third are empathy and imagination. It’s about the
ability to put yourself in your end user’s shoes and try to understand
their priorities and experience of using your software. It’s also the
ability to then come up with creative solutions to the challenges that
they face, using your technical expertise. Many developers tend to
dismiss a lot of this stuff as unimportant or to assume that it’s for
someone else to deal with. But it’s much more effective, and makes
you a better developer, if you are able to communicate directly with the

business yourself.

These might sound like obvious things. But they are so important. I
recently attended a conference on tech and innovation that focused on
the importance of collaboration between technology and the business in
order to best leverage emerging technologies like the cloud, distributed
ledger technology, and artificial intelligence/machine learning. Many
speakers emphasized the importance of breaking down walls between
developers and end users. Some now embed developers into their

business teams and expect them to know just as much about the

business domain. So this is also about the future and about how to
work smarter. If you can cultivate these skills, it can also open doors

for you.

Trade-Offs in a Microservices
Architecture

Kenny Bastani

Is there an optimal software architecture? What does it look like? How
do we measure “optimal” when it comes to building and operating
software? An optimal software architecture is one that has maximal
flexibility for change at the lowest possible cost. Here, cost is measured
in terms of certain qualities that represent a software architecture’s
design and implementation—in addition to the cost of the infrastructure
to operate it. The defining trait of a software quality is that it can be

tangibly measured and has an impact on other qualities.

For example, if a software architecture requires strong consistency
guarantees, there is an impact on qualities like performance and
availability. Eric Brewer created the CAP theorem to describe a set of
measurable trade-offs where you can only choose two out of three
guarantees for running a database: consistency, availability, and
partition tolerance. The theorem states that when applications share
state across the boundaries of a network, you must choose between

consistency or availability, but you cannot have both.

One of the main problems with microservices is that there is no single
comprehensive definition. Moreover, microservices are a collection of
concepts and ideas that are based on a set of constraints for delivering a
services architecture. A microservice, or any piece of software you
build, is a history of choices—which will affect your ability to make

new choices today.

Microservices may not have a single definition, but they do most

commonly have the following characteristics:

¢ Independent deployability

e Organized around business capabilities
e Database per service

e One application, one team

e API-first

e Continuous delivery

As you go out into the world of software development, you will
eventually find that there is no such thing as the right choice. Indeed,
most developers or operators might believe there is a best choice, and
you may find that they argue strongly in favor of that choice. As you
encounter more and more opportunities to make a decision between
multiple choices, for instance, which database to use, you’ll eventually
come to discover that all available options introduce certain trade-offs.

That is, you will usually have to lose something to gain something.

Here is a short list of trade-offs you might encounter when making a

decision to include a dependency for your microservice:

Availabi
lity

Perform
ance

Consiste
ncy

Speed

Compos
ability

Comput
e

Scalabili
ty

Margina
lity

Partition
toleranc
e

How often is my system available to its users?

What is the overall performance of my system?

What guarantees does my system provide about consistency?

How fast can I deploy a single line of code change to

production?

What percentage of an architecture and codebase can be reused
instead of duplicated?

What is the cost of my system’s compute under peak load?
What is the cost of adding capacity if peak load continues to
increase?

What is the average diminishing marginal return of adding
developers to my team?

If a partition in the network causes an outage or latency, will my
application experience or cause a cascading failure?

How does answering one question affect answering the others?

You will find each of these questions often has some kind of relation to

the other questions. If you ever find yourself making a tough decision

in a software architecture that uses microservices, come back to this list

of questions.

Uncheck Your Exceptions

Kevlin Henney

If you ever want to walk to hell, the journey will be easy on your feet.
The whole road is very well paved, with good intentions as far as the
eye can see. At least one of those paving stones is dedicated to Java’s

checked exception model.

A checked exception is one that, if not handled within a method, must
appear in the method’s throws clause. Any class descended from
Throwable can be listed after throws, but unhandled checked
exceptions (not descended from either RuntimeException or
Error) must appear. This is a feature of the Java language, but it has

no meaning for the JVM and is not a requirement for JVM languages.

The good intention here promotes a method’s failures to the same type-
level significance as its success-scenario inputs and outputs. At first
sight, this seems reasonable. Indeed, in a small and closed codebase,
this type-level confidence that some exceptions are not overlooked is
an easy goal to meet and, once met, offers some (very) basic

reassurance about the completeness of the code.

Practices that might work in the small, however, are under no
obligation to scale. Java’s checked exceptions were an experiment in
combining control flow with types, and experiments produce results.

The designers of C# learned from the experience:

C# neither requires nor allows such exception specifications.
Examination of small programs leads to the conclusion that
requiring exception specifications could both enhance developer
productivity and enhance code quality, but experience with large
software projects suggests a different result—decreased productivity
and little or no increase in code quality.

The designers of C#, of other JVM languages, of other non-JVM
languages...whatever the original intent, the day-to-day reality of
checked exceptions is they’re perceived as obstacles. And if there’s one

thing programmers are skilled at, it’s working around obstacles.

Compiler complaining about an unhandled checked exception? One
IDE shortcut later, the obstacle is gone! In its place, you have an ever-

lengthening throws clause that pushes incidental information into

published signatures, often leaking details that should be encapsulated.

Or perhaps you add throws Exceptionor throws
OurCompanyException to every method, noisily defeating the

goal of being specific about failure?

How about catch-and-kill? If you’re in a rush to push your code,
there’s nothing an empty catch block can’t fix! You are Gandalf to

the checked exception’s Balrog—“You shall not pass!”

Checked exceptions bring and inspire syntactic baggage. But the issues

https://oreil.ly/rCT18

run deeper. This is not simply a matter of programmer discipline or
tolerating verbosity: for frameworks and extensible code, checked

exceptions are flawed from the outset.

When publishing an interface, you’re committing to a contract signed
with method signatures. As Tolstoy recognized in Anna Karenina, the
rainy-day scenarios are not as simple, as certain, or as knowable up

front as the happy-day scenarios:

All happy families are alike; each unhappy family is unhappy in its
own way.

Interface stability is hard. Interface evolution is hard. Adding throws

makes everything harder.

If someone plugs code into yours, and uses your code in their
application, they know what they might be throwing, but you neither
know nor care. Your code should let exceptions pass from their
plugged-in code through to the handlers in their main application code.

Open inversion of control demands exception transparency.

If they’re using checked exceptions, however, they can’t use your
interfaces unless you add throws Exception to every method—
noise that creates a burden on all dependent code—or unless they
tunnel their exceptions wrapped in a RuntimeException...or
unless they change their approach, standardizing on unchecked

exceptions instead.

This last option is the lightest, most stable, and most open approach of
all.

Unlocking the Hidden
Potential of Integration
Testing Using Containers

Kevin Wittek

—y

Most Java developers have probably encountered the testing pyramid at
one point in their career, whether as part of a computer science
curriculum or mentioned in conference talks, articles, or blog posts. We
can find a multitude of origin stories and variations of this metaphor
(with a deep dive into those worthy of an article on its own) but, in
general, it boils down to having a sizeable foundation of unit tests,
followed by a smaller chunk of integration tests on top of that, and an

even smaller tip of end-to-end UI tests.

This shape is proposed as an ideally optimal ratio of the different test
classes. However, as with everything in software and computers, these
guidelines need to be assessed in context, which means assuming
integration tests to be slow and brittle. And this assumption is probably
true if integration tests are expected to be run in a shared testing

environment or require an extensive setup of local dependencies. But

would the ideal shape still be a pyramid if we challenge these

assumptions?

With ever more powerful machines, we can either use virtual machines
(VMs) to wholly contain the complete development environment or use
them to manage and run the external dependencies necessary for
integration testing (such as databases or message brokers). But since
most VM implementations aren’t overhead free, this will add
considerable load and resource consumption to the developer
workstation. Also, start and creation times of VMs are too high for an

ad hoc setup of a required environment as part of test execution.

The advent of user-friendly container technology, on the other hand,
allows new testing paradigms to emerge. These low-overhead container
implementations (being essentially an isolated process with its own
self-contained file system) enable the creation and instrumentation of
required services on demand and the usage of uniform tooling. Still,
this instrumentation has been mostly done manually and laboriously
outside of the actual test execution, slowing onboarding of new

developers and introducing the potential for clerical mistakes.

In my opinion, the goal we as a community should strive for is to make
the setup and instrumentation of the test environment an integral part of
the test execution and even of the test code itself. In the case of Java,
this means that executing a JUnit test suite, whether done by the IDE or
the build tool, would implicitly lead to the creation and configuration
of a set of containers necessary for the tests. And this goal is

achievable with today’s technology!

We can interact directly with the container engine using existing APIs
or command-line tools, thereby writing our own “container driver”—
note, however, the distinction between starting a container and the
readiness of the service inside the container for testing. Alternatively,
there is also the opportunity to explore the Java ecosystem for existing
projects that deliver these functionalities on a higher level of
abstraction. Either way, it’s time to unleash the power of good
integration tests and to emancipate them from the shackles of their

past!

The Unreasonable
Effectiveness of Fuzz Testing

Nat Pryce

Whether using test-driven development or not, programmers writing
automated tests suffer from positive test bias: 2 they are more likely
to test that the software behaves correctly when given valid input than
that the software is robust when given invalid input. As a result, our
test suites fail to detect entire classes of defects. Fuzz testing® is an
unreasonably effective technique for negative testing that is easy to
include in existing automated test suites. Including fuzz tests in your
test-driven development process will help you build more robust

systems.

For example, we were extending the software of a widely used
consumer product to fetch data from web services. Although we were
careful to write robust networking code and test-drove negative as well
as positive cases, fuzzing immediately uncovered a surprising number
of inputs that would make the software throw unexpected exceptions.
Many of the standard Java APIs that parse data throw unchecked

exceptions, so the type checker hadn’t been able to ensure that the

application handled all possible parsing errors. These unexpected
exceptions could leave the device in an unknown state. In a consumer
device, even one that can be updated remotely, that can mean an

expensive increase in customer support calls or engineer callouts.

A fuzz test generates many random inputs, feeds them into the software
under test, and checks that the software continues to exhibit acceptable
behavior. To provide useful coverage, a fuzzer must generate inputs
that are valid enough not to be rejected by the software immediately,
but invalid enough to uncover corner cases that are not covered or

defects in error-handling logic.

There are two ways to approach this:

e Mutation-based fuzzers mutate examples of good input to
create possibly invalid test inputs.

e Generation-based fuzzers generate inputs from a formal
model, such as a grammar, that defines the structure of valid
inputs.

Mutation-based fuzzers are considered impractical for black box
testing because it is difficult to obtain enough samples of valid input.?
However, when we test-drive our code, the positive test cases provide a
ready-made collection of valid inputs that exercise many of the control
paths in the software. Mutation-based fuzzing becomes not just

practical, but easy to apply.

Running thousands of random inputs through the entire system can
take a long time. Again, if we fuzz during development, we can fuzz

test particular functions of our system and design them so they can be

tested in isolation. We then use fuzzing to check the correct behavior of
those units and type checking to ensure that they compose correctly

with the rest of the system.

Here’s an example fuzz test that, along with the type checker, ensures a
JSON message parser will throw only the checked exceptions declared

in its signature:

@Test public void
only_throws_declared_exceptions_on_unexpected_json() {
JsonMutator mutator = new JsonMutator();
mutator.mutate(validJsonMessages(), 1000)
.forEach(possiblyInvalidJsonMessage -> {
try {
// we don't care about the parsed result in
this test
parseJsonMessage(possiblyInvalidJsonMessage);
3

catch (FormatException e) {
// allowed
by

catch (RuntimeException t) {
fail("unexpected exception: " + t +
" for input: " +
possiblyInvalidJsonMessage);

}
});

Fuzz testing is now an essential part of my test-driven development
toolbox. It helps eliminate defects and guides the design of the system

to be more compositional.

A simple library for doing mutation-based fuzz testing in Java and

Kotlin projects is available on GitHub.

https://oreil.ly/nxVuC

Adnan Causevic, Rakesh Shukla, Sasikumar Punnekkat, and Daniel
Sundmark, “Effects of Negative Testing on TDD: An Industrial Experiment.”
In Hubert Baumeister and Barbara Weber, eds., Agile Processes in Software
Engineering and Extreme Programming: 14th International Conference, XP
2013, Vienna, Austria, June 3—7, 2013. (Berlin: Springer, 2013), 91-105,
https://oreil.ly/qX_4n.

Laura Marie Leventhal, Barbee M. Teasley, Diane S. Rohlman, and Keith
Instone, “Positive Test Bias in Software Testing among Professionals: A
Review.” In Leonard.J. Bass, Juri Gornostaev, and Claus Unger, eds.,
Human-Computer Interaction EWHCI 1993 Lecture Notes in Computer
Science, vol 753. (Berlin: Springer, 1993), 210-218, https://oreil.ly/FTecF.

Michael Sutton, Adam Greene, and Pedram Amini, Fuzzing: Brute Force
Vulnerability Discovery (Upper Saddle River, NJ: Addison-Wesley
Professional, 2007).

Charlie Miller and Zachary N.J. Peterson, “Analysis of Mutation and
Generation-Based Fuzzing” (DefCon 15, 2007), 1-7.

https://oreil.ly/qX_4n
https://oreil.ly/FTecF

Use Coverage to Improve
Your Unit Tests

Emily Bache

Measuring the coverage of your tests is easier than ever. In a modern
IDE, the button to run your tests with coverage is right next to the ones
to run or debug them. The coverage results are presented class by class
with little chart graphics, as well as relevant lines being highlighted in

color in the source code.

Coverage data is easy to get hold of. What is the best way to use it,
though?

When You're Writing New Code

Most people agree that you should deliver unit tests together with all
the code you write. You can argue about which order to do things in,
but in my experience, what works best is short feedback loops. Write a
little test code, write a little production code, and build up the
functionality together with the tests. When I’'m working like this, I will
run the tests with coverage from time to time as additional insurance

that I haven’t forgotten to test some new code I’ve just written.

The main danger here is that you become very satisfied with a high
coverage number and don’t notice you’re missing both code and tests
for a crucial piece of functionality. Perhaps you forgot to add error
handling. Perhaps you missed out on a business rule. If you never
wrote the production code in the first place, then coverage

measurements can’t discover that for you.

When You Have to Change Code You Didn’t
Write

Modifying code that you didn’t write yourself that has poor or missing
tests can be challenging—particularly if you don’t really understand
what it does but you still have to change it. When I’m faced with this
situation, test coverage is one of the ways I learn about how good the

tests are and which parts I can refactor more confidently.

I can also lean on the coverage data to discover new test cases and
increase the covered areas. This can get dangerous, though. If I write
tests purely to increase coverage, I can end up coupling the tests quite

closely to the implementation.

When You’re Working in a Team

One of the characteristics of a team is that you have “norms” or
accepted behaviors that everyone agrees on, whether implicitly or
explicitly. One of your team norms could be that you make coverage
measurements part of your code and test review process. It can help
you to see where tests are missing—perhaps some team members need

more support and training to write better tests. It can also be

encouraging when you see that complicated new functionality is well

covered.

If you regularly measure test coverage for your whole codebase, I
would encourage you to look at trends more than absolute numbers.
I’ve seen arbitrary coverage targets lead to people preferring to test
only what’s easy to test. People can avoid doing refactoring because it
will introduce new lines of code and lower their coverage overall. I've
seen tests written with missing or very weak assertions just to improve

the coverage numbers.

Coverage is supposed to help you improve your unit tests, and unit
tests are supposed to make it easier to refactor. Coverage
measurements are a tool to help you improve your unit tests and make

your life easier.

Use Custom ldentity
Annotations Liberally

Mark Richards

Annotations in Java are easy to write, easy to use, and very powerful—
at least, some are. Traditionally, annotations in Java have provided a
convenient way to implement aspect-oriented programming (AOP), a
technique intended to separate out common behavioral concerns by
injecting behavior at specified points in the code. However, most
developers have largely abandoned AOP due to undesirable side effects

as well as the desire to have all the code in one place—the class file.

Identity annotations are entirely different in that they don’t contain any
functionality. Instead, they only provide programmatic information that
can be used to govern, analyze, or document some aspect of the code or
architecture. You can use identity annotations to identify transaction
boundaries or a domain or subdomain, describe a service taxonomy,

denote framework code, and employ them in dozens of other use cases.

