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Foreword

In 1971 Bob Boyer and I began working on an automatic theorem prover for the
programming language LISP. In my PhD dissertation of 1973, I wrote:

This paper describes an automatic theorem prover which is capable of pro-
ducing inductive proofs of a large number of interesting theorems about
functions written in a subset of pure LISP. The program was designed to
prove theorems in the way a good programmer might intuit them. It has
several features which make it distinct from other systems concerned with
proof of program properties: It is fully automatic, requiring no information
from the user except the LISP definitions of the functions involved and
the theorem to be proved. It automatically uses structural induction when
necessary, and automatically generates its own induction formulas. It will
occasionally generalize the theorem to be proved, and in so doing, often
‘discovers’ interesting lemmas. Finally, it is capable of writing new, recursive
LISP functions to help properly generalize a theorem.

How is mathematical logic used to describe the behavior of functions or programs?
What is a “theorem?” How do you “prove” theorems? What is an “automatic the-
orem prover?” What do all these mathematical terms—“induction,” “generalization,”
“lemma”—have to do with programs being “correct?” How can “programmer’s intuition”
guide a foray into mathematics? How do you think about programs that call themselves
without just going in circles?

These are some of the questions Bob and I had to answer when we began writing
the program described above. Our answers are still evolving 40 years later and are
currently manifested in ACL2, the “living” descendant of the prover above.

But while our code is well documented and available for study, the answers to the
above questions are not always explicit in it. Sometimes, the best way to learn how to
do something is just to sit down and try to do it.

There are two problems with that advice and the problems are especially acute
when mathematical logic is involved. First, you have to understand the “rules of the
game.” Those rules—if followed exactly—will ensure that what you “prove” is really
true. Second, it is hard to keep in mind the precise statement of every rule—and if you
make a mistake you might end up believing something is true when it is not.

This little book and the accompanying little assistant addresses both of these
problems. The book itself provides you with a gentle introduction to the mathematics
behind all of this. It presents “the rules” in a way geared toward the programmer. Indeed
the rules themselves are largely intuitive to the programmer. Second, the assistant
enforces the rules for you. But unlike the “automatic theorem provers” that I create,
their assistant is designed to enforce the rules while allowing you to learn by doing.

The offer here is: the prover will make sure the “formulas” are formulas and the
“proofs” are proofs. But you’re the intelligent actor: so what do you do now?

J Strother Moore
Austin, Texas
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Preface

What does it mean for a statement to be true? Some statements can be verified directly.
To determine whether a particular omelette is delicious, we merely have to taste the
omelette. Our answer is imprecise, however. We must wonder: how tasty must a
“delicious” omelette be? What egg dishes are properly called “omelettes?” Assuming
our taste test succeeds, we can answer the question for only one omelette at a time. We
may never know whether all omelettes are delicious, even if each individual omelette we
try is tasty.

What does it mean for a statement to be true of a recursive function? It is easy to
test an individual case. When we evaluate (reverse (reverse '(1 2))), we reach the result
'(1 2), exactly as we expect. Furthermore, evaluating a recursive function follows a
predictable—and fortunately, often simple—set of rules. We can therefore answer more
general questions. For instance, does (reverse (reverse x)) always produce x for any list?
We can determine the answer without ever evaluating the expression or even knowing
the specific value of x.

Our goal is to teach the reader how to determine facts about recursive functions
using induction. Our approach is to start with programming concepts such as recursive
functions and lists, and to lead the reader along the shortest path to inductive proofs.
We aim to teach enough to verify simple properties such as whether (reverse (reverse x))
always produces x for any list, although we leave that particular example as an exercise
for the reader.

Understanding how to read, write, and evaluate recursive functions over lists is
adequate preparation. We assume knowledge of neither logic nor mathematics beyond
arithmetic. We express as much as we can using simple programming concepts.
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Notation

Expressions in the book are written in a language comprised of variables, quoted literals,
if expressions, and function applications. Functions include nine built-in operators as
well as user-defined functions, which may be recursive.

Variable names consist of one or more characters, including letters, numbers, and
most punctuation; notable exceptions are parentheses and apostrophe. Examples of
variables are x, +, and variable-name1.

Quoted literals are preceded by a quote symbol, written ', and include atomic
“symbols” such as 'banana, natural numbers such as '12, and lists such as '(),
'(a glass of orange juice), and '(bacon with 2 eggs). Lists may also be arbitrarily deeply
nested; for example, '((3 slices of toast) or (1 bagel with cream cheese)).

An if expression has three parts: the question, the answer , and the else. For
example, (if sleepy 'coffee '(orange juice)) produces 'coffee if sleepy is 't and produces
'(orange juice) if sleepy is 'nil.

Function applications include a function name and zero or more arguments. For
example, (cons x '(with hash browns)), (f x (g y z)), or (do-something).

The nine built-in functions are: cons, which adds an element to the front of a list;
car, which returns the first element of a non-empty list; cdr, which returns the tail of a
non-empty list excluding its first element; atom, which returns 'nil for non-empty lists
and 't for everything else; equal, which returns 't if its arguments have identical values
and 'nil otherwise; natp, which returns 't if its argument is a natural number and 'nil
otherwise; size, which counts the conses needed to build a value; +, which adds two
natural numbers; and <, which returns 't if its first argument is less than its second
argument and 'nil otherwise.

User-defined functions are written with defun, and include the function’s name, a
list of names for its arguments, and an expression for the function’s body. Function
definitions may be recursive. For example:

(defun list-length (xs)
(if (atom xs)

'0
(+ '1 (list-length (cdr xs)))))
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Theorems, introduced in chapter 1, are defined with dethm. Much like functions,
theorem definitions include the theorem’s name, a list of names for its arguments, and
an expression for its body. Since expressions cannot refer to theorems, theorems are not
recursive. Here is an example:

(dethm natp/list-length (xs)
(natp (list-length xs)))

Guidelines for the Reader

For those who wish to “play along,” we include a simple proof assistant, J-Bob, defined
in the same language as the theorems we prove. J-Bob is a program that can check
each step when attempting to prove a theorem but does not contribute any steps. In
the appendices, we introduce J-Bob in “Recess,” we present the complete code of every
example and proof in the book using J-Bob in “The Proof of the Pudding,” and we
include the implementation of J-Bob in “The Little Assistant.” J-Bob, support to run
J-Bob in several languages, and the aforementioned proofs are available for download
at http://the-little-prover.org/.

Food appears in some examples for two reasons. First, food is easier to visualize
than abstract symbols (but there will be many short symbols like x, etc.). We hope the
food imagery helps you to better understand the examples and concepts. Second, we
want to provide a little distraction. We know how exhausting the subject matter can
be, thus these breakfast foods are for energizing you. As such, we hope that thinking
about food will cause you to occasionally set the book aside and have a bite.

You are now ready to start. Good luck! We hope you enjoy the book.

Bon appétit!

Daniel P. Friedman
Bloomington, Indiana

Carl Eastlund
Brooklyn, New York
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Salutations.
1

What are salutations?

Salutations are a fancy way of saying
hello or good morning.†

†Thank you, E. B. White (1899-1985), for
Charlotte’s Web.

2

Good morning.

Have you read The Little Schemer?
3

'nil.

Oh, so you’ve read The Little LISPer?
4

Well, . . .

Do you remember “Cons the
Magnificent?”

5

Certainly.†

†Otherwise, continue if you have some famil-
iarity with recursion.

What is (car (cons 'ham '(eggs))) equal
to?

6

'ham.†

†We write all values as expressions using the
symbol ' to denote a literal “quoted” value, rather
than referring to values outside of expressions.

Yes. But also (car (cons 'ham '(cheese))),
(car (cdr (cons 'eggs '(ham)))),
(car (cons (car '(ham)) '(eggs))), . . .

7

That’s strange.

What value is this expression equal to?

(car (cons 'ham '(eggs)))

8

That’s easy.

'ham †

†When we rewrite one expression to another
that is equal to it, we put them side-by-side.
They are smaller to accommodate much larger
expressions.
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Exactly.
9

Are there any others?

No,
an expression is only equal to one
value.

10

Tricky.

What value is this expression equal to?

(atom '())

11

That’s easy, too.

't

What value is this equal to?

(cons a b)

12

We do not know what a and b are.

Does that mean (cons a b) has no value?
13

Until we know what a and b are, we do
not know what value (cons a b) is equal
to.

Can we find a value for this expression?

(atom (cons 'ham '(eggs)))

14

Of course.

'nil

How about this expression?

(atom (cons a b))

15

We still do not know what a and b are.

Nevertheless, we can figure out what
value it has. Try again.

(atom (cons a b))

16

'nil,
because no matter what values the
variables a and b have, cons cannot
produce an atom.

'nil
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Does this expression have a value?

(equal 'flapjack (atom (cons a b)))

17

Well, we already know that
(atom (cons a b)) is equal to 'nil.

How can we use that?
18

If we can replace (atom (cons a b)) with
'nil on its own, then surely we can
replace the (atom (cons a b)) in
(equal 'flapjack (atom (cons a b))) with
'nil.

In other words, we want to focus on
(atom (cons a b)) in the context of the
outer equal expression.†

(equal 'flapjack (atom (cons a b)))

†We show this by writing the focus in black
and its context in blue.

19

So, does that mean we can replace this
focus with 'nil?

(equal 'flapjack 'nil)

Precisely. In that case, what value is
(equal 'flapjack 'nil) equal to?

(equal 'flapjack 'nil)

20

'nil,
of course.

'nil

What value is
(equal 'flapjack (atom (cons a b))) equal
to?

21

'nil,
as we have just seen.

How many steps did we take to get from
(equal 'flapjack (atom (cons a b))) to 'nil?

22

Two.

What is the first step?
23

In the first step, the focus
(atom (cons a b)) is equal to 'nil.
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What is the whole expression?
24

(equal 'flapjack (atom (cons a b))).

Where is this focus in the whole
expression?

25

It is the second argument to equal.

What is the second step?
26

In the second step, the whole expression
is equal to 'nil.

Where is the focus in the whole
expression?

27

The focus is the whole expression.

What value is this expression equal to?

(atom (cdr (cons (car (cons p q)) '())))

28

We don’t know what p and q are, but
perhaps we can find a value anyway.

What is the first step?

(atom (cdr (cons (car (cons p q)) '())))

29

The car of (cons p q) is always equal to
p, regardless of p and q.

(atom (cdr (cons p '())))

And what is the second step?

(atom (cdr (cons p '())))

30

Of course, the cdr of (cons p '()) is
always equal to '(), regardless of p.

(atom '())

And finally?

(atom '())

31

We know that (atom '()) is 't.

't

That took three steps. Can we do it in
fewer?

32

We are up to the challenge.