For example, identifying classes that are part of the underlying

framework (or template code in microservices) is often important so

changes can be closely monitored or guarded. The following

annotation does just this:

@Retention(RetentionPolicy.RUNTIME)
@Target (ElementType.TYPE)
public @interface Framework {}

@Framework
public class Logger {...}

Wait—this annotation does nothing! Or does it? It denotes this class as
a framework-related class, meaning changes to this class can impact
almost all other classes. You can write automated tests to send a
notification if any framework code has changed this iteration. It also
lets developers know they are modifying a class that is part of the

underlying framework code.

The following is a list of other common identity annotations I use on a
regular basis (all of these are specified at the class level):

public @interface ServiceEntrypoint {}
Identifies the entry point of a microservice. It’s also used as a
placeholder for other service description annotations listed below.

Usage: @ServiceEntrypoint

public @interface Saga {public Transaction[]
value()...}

Identifies services that are involved in a distributed transaction. The
Transaction value lists the transactions that span multiple
services. It’s added to classes that contain an
@ServiceEntrypoint annotation.

Usage: @Saga({Transaction.CANCEL_ORDER})

public @interface ServiceDomain {public Domain
value()...}

Identifies the logical domain (e.g., Payment, Shipping, Issuer, etc.)
that the service belongs to (identified by the Domain value). It’s
added to classes that contain an @ServiceEntrypoint
annotation.

Usage: @ServiceDomain(Domain.PAYMENT)

public @interface ServiceType {public Type
value()...}

Identifies the classification of a service. The Type value

enumerates the defined service types (classification). It’s added to
classes that contain an @ServiceEntrypoint annotation.

Usage: @ServiceType(Type.ORCHESTRATION)

public @interface SharedService {}
Identifies a class as one that contains common (shared) code across
the application (e.g., formatters, calculators, logging, security, etc.).

Usage: @SharedService

Identity annotations are a form of programmatic documentation.
Unlike unstructured class comments, identity annotations provide a
consistent means to ensure compliance or perform analytics, or they
can be used to inform a developer of the context of a class or service.
For example, you can leverage annotations when writing fitness
functions using ArchUnit to ensure all shared classes reside in the

services layer of the application:

@Test
public void
shared_services_should_reside_in_services_layer() {

classes().that().areAnnotatedwWith(SharedService.class)

https://www.archunit.org

.should().resideInAPackage("..services..").check(myCla
sses);

}

Instead of comments, consider embracing identity annotations. Use
them liberally to gain information, analytics, and programmatic control

over your services or applications.

Use Testing to Develop Better
Software Faster

Marit van Dijk

Testing your code will help you verify that your code does what you
expect it to do. Tests will also help you to add, change, or remove
functionality without breaking anything. But testing can have

additional benefits.

Merely thinking about what to test will help to identify different ways
the software will be used, discover things that are not clear yet, and
better understand what the code should (and shouldn’t) do. Thinking
about how to test these things before even starting your implementation
could also improve your application’s testability and architecture. All
of this will help you build a better solution before the tests and code are

written.

Alongside the architecture of your system, think not only about what to
test but also where to test. Business logic should be tested as close as
possible to where it lives: unit tests to test small units (methods and

classes), integration tests to test the integration between different

components, contract tests to prevent breaking your API, etc.

Consider how to interact with your application in the context of a test,
and use tools designed for that particular layer, from unit test (e.g.,
JUnit, TestNG), to API (e.g., Postman, REST-assured, RestTemplate),
to UI (e.g., Selenium, Cypress).

Keep the goal of a particular test type in mind, and use the tools for
that purpose, such as Gatling or JMeter for performance tests, Spring
Cloud Contract testing or Pact for contract testing, and PITest for

mutation testing.

But it is not enough to just use those tools: they should be used as
intended. You could take a hammer to a screw, but both the wood and

the screw will be worse off.

Test automation is part of your system and will need to be maintained
alongside production code. Make sure those tests add value, and

consider the cost of running and maintaining them.

Tests should be reliable and increase confidence. If a test is flaky,
either fix it or delete it. Don’t ignore it—you’ll waste time later
wondering why that test is being ignored. Delete tests (and code) that

are no longer valuable.

A failing test should tell you exactly what is wrong quickly, without

you having to spend a lot of time analyzing the failure. This means:

e Each test should test one thing.

e Use meaningful, descriptive names. Don’t just describe what
the test does either (we can read the code); tell us why it does
this. This can help decide whether a test should be updated
inline with changed functionality or whether an actual failure
that should be fixed has been found.

e Matcher libraries, such as Hamcrest, can help provide detailed
information about the difference between expected and actual
results.

e Never trust a test you haven’t seen fail.

Not everything can (or should) be automated. No tool can tell you what
it’s actually like to use your application. Don’t be afraid to fire up your
application and explore; humans are way better at noticing things that
are slightly “off” than machines. And besides, not everything will be

worth the effort of automating.

Testing should give you the right feedback at the right time to provide
enough confidence to take the next step in your software development
life cycle, from committing to merging to deploying and unlocking

features. Doing this well will help you deliver better software faster.

Using Object-Oriented
Principles Iin Test Code

Angie Jones

When writing test code, it’s important to exercise the same care that
you’d use when developing production code. Here are common ways

to use object-oriented (OO) principles when implementing test code.

Encapsulation

The Page Object Model design pattern is commonly used in test
automation. This pattern prescribes creating a class to interact with a
page of the application under test. Within this class are the locator
objects for the elements of the web page and the methods to interact

with those elements.

It’s best to properly encapsulate by restricting access to the locators

themselves and only exposing their corresponding methods:

public class SearchPage {
private WebDriver driver;
private By searchButton = By.id("searchButton");
private By queryField = By.id('"query");

https://oreil.ly/guEVi

public SearchPage(WebDriver driver){
this.driver = driver;
}

public void search(String query) {

driver.findElement(queryField).sendKeys(query);
driver.findElement(searchButton).click();
b

Inheritance

While inheritance should not be abused, it can certainly be useful in
test code. For example, given there are header and footer components
that exist on every page, it’s redundant to create fields and methods for
interacting with these components within every Page Object class.
Instead, create a base Page class containing the common members that
exist on every page, and have your Page Object classes inherit from
this class. Your test code will now have access to anything in the
header and footer no matter what Page Object they are currently

interacting with.

Another good use case for inheritance within test code is when a given
page has various implementations. For example, your app may contain
a User Profile page that has different functionality based on roles (e.g.,
Administrator, Member). While there are differences, there could also
be overlap. Duplicating code across two classes is not ideal. Instead,
create a ProfilePage class that contains the common
elements/interactions, and create subclasses (e.g.,
AdminProfilePage, MemberProfilePage) that implement the

unique interactions and inherit the common ones.

Polymorphism

Assume we have a convenience method that goes to the User Profile
page. This method doesn’t know what type of profile page it is—an

Administrator or a Member.

You’'re faced with a design decision here. Do you make two methods—
one for each of the profile types? This seems like overkill since they

both would do the exact same thing but just have a different return
type.

Instead, return the superclass (ProfilePage) since both
AdminProfilePage and MemberProfilePage are both
subclasses of ProfilePage. The test method that is calling this

convenience method has more context and can cast accordingly:

@Test

public void badge_exists_on_admin_profile() {
var adminProfile =

(AdminProfilePage)page.goToProfile("@admin");

}

Abstraction

Abstraction is used sparingly in test code, but there are valid use cases.
Consider a type of widget that has been customized for different usages
throughout the app. Creating an abstract class that specifies the
behaviors expected is helpful when developing classes that interact

with specific implementations of that widget:

public abstract class ListWidget {
protected abstract List<WebElement> getItems();
int getNumberOfItems() {
return getItems().size();
}

}

public class ProductList extends ListWidget {
private By productlLocator =
By.cssSelector(".product-item");
@Override
protected List<WebElement> getItems() {
return driver.findElements(productLocator);
b

Test code is indeed code, meaning that it has to be maintained,
enhanced, and scaled. Therefore, it’s in your best interest to follow
good programming practices when developing it—including the
foundational OO principles.

Using the Power of
Community to Enhance Your
Career

Sam Hepburn

\

It’s no longer enough to just be a great Java developer. If you want to
advance your career, you need to be blogging, speaking at conferences,
engaging on social media, committing to open source, and the list goes
on. This can feel like a daunting task and you’re probably asking
yourself, “Why? Why is my technical ability not enough?” Well, the
short answer is that a lot of the time, the people making decisions about
your career will never see your code. You need to ensure that those

people are hearing and seeing your name.

The Silver Lining

You don’t need to do it all, and there are communities to help you
along the way. If the idea of standing on a stage in front of 10, 50, 100,

or more people literally puts you into a panic attack, don’t do it.

On the other hand, if you’re nervous and feel like you’ve got nothing to

say, that’s something that a community can help with. Have you ever
fixed an issue you’ve been fighting with and thought to yourself, “If
only I could have learned from someone who’s done this already”?
Everyone has these thoughts; they make for great subjects to cover in a
talk or blog post.

If it’s the fear of talking on stage, then start off small: present
something to your team before submitting to a local Java User Group

(JUG) or conference.

How Can Community Help?

As well as building your profile, another reason why engaging in
community is so valuable is the content shared and conversations had.
Technology is moving so fast that being a part of a community means
you don’t need to wait for a book to be published to get access to great
content. The people writing those books, researching the latest
technologies, are sharing their insights at community events, on blogs,

and discussing them on forums.

The people in the communities that you’re likely already involved with
can all help you become better. From the speakers to the attendees, the
things you learn from each other are sometimes more valuable than the
overarching content of the event. Don’t be afraid to ask questions of
everyone in the room. Thought leadership can be shared in so many
ways, and the people sitting next to you may have the answers you’ve

been looking for.

If you’re from a location that does not have a thriving Java community,

don’t panic—check out the Virtual JUG.

Looking for Your Next Challenge?

If you’re after a new challenge, then community can really help you in
your job search. If a hiring manager can avoid looking through the
hundred applications on their desk to hire someone they know will fit
in the team with the right skills, they’ll do it.

What’s the best way to get to the top of the pile? Find ways to interact
outside of the application process. Meeting in person at local user
groups will also allow you to understand what it’s really like to work
with the team. None of this candy-coated interview process only to find
out on your first day that you’re not in an environment that’s right for

you.

This circles back to where we started: the people making decisions

about your career don’t always see your code!

https://virtualjug.com

What Is the JCP Program and
How to Participate

Heather VanCura

The Java Community Process (JCP) Program is the process by which
the international Java community standardizes and ratifies the
specifications for Java technologies. The JCP Program ensures high-
quality specifications are developed using an inclusive, consensus-
based approach. Specifications ratified by the JCP Program must be
accompanied by a Reference Implementation (to prove the
Specification can be implemented) and a Technology Compatibility Kit
(a suite of tests, tools, and documentation used to test implementations

for compliance with the Specification).

Experience has shown that the best way to produce a technology
specification is to use an open and inclusive process to develop a
specification and implementation, informed by a group of industry
experts with a variety of viewpoints. This also includes giving the
community opportunities to review and comment, and also a strong
technical lead to ensure the technical goals are met and the

specification integrates with other relevant specifications.

https://oreil.ly/t6agC
https://oreil.ly/vzEzX

An Executive Committee (EC) representing a cross-section of major
stakeholders—such as Java vendors, large financial institutions
utilizing Java to run their business, open source groups, and other
members of the Java community, including individuals and user groups
—is responsible for approving the passage of Specifications through
the JCP Program’s various stages and for reconciling discrepancies

between Specifications and their associated test suites.

After being introduced in 1999, the JCP Program has continued to
evolve over time using the process itself, through an effort called
JCP.next, with the work being carried out in the open by the JCP EC.
JCP.next is a series of Java Specification Requests (JSRs) designed to
focus on transparency, streamlining the JCP program, and broadening
its membership. These JSRs modify the JCP’s processes by modifying
the JCP Process Document. Once the changes are complete, they apply
to all new JSRs and to future Maintenance Releases of existing JSRs

for the Java platform.

For example, JSR 364, Broadening JCP Membership, was put into
effect as JCP version 2.10. This JSR broadened JCP participation by
defining new membership classes, enabling greater participation by the
community, and helping ensure the appropriate intellectual property
commitments from JCP Members. Any Java developer can join the
JCP Program, and depending on the type of membership, JCP
Members can participate as a JSR Spec Lead, Expert Group Member,

or Contributor.

JSR 387, Streamline the JCP Program, was put into effect as version

2.11. This JSR streamlines the JSR life cycle process to bring it in line

https://oreil.ly/J7Sng
https://oreil.ly/8Xg8c
https://oreil.ly/q3X1U
https://oreil.ly/ce2ag

with the way Java technology is developed today, specifically enabling
JSRs to be able to complete and keep up with the six-month Java
platform release cycle cadence. Through this JSR we also resized the
JCP EC.

With many changes in the Java community, the continuation of the JCP
Program remains constant. Anyone can apply to join and participate in
the JCP Program—either as a Corporation or Non-Profit (Full
Member), Java User Group (Partner Member), or Individual (Associate
Member). The stability of the JCP Program and participation from
community members ensures continued success of the Java platform
and its future. Standards enable execution of technical strategies, and
the JCP enables collaboration of industry and participation from the

developer community.

Compatibility matters—the Spec, RI, and TCK required by the JCP
Program enable an ecosystem to be built up around Java technologies.
The JCP Program provides the foundation and structure for this—IP
rights and obligations are covered, and choice in implementations that
pass the TCK benefits the ecosystem—this is key to success and

continued popularity of Java technology.

https://oreil.ly/eSzdV
https://oreil.ly/z8rot

Why | Don’t Hold Any Value In
Certifications

Colin Vipurs

Some time back—it must have been around the mid-noughties—one of
my friends had taken and passed the Java Certified Programmer exam
with an impressive score of 98%. Eager to keep up, I took one of the
practice tests during a lunch break and, although I didn’t score as high,
I got a passing grade. One question on the exam has always stuck in
my mind. It was to do with the inheritance hierarchy in Swing
applications, something I had no problem answering as my day job was
working with Swing, but it did strike me as odd to ask something that
could easily be looked up in your IDE. I never did get around to taking
the exam, mostly due to being partway through studying for my

master’s degree at the time.

Fast-forward a few years, and I had just started a new job. During the
first week, I was asked by one of my new colleagues if I was Java 5
certified. “No,” I replied, “but I have been using it for the last year.”
Turns out he was certified, so good news for me that someone on my

team would have a base level of knowledge and skill. It was less than

two weeks later that he asked why we have to bother overriding
hashCode when we override equals. He genuinely didn’t
understand the relationship between the two methods. This was just the

tip of what he didn’t know, yet he was certified!

Fast-forward another few years, and I’m contracting at a place where
the company policy was that every permanent employee be certified, at
least to what was then the Java Certified Programmer level. I did meet
some good developers there, and good developers had passed through
the ranks, but there were some truly awful developers as well—all of

whom were certified.

A quick look at the Oracle site for Java Certification tells you that
being certified will “Help you position yourself with validation that
you posses the full skill set and knowledge to be a Professional Java
Developer” and “Earn you more credibility, help you perform better in
your daily job, and lead your team and company forward.” Rubbish.
Being a “professional developer” and performing “better in your day
job” have little to do with what you’ll need in order to become
certified. You can learn enough to pass the exams without ever writing
a line of code. As an industry, we can’t even definitively tell you what
“good” and “bad” are, so a piece of paper claiming to do so is

worthless.

There are, of course, exceptions to every rule. I have met a few people
—well, at least one—who have used Java certification as a way to
bolster their own knowledge. They used it as a way to learn things they
otherwise wouldn’t have had to as part of their day job, and to those

people I take my hat off. In over twenty years of writing software

professionally, one thing about certifications has never changed: the

good developers don’t need it, but the bad ones can easily achieve it.

Write One-Sentence
Documentation Comments

Peter Hilton

A common fallacy is to assume authors of incomprehensible code
will somehow be able to express themselves lucidly and clearly in
comments.

—Kevlin Henney

You’re probably either writing too many comments in your code, or
none at all. Too many generally means too many to maintain, which
risk becoming dangerously inaccurate comments that you’re better off
deleting. Too many is also likely to mean that they’re badly written and
unimproved, because it’s hard to write “lucidly and clearly.” None at
all means relying on perfect naming, code structure, and tests, which is

even harder than it sounds.

We’ve all seen a lot of code whose authors didn’t write any comments
at all, whether to save time, because they didn’t want to, or because
they thought their code was self-documenting. Sometimes code really
is that well written: the first thousand lines of a new project, the hobby

project written in artisanal handcrafted code, and maybe the mature

well-maintained library project whose narrow focus keeps the codebase

small.

Large applications are different, especially enterprise business
applications. Comments are a problem when you’re maintaining
100,000 lines of code that other people wrote and are still adding to.
That code isn’t all going to be perfect, and needs some explanation.

The hard question is how much explanation: how many comments?

The answer to commenting large application codebases is to write one-

sentence documentation comments, as follows:

1. Write the best code you can.

2. Write a one-sentence documentation comment for every
public class and method/function.

3. Refactor the code.
4. Delete unnecessary comments.

5. Rewrite bad comments (because all good writing requires
rewriting).

6. Only add detail where absolutely necessary.

This approach helps you discover which comments are necessary,
either because the code cannot explain things like why it exists or
because you haven’t had time to refactor it yet. You find out when you
write the one-sentence comment: if a good comment takes several
minutes to write, then it’s necessary and will save you and other

readers time in the future.

If you wrote a good comment as fast as you can type, then you

identified “obvious” code that doesn’t need the comment, which you
must immediately delete. The trick is that this discovery requires
actually writing the comment, however obvious you think the code is,

and especially if you wrote it yourself. Do not skip this step!

You always need a minimum number of comments that comment only
what the code cannot say,* answering the why questions that you can’t
answer in code. Limiting these to one sentence per public interface
makes the writing, code review, and maintenance effort realistic, and

lets you focus on quality and brevity.

Don’t write more than one sentence unless you really have to. There
might be more why questions, unusual complexity, or obscure domain
language jargon to explain, especially abbreviations. Delegate where

you can: problem domains often have Wikipedia pages you can link to.

Comments are amazingly useful if they’re good, mainly because we
spend more time reading code than writing it. Comments are also the
only feature common to all general programming languages. When
programming, use the best language for the job. Sometimes, it’s
English.

1 97 Things Every Programmer Should Know (O’Reilly)

https://oreil.ly/71NUx

Write “Readable Code”

Dave Farley

We have all heard that good code is “readable,” but what does that

really mean?

The first principle of readability is to keep the code simple. Avoid
lengthy methods and functions; instead, break them into smaller pieces.
Name the pieces for what they do.

Automate your coding standards so you can test them in your
deployment pipeline. For example, you could fail your build if you
have a method of more than 20 to 30 lines of code, or parameter lists of

more than 5 or 6 parameters.

Another way toward better readability is to take “readable” literally.
Don’t interpret it as meaning “Can I read my code five minutes after I
wrote it?” Rather, try to write code that a nonprogrammer could

understand.

Here is a simple function:

void function(X x, String a, double b, double c) {

double r = methodi(a, b);
x.functionl(a, r);

What does it do? Without looking into the implementation of X and

method1l, you have no way of telling, programmer or not.

But if instead I wrote this:

void displayPercentage(Display display, String
message,
double value, double
percentage) {
double result = calculatePercentage(value,
percentage);
display.show(message, result);

}

it would be clear what was going on. Even a nonprogrammer could
probably guess from the names what is happening here. Some things
are still hidden—we don’t know how the display works or how the
percentage is calculated—but that is a good thing. We can understand

what this code is attempting to do.

For simple examples like this, this kind of change looks too trivial to

discuss, but how much of the code you see at work looks like this?

Taking naming seriously, combined with simple refactoring
techniques, allows you to quickly gain deeper insight into what is

happening in your code.

Here is another example, in this case from some real-world code:

if (unlikely('ci)) {

// 361 lines of code
} else {

// 45 lines of 'else'
}

Highlight the unlikely(!ci) and create a new method called
noConnection.

Highlight the 361 lines in the 1f statement and name it
createConnection, and you end up with:

if (noConnection(ci)) {

cl = createConnection();
} else {

// 45 line of 'else'
b

Naming things sensibly, even if that means pulling out a function that
is only used once in order to name it, creates clarity in code that is
missing otherwise. It will also often highlight the fact that there are
significant opportunities to simplify the code. In this example, there
were five other places in the same file that could have reused the new

createConnection method. I would take this further and rename

c1to connection or something more appropriate.

Because we have improved the code’s modularity, this approach also
gives us more options for further change. For example, we could now
decide to hide some more of the complexity in this method and simply

use the connection, whether created here for the first time or not:

cli = createConnection(ci);
// 45 lines of code

Make functions and methods simple. Make all names meaningful in the
context of the problem you are solving: functions, methods, variables,

parameters, constants, fields, anything!

Imagine your nontechnical grandpa or grandma reading the code: could
they guess at what it was doing? If not, make the code simpler through

refactoring, and more expressive through the selection of good names.

The Young, the Old, and the
Garbage

Maria Arias de Reyna

One of the major advantages of Java is that developers have not had to
worry (much) about memory. In contrast to many other languages
around at the time of its launch, Java has, since the beginning, freed
unused memory automatically. But that doesn’t mean Java developers
don’t need to know the basics of how Java handles memory. There can

still be memory leaks and bottlenecks.

Java divides its memory into two segments:

Heap Instances, variables...your data

Nonheap/perm Code, metadata...for the JVM

To care about memory in Java, we should focus on the heap. It is
divided into two generations depending on their lifetime: young and
old. The young generation (aka the nursery) contains short-lived
objects. The old generation contains structures that have survived

longer.

The young generation is divided in two:

Eden Where objects are created

Survi An in-between, limbo state through which an instance will pass when
vor moving from the young to the old space

The Garbage Collector

The garbage collector (GC) is the system cleaning the memory. There

are different implementations, but in general it performs two tasks:

Minor collection Reviews the young generation

Major collection Reviews all memory, young and old

The GC runs at the same time as the normal app execution. Each
execution of the GC involves a pause (usually milliseconds) in all
running threads. While your application remains healthy, the GC

usually limits its actions to minor collections as not to interfere with it.

GC Strategies

For proper operation and cleaning of memory, we should have small,
short-lived objects rather than objects that live a long time. The
temporary objects will stay in Eden, so the GC will remove them

earlier and faster.

Having unused objects in memory doesn’t disrupt the execution of
your app, but it may affect your hardware performance. It may also
slow down the GC execution, as it will process them over and over

again on each execution.

It may seem tempting to force a GC execution calling System. gc.
However, this will force a major collection, disrupting heuristics and

stopping your application while this collection lasts.

References

The GC frees instances that are no longer referenced, meaning if you
create an instance with an attribute referencing a second instance, both
instances will be either removed at the same time or never. The more
cross-referenced instances, the more complex and error-prone the GC
task is. You can help the GC by nulling attributes on objects to break
links between instances.

All static objects live forever. This means all their referenced attributes

will also live forever.

To help the GC collect unwanted objects, there are special types of
references whose corresponding classes can be found in
java.lang.ref:

Wea Does not count as a reference for cleanup. For example, we can use Wea
k kHashMap, which works as a HashMap, but using weak references. So,

refer if the map contains an object that is only referenced in the map, it can
ence be removed.

Soft The GC respects the link and removes the instance, depending on
refer demand for memory.
ence

Phan Always returns null. The link doesn’t really point to the object. Used

tom to clear instances before taking the object that binds it.
refer
ence

https://oreil.ly/6PGRj
https://oreil.ly/B_6ss

Remember that the garbage collector is your friend. It tries to make

your life easier. You can return the favor by making its job easier too.

Contributors

Abraham Marin-Perez

Abraham Marin-Perez is a Java programmer,
consultant, author, and public speaker with over 10

years of experience in industries ranging from finance

to publishing to the public sector. After graduating in
computer science at the University of Valencia, Spain, Abraham
relocated to London to work at J.P. Morgan, while also getting a BSc
in telecommunications. After three years in finance, he switched to
online betting for another three years, and then became an independent
contractor. Abraham benefited greatly from the London programming
community, and decided to give back and share his experience by
becoming a Java news editor at InfoQ, speaking at conferences like
Devoxx or CodeOne (née JavaOne), authoring Real-World
Maintainable Software (O’Reilly), and coauthoring Continuous
Delivery in Java (O’Reilly). Always the learner, Abraham is currently
studying for a degree in physics. He also helps run the London Java

Community and provides career advice at the Meet a Mentor group.

The Code Restorer

Adam Bien

Adam Bien (adambien.blog) is a developer, consultant, author,

podcaster, and Java enthusiast. He’s been using Java since JDK 1.0 and

https://oreil.ly/_UQZG
https://oreil.ly/gNfQA
http://blog.adam-bien.com/

JavaScript since LiveScript and still enjoys writing
code. Adam regularly organizes Java EE,

WebStandards, and JavaScript workshops at Munich

airport (airhacks.com) and runs a monthly Q&A live

streaming show at airhacks.tv.

Follow the Boring Standards

Alexey Soshin

&)

Alexey Soshin is a software architect with 15 years of
experience in the industry. He is the author of the
book Hands-On Design Patterns with Kotlin (Packt
Publishing) and the Web Development with Kotlin
video course. Alexey is a Kotlin and Vert.x enthusiast and an

experienced conference speaker.

CountDownLatch—Friend or Foe?

A.Mahdy AbdelAziz

A.Mahdy AbdelAziz is a technical trainer and a public
speaker. He has more than 12 years of experience in
the software field, including Google, Oracle, and three
start-ups. A.Mahdy cofounded @ExtraVerd and is

interested in modern technologies such as PWA, offline-first design,

machine learning, and the cloud stack. If he is not talking in front of a
microphone or sitting in an airplane, you can find him playing
basketball. Reach him on Twitter as @__amahdy or GitHub as

http://airhacks.com/
http://airhacks.tv/

@amahdy.

Events Between Java Components

Anders Noras

A \ Originally educated in arts and design, Anders has
o

\ spent the last 20 years writing code. He currently

works for Itera as chief technology officer. He has
s given numerous talks and keynotes at conferences
such as JavaZone, NDC, J-Fall, @Oredev, and many more. He has given
100-plus conference talks to a variety of audiences including media,
design, and hardcore computer science. He is known for his energetic
and highly engaging presentations. This is his second feature for the 97

Things series.

All You Need Is Java

Angie Jones

Angie Jones is a senior developer advocate who
specializes in test automation strategies and
techniques. She shares her wealth of knowledge by
speaking and teaching at software conferences all over
the world, writing tutorials and technical articles on angiejones.tech,
and leading the online learning platform, Test Automation University.
As a Master Inventor, Angie is known for her innovative and out-of-
the-box thinking style, which has resulted in more than 25 patented

inventions in the US and China. In her spare time, Angie volunteers

http://www.angiejones.tech/

with Black Girls Code to teach coding workshops to young girls in an

effort to attract more women and minorities to tech.

Using Object-Oriented Principles in Test Code

Ben Evans

Ben Evans is principal engineer and architect for JVM
technologies at New Relic. Prior to joining New Relic,
Ben cofounded jClarity (acquired by Microsoft) and
was chief architect (Listed Derivatives) at Deutsche
Bank. Ben is the author of The Well-Grounded Java Developer
(Manning Publications), Java: The Legend (O’Reilly), Optimizing Java
(O’Reilly), and the recent editions of Java in a Nutshell (O’Reilly). He
is the track lead for Java/JVM at InfoQ, writes regularly for industry
publications, and is a frequent speaker at technical conferences
worldwide. Ben has been active in free and open source software for
over 20 years, cofounded the AdoptOpenJDK initiative (with Martijn

Verburg), and served on the JCP Executive Committee for six years.

Java Is a ’90s Kid
Java’s Unspeakable Types

Benjamin Muschko

Benjamin Muschko is a software engineer and a
consultant and trainer with over 15 years of

experience in the industry. He’s passionate about

project automation, testing, and Continuous Delivery.

https://oreil.ly/t5RYp
https://oreil.ly/wEzT0

Ben is a frequent speaker at conferences and is an avid open source
advocate. Software projects sometimes feel like climbing a mountain.
In his free time, Ben loves hiking Colorado’s 14ers and enjoys

conquering long-distance trails.

“But It Works on My Machine!”

Benjamin Muskalla

Benjamin Muskalla (“Benny,” @bmuskalla) for the
past 12 years has been following his passion of

building tools for improving developer productivity.

He has been an active committer of the world-class
Eclipse IDE. Over the years, he’s spent a lot of time building tools,
frameworks, and test approaches to help his peers become more
effective. TDD and API design are dear to his heart as well as working
on open source software. Benny currently works for Gradle Inc. on the
Gradle Build Tool.

Refactoring Toward Speed-Reading

Billy Korando

' Billy Korando is a developer advocate with IBM with
more than a decade of experience. Billy is passionate

about helping developers find ways to reduce mental

capacity waste from tedious work, such as project

initiation, deployment, testing and validation, and so on through

automation and good management practices. Outside of work, Billy

enjoys traveling, playing kickball, and cheering on the Kansas City

Chiefs. Billy also co-organizes the Kansas City Java Users Group.

Improving Repeatability and Auditability with Continuous
Delivery

Brian Vermeer

Brian Vermeer is a developer advocate for Snyk and a
software engineer with over 10 years of hands-on

experience in creating and maintaining software. He is

passionate about Java, (pure) functional programming,
and cybersecurity. Brian is an Oracle Groundbreaker Ambassador,
Utrecht JUG co-lead, Virtual JUG organizer, and co-lead at
MyDevSecOps. He is a regular international speaker on mostly Java-
related conferences like JavaOne, Devoxx, Devnexus, Jfokus,
JavaZone, and many more. Besides all that, Brian is a military reserve
for the Royal Netherlands Air Force and a Taekwondo Master/Teacher.

Take Good Care of Your Dependencies

Burk Hufnagel

Burk Hufnagel is a programmer and solution architect
with Daugherty Business Solutions, where he’s

focused on finding ways to deliver better code, faster,

and teaching others how to do the same. He’s on the
board of directors for the Atlanta Java User Group and helps run the
Devnexus conference. He’s presented at user group meetings and

technical conferences including Connect.Tech, Devnexus, JavaOne,

and Oracle Code One. In 2010, Burk was recognized as a JavaOne
Rock Star. As a writer, Burk contributed multiple articles to 97 Things
Every Software Architect Should Know and 97 Things Every
Programmer Should Know (O’Reilly). He’s also served as a technical
reviewer for several books, including Head First Software
Development (O’Reilly) and Kathy Sierra and Bert Bates’s Sun
Certified Programmer for Java Study Guide (McGraw-Hill), for which
he received an unexpected compliment: “Burk fixed more of our code

than we care to admit.”

Deliver Better Software, Faster

Carlos Obregon

Carlos Obregén has been working in software
development since 2008. Because he has always had a

passion for sharing knowledge, he started a Java User

Group in Bogota, now called Bogota JVM, where he
has given talks primarily on best practices in the Java language.
Besides developing software, he coordinates bootcamps related to
topics about web development. He first started dating C++ but, before
graduating from university, he found true love with Java. After some
years, he tried dating other JVM languages but found that no other
language gave him as much joy as Java. Besides coding, he also loves
spending time with family and friends playing board games and video
games. He also tries to read at least a book per month, mainly technical
books but also literature. Nothing is more important to him than Lina,

Mariajosé, and Evie—his wife, daughter, and dog.

http://shop.oreilly.com/product/9780596522704.do
http://shop.oreilly.com/product/9780596809492.do
http://shop.oreilly.com/product/9780596527358.do

How to Avoid Null

Chris O’Dell

Chris O’Dell has spent nearly 15 years as a backend
engineer, primarily with Microsoft technologies, but
recently with Go on a large microservices platform.
She has led teams delivering highly available web
APIs, distributed systems, and cloud-based services. She has also led
teams developing internal build and deployment tooling with the goal
of improving the developer’s experience. Chris currently works at
Monzo helping to build the future of banking. Chris is a regular
conference speaker on the topics of Continuous Delivery and
development practices. She is a contributor to the book Build Quality
In (Leanpub) and coauthored the book Continuous Delivery with
Windows and .NET (O’Reilly).

Frequent Releases Reduce Risk

Christin Gorman

Christin Gorman has been writing software
professionally for 20 years and has gained experience

in everything from start-ups to large enterprises,

always hands-on, writing code. She is best known for
her enthusiastic public speaking style and for blogging about software.
A common underlying theme of hers is the importance of developers
being involved in the software they are creating. Software developers

are tragically underutilized—relegated to picking isolated tasks from a

https://learning.oreilly.com/library/view/continuous-delivery-with/9781492042327/

board someone else has set up, writing code in styles, languages, and
frameworks they had no say in choosing, and never once getting to
meet the users of their software. Christin is passionate about getting
developers more involved, unleashing their potential, and making them
care about every aspect of what they are working on, not just so they
have more fun at work but more importantly so the products they
create are more useful. Christin currently works for the Norwegian

consultancy Kodemaker.