6 Chapter 1



How shall we start?

(atom (cdr (cons (car (cons p q)) '())))

33

The cdr of (cons (car (cons p q)) '()) is
always equal to '(), regardless of p and q.

(atom '())

We have seen this step before.

(atom '())

34

And so we are done.

't

How many axioms have we used?
35

What is an axiom?

An axiom is a basic assumption that is
presumed to be true. For one example,
we assume that (atom (cons x y)) is
always equal to 'nil. For another, we
assume that (car (cons x y)) is always
equal to x. We also assume that
(cdr (cons (car (cons x y)) '())) is always
equal to '(). Finally, we assume that
(cdr (cons x '())) is always equal to '().

36

Then we have used four axioms.

Can we rephrase the third and fourth
assumptions more generally?

37

Yes,
the cdr of (cons x y) is always equal to
y. Does this mean we have used only
three axioms?

Yes. Shall we view our axioms so far?
38

We are excited to see them.

Old Games, New Rules 7



The Axioms of Cons (initial)

(dethm atom/cons (x y)
(equal (atom (cons x y)) 'nil))

(dethm car/cons (x y)
(equal (car (cons x y)) x))

(dethm cdr/cons (x y)
(equal (cdr (cons x y)) y))

Now that we have names for the axioms,
we can use them again and again.

39

What does dethm mean?

It means define a theorem.
40

What is a theorem?

A theorem is an expression that is
always true. When we use dethm, we
also include a list of the variables used in
the expression.

41

What is the difference between an axiom
and a theorem?

Axioms are theorems that are assumed
to be true, whereas other theorems must
be shown to be true.

42

What does equal mean?

The function equal tells us whether two
values are equal. What is the value of
this expression?

(equal 'eggs '(ham))

43

Its value is 'nil,
because 'eggs is not equal to '(ham).

'nil

8 Chapter 1



Exactly. What is the value of this
expression?

(car
(cons (equal (cons x y) (cons x y))

'(and crumpets)))

44

It has the same value as
(car (cons 't '(and crumpets))),

because (cons x y) is always equal to
(cons x y), regardless of x and y.

(car
(cons 't

'(and crumpets)))

And, of course, the second step is easy.

(car (cons 't '(and crumpets)))

45

Delicious!

(car '(t and crumpets))

Is this a theorem?

(car '(t and crumpets))

46

But, of course!

't

What is the value of this expression?

(equal (cons x y) (cons 'bagels '(and lox)))

47

We do not know. It depends on the
values of x and y.

What else is this expression equal to?

(equal (cons x y) (cons 'bagels '(and lox)))

48

Perhaps it is equal to many things.

Does the order of the arguments to equal
matter?

(equal (cons x y) (cons 'bagels '(and lox)))

49

No,
(cons x y) is equal to
(cons 'bagels '(and lox)) in the same
cases that (cons 'bagels '(and lox)) is
equal to (cons x y).

(equal (cons 'bagels '(and lox)) (cons x y))

Exactly.
50

It sounds like we have some new axioms.
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The Axioms of Equal (initial)

(dethm equal-same (x)
(equal (equal x x) 't))

(dethm equal-swap (x y)
(equal (equal x y) (equal y x)))

What is different about equal-swap
compared to the other axioms we have
seen thus far?

51

In the other axioms, the second
argument of the outer equal is shorter
than the first argument. In equal-swap,
neither argument of the outer equal is
shorter than the other.

Does it matter?
52

Yes, we think so.

That’s kind of true. It is useful to know
how an axiom can simplify an
expression. For the same reason that
equal-swap is true, however, we could
write the axioms in either order without
changing their meaning.

53

How fascinating.

What is this focus equal to, according to
car/cons?

(cons y
(equal (car (cons (cdr x) (car y)))

(equal (atom x) 'nil)))

54

The car of (cons (cdr x) (car y)) is (cdr x).

(cons y
(equal (cdr x)

(equal (atom x) 'nil)))

What else is this focus equal to,
according to car/cons? Recall that “is
equal to” works in both directions.

(cons y
(equal (car (cons (cdr x) (car y)))

(equal (atom x) 'nil)))

55

In that case, (car (cons (cdr x) (car y))) is
equal to many things according to
car/cons, such as this focus.

(cons y
(equal (car (cons

(car (cons (cdr x) (car y)))
'(oats)))

(equal (atom x) 'nil)))

10 Chapter 1



Can we use atom/cons here?

(cons y
(equal (car (cons (car (cons (cdr x) (car y)))

'(oats)))
(equal (atom x)

'nil)))

56

Indeed, we can use atom/cons to replace
'nil with many different expressions.

(cons y
(equal (car (cons (car (cons (cdr x) (car y)))

'(oats)))
(equal (atom x)

(atom
(cons (atom (cdr (cons a b)))

(equal (cons a b) c))))))

What is this focus equal to?

(cons y
(equal (car (cons (car (cons (cdr x) (car y)))

'(oats)))
(equal (atom x)

(atom
(cons (atom (cdr (cons a b)))

(equal (cons a b) c))))))

57

According to cdr/cons, it is equal to
simply b.

(cons y
(equal (car (cons (car (cons (cdr x) (car y)))

'(oats)))
(equal (atom x)

(atom
(cons (atom b)

(equal (cons a b) c))))))

Are there any axioms we have not yet
used on the example beginning in
frame 54?

58

Yes, equal-same and equal-swap.

Can we use either of them here?

(cons y
(equal (car (cons (car (cons (cdr x) (car y)))

'(oats)))
(equal (atom x)

(atom
(cons (atom b)

(equal (cons a b) c))))))

59

Yes, equal-swap.

(cons y
(equal (car (cons (car (cons (cdr x) (car y)))

'(oats)))
(equal (atom x)

(atom
(cons (atom b)

(equal c (cons a b)))))))

What value is this expression equal to?

(cons y
(equal (car (cons (car (cons (cdr x) (car y)))

'(oats)))
(equal (atom x)

(atom
(cons (atom b)

(equal c (cons a b)))))))

60

That is a good question. We do not
know, but we have had fun playing with
it so far!
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The Law of Dethm (initial)

For any theorem (dethm name (x
1
. . . x

n
) bodyx), the vari-

ables x
1
. . . x

n
in bodyx can be replaced with any corre-

sponding expressions e
1
. . . e

n
. The result, bodye, can be

used to rewrite a focus p to become q provided bodye is
either (equal p q) or (equal q p).

Let’s try one more example. In car/cons,
what are name, x

1
, x

2
, and body

x
from

the Law of Dethm?

(dethm car/cons (x y)
(equal (car (cons x y)) x))

61

The axiom’s name is car/cons, x
1

and x
2

are x and y, respectively, and body
x

is
(equal (car (cons x y)) x).

To rewrite this focus using car/cons,
what expressions should we use for e

1

and e
2

from the Law of Dethm?

(atom (car (cons (car a) (cdr b))))

62

We use (car a) as e
1

and (cdr b) as e
2
.

In that case, how do we figure out body
e

from the Law of Dethm based on body
x
?

63

If we replace x with (car a) and replace y
with (cdr b), then body

e
is

(equal (car (cons (car a) (cdr b))) (car a)).

Have we found p and q?

(atom (car (cons (car a) (cdr b))))

64

Given body
e
, p is

(car (cons (car a) (cdr b))) and q is
(car a). Since this focus is p, we may
replace it with q.

(atom (car a))

Now work through frames 55-59 again
using the Law of Dethm for each one.

65

Sounds challenging.
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If this gets too challenging, we have an
assistant named J-Bob that can help.

66

Who is J-Bob?

J-Bob is a program that helps us rewrite
one expression to another. J-Bob
“knows” about all the axioms and the
Law of Dethm and makes sure we get all
the details right.

67

J-Bob certainly sounds helpful.

We can meet J-Bob on page 164, and
play along with J-Bob for all of the
examples in this chapter on page 181.

68

Must we meet J-Bob to continue
reading?

Absolutely not, but the deeper we go,
the more J-Bob can help.

69

And so we shall make a visit.

That’s probably a good idea. Before we
head over there, perhaps we should
fortify ourselves with two helpings of our
favorite breakfast.

70

Certainly.
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What is this focus obviously equal to?

(if (car (cons a b))
c
c)

1

a, since the car of (cons a b) is always a.

(if a
c
c)

What axiom tells us this obvious fact?
2

car/cons, that’s easy.

What is this expression obviously equal
to?
(if a

c
c)

3

The result of this if is c, regardless of a.
So perhaps the expression is equal to c.
But we do not know any axioms that tell
us this.

Perhaps we need some axioms about if.
4

If only.

The Axioms of If (initial)

(dethm if-true (x y)
(equal (if 't x y) x))

(dethm if-false (x y)
(equal (if 'nil x y) y))

(dethm if-same (x y)
(equal (if x y y) y))

What is this expression obviously equal
to?
(if a

c
c)

5

c, by if-same.

c
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What else is c equal to, according to
if-same?

6

Doesn’t if-same require an if expression?

If if-same can start with an if expression
and end with a variable, then it must
also be able to start with a variable and
end with an if expression. So. . . what else
is c equal to, according to if-same?
c

7

How about this?

(if (if (equal a 't)
(if (equal 'nil 'nil)

a
b)

(equal 'or (cons 'black '(coffee))))
c
c)

Absolutely!
8

Are there any other such if expressions?

We can fill in any if question we want, as
long as we keep c as the if answer and
the if else.

9

What are the if question, if answer, and
if else?

Every if expression has three parts:
(if Q A E ). We call them the if question,
the if answer, and the if else, or Q, A,
and E for short.

10

Very well.

What value is this focus equal to?

(if (if (equal a 't)
(if (equal 'nil 'nil)

a
b)

(equal 'or (cons 'black '(coffee))))
c
c)

11

'(black coffee), which certainly helps us
focus.
(if (if (equal a 't)

(if (equal 'nil 'nil)
a
b)

(equal 'or '(black coffee)))
c
c)
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Can we simplify the innermost if
question?

(if (if (equal a 't)
(if (equal 'nil 'nil)

a
b)

(equal 'or '(black coffee)))
c
c)

12

Certainly, using equal-same.

(if (if (equal a 't)
(if 't

a
b)

(equal 'or '(black coffee)))
c
c)

Do we have to use equal-same to replace
(equal 'nil 'nil) with 't?

13

No, we can always use equal itself,
because 'nil is a value.

Can we simplify the innermost if now?

(if (if (equal a 't)
(if 't

a
b)

(equal 'or '(black coffee)))
c
c)

14

Yes, by if-true.

(if (if (equal a 't)
a
(equal 'or '(black coffee)))

c
c)

Does the if question (equal a 't) tell us
anything about this focus?

(if (if (equal a 't)
a
(equal 'or '(black coffee)))

c
c)

15

Yes, since this focus is in the if answer of
the question (equal a 't), we know that
the focus a is equal to 't.

Can we use that knowledge to rewrite
the focus in frame 15?

16

Presumably. But what axiom allows us
to replace a with 't?

We need a new axiom about if and equal.
17

We are eager to see it.
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The Axioms of Equal (final)

(dethm equal-same (x)
(equal (equal x x) 't))

(dethm equal-swap (x y)
(equal (equal x y) (equal y x)))

(dethm equal-if (x y)
(if (equal x y) (equal x y) 't))

Which axiom allows us to rewrite a to 't
in frame 15?

18

We assume the answer is the new axiom,
equal-if. But how does this axiom work?
We cannot use the Law of Dethm,
because the body of the axiom is not an
application of equal.

Then we must revise The Law of Dethm.
19

Interesting.

The Law of Dethm (final)

For any theorem (dethm name (x
1
. . . x

n
) bodyx), the vari-

ables x
1
. . . x

n
in bodyx can be replaced with any corre-

sponding expressions e
1
. . . e

n
. The result, bodye, can be

used to rewrite a focus as follows:

1. bodye must contain the conclusion (equal p q) or (equal q p),
2. the conclusion must not be found in the question of any
if or in the argument of any function application,
3. and if the conclusion can be found in an if answer
(respectively else), then the focus must be found in an
if answer (respectively else) with the same question.
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In equal-if, what are name, x
1
, x

2
, and

body
x

from the Law of Dethm?

20

The axiom’s name is equal-if, x
1

and x
2

are x and y, and body
x

is
(if (equal x y) (equal x y) 't).

In order to rewrite the focus of frame 15
using equal-if, what expressions should
we use for e

1
and e

2
from the Law of

Dethm?

21

We use a as e
1

and 't as e
2
.

In that case, how do we figure out body
e

from the Law of Dethm based on body
x
?

22

If we use a for x and 't for y, body
e

is
(if (equal a 't) (equal a 't) 't).

What expression contained in body
e

do
we use as our conclusion?

23

Our conclusion is (equal a 't), since we
are rewriting a to 't.

The expression (equal a 't) is contained
in body

e
twice, in the if question and in

the if answer. Which one is our
conclusion?

24

The expression in the if answer is our
conclusion, since according to the Law of
Dethm the conclusion must not be found
in the question of any if.

Is the conclusion found in an if answer?
25

Yes, it is found in the answer of an if
with the question (equal x y).

Is the focus in frame 15 also found in an
if answer with the if question (equal x y)?

26

Yes, it is.

Is the conclusion found in an if else?
27

No, it is not.
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Then according to the Law of Dethm, we
can rewrite the focus a to become 't.

(if (if (equal a 't)
a
(equal 'or '(black coffee)))

c
c)

28

Finally. But why is that expression
orange?

(if (if (equal a 't)
't
(equal 'or '(black coffee)))

c
c)

We write expressions in orange to draw
attention. Here, (equal a 't) is a premise
that allows us to rewrite the focus†.

†Orange expressions may be part of a context
or a focus, even though they are not blue or
black. In frame 28, the orange expression is in
a context. In frame 43 of the next chapter, the
orange expression is in a focus.

29

What is a premise?

A premise is an if question such that a
focus can be found in either the if answer
or the if else. In frame 28, why is
(equal a 't) a premise?

30

In frame 28, (equal a 't) is a premise
because the focus is in the if answer.

Let’s walk through another example
using premises and the final Law of
Dethm.

31

That’s a good idea.

Here is a new dethm.

(dethm jabberwocky† (x)
(if (brillig x)

(if (slithy x)
(equal (mimsy x) 'borogove)
(equal (mome x) 'rath))

(if (uffish x)
(equal (frumious x) 'bandersnatch)
(equal (frabjous x) 'beamish))))

†Thank you, Lewis Carroll (1832-1898).

32

Is that really a theorem?
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Perhaps, depending on what brillig,
slithy, mimsy, mome, uffish, frumious, and
frabjous mean. For now it is just an
example, and we will pretend it is a
theorem. Can we use jabberwocky to
rewrite this focus?
(cons 'gyre

(if (uffish '(callooh callay))
(cons 'gimble

(if (brillig '(callooh callay))
(cons 'borogove '(outgrabe))
(cons 'bandersnatch '(wabe))))

(cons (frabjous '(callooh callay)) '(vorpal))))

33

Perhaps. This is a complicated
expression, and jabberwocky is a
complicated dethm.

In order to use jabberwocky, we must find
an equal expression that matches this
focus. Do any of the equal expressions in
jabberwocky have arguments that are
similar to (frabjous '(callooh callay))?

34

Yes, the first argument of the last equal
expression in jabberwocky is (frabjous x).

What must we substitute for x to make
(frabjous x) equal to the focus?

35

We must substitute '(callooh callay) for x.

Exactly. If we substitute '(callooh callay)
for x in jabberwocky, we get body

e
, which

we created to meet the first condition of
the Law of Dethm.
(if (brillig '(callooh callay))

(if (slithy '(callooh callay))
(equal (mimsy '(callooh callay)) 'borogove)
(equal (mome '(callooh callay)) 'rath))

(if (uffish '(callooh callay))
(equal (frumious '(callooh callay)) 'bandersnatch)
(equal (frabjous '(callooh callay)) 'beamish)))

What conclusion must we use to rewrite
the focus (frabjous '(callooh callay))?

36

We must use the last equal expression,
(equal (frabjous '(callooh callay)) 'beamish),
as the conclusion, thus meeting the first
condition. And if we meet the second
and third conditions, we could rewrite
the focus to 'beamish.
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Looking at frame 36, is the conclusion
found in an if question or in the
argument of a function application?

37

No, it is not, thus meeting our second
condition.

Still looking at frame 36, is the
conclusion found in an if answer?

38

No, it is not.

And still looking at frame 36, is the
conclusion found in an if else?

39

Yes, it is found in the else of two ifs, thus
meeting the first part of the third
condition. So, now do we have to meet
the second part of this condition?

Yes. Still looing at frame 36, what are
the questions of the ifs that have the
conclusion in their else?

40

The questions of the ifs are
(brillig '(callooh callay)) and
(uffish '(callooh callay)).

Looking at frame 33, is the focus found
in the else of any ifs with the questions
(brillig '(callooh callay)) and
(uffish '(callooh callay))?

41

The focus is in the else of an if with the
question (uffish '(callooh callay)), but it is
not in the else of an if with the question
(brillig '(callooh callay)). So, no, it is not.

Then, we can not use jabberwocky to
rewrite the focus in frame 33. The
conclusion from frame 36 does not meet
the second part of the third condition.

42

All that effort, and we still don’t get to
use jabberwocky.

Let’s try again. Can we use jabberwocky
to rewrite this focus instead?
(cons 'gyre

(if (uffish '(callooh callay))
(cons 'gimble

(if (brillig '(callooh callay))
(cons 'borogove '(outgrabe))
(cons 'bandersnatch '(wabe))))

(cons (frabjous '(callooh callay)) '(vorpal))))

43

Perhaps.
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Do any of the equal expressions in
jabberwocky have arguments that are
similar to 'bandersnatch?

44

Yes, the second argument of the third
equal expression in jabberwocky is
'bandersnatch.

What must we substitute for x to make
'bandersnatch equal to the focus in
frame 43?

45

The focus in frame 43 is already
'bandersnatch.

In that case, we can choose an expression
to substitute for x that helps our
conclusion satisfy the conditions of the
Law of Dethm.

46

How do we do that?

What must we substitute for x to make
the premises of 'bandersnatch in
jabberwocky equal to the premises of the
focus in frame 43?

47

Once again, we must substitute
'(callooh callay) for x.

And once again, substituting
'(callooh callay) for x in jabberwocky
produces the expression in frame 36.
What conclusion must we use this time?

48

The third equal expression, whose
arguments are (frumious '(callooh callay))
and 'bandersnatch,

because one of equal’s arguments,
'bandersnatch, is equal to the focus in
frame 43.

This conclusion must meet the
conditions in the Law of Dethm. Is the
conclusion found in an if question or in
the argument of a function application?

49

No, it is not.

Is the conclusion found in an if answer?
50

Indeed it is, since the conclusion, which
contains equal’s two arguments:
(frumious '(callooh callay)) and
'bandersnatch is found in the answer of
the if question (uffish '(callooh callay)).
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Is the focus in frame 43 found in the
answer of an if with the question
(uffish '(callooh callay))?

51

Yes, it is.

Is the conclusion found in an if else?
52

Yes, it is found in the else of an if with
the question (brillig '(callooh callay)).

Is the focus in frame 43 found in an if
else with the if question
(brillig '(callooh callay))?

53

Yes, it is.

In that case, the conclusion in frame 48
meets the conditions in the Law of
Dethm. We can use jabberwocky to
rewrite the focus in frame 43 with the
premises written in orange. We can
rewrite 'bandersnatch to become
(frumious '(callooh callay)).

(cons 'gyre
(if (uffish '(callooh callay))

(cons 'gimble
(if (brillig '(callooh callay))

(cons 'borogove '(outgrabe))
(cons 'bandersnatch '(wabe))))

(cons (frabjous '(callooh callay)) '(vorpal))))

54

O frabjous day!

(cons 'gyre
(if (uffish '(callooh callay))

(cons 'gimble
(if (brillig '(callooh callay))

(cons 'borogove '(outgrabe))
(cons (frumious '(callooh callay)) '(wabe))))

(cons (frabjous '(callooh callay)) '(vorpal))))

How many more times should we read
the jabberwocky example?

55

That’s easy. Exactly as many times as
needed until it is completely understood.
But why do we use a pretend theorem?

Sometimes our intuitions get in the way.
Axioms like car/cons and if-same are easy
to understand, even without the Law of
Dethm. Since jabberwocky means
nothing, we must understand the Law of
Dethm thoroughly in order to use it.

56

Are there other, real theorems that use
premises?
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Let’s see. Does the if question
(equal (cdr (car a)) '(hash browns)) tell us
anything about this focus?

(if (atom (car a))
(if (equal (car a) (cdr a))

'hominy
'grits)

(if (equal (cdr (car a)) '(hash browns))
(cons 'ketchup (car a))
(cons 'mustard (car a))))

57

Not really, since that if question tells us
(cdr (car a)) is equal to '(hash browns),
and this focus is neither of those
expressions.

Does the if question
(equal (car a) (cdr a)) tell us anything
about this focus?
(if (atom (car a))

(if (equal (car a) (cdr a))
'hominy
'grits)

(if (equal (cdr (car a)) '(hash browns))
(cons 'ketchup (car a))
(cons 'mustard (car a))))

58

No, since neither the if answer nor the if
else of that question contains this focus.