Do You Know What Time It Is?

Colin Vipurs

=} Colin Vipurs just celebrated his twenty-first
anniversary as a developer. He’s been around a lot in
the UK, worked in finance, press, music, and
aeronautics, and currently works at Masabi, in the
public transit space. Back in the day he used to do a lot of C/Perl, then
moved to Java, dabbled in Scala for a bit, and now does mostly full-
time Kotlin. He wrote a book once and does conference speaking when
he can be bothered to put some material together. His passions are
TDD/BDD, building scalable, high performance systems, and food.

Why I Don’t Hold Any Value in Certifications

Daniel Bryant

Daniel Bryant works as a product architect at Datawire, and is the news

manager at InfoQ and chair for QCon London. His current technical

expertise focuses on “DevOps” tooling,
cloud/container platforms, and microservice

implementations. Daniel is a Java Champion and

leader within the London Java Community (LJC). He
also contributes to several open source projects, writes
for well-known technical websites such as InfoQ, O’Reilly, and
DZone, and regularly presents at international conferences such as

QCon, JavaOne, and Devoxx.

The Benefits of Codifying and Asserting Architectural Quality
The Case Against Fat JARs

Daniel Hinojosa

Daniel Hinojosa is a programmer, consultant,
instructor, speaker, and author. With over 20 years of

experience, he does work for private, educational, and

government institutions. Daniel loves JVM languages
like Java, Groovy, and Scala, but also works with non-JVM languages
like Haskell, Ruby, Python, LISP, C, and C++. He is an avid Pomodoro
Technique practitioner and makes every attempt to learn a new
programming language every year. Daniel is the author of Testing in
Scala (O’Reilly) and the video of the Beginning Scala Programming
video series for O’Reilly Media. For downtime, he enjoys reading,

swimming, Legos, football, and cooking.

Know Thy flatMap

Dave Farley

http://shop.oreilly.com/product/0636920022602.do
http://shop.oreilly.com/product/0636920043386.do

Dave Farley is a thought leader in the field of
Continuous Delivery. He is coauthor of the Jolt-award

winning book Continuous Delivery (Addison-

Wesley), a regular conference speaker and blogger,
one of the authors of the Reactive Manifesto, and a
contributor to the thinking behind BDD. Dave has been having fun
with computers for over 35 years and has worked on most types of
software, firmware, commercial applications, and low-latency trading
systems. He started working in large-scale distributed systems more
than 30 years ago, researching the development of loose-coupled,
message-based systems—a forerunner of microservices. Dave is a
former director of innovation at ThoughtWorks and head of software
development at LMAX Ltd., home of the OSS Disruptor, a company
well known for the excellence of their code and the exemplary nature
of its development process. Dave is now an independent consultant,

and founder and director of Continuous Delivery Ltd.

Take “Separation of Concerns” Seriously
Test-Driven Development
Write “Readable Code”

David Delabassee

David Delabassee has been involved in the Java
ecosystem for more than two decades. He lives and

breathes Java! These days he works as a developer

advocate in the Java Platform Group at Oracle. Over
the years, he has championed Java extensively throughout the world by

presenting at conferences and user groups. David has authored

numerous technical articles and trainings, and he occasionally blogs at
delabassee.com. In his spare time, he is actively involved in multiple
nonprofit organizations focused on improving rights for individuals
with disabilities. He is also an accessibility activist. David lives in
Belgium, where he enjoys playing video games with Lylou, his lovely
(but challenging to beat) daughter.

Be Aware of Your Container Surroundings

Dawn and David Griffiths

Dawn and David Griffiths are the
authors of Head First Kotlin and
Head First Android Development

(O’Reilly). They have also written
other books in the Head First series and developed the animated video
course The Agile Sketchpad as a way of teaching key concepts and

techniques in a way that keeps your brain active and engaged.

Thinking in Coroutines

Dean Wampler

Dean Wampler (@deanwampler) is an expert in
streaming systems, focusing on ML/AI. He is head of

developer relations at Anyscale.io, which is

developing Ray for distributed Python. Previously, he
was an engineering VP at Lightbend, where he led the development of

Lightbend Cloudflow, an integrated system for streaming data

https://delabassee.com/
http://shop.oreilly.com/product/0636920102786.do
http://shop.oreilly.com/product/0636920329220.do
http://Anyscale.io

applications with popular open source tools. Dean has written books
for O’Reilly and contributed to several open source projects. He is a
frequent conference speaker and tutorial teacher, and a co-organizer of
several conferences and user groups in Chicago. Dean has a PhD in

physics from the University of Washington.

Embrace SQL Thinking

Donald Raab

Donald Raab has more than 18 years of experience as
a software engineer in the financial services industry.

He started programming with Java in 1997 and has

programmed in 20-plus programming languages over
the years. He is a member of the JSR 335 Expert Group and is also the
creator of the Eclipse Collections Java Library that was originally open
sourced as GS Collections in 2012 and migrated to the Eclipse
Foundation in 2015. Donald was selected as a 2018 Java Champion,
and he is a frequent speaker and guest trainer at key Java conferences
and user group meetups including Oracle CodeOne, JavaOne, QCon
New York, Devnexus, Devoxx US, EclipseCon, JVM Language
Summit, and Great Indian Developer Summit (GIDS).

Learn to Kata and Kata to Learn

Edson Yanaga

Edson Yanaga, Red Hat’s director of developer experience, is a Java

Champion and a Microsoft MVP. He is also a published author and a

frequent speaker at international conferences,
discussing Java, microservices, cloud computing,

DevOps, and software craftsmanship. Yanaga

considers himself a software craftsman, and is
convinced that we all can create a better world for
people with better software. His life’s purpose is to deliver and help
developers worldwide to deliver better software faster and safely—and

he can even call that a job!

Behavior Is “Easy”; State Is Hard

Emily Bache

4 W& Emily Bache is a technical agile coach with ProAgile.
¥ She helps teams to improve the way they write code
together, and teaches test-driven development. Emily
lives in Gothenburg, Sweden, but is originally from
the UK. She is the author of The Coding Dojo Handbook (self-

published) and often speaks at international conferences.

Approval Testing
Use Coverage to Improve Your Unit Tests

Emily Jiang
A\ :

Emily Jiang is a Java Champion. She is also a Liberty
Microservices Architect and Advocate, senior
technical staff member (STSM) for IBM, based at
Hursley Lab in the UK. Emily is a MicroProfile guru

https://oreil.ly/HheKg

and has been working on MicroProfile since 2016. She leads the
specifications of MicroProfile Config, Fault Tolerance, and Service
Mesh. She is also a CDI Expert Group member. Emily is passionate
about Java, MicroProfile, and Jakarta EE. She regularly speaks at
conferences such as QCon, Code One, Devoxx, Devnexus, JAX,
Voxxed, EclipseCon, GeeCON, JFokus, and more. You can find her on
Twitter @emilyfhjiang and LinkedIn.

Make Code Simple and Readable

Gail C. Anderson

Gail C. Anderson is a Java Champion, Oracle
Groundbreaker Ambassador, and past member of the

NetBeans Dream Team. She is director of research

and founding member of the Anderson Software
Group, a leading provider of training courses in Java, JavaFX, Python,
Go, Modern C++, and other programming languages. Gail enjoys
researching and writing about leading-edge Java technologies. Her
current passion includes JavaFX with GraalVM for cross-platform
mobile applications. She is the coauthor of eight textbooks on software
programming. Most recently, she is a contributing author to The
Definitive Guide to Modern Java Clients with JavaFX: Cross-Platform
Mobile and Cloud Development (Apress). Gail has presented at various
Java conferences and JUGS including Devoxx, Devnexus, JCrete, and
Oracle Code/JavaOne worldwide. Twitter: @gail_asgteach. Website:

asgteach.com.

Learn to Use New Java Features

http://www.linkedin.com/in/emily-jiang-60803812
https://asgteach.com/

Dr. Gail Ollis

Dr. Gail Ollis has been programming ever since she
learned BASIC on the school’s one computer in the

math storeroom. Many programming languages later,

her career has spanned professional software
development, research into the psychology of software development,
and lecturing to undergraduate and master’s students on programming
and cyberpsychology. The continuous thread throughout this is her
passion to help people do programming better across a wide range of
experience, from tutoring in computer science and coaching early
career developers, to conducting industry-relevant academic research to
develop practical support for cybersecurity in professional software

development.

Don’t hIDE Your Tools

Heather VanCura

———

Heather VanCura is the director and chairperson of the
Java Community Process (JCP) program. In her role
she is responsible for leadership of the community.
She also serves as an international speaker, mentor,
and leader of hack days. VanCura oversees the work of the JCP
Executive Committee, the JCP.org website, JSR management,
community building, events, communications, and growth of the
membership. She is also a contributor and leader of the community-
driven user group adoption programs. She is the spec lead for JSRs as
part of the ongoing JCP.Next effort to evolve the JCP program itself.

http://JCP.org

Heather is based in the Bay Area of California, is passionate about Java
and developer communities, and enjoys trying new sports and fitness

activities in her free time. You can find her on Twitter: @heathervc.

What Is the JCP Program and How to Participate

Dr. Heinz M. Kabutz

-

Dr. Heinz M. Kabutz is the author of the mildly
entertaining and somewhat useful #Java Specialists’
Newsletter, which can be found at javaspecialists.eu.
He can be reached via email at

heinz@javaspecialists.eu.

Read OpenJDK Daily

Holly Cummins

Holly Cummins is an IBMer and leads the developer
community in the IBM Garage. As part of the Garage,

Holly uses technology to enable innovation for clients

across a range of industries, from banking to catering
to retail to NGOs. She has led projects to count fish using Al, help a
blind athlete run ultramarathons in the desert solo, improve health care
for the elderly, and change how city parking works. Holly is also an
Oracle Java Champion, IBM Q Ambassador, and JavaOne Rock Star.
Before joining the IBM Garage, she was delivery lead for the
WebSphere Liberty Profile (now Open Liberty). Holly coauthored
Manning’s Enterprise OSGi in Action and is still happy to explain why

https://www.javaspecialists.eu/
mailto:heinz@javaspecialists.eu

OSGi is great. Before joining IBM, Holly completed a DPhil in
quantum computation. Holly is organized with her woolly scarves, and

hasn’t lost one yet—but she regularly loses her winter coat (brrr).

Garbage Collection Is Your Friend
Java Should Feel Fun

Ian F. Darwin

L @@ Ian F. Darwin has worked in the computer field for

' ages, on systems of almost every size, shape, and OS.
. ﬂ He codes in multiple languages including Java,
Python, Dart/Flutter, and shell scripting, and has made

open source contributions to OpenBSD, Linux, and other projects. He’s

J &

A

worked at Toronto’s University Health Network, where he built the
first Android version of Medly, a lifesaving mHealth app. Best known
for the Java Cookbook and the Android Cookbook (O’Reilly), he’s
written and taught Unix and Java courses for Learning Tree, and an
undergrad course on Unix and C for the University of Toronto. Ian also
writes on travel, electric cars, medieval literature, and any other
“smoother pebble or prettier shell than ordinary” that he trips over at
the seashore. Find him at darwinsys.com or on Twitter as
@Ian_Darwin.

Think Outside the Java Sandbox

Ixchel Ruiz

Ixchel Ruiz has developed software applications and tools since 2000.

http://shop.oreilly.com/product/0636920304371.do
http://shop.oreilly.com/product/0636920038092.do
https://www.darwinsys.com/

Her research interests include Java, dynamic

" languages, client-side technologies, and testing. She is
o aJava Champion, Groundbreaker Ambassador,
Hackergarten enthusiast, open source advocate, JUG

leader, public speaker, and mentor.

Build Diverse Teams

James Elliot

James Elliott is a senior software engineer at
Singlewire in Madison, Wisconsin, with 30 years

professional experience as a systems developer.

Loving everything from 6502 assembler through Java,
he’s delighted to find himself working in Clojure today, both at work
and in his open source side projects as Deep Symmetry, occasionally
DJing, and producing electronic music shows with his partner, Chris.
James has written and coauthored several books and updated editions
for O’Reilly and enjoys mentoring new generations of developers in

the ever-changing (yet fundamentally timeless) world of software.

Augment Javadoc with AsciiDoc
Rediscover the JVM Through Clojure

Jannah Patchay

Jannah Patchay is an industry-recognized subject
matter expert and consultant in the financial markets

sector, specializing in financial markets innovation

and in helping firms define, develop, and execute their commercial
strategies in a highly regulated environment. Her particular passion is
for market structure—the participants in financial markets, how they
interact, and the consequences of the ways in which they interact—and
for finding creative solutions to the challenges around access to
markets and liquidity. This encompasses both traditional financial
markets and asset classes, and the emerging field of digital asset
markets. Jannah is also a director and regulatory advocacy ambassador
for the London Blockchain Foundation, and she writes on financial and
technology innovation topics for Best Execution magazine. Jannah has
a BSc in mathematics and computer science from the University of
Cape Town, and an LLM in international banking and finance law

from the University of Liverpool.

The Three Traits of Really, Really Good Developers

Jeanne Boyarsky

Jeanne Boyarsky is a Java Champion and lives in New
. York City. She has written five books about Java
certification. Jeanne has been paid to do Java for 17

years. She volunteers at coderanch.com and with a
FIRST robotics team. Jeanne regularly speaks at conferences and is a

Distinguished Toastmaster, which involves giving over 50 speeches.

Break Problems and Tasks into Small Chunks
It’s Done, But...
Learn Java Idioms and Cache in Your Brain

https://coderanch.com/

Jenn Strater

Jenn Strater is a longtime Groovy community member
and manager of the Groovy Community slack. She has
contributed to various open source projects including
CodeNarc, Gradle, Groovy, and Spring REST Docs.

As a conference speaker, Jenn has presented at events such as Devoxx

Belgium, the Grace Hopper Celebration of Women in Computing,
SpringOne Platform, and the O’Reilly Velocity Conference. In 2013,
she founded the organization GR8Ladies (now GR8DI) through which
she mentors students and junior developers. She is a graduate of
Hamilton College in Clinton, NY, and was a Fulbright grant recipient
in 2016-2017. She currently resides in the Twin Cities.

Builds Don’t Have To Be Slow and Unreliable
Only Build the Parts That Change and Reuse the Rest
Open Source Projects Aren’t Magic

Jennifer Reif

Jennifer Reif is an avid developer and problem-solver.
She has contributed to projects for both developer

communities and large enterprises to organize and

make sense of widespread data assets and leverage
them for maximum value. She has worked with a variety of
commercial and open source tools and enjoys learning new
technologies, sometimes on a daily basis! Learning and writing code
are core parts of her daily activities, and she enjoys creating content to
share with others. Frequently, her content includes speaking at

conferences and developer-focused events, as well as writing. Her

passions are finding ways to organize chaos and delivering software
more effectively. Other passions include her cats, traveling with
family, hiking, reading, baking, and horseback riding.

In the Language Wars, Java Holds Its Own

Jessica Kerr

Jessica Kerr is a symmathecist, in the medium of
code. She believes in learning systems made of

learning parts: enthusiastic people and evolving

software. In 20 years of professional software
development, she has worked in languages from Java to Scala and
Clojure, from Ruby to Elixir and Elm, from Bash to TypeScript and
PowerShell. In her years as a conference keynoter and speaker, she has
talked about all of these, plus the deeper work of software
development. She finds inspiration in resilience engineering, systems
thinking, and art. She loves helping developers automate the boring
bits of our work and express more creativity in the rest. Find her
learning out loud on Twitter (@)jessitron), live coding on Twitch
(jessitronica), writing at blog.jessitron.com, and raising two new

unpredictable people in her home in St. Louis, MO.

From Puzzles to Products

Josh Long

Josh Long (@starbuxman) is an engineer with decades of experience

writing code. He’s also the first Spring Developer Advocate, a Java

https://blog.jessitron.com/

Champion, an author of books (including O’Reilly’s
Cloud Native Java: Designing Resilient Systems with
Spring Boot, Spring Cloud, and Cloud Foundry and

the self-published Reactive Spring) and numerous
best-selling video trainings (including Building
Microservices with Spring Boot Livelessons with Spring Boot cocreator
Phil Webb). Josh is a frequent face at conferences, having spoken in
hundreds of cities around the world, on every continent (except
Antarctica). Josh loves to write code. He’s an open source contributor
(Spring Framework, Spring Boot, Spring Integration, Spring Cloud,
Activiti, Vaadin, MyBatis, etc.), a podcaster (A Bootiful Podcast) and a
YouTuber (Spring Tips).

Production Is the Happiest Place on Earth

Ken Kousen

Ken Kousen is a Java Champion, Oracle
Groundbreaker Ambassador, Java RockStar, and
Grails Rock Star. He is the author of the O’Reilly
books Kotlin Cookbook, Modern Java Recipes, and

Gradle Recipes for Android, and the Manning book Making Java
Groovy, as well as several video courses on the O’Reilly Learning
Platform. He is a regular presenter on the No Fluff Just Stuff
conference tour, and has spoken at conferences all over the world.
Through his company, Kousen IT, Inc., he has taught software

development to thousands of students and working professionals.

Make Your Java Groovier

http://bit.ly/spring-tips-playlist

Kenny Bastani

Kenny Bastani is a passionate technology evangelist
and an open source software advocate in Silicon
Valley. As an enterprise software consultant, he has
applied a diverse set of skills needed for projects
requiring a full-stack web developer in Agile mode. As a passionate
blogger and open source contributor, Kenny engages a community of
passionate developers who are looking to take advantage of newer

graph processing techniques to analyze data.

Trade-Offs in a Microservices Architecture

Kevin Wittek

Kevin Wittek is a Testcontainers co-maintainer and a
Testcontainers-Spock author who is passionate about
FLOSS and Linux. He received the Oracle
Groundbreaker Ambassador award for his
contributions to the open source community. Kevin is a Software
Craftsman and testing fan. He fell in love with TDD because of Spock.
Kevin believes in Extreme Programming as one of the best Agile
methodologies. He likes to write MATLAB programs to support his
wife in performing behavioral science experiments with pigeons. Kevin
plays the electric guitar and is a musician in his second life. After many
years working in the industry as an engineer, Kevin is now doing his
PhD at RWTH Aachen on the topic of verification of Smart Contracts
and is leading the Blockchain Research Lab at the Institute for Internet

Security in Gelsenkirchen at the Westphalian University of Applied

Sciences.

Unlocking the Hidden Potential of Integration Testing Using
Containers

Kevlin Henney

Kevlin Henney (@KevlinHenney) is an independent
consultant, trainer, coder, and writer. His development

interests are in programming, languages, and practice,

helping individuals, teams, and organizations to get
better at these. He has a deep love of programming and languages,
which he is delighted to have found has also worked out as a profession
for over three decades. Kevlin has given keynotes, tutorials, and
workshops at hundreds of conferences and meetups around the world.
He has been a columnist for various magazines, journals, and websites,
a contributor to open and closed-source software, and a member of
more groups, organizations, and committees than is probably healthy
(it has been said that “a committee is a cul-de-sac down which ideas
are lured and then quietly strangled”). He is coauthor of A Pattern
Language for Distributed Computing and On Patterns and Pattern
Languages, two volumes in the Pattern-Oriented Software
Architecture series (Wiley), and editor of 97 Things Every
Programmer Should Know (O’Reilly).

Name the Date
Program with GUTs
Uncheck Your Exceptions

http://shop.oreilly.com/product/9780596809492.do

Kirk Pepperdine

:: Kirk Pepperdine has been performance-tuning Java
. applications for more than 20 years. He is the author

of the original Java Performance Tuning Workshop. In

[WEN—

w2006, Kirk was named a Java Champion for his

thought leadership in the Java performance space. He speaks frequently
at user groups and conferences and has been named a JavaOne
Rockstar numerous times. Kirk continues to be an ardent supporter of
the Java community as the cofounder of JCrete, a Java unconference
that has been used as a template for a number of other unconferences in
Europe, Asia, and North America. In 2019 Kirk’s start-up, jClarity,
was acquired by Microsoft, where he is now employed as a principal

engineer.

Hey Fred, Can You Pass Me the HashMap?

Liz Keogh

Liz Keogh is a Lean and Agile consultant based in
London. She is a well-known blogger and

international speaker, a core member of the BDD

community, and a passionate advocate of the Cynefin
framework and its ability to change mindsets. She has a strong
technical background with 20 years of experience in delivering value
and coaching others to deliver, from small start-ups to global
enterprises. Most of her work now focuses on Lean, Agile, and
organizational transformations, and the use of transparency, positive

language, well-formed outcomes, and safe-to-fail experiments in

making change innovative, easy, and fun.

Feedback Loops

Maciej Walkowiak

Maciej Walkowiak is an independent software
consultant. He helps companies take architectural

decisions as well as designing and developing systems

based primarily on Spring stack. An active Spring
community member, he has been a contributor to several Spring
projects. In recent years, he has become more and more passionate
about teaching and sharing knowledge. Maciej runs a YouTube
channel (Spring Academy), speaks at conferences, and spends too

much time on Twitter.

“Full-Stack Developer” Is a Mindset

Mala Gupta

Mala Gupta is a developer advocate at JetBrains and
founder and lead mentor at eJavaGuru.com, coaching

Java Certifications aspirants to succeed. A Java

Champion, she promotes learning and usage of the
Java technologies at various platforms through her Java books, courses,
lectures, and speaking engagements. She is a firm believer in the
equality of responsibilities and opportunities for all. She has over 19
years of experience in the software industry as an author, speaker,

mentor, consultant, technology leader, and developer. As an author

http://www.ejavaguru.com/

with Manning Publications, her Java titles books are top-rated for
Oracle Certification around the globe. A frequent speaker at industry
conferences, she co-leads the Java User Group-Delhi chapter. A strong
supporter of Women in Technology, she drives initiatives of Women
Who Code, Delhi Chapter, to augment the participation of women in
tech.

Java Certifications: Touchstone in Technology

Marco Beelen

Marco Beelen is a software crafter, with a passion for

maintainable and readable code. Marco has been

= working as a software developer since 2005. Prior to
RS ‘ we'h .. that Marco was a system administrator, which instilled
in him the importance of observability of software systems. Marco has
been the host of various Code Retreats and meetups, including a
miniseries on test-driven development. Marco is married and the father
of two children. He prefers “Drink your own champagne” over “Eat
your own dog food” (especially since he likes to drink champagne). He

can be found online as @mcbeelen.

Package-by-Feature with the Default Access Modifier

Maria Arias de Reyna

Maria Arias de Reyna is a Java senior software engineer, geospatial
enthusiast, and open source advocate. She has been a community

leader and core maintainer of several free and open source projects

since 2004. Maria is currently working at Red Hat,
where she focuses on Middleware and maintains

Apache Camel and Syndesis. She is an experienced

keynoter and speaker. Between 2017 and 2019, Maria
was the elected president of OSGeo, the Open Source
Geospatial Foundation, which serves as an umbrella for many of the

most relevant geospatial software. She is also a feminist and a Women

In Technology activist.

The Young, the Old, and the Garbage

Mario Fusco

Mario Fusco is a principal software engineer at Red
Hat, working as Drools project lead. He has huge

experience as a Java developer, having been involved

in (and often leading) many enterprise-level projects
in several industries ranging from media companies to the financial
sector. His interests include functional programming and Domain-
Specific Languages. By leveraging these two passions, he created the
open source library lambdaj with the purposes of providing an internal
Java DSL for manipulating collections and allowing a bit of functional
programming in Java. He is also a Java Champion, the JUG Milano
coordinator, a frequent speaker, and the coauthor of Modern Java in
Action published by Manning.

Concurrency on the JVM
Let’s Make a Contract: The Art of Designing a Java API

Marit van Dijk

Marit van Dijk has almost 20 years of experience in
software development in different roles and

companies. She loves building awesome software with

amazing people, and is an open source core
contributor to Cucumber, as well as an incidental contributor to other
projects. She enjoys learning new things, as well as sharing knowledge
on programming, test automation, Cucumber/BDD, and software
engineering. She speaks at international conferences, in webinars, and
on podcasts, and blogs at medium.com/@mlvandijk. Marit is currently

employed as a software engineer at bol.com.

Use Testing to Develop Better Software Faster

Mark Richards

Mark Richards is an experienced, hands-on software
architect involved in the architecture, design, and

implementation of microservices architectures, event-

driven architectures, and distributed systems. He has
been in the software industry since 1983 and has a master’s degree in
computer science. Mark is the founder of DeveloperToArchitect.com, a
free website devoted to helping developers in the journey to software
architect. He is also an author and conference speaker, having spoken
at hundreds of conferences worldwide and written numerous books and
videos on microservices and software architecture, including his latest
book, Fundamentals of Software Architecture (O’Reilly).

Use Custom Identity Annotations Liberally

https://medium.com/@mlvandijk
https://www.bol.com/nl/
http://www.developertoarchitect.com/

Michael Hunger

Michael Hunger has been passionate about software
development for more than 35 years, 25 of which have

been within the Java ecosystem. For the last 10 years,

he has been working on the open source Neo4j graph
database, filling many roles, most recently leading the Neo4j Labs
efforts. As caretaker of the Neo4j community and ecosystem, he
especially loves to work with graph-related projects, users, and
contributors. As a developer, Michael enjoys many aspects of
programming languages, learning new things every day, participating
in exciting and ambitious open source projects, and contributing to and
writing software-related books and articles. Michael has helped
organize conferences and has spoken at many more. His efforts got him
accepted to the Java Champions program. Michael helps kids learn to

program by running weekly girls-only coding classes at local schools.

Benchmarking Is Hard—JMH Helps
Firing on All Engines

Mike Dunn

Mike Dunn is the principal mobile engineer and
Android technical lead at O’Reilly Media. He is a
recognized member of the AOSP community and a
dedicated contributor to the Android open source
ecosystem. He is the original creator of the popular and longstanding
tiling image library, TileView. Mike is also the coauthor of Native
Mobile Development: A Cross-Reference for Android and iOS Native

http://shop.oreilly.com/product/0636920259169.do

Development with Shaun Lewis (O’Reilly), and the upcoming
Programming Android with Kotlin: Java to Kotlin by Example with
Pierre-Olivier Laurence (O’Reilly). He’s contributed to Google’s
Closure JavaScript library, and provided open source support ranging
from color management libraries to fast-seeking, block-level
encryption with Google’s next-gen Android media player ExoPlayer, to
a tightly compact PHP routing engine. Mike has been programming
professionally for nearly 20 years, and is continuing to study computer
science in the master’s program at the Georgia Institute of Technology.
You can find several levels of variously antiquated and aging-into-
obsolescence code snippets, open source and client projects, as well as
his blog, at Mike’s home page.

Kotlin Is a Thing

Monica Beckwith

Monica Beckwith is a Java Champion, First Lego
League Coach, and coauthor of Java Performance

Companion (Addison-Wesley). She is the sole author

of the upcoming Java 11 LTS+—A Performance

Perspective. She is passionate about JVM performance at Microsoft.

Java Programming from a JVM Performance Perspective

Nat Pryce

Nat Pryce has been programming for <coughty-cough> years, many of

those using Java and/or the JVM. He has worked as consulting

http://moagrius.com

developer and architect in a variety of industries, and
delivered business-critical systems that range in scale

from embedded consumer devices to large compute

farms supporting global business. He is a regular
conference speaker and one of the authors of Growing
Object-Oriented Software, Guided by Tests (Addison-Wesley), a

popular book on object-oriented design and test-driven development.

The Unreasonable Effectiveness of Fuzz Testing

Nicolai Parlog

Nicolai Parlog (aka nipafx) is a Java Champion with a
passion for learning and sharing. He does that in blog

posts, articles, newsletters, and books; in tweets,

repos, videos, and streams; at conferences and in-
house trainings—more on all of that on nipafx.dev. That aside, he’s
best known for his haircut.

Kinds of Comments
Optional Is a Lawbreaking Monad but a Good Type
Take Care of Your Module Declarations

Nikhil Nanivadekar

Nikhil Nanivadekar is a committer and project lead for
the open source Eclipse Collections framework. He
has been working in the financial sector as a Java
developer since 2012. Prior to starting his career as a

software developer, Nikhil received his bachelor’s degree in

http://nipafx.dev

mechanical engineering from the University of Pune, India, and a
master’s degree in mechanical engineering with a specialization in
robotics from the University of Utah. Nikhil was designated as a Java
Champion in 2018. He is a regular on the local and international
speaker circuit. He is also a strong advocate for children’s education
and mentorship, and hosts several workshops teaching robotics to kids
at events like JCrete4Kids, JavaOne4Kids, OracleCodeOne4Kids, and
Devoxx4Kids. Nikhil enjoys cooking with his family, hiking, skiing,
motorcycle riding, and working with animal rescue and relief

organizations.

Know Your Collections

Patricia Aas

Patricia Aas is an experienced C++ programmer who
started off as a Java programmer. She has worked on

two browsers, Opera and Vivaldi, and built embedded

telepresence systems at Cisco. An extremely curious
person, she’s always excited to learn new things. Today she works as a
consultant and trainer for TurtleSec, a company she cofounded, where

she specializes in application security.

Inline Thinking

Paul W. Homer

Paul W. Homer has been a professional software developer for the last

30 years. He has built commercial products for finance, marketing,

printing, and health care and has spent the last 15
years blogging about it. At some point or another, he’s
dabbled in just about every aspect of software

development as well as often being the lead

programmer. His blog The Programmer’s Paradox is
an attempt to synthesize some sanity from these diverse experiences. It
discusses the larger patterns he’s encountered while moving between
different organizations. He prefers backend algorithmic coding but
often takes pleasure in trying to make domain interfaces fully dynamic.
When he is not buried in complex code, he tries to spend his time
talking to developers and entrepreneurs about the foundations of

software development.

The Necessity of Industrial-Strength Technologies

Peter Hilton

Peter Hilton is a product manager, developer, writer,
speaker, trainer, and musician. His professional

interests are product management, workflow

automation, software functional design, Agile
software development methods, and software maintainability and
documentation. Peter consults for software companies and
development teams, and delivers the occasional presentation and
workshop. Peter has previously presented at numerous European
developer conferences, and he coauthored the book Play for Scala
(Manning Publications). He has taught Fast Track to Play with Scala
and, more recently, his own training course, How to Write
Maintainable Code.

Get Better at Naming Things
Refactor Boolean Values to Enumerations
Write One-Sentence Documentation Comments

Rafael Benevides

Rafael Benevides is a cloud native developer advocate
at Oracle. With many years of experience in several
fields of the IT industry, he helps developers and
companies all over the world to be more effective in
software development. Rafael considers himself a problem-solver who
has a big love for sharing. He is a member of Apache DeltaSpike PMC,
a Duke’s Choice Award project winner, and is a speaker at conferences
like JavaOne, Devoxx, TDC, Devnexus, and many others. He is on
Twitter as @rafabene.

Really Looking Under the Hood

Rod Hilton

Rod Hilton is a software engineer working with Scala
and Java at Twitter. He blogs about software,

technology, and sometimes Star Wars at

nomachetejuggling.com. You can find him on Twitter
as @rodhilton.

There Are Great Tools in Your bin/ Directory

Dr. Russel Winder

https://www.nomachetejuggling.com/

Dr. Russel Winder was first a theoretical high energy
particle physicist and then retrained himself as a Unix

systems programmer. This led to him becoming a

computer science academic (University College
London, then King’s College London) interested in
programming; programming languages, tools, and environments;
concurrency; parallelism; build; human—computer interaction; and
sociotechnical systems. Having been Professor of Computing Science
and head of the department of computer science at King’s College
London, he left academia to dabble with start-ups as CTO or CEO.
After this he was an independent consultant, analyst, author, trainer,
and expert witness for a decade before retiring in 2016. He is still very
interested in programming; programming languages, tools, and
environments; concurrency; parallelism; and build—it keeps him active

during retirement.

Declarative Expression Is the Path to Parallelism

The JVM Is a Multiparadigm Platform: Use This to Improve Your
Programming

Threads Are Infrastructure; Treat Them as Such

Sam Hepburn

.

Sam Hepburn has spent the past nine years in London
becoming a well-known face of the tech start-up

scene. She has worked with a variety of organizations

within London and now works further afield in the
US, UK, and Poland, building some of the largest tech communities in

the world. Her main aim is to create environments for individuals to

feel welcome and for communities to flourish. She’s currently leading
the community team at Snyk.io helping developers adopt security into
their development workflows. In her personal time, she is the
cofounder of Circle, a network for advancing women’s careers in our
new world of work, and the host of Busy Being Human, a podcast
covering the unedited, honest, human story behind how our favorite

humans became who they are.