Does the if question (atom (car a)) tell us
anything about this focus?

(if (atom (car a))
(if (equal (car a) (cdr a))

'hominy
'grits)

(if (equal (cdr (car a)) '(hash browns))
(cons 'ketchup (car a))
(cons 'mustard (car a))))

59

Yes, since that focus is in the if else of
the question (atom (car a)), we know
that (car a) must be a cons with its own
car and cdr. Perhaps there is an axiom to
this effect.
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The Axioms of Cons (final)

(dethm atom/cons (x y)
(equal (atom (cons x y)) 'nil))

(dethm car/cons (x y)
(equal (car (cons x y)) x))

(dethm cdr/cons (x y)
(equal (cdr (cons x y)) y))

(dethm cons/car+cdr (x)
(if (atom x) 't (equal (cons (car x) (cdr x)) x)))

Can we therefore rewrite this focus using
the premise (atom (car a))?

(if (atom (car a))
(if (equal (car a) (cdr a))

'hominy
'grits)

(if (equal (cdr (car a)) '(hash browns))
(cons 'ketchup

(car a))
(cons 'mustard (car a))))

60

We should be able to rewrite (car a) as a
cons of its own car and cdr.

(if (atom (car a))
(if (equal (car a) (cdr a))

'hominy
'grits)

(if (equal (cdr (car a)) '(hash browns))
(cons 'ketchup

(cons (car (car a)) (cdr (car a))))
(cons 'mustard (car a))))

What axiom allows us to rewrite the
focus in frame 60?

61

The axiom cons/car+cdr.

Does the if question
(equal (cdr (car a)) '(hash browns)) tell us
anything about this focus?

(if (atom (car a))
(if (equal (car a) (cdr a))

'hominy
'grits)

(if (equal (cdr (car a)) '(hash browns))
(cons 'ketchup

(cons (car (car a)) (cdr (car a))))
(cons 'mustard (car a))))

62

Yes, since this focus is in the if answer of
the question
(equal (cdr (car a)) '(hash browns)), we
know that (cdr (car a)) is equal to
'(hash browns).
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Can we use that knowledge as a premise
to rewrite this focus?

(if (atom (car a))
(if (equal (car a) (cdr a))

'hominy
'grits)

(if (equal (cdr (car a)) '(hash browns))
(cons 'ketchup

(cons (car (car a)) (cdr (car a))))
(cons 'mustard (car a))))

63

We should be able to rewrite
(cdr (car a)) as '(hash browns).

(if (atom (car a))
(if (equal (car a) (cdr a))

'hominy
'grits)

(if (equal (cdr (car a)) '(hash browns))
(cons 'ketchup

(cons (car (car a)) '(hash browns)))
(cons 'mustard (car a))))

Do we know of any axiom that justifies
the rewrite in frame 63?

64

Yes, equal-if.

Do we think there are more axioms that
use premises?

65

There must be.

The Axioms of If (final)

(dethm if-true (x y)
(equal (if 't x y) x))

(dethm if-false (x y)
(equal (if 'nil x y) y))

(dethm if-same (x y)
(equal (if x y y) y))

(dethm if-nest-A (x y z)
(if x (equal (if x y z) y) 't))

(dethm if-nest-E (x y z)
(if x 't (equal (if x y z) z)))
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Can the axiom if-same rewrite this
expression?

(cons 'statement
(cons

(if (equal a 'question)
(cons n '(answer))
(cons n '(else)))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else)))))

66

That does not seem likely.

Can we rewrite the previous expression
to this one?
(cons 'statement

(if (equal a 'question)
(cons

(if (equal a 'question)
(cons n '(answer))
(cons n '(else)))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else))))

(cons
(if (equal a 'question)

(cons n '(answer))
(cons n '(else)))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else))))))

67

Yes we can, using if-same. Apparently
if-same can rewrite the expression in the
previous frame, after all.
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Exactly. How can we use if-same to
rewrite the expression from frame 66 to
the expression from frame 67?

(cons 'statement
(cons

(if (equal a 'question)
(cons n '(answer))
(cons n '(else)))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else)))))

68

We use if-same where y is

(cons
(if (equal a 'question)

(cons n '(answer))
(cons n '(else)))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else)))).

and x is (equal a 'question).

(cons 'statement
(if (equal a 'question)

(cons
(if (equal a 'question)

(cons n '(answer))
(cons n '(else)))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else))))

(cons
(if (equal a 'question)

(cons n '(answer))
(cons n '(else)))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else))))))

If (equal a 'question) is true in the
premise, must it also be true in this
focus?
(cons 'statement

(if (equal a 'question)
(cons

(if (equal a 'question)
(cons n '(answer))
(cons n '(else)))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else))))

(cons
(if (equal a 'question)

(cons n '(answer))
(cons n '(else)))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else))))))

69

Yes, truly, according to if-nest-A.

(cons 'statement
(if (equal a 'question)

(cons
(cons n '(answer))
(if (equal a 'question)

(cons n '(other answer))
(cons n '(other else))))

(cons
(if (equal a 'question)

(cons n '(answer))
(cons n '(else)))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else))))))
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If (equal a 'question) is false in the
premise, must it also be false in this
focus?
(cons 'statement

(if (equal a 'question)
(cons (cons n '(answer))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else))))

(cons
(if (equal a 'question)

(cons n '(answer))
(cons n '(else)))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else))))))

70

Yes, certainly, according to if-nest-E.

(cons 'statement
(if (equal a 'question)

(cons (cons n '(answer))
(if (equal a 'question)

(cons n '(other answer))
(cons n '(other else))))

(cons
(cons n '(else))
(if (equal a 'question)

(cons n '(other answer))
(cons n '(other else))))))

If (equal a 'question) is true (false) in the
premise, must it also be true (false) in
the focus?
(cons 'statement

(if (equal a 'question)
(cons (cons n '(answer))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else))))

(cons (cons n '(else))
(if (equal a 'question)

(cons n '(other answer))
(cons n '(other else))))))

71

Yes, truly (and certainly), according to
if-nest-A (and if-nest-E).

(cons 'statement
(if (equal a 'question)

(cons (cons n '(answer))
(cons n '(other answer)))

(cons (cons n '(else))
(cons n '(other else)))))

What expression do we start with in
frame 66?

72

(cons 'statement
(cons

(if (equal a 'question)
(cons n '(answer))
(cons n '(else)))

(if (equal a 'question)
(cons n '(other answer))
(cons n '(other else))))).
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What expression do we end up with in
frame 71?

73

(cons 'statement
(if (equal a 'question)

(cons (cons n '(answer))
(cons n '(other answer)))

(cons (cons n '(else))
(cons n '(other else))))).

How many if expressions are in frame 72?
74

Two.

How many if expressions are in frame 73?
75

One.

Is that interesting?
76

Indeed, it is.

How is J-Bob doing?
77

We still have not met J-Bob.

Now would be an excellent time to take a
recess, meet J-Bob on page 164, and play
through this chapter on page 182.

78

Maybe this is a good time to give J-Bob
a try.

Don’t go when tired and hungry.
79

We can have a plate of waffles topped
with butter, syrup, and strawberries
while we meet J-Bob.
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What value is (pair 'sharp 'cheddar) equal
to?

1

'(sharp cheddar).

What value is (first-of (pair 'baby 'swiss))
equal to?

2

'baby.

What value is
(second-of (pair 'monterey 'jack)) equal
to?

3

'jack.

Are these our favorite omelette
ingredients?

4

Perhaps.

Here is the function pair.

(defun pair (x y)
(cons x (cons y '())))

Now define first-of and second-of.

5

No surprises here.

(defun first-of (x)
(car x))

And none here, either.

(defun second-of (x)
(car (cdr x)))

(dethm first-of-pair (a b)
(equal (first-of (pair a b)) a))

Is the claim first-of-pair a theorem?

6

What is a claim?

A claim is an as-yet unproven theorem.
7

So far first-of-pair does not appear to be
a theorem, since none of the axioms we
know at this point can be used here.
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Let’s try to prove the claim first-of-pair.
8

How do we prove a claim?

We prove a claim by writing a proof, of
course.

9

And what is a proof?

A proof is a sequence of rewriting steps
that ends in 't. If we can rewrite a claim,
step by step, to 't, then that claim is a
theorem.

10

Let’s get started.

Since (pair x y) is (cons x (cons y '())),
what must (pair a b) be?

11

(cons a (cons b '())).

The Law of Defun (initial)

Given the non-recursive function
(defun name (x

1
. . . x

n
) body),

(name e
1
. . . e

n
) = body where x

1
is e

1
, . . ., x

n
is e

n
.

Apply the Law of Defun using the
definition of pair.

(equal (first-of (pair a b)) a)

12

The body of pair is (cons x (cons y '())),
and we replace x with a and y with b.

(equal (first-of (cons a (cons b '()))) a)

What axiom applies here?

(equal (first-of (cons a (cons b '()))) a)

13

No axiom, but we can apply the Law of
Defun using first-of.

(equal (car (cons a (cons b '()))) a)
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Is the proof done yet?

(equal (car (cons a (cons b '()))) a)

14

Yes, once we use car/cons and
equal-same.

't

Is first-of-pair a theorem?
15

Yes,
by the Law of Defun, car/cons, and
equal-same.

Which function definitions does the
proof use?

16

It uses pair and first-of.

(dethm second-of-pair (a b)
(equal (second-of (pair a b)) b))

Is second-of-pair a theorem?

17

We shall find out.

Use the definition of second-of.

(equal (second-of (pair a b)) b)

18

We rewrite the focus using the Law of
Defun.
(equal (car (cdr (pair a b))) b)

Now use the definition of pair.

(equal (car (cdr (pair a b))) b)

19

Easily done.

(equal (car (cdr (cons a (cons b '())))) b)

What next?

(equal (car (cdr (cons a (cons b '())))) b)

20

Use cdr/cons, then car/cons.

(equal b b)

Correct. Does this focus reduce to 't?

(equal b b)

21

Yes,
by equal-same.

't
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Is second-of-pair a theorem?
22

Yes,
by car/cons, cdr/cons, equal-same,
second-of, and pair.

In first-of-pair, we used the Law of Defun
on pair first, but in second-of-pair, we
used the Law of Defun on pair second.

23

Does that order matter?

No,
not in this particular case.

24

Can the order ever matter?

Certainly, depending on the proof.
25

Can we always find a proof, whichever
order we choose first?

If we can find a proof one way, we can
always find it another. If the second way
goes wrong, we can “back up” to where
we started and do it the first way again.
But some approaches will find a proof
faster than others.

26

That is useful to know.

What does in-pair? do?