Using the Power of Community to Enhance Your Career

Sander Mak

Sander Mak is director of technology at Picnic, a
Dutch online grocery scale-up, building Java-based
systems at scale. He also is a Java Champion and
author of the O’Reilly book Java 9 Modularity. As an
avid conference speaker, blogger, and Pluralsight author, Sander loves

sharing knowledge.

The Rebirth of Java

Sebastiano Poggi

Sebastiano Poggi, emerging from the foggy plains of
northern Italy, cut his teeth working at an early days
smartwatch start-up. He moved with his curls to
London to help on big clients’ Android apps at
renowned agencies AKQA and Novoda. A Google Developer Expert

since 2014, he frequently speaks at conferences and sporadically writes

https://snyk.io/

blog articles. Being back in Italy, these days he’s working for JetBrains
on both a tooling product and an Android app. He’s got a knack for
good design, typography, and photography, and has a past as a
videomaker. Sebastiano can often be found expressing unrequested

opinions on twitter.com/seebrock3r.

Interop with Kotlin

Steve Freeman

Steve Freeman, coauthor of Growing Object-Oriented
Software, Guided by Tests (Addison-Wesley), was a
pioneer of Agile software development in the UK. His

L

software vendors, as an independent consultant and trainer, and

experience includes working for consultancies and

prototyping for major research laboratories. Steve has a PhD from
Cambridge University. Currently, he is a distinguished consultant with
Zuhlke Engineering Ltd., based in the UK. Steve’s main pastime is

trying not to buy any more trombones.

Don’t Vary Your Variables
Minimal Constructors
Simple Value Objects

Thomas Ronzon

Thomas Ronzon has focused on the modernization of
business-critical applications for more than 20 years.

In addition, he publishes articles and speaks at

conferences. Thomas dives passionately, gladly, and

https://twitter.com/seebrock3r?lang=en

deeply into technical aspects, with professionalism. With empathy,
experience, and concrete proposals for solutions, he helps build the

bridge between business and IT.

How to Crash Your JVM

Trisha Gee

Trisha Gee has developed Java applications for a
range of industries, including finance, manufacturing,
software, and nonprofit, for companies of all sizes.
She has expertise in Java high-performance systems
and is passionate about enabling developer productivity. Trisha is a
developer advocate for JetBrains, a leader of the Sevilla Java User
Group, and a Java Champion. She believes healthy communities and

sharing ideas help us to learn from mistakes and build on successes.

Keep Your Finger on the Pulse
Learn Your IDE to Reduce Cognitive Load
Technical Interviewing Is a Skill Worth Developing

Uberto Barbini

Uberto Barbini is a polyglot programmer with more
than 20 years of experience designing and building

successful software products in many industries. He

% discovered that he loves programming when he
created his first video game on the ZX Spectrum, and he is still very
passionate about how to write the best code to deliver value to the

business, not only once but at a regular pace. When not coding, Uberto

loves public speaking, writing, and teaching. He’s currently writing a

book about pragmatic functional Kotlin.

Learn to Love Your Legacy Code

Index

A

abstractions, Declarative Expression Is the Path to Parallelism

missing, Hey Fred, Can You Pass Me the HashMap?
using in test code, Using Object-Oriented Principles in Test Code
acceptance tests, Feedback Loops

access modifiers, Package-by-Feature with the Default Access
Modifier

actor model, Concurrency on the JVM
Akka, Concurrency on the JVM

algorithms, The JVM Is a Multiparadigm Platform: Use This to
Improve Your Programming

aliasing, Simple Value Objects

allocation size and rate, Java Programming from a JVM Performance
Perspective

analytics and data, using to test software, Feedback Loops
Android, Interop with Kotlin, Thinking in Coroutines

using Kotlin in development, Kotlin Is a Thing

annotations

nullability, Interop with Kotlin

using custom identity annotations, Use Custom Identity
Annotations Liberally

anticorruption layer, Behavior Is “Easy”; State Is Hard
Apache Groovy (see Groovy)
APIs

designing, Let’s Make a Contract: The Art of Designing a Java
API

documentation with Javadoc, Augment Javadoc with AsciiDoc

application frameworks, All You Need Is Java
application servers, Follow the Boring Standards
approval testing, Approval Testing

architectural quality, benefits of codifying and asserting, The Benefits
of Codifying and Asserting Architectural Quality

ArchUnit, The Benefits of Codifying and Asserting Architectural
Quality, Use Custom Identity Annotations Liberally

arrange—act—assert (tests), Program with GUTs

AsciiDoc

benefits of, Augment Javadoc with AsciiDoc

origin and evolution of, Augment Javadoc with AsciiDoc

aspect-oriented programming (AOP), Use Custom Identity Annotations
Liberally

AsyncGetCallTrace, Firing on All Engines

auditability, improving with continuous delivery, Improving
Repeatability and Auditability with Continuous Delivery

automated testing, Break Problems and Tasks into Small Chunks, Use
Testing to Develop Better Software Faster

autonomy, Production Is the Happiest Place on Earth
@Autowired annotation, Minimal Constructors

availability, Trade-Offs in a Microservices Architecture

B

backend developers, “Full-Stack Developer” Is a Mindset
backward compatibility, From Puzzles to Products

Bazel, Only Build the Parts That Change and Reuse the Rest

remote build caching, Only Build the Parts That Change and
Reuse the Rest

benchmarking

characterizing and validating benchmarks, Java Programming
from a JVM Performance Perspective

difficulty of on JVM, Benchmarking Is Hard—JMH Helps

measuring impact of presizing collections, Benchmarking Is Hard
—JMH Helps

better software, Deliver Better Software, Faster
big data frameworks, Know Thy flatMap
bin/ directory, There Are Great Tools in Your bin/ Directory

block comments, Kinds of Comments

boilerplate, Embrace SQL Thinking, Java Should Feel Fun, Kotlin Is a
Thing, Simple Value Objects, Take Good Care of Your Dependencies

Boolean values, refactoring to enumerations, Refactor Boolean Values
to Enumerations

browsers, backward compatibility of, Follow the Boring Standards

bugs in proportion to lines of code, Read OpenJDK Daily

build tool runtime, standardized version of, “But It Works on My
Machine!”

builds

improving efficiency with build caching, Only Build the Parts
That Change and Reuse the Rest

reproducibility and maintainability wih standardized tools, “But It
Works on My Machine!”

running acceptance tests in, Feedback Loops

slow and unreliable, fixing, Builds Don’t Have To Be Slow and
Unreliable

business logic frameworks, All You Need Is Java

byte code instrumentation, Firing on All Engines

bytecode

C

as target platform, languages making use of, The JVM Is a
Multiparadigm Platform: Use This to Improve Your Programming

saving bytes in early Java, Java Is a ’90s Kid

verification in the JVM, disabling, How to Crash Your JVM

C, Think Outside the Java Sandbox

C#, Uncheck Your Exceptions

caching, Inline Thinking

build caching, Only Build the Parts That Change and Reuse the
Rest

CAP theorem, Trade-Offs in a Microservices Architecture

certifications in Java, Java Certifications: Touchstone in Technology

why I hold no value in, Why I Don’t Hold Any Value in
Certifications

character encodings, Really Looking Under the Hood
checked exceptions, Uncheck Your Exceptions

CI/CD

continuous delivery (CD), Production Is the Happiest Place on
Earth

improving repeatability and auditability with continuous delivery,
Improving Repeatability and Auditability with Continuous
Delivery

running wrappers on pipeline, “But It Works on My Machine!”
class files, modifying in the filesystem, How to Crash Your JVM
class libraries in Java, All You Need Is Java

classes

naming, Get Better at Naming Things
representing value objects, Simple Value Objects

thinking carefully about responsibilities of, Take “Separation of
Concerns” Seriously

unnecessary, Embrace SQL Thinking

Clojure, Think Outside the Java Sandbox

built-in software transactional memory, Concurrency on the JVM

rediscovering the JVM through, Rediscover the JVM Through
Clojure

cloud-native applications, Really Looking Under the Hood

code

making simple and readable, Make Code Simple and Readable
reading OpenJDK daily, Read OpenJDK Daily
writing readable code, Write “Readable Code”

code change vs. system change, From Puzzles to Products

code katas, Learn to Kata and Kata to Learn

code restorers, The Code Restorer

collections

importance of, Know Your Collections

presizing, measuring impact of, Benchmarking Is Hard—JMH
Helps

command line, Don’t hIDE Your Tools

comments, Kinds of Comments

block comments, Kinds of Comments

commenting code when necessary, Make Code Simple and
Readable

in module declarations, Take Care of Your Module Declarations

Javadoc comments, Kinds of Comments

line comments, Kinds of Comments

using identity notations instead of, Use Custom Identity
Annotations Liberally

writing one sentence documentation comments, Write One-
Sentence Documentation Comments

commits, frequent, Break Problems and Tasks into Small Chunks

common Java interview questions, Technical Interviewing Is a Skill
Worth Developing

Communicating Sequential Processes (CSP), Threads Are
Infrastructure; Treat Them as Such

communication and clarity, It’s Done, But...

community

JCP, and how to participate, What Is the JCP Program and How to
Participate

using to enhance your career, Using the Power of Community to
Enhance Your Career

compilation, build tool caching of, Only Build the Parts That Change
and Reuse the Rest

compilers

dynamic, optimizations performed by, Java Programming from a
JVM Performance Perspective

gotchas in interview questions, Technical Interviewing Is a Skill
Worth Developing

components, events between, Events Between Java Components

composite keys, Hey Fred, Can You Pass Me the HashMap?

computeStatData method, Learn to Use New Java Features

concurrency

concurrent and parallel computation, Threads Are Infrastructure;
Treat Them as Such

on the JVM, Concurrency on the JVM

mixing concurrency models, problems with, CountDownLatch—
Friend or Foe?

working understanding of, Technical Interviewing Is a Skill
Worth Developing

concurrent garbage collectors, Garbage Collection Is Your Friend
conditions, Learn Java Idioms and Cache in Your Brain
consistency, Trade-Offs in a Microservices Architecture
constructors, minimal, Minimal Constructors

containers

benefits of, Be Aware of Your Container Surroundings

container support in the JVM, Be Aware of Your Container
Surroundings

danger in containerizing legacy applications, Be Aware of Your
Container Surroundings

using to unlock potential of integration testing, Unlocking the
Hidden Potential of Integration Testing Using Containers

continuous integration (CI) builds, Builds Don’t Have To Be Slow and
Unreliable

contract testing, tools for, Use Testing to Develop Better Software
Faster

contributors, -
cooperation as highly valued trait, Build Diverse Teams
Coordinated Universal Time (UTC), Do You Know What Time It Is?
copying, garbage collection by, Garbage Collection Is Your Friend
coroutines, Kotlin Is a Thing

thinking in, Thinking in Coroutines

value in coding for Android, Thinking in Coroutines

correctness, obsessing over, vs. optimizing for change, From Puzzles to
Products

CountDownLatch, CountDownLatch—Friend or Foe?

limitations of, CountDownLatch—Friend or Foe?

coverage, improving unit tests, Use Coverage to Improve Your Unit
Tests

curiosity, The Three Traits of Really, Really Good Developers

CyclicBarrier, CountDownLatch—Friend or Foe?

D

Dart, Think Outside the Java Sandbox
data engineers, Know Thy flatMap
data migrations, From Puzzles to Products

data structures, interview questions about, Technical Interviewing Is a
Skill Worth Developing

data types

nondenotable, Java’s Unspeakable Types

nulls and, Java’s Unspeakable Types

databases, “Full-Stack Developer” Is a Mindset

date and time

java.util.Date and java.time, Name the Date

problems with, Do You Know What Time It Is?
daylight saving time (DST), Do You Know What Time It Is?
debugging

bugs caused by behavior issues, Behavior Is “Easy”; State Is Hard

unexpected behaviors or bugs, dealing with, Open Source Projects
Aren’t Magic

declarative programming, Declarative Expression Is the Path to
Parallelism

declarative SQL queries, Embrace SQL Thinking
definition of done, It’s Done, But...
delivering better software, faster, Deliver Better Software, Faster

dependencies

heavy reliance on third-party libraries, Take Good Care of Your
Dependencies

managing with ArchUnit, The Benefits of Codifying and
Asserting Architectural Quality

strategy for, Take Good Care of Your Dependencies
updating, Take Good Care of Your Dependencies

vulnerable, Take Good Care of Your Dependencies

dependency injection frameworks, caution with, Minimal Constructors

deployment

artifact format, The Case Against Fat JARs

larger Java deployables, disadvantage of, In the Language Wars,
Java Holds Its Own

progressive, From Puzzles to Products

designing change, From Puzzles to Products

Developer Productivity Engineering, Builds Don’t Have To Be Slow
and Unreliable

developers, really good, traits of, The Three Traits of Really, Really
Good Developers

DevOps engineers, “Full-Stack Developer” Is a Mindset
disk space, filling up, How to Crash Your JVM
diversity on development teams, Build Diverse Teams
DocBook XML, Augment Javadoc with AsciiDoc

Docker containers

danger in containerizing legacy applications, Be Aware of Your
Container Surroundings

Linux Docker container support in JDK 8, Be Aware of Your
Container Surroundings

documentation

creating with AsciiDoc, Augment Javadoc with AsciiDoc

one-sentence documentation comments, Write One-Sentence
Documentation Comments

domain models, primitive obsession in, Refactor Boolean Values to
Enumerations

domain-driven design, ubiquitous vocabulary, Get Better at Naming
Things

domain-specific languages (DSLs), Embrace SQL Thinking

done, definition of, It’s Done, But...

E

Eden, The Young, the Old, and the Garbage
Einstein (developer persona), All You Need Is Java
Elvis (developer persona), All You Need Is Java

empathy and imagination, The Three Traits of Really, Really Good
Developers

encapsulation

importance of, Behavior Is “Easy”; State Is Hard

using in test code, Using Object-Oriented Principles in Test Code

enumerations, refactoring Boolean values to, Refactor Boolean Values
to Enumerations

environment your software is running in, experimenting with, How to
Crash Your JVM

events between Java components, Events Between Java Components

implementing, Events Between Java Components

exceptions, Uncheck Your Exceptions

checked, Uncheck Your Exceptions

CountDownLatch and, CountDownLatch—Friend or Foe?

NullPointerException, Behavior Is “Easy”; State Is Hard, How to

Avoid Null
parameter types, Java’s Unspeakable Types

unchecked, Uncheck Your Exceptions

ExecutorService, CountDownLatch—Friend or Foe?