(defun in-pair? (xs)
(if (equal (first-of xs) '?)

't
(equal (second-of xs) '?)))

27

The function in-pair? determines whether
the two-element list† xs contains '?.

†Of course, in-pair? works on more inputs
than just two-element lists. See chapter 4.

We can try to prove this claim.

(dethm in-first-of-pair (b)
(equal (in-pair? (pair '? b)) 't))

28

So in other words, prove the claim that
in-pair? finds '? when it is the first
element of a list?
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Yes. Shall we begin?

(equal (in-pair? (pair '? b))
't)

29

First we use the definition of pair.

(equal (in-pair? (cons '? (cons b '())))
't)

What now?

(equal (in-pair? (cons '? (cons b '())))
't)

30

Now we use the definition of in-pair?.

(equal (if (equal (first-of (cons '? (cons b '())))
'?)

't
(equal (second-of (cons '? (cons b '())))

'?))
't)

And?

(equal (if (equal (first-of (cons '? (cons b '())))
'?)

't
(equal (second-of (cons '? (cons b '())))

'?))
't)

31

Next, we use the definition of first-of.

(equal (if (equal (car (cons '? (cons b '())))
'?)

't
(equal (second-of (cons '? (cons b '())))

'?))
't)

Can we simplify further?

(equal (if (equal (car (cons '? (cons b '())))
'?)

't
(equal (second-of (cons '? (cons b '())))

'?))
't)

32

Yes, using car/cons and equal-same.

(equal (if 't
't
(equal (second-of (cons '? (cons b '())))

'?))
't)

Our claim looks simple from here.

(equal (if 't
't
(equal (second-of (cons '? (cons b '())))

'?))
't)

33

It certainly does.

't
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Is in-first-of-pair a theorem?
34

Yes,
by car/cons, equal-same, if-true, pair,
in-pair?, and first-of.

Here’s a similar claim.

(dethm in-second-of-pair (a)
(equal (in-pair? (pair a '?)) 't))

35

This time, do we need to prove that
in-pair? finds '? when it is the second
element of a two-element list?

Exactly. Use pair first.

(equal (in-pair? (pair a '?))
't)

36

This is a familiar step.

(equal (in-pair? (cons a (cons '? '())))
't)

Is this step familiar, too?

(equal (in-pair? (cons a (cons '? '())))
't)

37

Yes, here we use in-pair?.

(equal (if (equal (first-of (cons a (cons '? '())))
'?)

't
(equal (second-of (cons a (cons '? '())))

'?))
't)

And then?

(equal (if (equal (first-of (cons a (cons '? '())))
'?)

't
(equal (second-of (cons a (cons '? '())))

'?))
't)

38

We can use first-of and car/cons in the if
question.

(equal (if (equal a '?)
't
(equal (second-of (cons a (cons '? '())))

'?))
't)

Does the if question help in our proof of
in-second-of-pair?

39

The if question is (equal a '?), but we
don’t know whether a is equal to '?.
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In that case, let’s skip to the if else.

(equal (if (equal a '?)
't
(equal (second-of (cons a (cons '? '())))

'?))
't)

40

Okay. In the if else, we use second-of.

(equal (if (equal a '?)
't
(equal (car (cdr (cons a (cons '? '()))))

'?))
't)

Here are two easy steps.

(equal (if (equal a '?)
't
(equal (car (cdr (cons a (cons '? '()))))

'?))
't)

41

Indeed.

(equal (if (equal a '?)
't
(equal '? '?))

't)

Obviously, '? is equal to '?.

(equal (if (equal a '?)
't
(equal '? '?))

't)

42

That is indeed obvious.

(equal (if (equal a '?)
't
't)

't)

Can we rewrite this if question now?

(equal (if (equal a '?)
't
't)

't)

43

No, but that is fine. We do not need its
value after all.
't

Insight: Skip Irrelevant Expressions

Rewriting a claim to 't does not have to go in any particular
order. Some parts of the expression might be skipped en-
tirely. For example, if-same can simplify many if expressions
to 't regardless of the if question.
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Now have we proved in-second-of-pair?
44

Yes, by car/cons, cdr/cons, equal-same,
if-same, pair, in-pair?, first-of, and
second-of.

Did we need to use first-of?
45

No, so our proof should be shorter, right?

Could be. Try out shorter proofs with
J-Bob on page 183.

46

Now that we have met J-Bob, we can’t
wait.

Don’t rush to the next chapter. Take
some time off and have a healthy snack.

47

Should we read this chapter one more
time?

Perhaps.
48

Perhaps we shall, over a bowl of oatmeal,
dates, and blueberries.
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What value is (list0? 'oatmeal) equal to?
1

'nil,
because 'oatmeal is not a list.

What value is (list0? '()) equal to?
2

't,
because '() is the empty list.

What value is (list0? '(toast)) equal to?
3

'nil,
because the list '(toast) is not empty.

Define list0?.
4

(defun list0? (x)
(if (equal x 'oatmeal)

'nil
(if (equal x '())

't
(if (equal x '(toast))

'nil
'nil))))

Very funny. Try again.
5

(defun list0? (x)
(equal x '()))

Is list0? total?
6

What does “total” mean?

“ list0? is total ” means that no matter
what value v is passed to list0?, the
expression (list0? v) has a value.

7

In that case, list0? is total if equal is
total.

The function equal is total.
8

Then list0? is total.
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How do we arrive at that answer?
9

The function list0? applies equal to x and
'(). As long as equal has a value for all
arguments, list0? does as well.

Well put. Take a bow.
10

Grazie.

What value is (list1? 'oatmeal) equal to?
11

'nil,
because 'oatmeal is not a list.

What value is (list1? '()) equal to?
12

'nil,
because the list '() does not have
exactly one element.

What value is (list1? '(toast)) equal to?
13

't,
because '(toast) is a list of one element.

What value is (list1? '(raisin oatmeal))
equal to?

14

'nil,
because '(raisin oatmeal) is not a
one-element list.

Define list1?.
15

(defun list1? (x)
(if (atom x)

'nil
(list0? (cdr x))))

Is list1? total?
16

We have to think about that. This
function is more complicated than list0?.

There’s no rush. We can take our time
with this.

17

The if question in list1? asks atom of x. Is
atom total?
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Yes, atom is total.
18

What about if?

An if expression produces either its
answer or its else no matter what value
its question has.

19

In other words, as long as an if’s
question, answer, and else have values,
the if expression does too.

Precisely.
20

Okay. And what about cdr and car? Are
they total functions?

Yes, all built-in operators are total.
21

That’s surprising!

Strange, but true.
22

What value is (cdr 'grapefruit) equal to?

We are only concerned with the result of
cdr on conses; (cdr 'grapefruit) must have
a value, but that is all we need to know.

23

What about (cdr '())?

Yes, (cdr '()) has a value.
24

Do we need to know what its value is?

No.
25

All right. What about (car '())?

Same story.
26

We are ready to answer the question in
frame 16.

To repeat the question, is list1? total?
27

Yes,
because atom, cdr, and list0? are total,
and the if’s question, answer, and else
all have values.
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What value is (list2? 'oatmeal) equal to?
28

'nil,
predictably.

What value is (list2? '(hash browns))
equal to?

29

't,
because '(hash browns) is a
two-element list.

What value is
(list2? '(vinegared hash browns)) equal to?

30

'nil,
because '(vinegared hash browns) is not
a two-element list.

Define list2?.
31

(defun list2? (x)
(if (atom x)

'nil
(list1? (cdr x))))

Is list2? total?
32

Yes,
for all the same reasons that list1? is
total.

Do we understand what total functions
are now?

33

Perhaps.

In that case, we can update the Law of
Defun.

34

Really?

The Law of Defun (final)

Given the total function (defun name (x
1
. . . x

n
) body),

(name e
1
. . . e

n
) = body where x

1
is e

1
, . . ., x

n
is e

n
.
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Yes. Now that we know what “total”
means, we can use the Law of Defun for
any total function, including all
non-recursive functions and many
recursive functions.

35

But why does it matter if a function is
total?

Good question. Our axioms and laws tell
us which expressions have equal values.
If an expression does not have a value,
our axioms and laws do not apply.

36

Can we use our axioms and laws for a
function that is not total anyway?

Functions that are not total are called
partial functions. Here is one.

(defun partial (x)
(if (partial x)

'nil
't))

What value is (partial 'nil) equal to?

37

It has no value.

We can try to prove this claim.

(dethm contradiction ()
'nil)

38

This is a very strange claim.

Nevertheless, let’s try to prove that 'nil is
equal to 't.

39

We are eager to see how this goes.

Expand the claim using if-same, where x
is (partial x) and y is 'nil.

'nil

40

Simple enough.

(if (partial x)
'nil
'nil)
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Expand the if answer below using the
premise written in orange and if-nest-A
where x is (partial x), y is 'nil, and z is 't.

(if (partial x)
'nil
'nil)

41

That is simple as well.

(if (partial x)
(if (partial x)

'nil
't)

'nil)

Now expand the if else similarly, using
the orange premise and if-nest-E where x
is (partial x), y is 't, and z is 'nil.

(if (partial x)
(if (partial x)

'nil
't)

'nil)

42

Very well.

(if (partial x)
(if (partial x)

'nil
't)

(if (partial x)
't
'nil))

Next, use partial in both focuses.

(if (partial x)
(if (partial x)

'nil
't)

(if (partial x)
't
'nil))

43

Okay.

(if (partial x)
(if (if (partial x)

'nil
't)

'nil
't)

(if (if (partial x)
'nil
't)

't
'nil))
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Now use if-nest-A and if-nest-E and the
premise (partial x) to drop the new ifs.

(if (partial x)
(if (if (partial x)

'nil
't)

'nil
't)

(if (if (partial x)
'nil
't)

't
'nil))

44

Interesting.

(if (partial x)
(if 'nil

'nil
't)

(if 't
't
'nil))

Simplify these ifs.

(if (partial x)
(if 'nil

'nil
't)

(if 't
't
'nil))

45

Easy. We use if-false and if-true.

(if (partial x)
't
't)

Now use if-same.

(if (partial x)
't
't)

46

How inconsistent! We have just shown
that 'nil is equal to 't.

't

Have we?
47

We started with 'nil and used if-same,
if-false, if-true, if-nest-A, if-nest-E, and
partial to rewrite the claim to 't.

Wrong!
48

Why?
Isn’t this exactly what we did?

Remember: the Law of Defun only works
for total functions. And partial is not
total.

49

Does that mean 'nil is not equal to 't?
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Exactly right.
50

What a relief!
Otherwise, it would be impossible to
imagine this book.

But, aren’t there any total functions that
we could use to prove contradiction?

There are none.
51

Now it is clear why total functions
matter!