F

failing tests, Use Testing to Develop Better Software Faster

failures, testing against, Frequent Releases Reduce Risk

faster delivery of better software, Deliver Better Software, Faster

fat JARs, case against, The Case Against Fat JARs

feature flags, From Puzzles to Products

feedback loops, Feedback Loops

file I/O, idiom for, Learn Java Idioms and Cache in Your Brain

files, opening as many as possible, How to Crash Your JVM

filters, Know Thy flatMap

final fields in value objects, Simple Value Objects

final variables, Don’t Vary Your Variables, Read OpenJDK Daily

flaky tests, Builds Don’t Have To Be Slow and Unreliable

flame graphs, Firing on All Engines

flatMap, Optional Is a Lawbreaking Monad but a Good Type
importance of, Know Thy flatMap

Flutter, Think Outside the Java Sandbox
Fork/Join framework, Threads Are Infrastructure; Treat Them as Such

fractions, adding, as simple coding kata, Take “Separation of
Concerns” Seriously

FrameMaker, Augment Javadoc with AsciiDoc

frameworks

age of, All You Need Is Java

embracing for production deliverables, Production Is the Happiest
Place on Earth

identity notation for classses from, Use Custom Identity
Annotations Liberally

in web/JavaScript ecosystem, lack of standardization in, Follow
the Boring Standards

Java frameworks not coping well with immutability, Behavior Is
“Easy”; State Is Hard

Frege, Think Outside the Java Sandbox
frontend developers, “Full-Stack Developer” Is a Mindset
frontend development, “Full-Stack Developer” Is a Mindset
frontends, building without frameworks, Follow the Boring Standards
full-stack deveopers, “Full-Stack Developer” Is a Mindset

mindset of, “Full-Stack Developer” Is a Mindset
fun with Java, Java Should Feel Fun

functional programming, Make Code Simple and Readable

Java 8 lamdas and, Concurrency on the JVM

languages, Think Outside the Java Sandbox

object-orientation integrated with, The JVM Is a Multiparadigm
Platform: Use This to Improve Your Programming

using streams, Learn to Use New Java Features

fuzz testing, The Unreasonable Effectiveness of Fuzz Testing

G

garbage collection

algorithms for, Really Looking Under the Hood

JVM performance and, Java Programming from a JVM
Performance Perspective

references and, The Young, the Old, and the Garbage
strategies, The Young, the Old, and the Garbage
tasks of garbage collector, The Young, the Old, and the Garbage

unsung hero of Java, Garbage Collection Is Your Friend

generation-based fuzzers, The Unreasonable Effectiveness of Fuzz
Testing

generational hypothesis, Garbage Collection Is Your Friend
getter methods, Learn to Use New Java Features

getters and setters

imposing internal state through, Behavior Is “Easy”; State Is Hard
no need for in value objects, Simple Value Objects
given—when—then, Program with GUTs

Go language, Think Outside the Java Sandbox

golden master testing, Approval Testing

(see also approval testing)

Gradle, Only Build the Parts That Change and Reuse the Rest

checking for updates in dependencies, Take Good Care of Your
Dependencies

incremental builds, Only Build the Parts That Change and Reuse
the Rest

remote build caching, Only Build the Parts That Change and
Reuse the Rest

Gradle Wrapper, “But It Works on My Machine!”
Groovy, Open Source Projects Aren’t Magic

using with Java code, Make Your Java Groovier

GUTs (good unit tests), Program with GUTs

H

hacking your system, How to Crash Your JVM
HashMaps, Hey Fred, Can You Pass Me the HashMap?

implementation details in HashMap, Kinds of Comments

heap, The Young, the Old, and the Garbage

compaction by garbage collectors, Garbage Collection Is Your
Friend

young generation and old generation objects, The Young, the Old,
and the Garbage

higher-order functions in declarative expressions, Declarative
Expression Is the Path to Parallelism, The JVM Is a Multiparadigm

Platform: Use This to Improve Your Programming

HTTP protocol, Really Looking Under the Hood

idioms (Java), Learn Java Idioms and Cache in Your Brain
imagination, The Three Traits of Really, Really Good Developers
immutability

final variables and, Don’t Vary Your Variables

for value types, Name the Date

Java 8 lambdas promoting, Concurrency on the JVM

message, Concurrency on the JVM

of value objects, Simple Value Objects

using to prevent inconsistent state, Behavior Is “Easy”; State Is
Hard

imperative and declarative thinking, The JVM Is a Multiparadigm
Platform: Use This to Improve Your Programming

imperative programming, Declarative Expression Is the Path to
Parallelism

implicit iteration, The JVM Is a Multiparadigm Platform: Use This to
Improve Your Programming

inconsistent state, difficulty of debugging, Behavior Is “Easy”; State Is
Hard

indentation in code, Make Code Simple and Readable

industrial-strength technologies, necessity of, The Necessity of
Industrial-Strength Technologies

infrastructure as code, “But It Works on My Machine!”
inheritance, Behavior Is “Easy”; State Is Hard
using in test code, Using Object-Oriented Principles in Test Code
initializing variables to null, avoiding, How to Avoid Null
@Inject annotation, Minimal Constructors
inline types, Inline Thinking
Instant, Do You Know What Time It Is?

integrated development environments (IDEs)

benefits and limitations of, Don’t hIDE Your Tools

learning, importance of, Learn Your IDE to Reduce Cognitive
Load

over-reliance on, Don’t hIDE Your Tools
running wrappers on, “But It Works on My Machine!”

seeing beyond the IDE window, How to Crash Your JVM

integration testing, Unlocking the Hidden Potential of Integration
Testing Using Containers, Use Testing to Develop Better Software
Faster

interfaces, large, breaking into smaller pieces, Let’s Make a Contract:
The Art of Designing a Java API

interoperability with Kotlin, Interop with Kotlin

interviewing developers, Technical Interviewing Is a Skill Worth
Developing

issue trackers, Open Source Projects Aren’t Magic

J

JARs, In the Language Wars, Java Holds Its Own

fat, case against, The Case Against Fat JARs
skinny, The Case Against Fat JARs
Java
advantages of, In the Language Wars, Java Holds Its Own

certifications in, Java Certifications: Touchstone in Technology,
Why I Don’t Hold Any Value in Certifications

class libraries, All You Need Is Java

design and background, In the Language Wars, Java Holds Its
Own

disadvantages of, In the Language Wars, Java Holds Its Own
evolving nature of, Keep Your Finger on the Pulse
interoperability with Kotlin, Interop with Kotlin

learning idioms, Learn Java Idioms and Cache in Your Brain
learning to use new features, Learn to Use New Java Features

making code simple and readable, Make Code Simple and
Readable

1990s design, Java Is a ’90s Kid

programming from JVM performance perspective, Java
Programming from a JVM Performance Perspective

programming that is fun, Java Should Feel Fun

really looking under the hood, Really Looking Under the Hood

rebirth of, The Rebirth of Java

revolutionary changes in, The JVM Is a Multiparadigm Platform:
Use This to Improve Your Programming

using Groovy with, Make Your Java Groovier

Java Memory Model, Concurrency on the JVM
java.time library, Do You Know What Time It Is?, Name the Date
java.util.Date, Java Is a ’90s Kid, Name the Date
javac, Don’t hIDE Your Tools
Javadoc, Augment Javadoc with AsciiDoc
writing using AsciiDoc, Augment Javadoc with AsciiDoc
JavaFX bar chart, Learn to Use New Java Features
javap, There Are Great Tools in Your bin/ Directory
JavaScript, Think Outside the Java Sandbox
jconsole, There Are Great Tools in Your bin/ Directory

JCP (Java Community Process) Program and how to participate, What
Is the JCP Program and How to Participate

jhat, There Are Great Tools in Your bin/ Directory
jinfo, There Are Great Tools in Your bin/ Directory
jmap, There Are Great Tools in Your bin/ Directory

JMH (Java Microbenchmarking Harness), Benchmarking Is Hard—
JMH Helps

using JMH Maven archetype, Benchmarking Is Hard—JMH
Helps

Joyce, Bruce, All You Need Is Java
JPA/Hibernate implementations, Really Looking Under the Hood
jps, There Are Great Tools in Your bin/ Directory

jshell, There Are Great Tools in Your bin/ Directory, Think Outside the
Java Sandbox

JsonSlurper, Make Your Java Groovier
jstack, There Are Great Tools in Your bin/ Directory

JUnit testing framework, Approval Testing, The Benefits of Codifying
and Asserting Architectural Quality

jvisualvm, There Are Great Tools in Your bin/ Directory

JVMs

adaptive JVM, demanding, Java Programming from a JVM
Performance Perspective

AsyncGetCallTrace feature, Firing on All Engines
concurrency on, Concurrency on the JVM

difficulty of benchmarking and microbenchmarking on,
Benchmarking Is Hard—JMH Helps

finding ways to crash the JVM, How to Crash Your JVM

GC strategies varying by implementation, Garbage Collection Is
Your Friend

graphical tools for connecting to/running JVMs, There Are Great
Tools in Your bin/ Directory

Java programming from JVM performance perspective, Java
Programming from a JVM Performance Perspective

K

JVM ergonomics, Be Aware of Your Container Surroundings

multiparadigm JVM, using to improve programming, The JVM Is
a Multiparadigm Platform: Use This to Improve Your
Programming

older, running inside Docker containers, Be Aware of Your
Container Surroundings

parameters configured by JVM ergonomics, Be Aware of Your
Container Surroundings

profilers, Really Looking Under the Hood

rediscovering the JVM through Clojure, Rediscover the JVM
Through Clojure

katas, Learn to Kata and Kata to Learn

keys, composite, Hey Fred, Can You Pass Me the HashMap?

kintsugi, Learn to Love Your Legacy Code

Kotlin, The JVM Is a Multiparadigm Platform: Use This to Improve
Your Programming, Kotlin Is a Thing-Kotlin Is a Thing, Think Outside
the Java Sandbox

L

coroutines, Kotlin Is a Thing, Thinking in Coroutines
delegation in, Kotlin Is a Thing
interoperability with, Interop with Kotlin

property constructor pattern for models, Kotlin Is a Thing

lambda expressions, The JVM Is a Multiparadigm Platform: Use This

to Improve Your Programming

lambdas, Concurrency on the JVM, Java Should Feel Fun, Learn to
Use New Java Features, Make Code Simple and Readable, Really
Looking Under the Hood

Kotlin code blocks and, Thinking in Coroutines
LaTeX formats, use with AsciiDoc, Augment Javadoc with AsciiDoc

launching multiple concurrent tasks, CountDownLatch—Friend or
Foe?

layer-based access rules, enforcing with ArchUnit, The Benefits of
Codifying and Asserting Architectural Quality

legacy code, Learn to Love Your Legacy Code
libraries, All You Need Is Java
line comments, Kinds of Comments

listeners

creating, Events Between Java Components
removing, Events Between Java Components

lists

List interface and implementations of, Know Your Collections
LocalDateTime, Do You Know What Time It Is?
localizing variable scope, Don’t Vary Your Variables
locks, Threads Are Infrastructure; Treat Them as Such
long-term stability in development, encouraging, The Code Restorer

Long-Term Supported (LTS) Java versions, The Rebirth of Java

looping, Learn Java Idioms and Cache in Your Brain

M

magic type, using var as, Java’s Unspeakable Types
many-to-one relationships, Really Looking Under the Hood
maps, Know Thy flatMap

Map interface, Know Your Collections

mark-and-sweep garbage collection, Garbage Collection Is Your
Friend

markup formats (lightweight), Augment Javadoc with AsciiDoc

MathML formats, using wih AsciiDoc, Augment Javadoc with
AsciiDoc

Maven, Only Build the Parts That Change and Reuse the Rest

checking for updates in dependencies, Take Good Care of Your
Dependencies

project augmented by Wrapper files, directory structure, “But It
Works on My Machine!”

remote build caching, Only Build the Parts That Change and
Reuse the Rest

SlimFast, The Case Against Fat JARs
Takari, “But It Works on My Machine!”
Maven Wrapper, “But It Works on My Machine!”

memory

allocating as much memory as possible, How to Crash Your JVM

garbage collectors and memory allocation/deallocation, Garbage
Collection Is Your Friend

how Java handles memory, The Young, the Old, and the Garbage
overcoming shared memory limitations, Concurrency on the JVM

shared memory multithreading, Threads Are Infrastructure; Treat
Them as Such

message flow between actors, implementing concurrency, Concurrency
on the JVM

meta guiding in speed-reading, Refactoring Toward Speed-Reading

method references, The JVM Is a Multiparadigm Platform: Use This to
Improve Your Programming, Learn to Use New Java Features

methods

default methods on interfaces, The JVM Is a Multiparadigm
Platform: Use This to Improve Your Programming

meaningful names for, Make Code Simple and Readable

naming, Get Better at Naming Things

responsibilities of, Take “Separation of Concerns” Seriously
microbenchmarking, Benchmarking Is Hard—JMH Helps

microservices, Production Is the Happiest Place on Earth

characteristics of, Trade-Offs in a Microservices Architecture

trade-offs with, Trade-Offs in a Microservices Architecture
module declarations, Take Care of Your Module Declarations

commenting, Take Care of Your Module Declarations

reviewing, Take Care of Your Module Declarations

monads, Optional Is a Lawbreaking Monad but a Good Type
Mort (developer persona), All You Need Is Java

multiparadigm languages, The JVM Is a Multiparadigm Platform: Use
This to Improve Your Programming

multithreading

correct handling of state using JMH, Benchmarking Is Hard—
JMH Helps

gotchas in interview questions, Technical Interviewing Is a Skill
Worth Developing

limitations of, Concurrency on the JVM

shared memory multithreading, Threads Are Infrastructure; Treat
Them as Such

mutation testing, tool for, Use Testing to Develop Better Software
Faster

mutation-based fuzzers, The Unreasonable Effectiveness of Fuzz
Testing

mutexes, Threads Are Infrastructure; Treat Them as Such

N

naming
getting better at, Get Better at Naming Things
using meaningful names, Write “Readable Code”

naming conventions

enforcing with ArchUnit, The Benefits of Codifying and Asserting
Architectural Quality

following for APIs, Let’s Make a Contract: The Art of Designing
a Java API

native code, writing, How to Crash Your JVM

Noda Time (.NET), Do You Know What Time It Is?

Node.js, Think Outside the Java Sandbox

non-heap/perm (memory), The Young, the Old, and the Garbage
nondenotable types, Java’s Unspeakable Types

NoSQL databases, “Full-Stack Developer” Is a Mindset

noun phrases for class names, Get Better at Naming Things

nulls, How to Avoid Null

acceptable uses of, How to Avoid Null
avoiding initializing variables to null, How to Avoid Null

avoiding passing and receiving null parameters, How to Avoid
Null

avoiding returning null, How to Avoid Null
data types and, Java’s Unspeakable Types

never returning in APIs, Let’s Make a Contract: The Art of
Designing a Java API

non-nullable types in Java, Interop with Kotlin

Optional and, Optional Is a Lawbreaking Monad but a Good Type

(0)

object locality, Garbage Collection Is Your Friend

object-oriented langauges, The JVM Is a Multiparadigm Platform: Use

This to Improve Your Programming

object-oriented principles, using in test code, Using Object-Oriented
Principles in Test Code

object-relational mappers (ORMs), Embrace SQL Thinking

objects

allocation size and rate, Java Programming from a JVM
Performance Perspective

garbage collection and, Garbage Collection Is Your Friend
naming, Get Better at Naming Things

observability, From Puzzles to Products, Production Is the Happiest
Place on Earth

old generation, The Young, the Old, and the Garbage
one-to-many relationships, Really Looking Under the Hood
open source projects, Open Source Projects Aren’t Magic

contributions to, Open Source Projects Aren’t Magic

OpenJDK, Read OpenJDK Daily

supported builds for latest Java release, The Rebirth of Java

Optional, How to Avoid Null, Let’s Make a Contract: The Art of
Designing a Java API

as broken monad, Optional Is a Lawbreaking Monad but a Good
Type

fulfilling monad definitions, Optional Is a Lawbreaking Monad
but a Good Type

monad laws, Optional Is a Lawbreaking Monad but a Good Type

Oracle Corporation, professional certifications in Java, Java
Certifications: Touchstone in Technology, Why I Don’t Hold Any
Value in Certifications

ordered collections, Know Your Collections
overengineering, avoiding, Make Code Simple and Readable

overfitting tests, Program with GUTs

P

package-by-feature with default access modifier, Package-by-Feature
with the Default Access Modifier

package-private access, Package-by-Feature with the Default Access
Modifier

Page Object Model design pattern, Using Object-Oriented Principles in
Test Code

pair programming, Feedback Loops, Make Code Simple and Readable

parallelism

concurrency on he JVM, Concurrency on the JVM

declarative expression as path to, Declarative Expression Is the
Path to Parallelism

parameters
null, avoiding passing and receiving, How to Avoid Null
type of multicatch parameter, Java’s Unspeakable Types
partition tolerance, Trade-Offs in a Microservices Architecture

performance tests, tools for, Use Testing to Develop Better Software
Faster

performance, improvement through efficient garbage collection,
Garbage Collection Is Your Friend

Perl, Think Outside the Java Sandbox
personalities within development teams, Build Diverse Teams
phantom references, The Young, the Old, and the Garbage
polymorphism, Behavior Is “Easy”; State Is Hard

using in test code, Using Object-Oriented Principles in Test Code
primitive types, Java Is a ’90s Kid

cache-friendly behaviors, Inline Thinking

domain models suffering from primitive obsession, Refactor
Boolean Values to Enumerations

problems, breaking into chunks, Break Problems and Tasks into Small
Chunks

process ID, finding and killing, How to Crash Your JVM

production environment, loving, Production Is the Happiest Place on
Earth

profilers (JVM), Really Looking Under the Hood
profiling code, Firing on All Engines
profit, focus on, The Code Restorer

programmatic documentation, identity notations as, Use Custom
Identity Annotations Liberally

programming languages

choosing right one to use JVM to best effect, The JVM Is a
Multiparadigm Platform: Use This to Improve Your Programming

learning others besides Java, Think Outside the Java Sandbox
psychological safety, Build Diverse Teams
puzzles to products, From Puzzles to Products