Good. Shall we define list3? now?
52

How many more functions like this are
there?

We will never run out until we reach the
largest list.

53

That will take forever and ever.

Do we know a faster way?
54

Certainly. How about recursion?

Go for it.
55

(defun list? (x)
(if (atom x)

(equal x '())
(list? (cdr x))))

What does list? do?
56

It produces 't if its argument is a list;
that is, either '() or a cons whose cdr is
also a list. Otherwise, list? produces 'nil.

Is list? total?
57

We think so. Every value is a list, or it is
not a list.†

†We do not consider infinite lists or circular
lists; we only consider values that can be con-
structed by finite programs using the operators
we present.
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But are we sure?
58

We are not certain.

Look again at the definition of list? in
frame 55.

59

In order for the if to have a value, its
question, answer, and else must, too.

Go on.
60

We already know that atom is total.

And?
61

The answer of the if is obvious.

But what about the else?
62

For that, we need to know that cdr and
list? are total.

Right.
63

Wait a minute!

Tricky, isn’t it?
64

To find out whether list? is total, we
need to know whether list? is total. But
isn’t that where we started?

So far, so good. We know that
(list? (cdr x)) passes a value to list? that
has fewer conses than it started with.
And we know that if we do this enough
times, we will reach an atom.

65

That makes sense, but it’s hardly a
proof.

Correct, so let’s prove it.
66

What, exactly, is the claim?

Our claim is that the measure of list?
decreases on every recursive call.

67

What is a measure?
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A measure is an expression that is
included with a function definition. It
may only refer to previously defined,
total functions and to the function
definition’s formal arguments. The
measure must produce a natural number
that decreases for every recursive call to
the function.

68

And what is list?’s measure?

The measure of list? is (size x).

(defun list? (x)
(if (atom x)

(equal x '())
(list? (cdr x))))

measure: (size x)

69

What is size?

We count the conses in a value using size.
What value is (size '((1 (a 2)) b)) equal
to?

70

That is easy: '6.

Exactly. What value is
(size '((10 (A 20)) B)) equal to?

71

That is also '6.

Precisely. What about
(size '(10 (A 20)))?

72

'4.

And (size '10)?
73

That is '0, because there are no conses in
'10.
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Now we can state the claim that list? is
total:

“If x is not an atom, then (size (cdr x))
must be smaller than (size x).”

Is this claim true?

74

Indeed, (cdr x) has been built with one
fewer cons than x.

Here is the totality claim:

(if (natp (size x))
(if (atom x)

't
(< (size (cdr x)) (size x)))

'nil)†

The function natp tells whether its
argument is a natural number, meaning
0, 1, 2, . . .

†See how this claim is constructed from the
definition of list? and its measure in chapter 8.

75

Is there an axiom that tells us that the
measure (size x) is a natural number?

The Axioms of Size

(dethm natp/size (x)
(equal (natp (size x)) 't))

(dethm size/car (x)
(if (atom x) 't (equal (< (size (car x)) (size x)) 't)))

(dethm size/cdr (x)
(if (atom x) 't (equal (< (size (cdr x)) (size x)) 't)))
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Yes,
and (natp (size x)) states that the
measure cannot decrease forever.

Are we ready to prove that list? is total?

76

Ready and willing with these new
axioms.

Can we use natp/size?

(if (natp (size x))
(if (atom x)

't
(< (size (cdr x)) (size x)))

'nil)

77

And off we go!

(if 't
(if (atom x)

't
(< (size (cdr x)) (size x)))

'nil)

One if down.

(if 't
(if (atom x)

't
(< (size (cdr x)) (size x)))

'nil)

78

And one to go.

(if (atom x)
't
(< (size (cdr x)) (size x)))

What do we know about comparing sizes
using the orange premise below?

(if (atom x)
't
(< (size (cdr x)) (size x)))

79

We know size/cdr.

(if (atom x)
't
't)

And now we are done.

(if (atom x)
't
't)

80

Yes, we are, by if-same.

't

We have just proved that list? is total.
81

Must we prove that every function is
total?
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Yes,
but since all non-recursive functions
have the same measure and totality
claim, we can just prove them all total
at once.

82

Let’s do it.

Here is the claim that a non-recursive
function is total.

't

83

Interesting, the claim for a non-recursive
function to be total is 't. The proof
completes itself!

Now we know that many functions that
use recursion on lists can be total.

84

What about other kinds of recursion?

The function sub replaces every '? in its
second argument with the value of its
first argument. What value is (sub 't '?)
equal to?

85

't,
because sub replaces '? with 't.

What value is (sub '(a ? b) '(x ? y))
equal to?

86

'(x (a ? b) y),
because sub replaces '? in '(x ? y) with
'(a ? b).

What value is
(sub 'and

'(ham (? eggs) ? (toast (?) butter)))
equal to?

87

'(ham (and eggs) and (toast (and) butter)).
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Define sub.
88

(defun sub (x y)
(if (atom y)

(if (equal y '?)
x
y)

(cons (sub x (car y))
(sub x (cdr y)))))

measure: (size y)

The definition of sub does come with a
measure. Well done.

89

We hope that (size y) is the appropriate
measure.

Here is the claim that sub is total.

(if (natp (size y))
(if (atom y)

't
(if (< (size (car y)) (size y))

(< (size (cdr y)) (size y))
'nil))

'nil)

90

We know that (size y) is a natural
number.
(if (atom y)

't
(if (< (size (car y)) (size y))

(< (size (cdr y)) (size y))
'nil))

This proof is going quickly. And the
finale?

(if (atom y)
't
(if (< (size (car y)) (size y))

(< (size (cdr y)) (size y))
'nil))

91

size/car and size/cdr, using the premise
(atom y).

(if (atom y)
't
(if 't

't
'nil))

Are there any other kinds of recursion we
can try to prove total?

92

How about the recursion in partial? Are
we sure we can’t prove that total?

56 Chapter 4



Good idea. Is partial total?

(if (natp (size x))
(if (< (size x) (size x))

't
'nil)

'nil)

93

We can take off the outer if, at least.

(if (< (size x) (size x))
't
'nil)

And then what?
94

We do not know. This claim looks
false—hopefully (size x) is not less than
(size x)!

Exactly. And that is why partial is
partial.

95

That’s clear.

Time for a recess?
96

J-Bob awaits on page 184.

First let’s finish our breakfast.
97

It is the most important meal of the day.
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Is memb?† familiar?

(defun memb? (xs)
(if (atom xs)

'nil
(if (equal (car xs) '?)

't
(memb? (cdr xs)))))

†The name memb? ends with a ? not because
it searches for '? but because it always returns 't
or 'nil.

1

Yes,
it is sort of an old acquaintance, but it
is just checking to see if there is a '? in
xs.

Is remb familiar, too?

(defun remb (xs)
(if (atom xs)

'()
(if (equal (car xs) '?)

(remb (cdr xs))
(cons (car xs)

(remb (cdr xs))))))

2

Yes,
this one has also been around for a
while. Are these functions total?

Perhaps they are. Here is memb? with a
measure.

(defun memb? (xs)
(if (atom xs)

'nil
(if (equal (car xs) '?)

't
(memb? (cdr xs)))))

measure: (size xs)

3

What must we prove?
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Here is the claim that memb? is total.

(if (natp (size xs))
(if (atom xs)

't
(if (equal (car xs) '?)

't
(< (size (cdr xs)) (size xs))))

'nil)

4

We start by using natp/size and if-true.

(if (atom xs)
't
(if (equal (car xs) '?)

't
(< (size (cdr xs)) (size xs))))

As in the proof of list?’s totality, size/cdr
reduces this focus using the premise
(atom xs).

(if (atom xs)
't
(if (equal (car xs) '?)

't
(< (size (cdr xs)) (size xs))))

5

And that’s that.

(if (atom xs)
't
(if (equal (car xs) '?)

't
't))

Here is the measure of remb.

(defun remb (xs)
(if (atom xs)

'()
(if (equal (car xs) '?)

(remb (cdr xs))
(cons (car xs)

(remb (cdr xs))))))

measure: (size xs)

6

The function size is a versatile measure.
What is the totality claim for remb?

Here is the totality claim.

(if (natp (size xs))
(if (atom xs)

't
(< (size (cdr xs)) (size xs)))

'nil)

7

Once again, we can start with natp/size
and if-true.
(if (atom xs)

't
(< (size (cdr xs)) (size xs)))
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And then?

(if (atom xs)
't
(< (size (cdr xs)) (size xs)))

8

size/cdr finishes the job using the
premise (atom xs).

(if (atom xs)
't
't)

Can we prove memb?/remb0, which
states that remb removes '? from a
0-element list?

(dethm memb?/remb0 ()
(equal (memb? (remb '())) 'nil))

9

We can try.

Go right ahead.

(equal (memb?
(remb '()))

'nil)

10

We start by using remb, replacing xs by
'().

(equal (memb?
(if (atom '())

'()
(if (equal (car '()) '?)

(remb (cdr '()))
(cons (car '())

(remb (cdr '()))))))
'nil)

Can the outer if expression be simplified?

(equal (memb?
(if (atom '())

'()
(if (equal (car '()) '?)

(remb (cdr '()))
(cons (car '())

(remb (cdr '()))))))
'nil)

11

Sure, using atom and if-true, because '()
is an atom.
(equal (memb?

'())
'nil)
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Now we can use memb?.

(equal (memb? '())
'nil)

12

Once again, xs is '().

(equal (if (atom '())
'nil
(if (equal (car '()) '?)

't
(memb? (cdr '()))))

'nil)

Here is (atom '()) again.

(equal (if (atom '())
'nil
(if (equal (car '()) '?)

't
(memb? (cdr '()))))

'nil)

13

Yes, and after a few simple rewrites this
proof is done.

(equal 'nil
'nil)

Is memb?/remb0 a theorem?
14

Yes.

How did we prove it?
15

By atom, equal-same, if-true, memb? and
remb.

When did we use memb? and remb?
16

When their arguments were '().

Were their arguments always '()?
17

No,
in frame 10 the argument of memb?
was an if expression.

How did we reduce the argument of
memb? to '()?

18

By using axioms and theorems to
simplify ifs and function applications.

What would have happened if we had
used memb? before simplifying its
argument?

19

The entire if in its argument would be
duplicated for each occurrence of xs in
the definition of memb?.
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What would that have done to the proof
of memb?/remb0?

20

We might have had to simplify the
duplicated if expression three times
instead of once.

Insight: Rewrite from the Inside Out

Rewrite an expression from the “inside” out, starting inside
if answers, if elses, and function arguments. Simplify the
arguments of a function application as much as possible,
then use the Law of Defun to replace the application with
the function’s body. Rewrite if questions as necessary to
use theorems that require premises. Proceed to outer
expressions when inner expressions cannot be simplified.

Is memb?/remb1 a theorem?

(dethm memb?/remb1 (x1)
(equal (memb?

(remb (cons x1 '())))
'nil))

21

We shall see.

As with memb?/remb0, use remb first.

(equal (memb?
(remb (cons x1 '())))

'nil)

22

That claim grew a lot!

(equal (memb?
(if (atom (cons x1 '()))

'()
(if (equal (car (cons x1 '())) '?)

(remb (cdr (cons x1 '())))
(cons (car (cons x1 '()))

(remb (cdr (cons x1 '())))))))
'nil)

Why did it grow so much?
23

We substitute xs with the much wider
(cons x1 '()) and xs appears five times in
the body of the definition of remb.
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Next?

(equal (memb?
(if (atom (cons x1 '()))

'()
(if (equal (car (cons x1 '())) '?)

(remb (cdr (cons x1 '())))
(cons (car (cons x1 '()))

(remb (cdr (cons x1 '())))))))
'nil)

24

The expression (cons x1 '()) is never an
atom.
(equal (memb?

(if (equal (car (cons x1 '())) '?)
(remb (cdr (cons x1 '())))
(cons (car (cons x1 '()))

(remb (cdr (cons x1 '()))))))
'nil)

Now what?

(equal (memb?
(if (equal (car (cons x1 '())) '?)

(remb (cdr (cons x1 '())))
(cons (car (cons x1 '()))

(remb (cdr (cons x1 '()))))))
'nil)

25

Piece of cake. We use car/cons twice and
cdr/cons twice.

(equal (memb?
(if (equal x1 '?)

(remb '())
(cons x1

(remb '()))))
'nil)

And now?
26

The argument to these two identical
function applications of remb is '() and
thus cannot be simplified any more. We
could use the Law of Defun and rewrite
the applications.

(equal (memb?
(if (equal x1 '?)

(remb '())
(cons x1 (remb '()))))

'nil)

Good point. But do we want to rewrite
these applications?

27

Why not?

Have we seen the application (remb '())
before?

28

Yes,
it shows up in the theorem
memb?/remb0 in frame 9.
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Is that significant?
29

Perhaps we can use memb?/remb0 to
prove memb?/remb1.

The theorem memb?/remb0 rewrites
(memb? (remb '())) to 'nil.

30

In that case, we should not remove the
two occurrences of (remb '()) from our
expression.

And?
31

We should try to rewrite the expression
so that (remb '()) is the argument of
memb?.

Exactly! How can we do that?
32

Perhaps we can rewrite the if.

(equal (memb?
(if (equal x1 '?)

(remb '())
(cons x1 (remb '()))))

'nil)

Can we use if-true or if-false?
33

No,
we do not know whether (equal x1 '?)
is true or false.

Can we use if-same?
34

No,
we cannot rewrite (remb '()) to
(cons x1 (remb '())).

If we do not know whether the if’s
question is true, and the answer and else
are not the same, how can we rewrite the
if?

35

We do not know. Is there a way?
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There is. Recall the rewriting steps in
frames 66–71 of chapter 2. First, we have
to create a new if using if-same.

(equal (memb?
(if (equal x1 '?)

(remb '())
(cons x1 (remb '()))))

'nil)

36

This is certainly familiar.

(equal (if (equal x1 '?)
(memb?

(if (equal x1 '?)
(remb '())
(cons x1 (remb '()))))

(memb?
(if (equal x1 '?)

(remb '())
(cons x1 (remb '())))))

'nil)

Can we simplify the argument of memb?
using the new if question?

(equal (if (equal x1 '?)
(memb?

(if (equal x1 '?)
(remb '())
(cons x1 (remb '()))))

(memb?
(if (equal x1 '?)

(remb '())
(cons x1 (remb '())))))

'nil)

37

We can. In the new if answer, we know
that x1 is equal to '?. We use if-nest-A to
drop the if in this focus.

(equal (if (equal x1 '?)
(memb?

(remb '()))
(memb?

(if (equal x1 '?)
(remb '())
(cons x1 (remb '())))))

'nil)

Are we done using the new if?

(equal (if (equal x1 '?)
(memb? (remb '()))
(memb?

(if (equal x1 '?)
(remb '())
(cons x1 (remb '())))))

'nil)

38

In the new if else, x1 is not equal to '?.
We use if-nest-E to drop another if.

(equal (if (equal x1 '?)
(memb? (remb '()))
(memb?

(cons x1 (remb '()))))
'nil)
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Here is the familiar expression from
memb?/remb0 that we anticipated in
frame 31.
(equal (if (equal x1 '?)

(memb? (remb '()))
(memb?

(cons x1 (remb '()))))
'nil)

39

Rewriting the entire application of
memb? in a new if helps a lot! And now
the if question (equal x1 '?) is entirely
outside the application.

If Lifting

To move an if question from inside a focus to outside the
focus, use if-same where x is the if question and y is the
entire focus. This copies the focus in the answer and else
of the new if.

(original-context
(original-focus

(if Q A E )))
=

(original-context
(if Q

(original-focus
(if Q A E ))

(original-focus
(if Q A E ))))

Then use if-nest-A and if-nest-E to remove each if with the
same question in the answer and else of the new if.

(original-context
(if Q

(original-focus
(if Q A E ))

(original-focus
(if Q A E ))))

=

(original-context
(if Q

(original-focus A)
(original-focus E )))
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Indeed. It is often useful to move an if
question in this way.

40

Good to know.

Insight: Pull Ifs Outward

Use If Lifting when an if is found in an argument of a
function application or in an if question. Lift the if outside
any function applications and if questions.

Now we can use memb?/remb0.

(equal (if (equal x1 '?)
(memb? (remb '()))
(memb?

(cons x1 (remb '()))))
'nil)

41

Yes, we know that this focus is equal to
'nil.
(equal (if (equal x1 '?)

'nil
(memb?

(cons x1 (remb '()))))
'nil)

What can we do with the if else?

(equal (if (equal x1 '?)
'nil
(memb?

(cons x1 (remb '()))))
'nil)

42

Use memb?.

(equal (if (equal x1 '?)
'nil
(if (atom (cons x1 (remb '())))

'nil
(if (equal (car (cons x1 (remb '())))

'?)
't
(memb?

(cdr (cons x1 (remb '())))))))
'nil)

But could we use remb instead, with a
different focus?

We could use remb on (remb '()). Do we
know anything interesting about
(remb '())?

43

As in frame 31, (remb '()) lets us use
memb?/remb0, if we can rewrite the
expression to form (memb? (remb '())).
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It is useful to recognize parts of existing
theorems.

44

That much seems clear.

Insight: Keep Theorems in Mind

Bear existing theorems in mind, especially axioms. When
the current claim contains an expression that some theo-
rem can rewrite, try using that theorem. When the current
claim contains part of an expression that some theorem
can rewrite, leave that part alone and try to rewrite the
current claim in order to use the theorem.

Exactly. Now let’s rewrite this focus.

(equal (if (equal x1 '?)
'nil
(if (atom (cons x1 (remb '())))

'nil
(if (equal (car (cons x1 (remb '())))

'?)
't
(memb?

(cdr (cons x1 (remb '())))))))
'nil)

45

This is not difficult.

(equal (if (equal x1 '?)
'nil
(if (equal (car (cons x1 (remb '())))

'?)
't
(memb?

(cdr (cons x1 (remb '()))))))
'nil)

These two are easy.

(equal (if (equal x1 '?)
'nil
(if (equal (car (cons x1 (remb '())))

'?)
't
(memb?

(cdr (cons x1 (remb '()))))))
'nil)

46

We know car/cons and cdr/cons.

(equal (if (equal x1 '?)
'nil
(if (equal x1

'?)
't
(memb?

(remb '()))))
'nil)
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Does this focus and the orange if
question suggest an axiom?

(equal (if (equal x1 '?)
'nil
(if (equal x1 '?)

't
(memb?

(remb '()))))
'nil)

47

Yes, they suggest if-nest-E.

(equal (if (equal x1 '?)
'nil
(memb?

(remb '())))
'nil)

How about this focus?

(equal (if (equal x1 '?)
'nil
(memb?

(remb '())))
'nil)

48

We use memb?/remb0 again, and the
proof is finished.

(equal (if (equal x1 '?)
'nil
'nil)

'nil)

Is memb?/remb1 a theorem?
49

Yes, we have proved it.

What does the theorem memb?/remb1
mean?

50

It means that remb removes '? from a
1-element list.

How did we prove it?
51

By atom/cons, if-false, car/cons, cdr/cons,
if-same, if-nest-A, if-nest-E,
memb?/remb0, memb?, and remb.

Is this remarkable?
52

Without a doubt.
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Let’s prove memb?/remb2.

(dethm memb?/remb2 (x1 x2)
(equal (memb?

(remb
(cons x2

(cons x1 '()))))
'nil))

53

This is becoming familiar.

Use remb.

(equal (memb?
(remb (cons x2 (cons x1 '()))))

'nil)

54

That’s simple enough.

(equal (memb?
(if (atom (cons x2 (cons x1 '())))

'()
(if (equal (car

(cons x2 (cons x1 '())))
'?)

(remb
(cdr (cons x2 (cons x1 '()))))

(cons
(car (cons x2 (cons x1 '())))
(remb

(cdr
(cons x2 (cons x1 '()))))))))

'nil)

Do we know the if question
(atom (cons x2 (cons x1 '())))?

(equal (memb?
(if (atom (cons x2 (cons x1 '())))

'()
(if (equal (car (cons x2 (cons x1 '())))

'?)
(remb

(cdr (cons x2 (cons x1 '()))))
(cons

(car (cons x2 (cons x1 '())))
(remb

(cdr
(cons x2 (cons x1 '()))))))))

'nil)

55

'nil.

(equal (memb?
(if (equal (car (cons x2 (cons x1 '())))

'?)
(remb

(cdr (cons x2 (cons x1 '()))))
(cons

(car (cons x2 (cons x1 '())))
(remb

(cdr
(cons x2 (cons x1 '())))))))

'nil)
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Deal with the cars and cdrs.

(equal (memb?
(if (equal (car (cons x2 (cons x1 '())))

'?)
(remb

(cdr (cons x2 (cons x1 '()))))
(cons

(car (cons x2 (cons x1 '())))
(remb

(cdr
(cons x2 (cons x1 '())))))))

'nil)

56

Done.

(equal (memb?
(if (equal x2 '?)

(remb (cons x1 '()))
(cons x2

(remb (cons x1 '())))))
'nil)

In this case . . .

(equal (memb?
(if (equal x2 '?)

(remb (cons x1 '()))
(cons x2

(remb (cons x1 '())))))
'nil)

57

We use If Lifting!