Python, Think Outside the Java Sandbox

Q

query fetch size, Really Looking Under the Hood

questions often asked in interviewing developers, Technical
Interviewing Is a Skill Worth Developing

R

R, Think Outside the Java Sandbox

RAM, high cost of reading from, Inline Thinking

reactive programming, Concurrency on the JVM

readable and simple code, Make Code Simple and Readable

readable code, writing, Write “Readable Code”

reading code using speed-reading, Refactoring Toward Speed-Reading

record syntax (Java 14), Learn to Use New Java Features, Simple
Value Objects

Red, Green, Refactor process in TDD, Test-Driven Development
refactoring, Test-Driven Development

techniques for understanding code, Write “Readable Code”
reference types, Inline Thinking

references, GC collection of, The Young, the Old, and the Garbage

relational constraints in SQL queries, Embrace SQL Thinking
relational databases, “Full-Stack Developer” Is a Mindset
relationship names for entity pairs, Get Better at Naming Things

release cycles for Java, Learn to Use New Java Features, The Rebirth
of Java

releases

frequent, reducing risk, Frequent Releases Reduce Risk

large, infrequent, increased risk with, Frequent Releases Reduce
Risk

repeatability, improving with continuous delivery, Improving
Repeatability and Auditability with Continuous Delivery

REPL (read—eval—print loop), Rediscover the JVM Through Clojure
REST APIs, Approval Testing
returning null, avoiding, How to Avoid Null
risk
defined, Frequent Releases Reduce Risk

greater risk with large, infrequent releases, Frequent Releases
Reduce Risk

Ruby, Think Outside the Java Sandbox

Rust, Think Outside the Java Sandbox

S

sampling by Java profilers, Firing on All Engines
Scala, The JVM Is a Multiparadigm Platform: Use This to Improve

Your Programming, Think Outside the Java Sandbox

scalable vector graphics (SVGs), generation by profiler tools, Firing on
All Engines

scope, localizing for variables, Don’t Vary Your Variables

separation of concerns, taking seriously, Take “Separation of
Concerns” Seriously

serverless architectures, All You Need Is Java
servlets, Keep Your Finger on the Pulse
Set, Know Your Collections

shared memory multithreading, Threads Are Infrastructure; Treat Them
as Such

short-term focus in development, problems with, The Code Restorer
SlimFast (Maven plug-in), The Case Against Fat JARs

snapshot testing, Approval Testing

sockets, opening as many as possible, How to Crash Your JVM

soft references, The Young, the Old, and the Garbage

software architectures, Trade-Offs in a Microservices Architecture
sorted collections, Know Your Collections

specifications for Java technologies, What Is the JCP Program and
How to Participate

speed-reading, refactoring toward, Refactoring Toward Speed-Reading
SQL
embracing SQL thinking, Embrace SQL Thinking

enabling SQL output during development, Really Looking Under
the Hood

stack traces
autoinstrumenting, Java Should Feel Fun
flame graphs for, Firing on All Engines
jstack tool, There Are Great Tools in Your bin/ Directory
using JVM feature AsyncGetCallTrace, Firing on All Engines

standards

for Java technologies, What Is the JCP Program and How to
Participate

reliance on web standards, Follow the Boring Standards

state

correct handling in multithreading using JMH, Benchmarking Is
Hard—JMH Helps

difficulty of resolving bugs caused by inconsistent state, Behavior
Is “Easy”; State Is Hard

growth and complexity of, taming with encapsulation, Behavior Is
“Easy”; State Is Hard

stop-the-world garbage collectors, Garbage Collection Is Your Friend
strangler pattern, Learn to Love Your Legacy Code
streaming libraries, Know Thy flatMap

streams, Learn Java Idioms and Cache in Your Brain, Let’s Make a
Contract: The Art of Designing a Java API, Make Code Simple and
Readable, Really Looking Under the Hood

example with, Learn to Use New Java Features

use for data parallel problems, Declarative Expression Is the Path
to Parallelism

subvocalization, Refactoring Toward Speed-Reading
survivors, The Young, the Old, and the Garbage
Swing, Keep Your Finger on the Pulse

synchronized statements, Threads Are Infrastructure; Treat Them as
Such

system change, From Puzzles to Products

System.exit, creating class at runtime that calls, How to Crash Your
JVM

T

Takari (Maven plug-in), “But It Works on My Machine!”

tasks, breaking into chunks, Break Problems and Tasks into Small
Chunks

TCP/IP networking, Really Looking Under the Hood
teams, successful and diverse, building, Build Diverse Teams

technical interviewing, learning skills in, Technical Interviewing Is a
Skill Worth Developing

test automation, Use Testing to Develop Better Software Faster

test-driven development (TDD), Test-Driven Development

code properties of high quality software, Test-Driven
Development

proess of (Red, Green, Refactor), Test-Driven Development

testing

advantages and limitations of, Frequent Releases Reduce Risk

effectiveness of fuzz testing, The Unreasonable Effectiveness of
Fuzz Testing

tests making assertions about strings, Approval Testing

unlocking potential of integration testing using containers,
Unlocking the Hidden Potential of Integration Testing Using
Containers

using coverage to improve unit tests, Use Coverage to Improve
Your Unit Tests

using object-oriented principles in test code, Using Object-
Oriented Principles in Test Code

using to develop better software faster, Use Testing to Develop
Better Software Faster

testing frameworks, classic, Approval Testing

threads

code not monopolizing threads, Production Is the Happiest Place
on Earth

couroutines versus, Kotlin Is a Thing
creating as many as possible, How to Crash Your JVM

treating as infrastructure, Threads Are Infrastructure; Treat Them
as Such

using coroutines in place of, Thinking in Coroutines

three-tier architecture, business applications, Package-by-Feature with
the Default Access Modifier

Throwable class, Uncheck Your Exceptions
throws clause, Uncheck Your Exceptions

time, Do You Know What Time It Is?

problems with date and time in code, Do You Know What Time It
Is?

TimeZone with UTC offsets and daylight saving time rules, Do You
Know What Time It Is?

tools

clearly defined set for each project, “But It Works on My
Machine!”

great tools in bin/ directory, There Are Great Tools in Your bin/
Directory

understanding essential tools for Java programmers, Don’t hIDE
Your Tools

touchstone, Java Certifications: Touchstone in Technology

traits of really good developers, The Three Traits of Really, Really
Good Developers

trust among team members, Build Diverse Teams

U

ubiquitous vocabulatory, Get Better at Naming Things
unchecked exceptions, Uncheck Your Exceptions
underfitting tests, Program with GUTs

undifferentiated heavy lifting, Production Is the Happiest Place on
Earth

unhandled checked exceptions, Uncheck Your Exceptions

unit of test (UoT), isolating, Java Programming from a JVM
Performance Perspective

unit testing frameworks

JUnit, Approval Testing

using with ArchUnit, The Benefits of Codifying and Asserting
Architectural Quality

unit tests, Feedback Loops
good unit tests (GUTs), Program with GUTs

using coverage to improve, Use Coverage to Improve Your Unit
Tests

using with katas, Learn to Kata and Kata to Learn
unknown unknowns, testing and, Frequent Releases Reduce Risk
unordered collections, Know Your Collections
unreliable builds, Builds Don’t Have To Be Slow and Unreliable
Unsafe class, How to Crash Your JVM

unsorted collections, Know Your Collections

Vv

value objects, simple, Simple Value Objects
varargs, Let’s Make a Contract: The Art of Designing a Java API

variables

local variables not marked as final in OpenJDK, Read OpenJDK
Daily

meaningful names for, Make Code Simple and Readable

variables, not varying, Don’t Vary Your Variables

assigning once, Don’t Vary Your Variables
localizing scope, Don’t Vary Your Variables
verbose code, avoiding, Make Code Simple and Readable

verbosity of Java, In the Language Wars, Java Holds Its Own, Java
Should Feel Fun, Make Your Java Groovier

vocabulary, development in writing programs, Hey Fred, Can You Pass
Me the HashMap?

vulnerabilities in dependencies, Take Good Care of Your
Dependencies

w

weak references, The Young, the Old, and the Garbage
web development technologies, “Full-Stack Developer” Is a Mindset

web/JavaScript ecosystem, lack of standardization in frameworks,
Follow the Boring Standards

Windows, running Maven Wrapper goals on, “But It Works on My
Machine!”

WORA (write once, run anywhere) principle, In the Language Wars,
Java Holds Its Own

wrappers, “But It Works on My Machine!”

Y

young generation, The Young, the Old, and the Garbage

y4

ZonedDateTime, Do You Know What Time It Is?

	Preface
	Permissions
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. All You Need Is Java
	Anders Norås

	2. Approval Testing
	Emily Bache

	3. Augment Javadoc with AsciiDoc
	James Elliott

	4. Be Aware of Your Container Surroundings
	David Delabassee

	5. Behavior Is “Easy”; State Is Hard
	Edson Yanaga

	6. Benchmarking Is Hard—JMH Helps
	Michael Hunger

	7. The Benefits of Codifying and Asserting Architectural Quality
	Daniel Bryant

	8. Break Problems and Tasks into Small Chunks
	Jeanne Boyarsky

	9. Build Diverse Teams
	Ixchel Ruiz

	10. Builds Don’t Have To Be Slow and Unreliable
	Jenn Strater

	11. “But It Works on My Machine!”
	Benjamin Muschko

	12. The Case Against Fat JARs
	Daniel Bryant

	13. The Code Restorer
	Abraham Marin-Perez

	14. Concurrency on the JVM
	Mario Fusco

	15. CountDownLatch—Friend or Foe?
	Alexey Soshin

	16. Declarative Expression Is the Path to Parallelism
	Russel Winder

	17. Deliver Better Software, Faster
	Burk Hufnagel

	18. Do You Know What Time It Is?
	Christin Gorman

	19. Don’t hIDE Your Tools
	Gail Ollis

	20. Don’t Vary Your Variables
	Steve Freeman
	Assign Once
	Localize Scope

	21. Embrace SQL Thinking
	Dean Wampler

	22. Events Between Java Components
	A.Mahdy AbdelAziz

	23. Feedback Loops
	Liz Keogh

	24. Firing on All Engines
	Michael Hunger

	25. Follow the Boring Standards
	Adam Bien

	26. Frequent Releases Reduce Risk
	Chris O’Dell
	What Is Risk?
	Large, Infrequent Releases Are Riskier

	27. From Puzzles to Products
	Jessica Kerr

	28. “Full-Stack Developer” Is a Mindset
	Maciej Walkowiak

	29. Garbage Collection Is Your Friend
	Holly Cummins

	30. Get Better at Naming Things
	Peter Hilton

	31. Hey Fred, Can You Pass Me the HashMap?
	Kirk Pepperdine

	32. How to Avoid Null
	Carlos Obregón
	Avoid Initializing Variables to Null
	Avoid Returning Null
	Avoid Passing and Receiving Null Parameters
	Acceptable Nulls

	33. How to Crash Your JVM
	Thomas Ronzon

	34. Improving Repeatability and Auditability with Continuous Delivery
	Billy Korando
	Repeatable
	Auditable

	35. In the Language Wars, Java Holds Its Own
	Jennifer Reif
	My History with Java
	Java’s Design and Background
	Java’s Downsides
	Why I Like Java
	What Does It Mean for Developers?

	36. Inline Thinking
	Patricia Aas

	37. Interop with Kotlin
	Sebastiano Poggi

	38. It’s Done, But…
	Jeanne Boyarsky
	1. Communication and Clarity
	2. Perception
	3. There’s No Partial Credit for Done

	39. Java Certifications: Touchstone in Technology
	Mala Gupta

	40. Java Is a ’90s Kid
	Ben Evans

	41. Java Programming from a JVM Performance Perspective
	Monica Beckwith
	Tip #1: Don’t Obsess Over Garbage
	Tip #2: Characterize and Validate Your Benchmarks
	Tip #3: Allocation Size and Rate Still Matter
	Tip #4: An Adaptive JVM Is Your Right and You Should Demand It

	42. Java Should Feel Fun
	Holly Cummins

	43. Java’s Unspeakable Types
	Ben Evans

	44. The JVM Is a Multiparadigm Platform: Use This to Improve Your Programming
	Russel Winder

	45. Keep Your Finger on the Pulse
	Trisha Gee

	46. Kinds of Comments
	Nicolai Parlog
	Javadoc Comments for Contracts
	Block Comments for Context
	Line Comments for Weird Things
	Last Words

	47. Know Thy flatMap
	Daniel Hinojosa

	48. Know Your Collections
	Nikhil Nanivadekar

	49. Kotlin Is a Thing
	Mike Dunn

	50. Learn Java Idioms and Cache in Your Brain
	Jeanne Boyarsky

	51. Learn to Kata and Kata to Learn
	Donald Raab

	52. Learn to Love Your Legacy Code
	Uberto Barbini

	53. Learn to Use New Java Features
	Gail C. Anderson

	54. Learn Your IDE to Reduce Cognitive Load
	Trisha Gee

	55. Let’s Make a Contract: The Art of Designing a Java API
	Mario Fusco

	56. Make Code Simple and Readable
	Emily Jiang

	57. Make Your Java Groovier
	Ken Kousen

	58. Minimal Constructors
	Steve Freeman

	59. Name the Date
	Kevlin Henney

	60. The Necessity of Industrial-Strength Technologies
	Paul W. Homer

	61. Only Build the Parts That Change and Reuse the Rest
	Jenn Strater

	62. Open Source Projects Aren’t Magic
	Jenn Strater

	63. Optional Is a Lawbreaking Monad but a Good Type
	Nicolai Parlog
	Monad Definition
	Monad Laws
	So What?

	64. Package-by-Feature with the Default Access Modifier
	Marco Beelen

	65. Production Is the Happiest Place on Earth
	Josh Long

	66. Program with GUTs
	Kevlin Henney

	67. Read OpenJDK Daily
	Heinz M. Kabutz

	68. Really Looking Under the Hood
	Rafael Benevides

	69. The Rebirth of Java
	Sander Mak

	70. Rediscover the JVM Through Clojure
	James Elliott

	71. Refactor Boolean Values to Enumerations
	Peter Hilton

	72. Refactoring Toward Speed-Reading
	Benjamin Muskalla

	73. Simple Value Objects
	Steve Freeman

	74. Take Care of Your Module Declarations
	Nicolai Parlog
	Keep Module Declarations Clean
	Comment Module Declarations
	Review Module Declarations

	75. Take Good Care of Your Dependencies
	Brian Vermeer
	Vulnerable Dependencies
	Updating Dependencies
	A Strategy for Your Dependencies

	76. Take “Separation of Concerns” Seriously
	Dave Farley

	77. Technical Interviewing Is a Skill Worth Developing
	Trisha Gee

	78. Test-Driven Development
	Dave Farley
	Red
	Green
	Refactor

	79. There Are Great Tools in Your bin/ Directory
	Rod Hilton

	80. Think Outside the Java Sandbox
	Ian F. Darwin

	81. Thinking in Coroutines
	Dawn Griffiths and David Griffiths

	82. Threads Are Infrastructure; Treat Them as Such
	Russel Winder

	83. The Three Traits of Really, Really Good Developers
	Jannah Patchay

	84. Trade-Offs in a Microservices Architecture
	Kenny Bastani

	85. Uncheck Your Exceptions
	Kevlin Henney

	86. Unlocking the Hidden Potential of Integration Testing Using Containers
	Kevin Wittek

	87. The Unreasonable Effectiveness of Fuzz Testing
	Nat Pryce

	88. Use Coverage to Improve Your Unit Tests
	Emily Bache
	When You’re Writing New Code
	When You Have to Change Code You Didn’t Write
	When You’re Working in a Team

	89. Use Custom Identity Annotations Liberally
	Mark Richards

	90. Use Testing to Develop Better Software Faster
	Marit van Dijk

	91. Using Object-Oriented Principles in Test Code
	Angie Jones
	Encapsulation
	Inheritance
	Polymorphism
	Abstraction

	92. Using the Power of Community to Enhance Your Career
	Sam Hepburn
	The Silver Lining
	How Can Community Help?
	Looking for Your Next Challenge?

	93. What Is the JCP Program and How to Participate
	Heather VanCura

	94. Why I Don’t Hold Any Value in Certifications
	Colin Vipurs

	95. Write One-Sentence Documentation Comments
	Peter Hilton

	96. Write “Readable Code”
	Dave Farley

	97. The Young, the Old, and the Garbage
	María Arias de Reyna
	The Garbage Collector
	GC Strategies
	References

	Contributors
	Index