(equal (if (equal x2 '?)
(memb?

(remb (cons x1 '())))
(memb?

(cons x2
(remb (cons x1 '())))))

'nil)

Exactly. Which axioms do we use in
frame 57?

58

We use if-same, if-nest-A, and if-nest-E,
as in frames 36–38.

Are we experiencing déjà vu?

(equal (if (equal x2 '?)
(memb?

(remb (cons x1 '())))
(memb?

(cons x2
(remb (cons x1 '())))))

'nil)

59

Yes, we saw this expression in the
theorem memb?/remb1. We can use
memb?/remb1 here.

(equal (if (equal x2 '?)
'nil
(memb?

(cons x2
(remb (cons x1 '())))))

'nil)
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Let’s use memb?. Ready?

(equal (if (equal x2 '?)
'nil
(memb?

(cons x2
(remb (cons x1 '())))))

'nil)

60

And willing.

(equal (if (equal x2 '?)
'nil
(if (atom

(cons x2
(remb (cons x1 '()))))

'nil
(if (equal

(car
(cons x2

(remb (cons x1 '()))))
'?)

't
(memb?

(cdr
(cons x2

(remb (cons x1 '()))))))))
'nil)

The next two steps are easy.

(equal (if (equal x2 '?)
'nil
(if (atom

(cons x2
(remb (cons x1 '()))))

'nil
(if (equal (car

(cons x2
(remb (cons x1 '()))))

'?)
't
(memb?

(cdr
(cons x2

(remb (cons x1 '()))))))))
'nil)

61

That’s music to our ears.

(equal (if (equal x2 '?)
'nil
(if (equal (car

(cons x2
(remb (cons x1 '()))))

'?)
't
(memb?

(cdr
(cons x2

(remb (cons x1 '())))))))
'nil)

Think It Over, and Over, and Over 73



So are these two steps.

(equal (if (equal x2 '?)
'nil
(if (equal (car

(cons x2
(remb (cons x1 '()))))

'?)
't
(memb?

(cdr
(cons x2

(remb (cons x1 '())))))))
'nil)

62

Those steps sure are easy.

(equal (if (equal x2 '?)
'nil
(if (equal x2 '?)

't
(memb?

(remb (cons x1 '())))))
'nil)

Do we know (equal x2 '?) in this focus?

(equal (if (equal x2 '?)
'nil
(if (equal x2 '?)

't
(memb? (remb (cons x1 '())))))

'nil)

63

Yes, by if-nest-E.

(equal (if (equal x2 '?)
'nil
(memb? (remb (cons x1 '()))))

'nil)

It’s déjà vu all over again!†

(equal (if (equal x2 '?)
'nil
(memb? (remb (cons x1 '()))))

'nil)

†Yogi Berra might have said so.

64

It’s quite convenient that memb?/remb1
is a theorem.
(equal (if (equal x2 '?)

'nil
'nil)

'nil)

Is memb?/remb2 a theorem?
65

Certainly.

What does memb?/remb2 mean?
66

The same as memb?/remb0 and
memb?/remb1, but for 2-element lists.

How does the proof of memb?/remb2
compare to the proof of memb?/remb1?

67

It uses the same steps in the same order,
but with slightly longer lists and using
memb?/remb1 instead of memb?/remb0.
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Can we prove memb?/remb3?

(dethm memb?/remb3 (x1 x2 x3)
(equal

(memb?
(remb

(cons x3
(cons x2

(cons x1 '())))))
'nil))

68

Sure,
just use the same approach and rely
on memb?/remb2.

Of course.
69

How many times must we do this?

Until we reach the largest list.
70

That will take forever and ever.

It certainly will.
71

And we are getting hungry!

Take a short visit to J-Bob, first. The
proofs about memb? and remb start on
page 185.

72

Then something tasty?

Why not take a break and have a steak.
73

That is indeed a rare breakfast.
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Are the proofs of memb?/remb0,
memb?/remb1, and memb?/remb2
building toward a larger theorem?

1

It seems so.

What should the theorem say?
2

It should say that remb removes '? from
any list.

Going one element at a time isn’t
working well enough.

3

This is just like list0?, list1?, and list2? in
chapter 4.

How so?
4

We start with the empty list and define a
new function for each slightly longer list.

How do those new functions work?
5

They deal with one element, then call
the previous function.

How do we extend a function to work on
lists of any length?

6

The answer is recursion!

We like simple answers.
7

Can we use recursion in proofs?

Yes,
recursion in proofs is called induction
and it’s a great idea. How do we think
that would work?

8

The same way as in functions. One case
for the empty list and handle the rest via
natural recursion.

And what is the natural recursion?
9

For a list xs, it is the same function call
but with (cdr xs).
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Shall we try out this idea?
10

We can’t wait!

Try to prove memb?/remb.

(dethm memb?/remb (xs)
(equal (memb? (remb xs)) 'nil))

11

Here we go again.

But only one more time. Here is the
inductive claim we must prove for
memb?/remb.

(if (atom xs)
(equal (memb? (remb xs)) 'nil)
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb? (remb xs)) 'nil)
't))

Which parts of the if answer and if else
are identical?

12

The parts that are exactly the same as
the claim memb?/remb.

(if (atom xs)
(equal (memb? (remb xs)) 'nil)
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb? (remb xs)) 'nil)
't))

The first if answer states memb?/remb
for empty lists, where xs is an atom.
What about the other if answer?
(if (atom xs)

(equal (memb? (remb xs)) 'nil)
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb? (remb xs)) 'nil)
't))

13

This one states memb?/remb for
non-empty lists, where xs has at least
one cons.
(if (atom xs)

(equal (memb? (remb xs)) 'nil)
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb? (remb xs)) 'nil)
't))

The orange expression is not quite the
same as memb?/remb. How is it
different?
(if (atom xs)

(equal (memb? (remb xs)) 'nil)
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb? (remb xs)) 'nil)
't))

14

This expression has (cdr xs) where
memb?/remb has xs. It looks like the
natural recursion for our claim.
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The (natural) recursion for a claim is
called the inductive premise. What is it
for?

15

We’re not sure. Once we use it, perhaps
we’ll find out.

How does our proof begin?

(if (atom xs)
(equal (memb?

(remb xs))
'nil)

(if (equal (memb? (remb (cdr xs))) 'nil)
(equal (memb? (remb xs)) 'nil)
't))

16

We use the definition of remb.

(if (atom xs)
(equal (memb?

(if (atom xs)
'()
(if (equal (car xs) '?)

(remb (cdr xs))
(cons (car xs)

(remb (cdr xs))))))
'nil)

(if (equal (memb? (remb (cdr xs))) 'nil)
(equal (memb? (remb xs)) 'nil)
't))

We know which way this if goes, based
on the premise (atom xs).

(if (atom xs)
(equal (memb?

(if (atom xs)
'()
(if (equal (car xs) '?)

(remb (cdr xs))
(cons (car xs)

(remb (cdr xs))))))
'nil)

(if (equal (memb? (remb (cdr xs))) 'nil)
(equal (memb? (remb xs)) 'nil)
't))

17

Yes, that nested if is obvious.

(if (atom xs)
(equal (memb?

'())
'nil)

(if (equal (memb? (remb (cdr xs))) 'nil)
(equal (memb? (remb xs)) 'nil)
't))
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Now?

(if (atom xs)
(equal (memb? '())

'nil)
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb? (remb xs)) 'nil)
't))

18

Use memb?. Easy.

(if (atom xs)
(equal (if (atom '())

'nil
(if (equal (car '()) '?)

't
(memb? (cdr '()))))

'nil)
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb? (remb xs)) 'nil)
't))

Can we simplify this answer?

(if (atom xs)
(equal (if (atom '())

'nil
(if (equal (car '()) '?)

't
(memb? (cdr '()))))

'nil)
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb? (remb xs)) 'nil)
't))

19

Yes, using atom, if-true, and equal-same.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb? (remb xs)) 'nil)
't))

Consider the case for non-empty lists.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb?
(remb xs))

'nil)
't))

20

We start by using remb.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb?
(if (atom xs)

'()
(if (equal (car xs) '?)

(remb (cdr xs))
(cons (car xs)

(remb (cdr xs))))))
'nil)

't))
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Remember, xs is non-empty in this focus
since it is in the if else of the premise
(atom xs).

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb?
(if (atom xs)

'()
(if (equal (car xs) '?)

(remb (cdr xs))
(cons (car xs)

(remb (cdr xs))))))
'nil)

't))

21

We can use if-nest-E.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb?
(if (equal (car xs) '?)

(remb (cdr xs))
(cons (car xs)

(remb (cdr xs)))))
'nil)

't))

What do we do here?

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (memb?
(if (equal (car xs) '?)

(remb (cdr xs))
(cons (car xs)

(remb (cdr xs)))))
'nil)

't))

22

Like memb?/remb1 and memb?/remb2,
we use If Lifting on (equal (car xs) '?).

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
(memb? (remb (cdr xs)))
(memb?

(cons (car xs)
(remb (cdr xs)))))

'nil)
't))

Here, this amounts to pushing memb?
into the answer and else of an if.
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The inductive premise states that this
focus is equal to 'nil. Can we do
anything with it?

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
(memb? (remb (cdr xs)))
(memb?

(cons (car xs)
(remb (cdr xs)))))

'nil)
't))

23

By equal-if, we are able to replace this
focus with 'nil.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
'nil
(memb?

(cons (car xs)
(remb (cdr xs)))))

'nil)
't))

What next?
24

Perhaps we could use remb here.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
'nil
(memb?

(cons (car xs)
(remb (cdr xs)))))

'nil)
't))

What do we know about (remb (cdr xs))?
25

According to the inductive premise, we
know that (memb? (remb (cdr xs))) is
equal to 'nil. But the inductive premise
does not allow us to rewrite
(remb (cdr xs)) itself.

Just like with existing theorems, always
keep the inductive premise in mind.
Never rewrite the natural recursion in an
inductive proof; keep it around until the
inductive premise helps simplify it.

26

We’ll remember that.
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Insight: Don’t Touch Inductive Premises

Do not try to simplify an inductive premise in an inductive
proof directly. Instead, rewrite the expression around it
until the inductive premise can be applied. Often, after ap-
plying the inductive premise, an inductive proof is nearly
done.

Use memb? in this focus.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
'nil
(memb?

(cons (car xs)
(remb (cdr xs)))))

'nil)
't))

27

That’s easy.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
'nil
(if (atom (cons (car xs)

(remb (cdr xs))))
'nil
(if (equal (car

(cons (car xs)
(remb (cdr xs))))

'?)
't
(memb?

(cdr
(cons (car xs)

(remb (cdr xs))))))))
'nil)

't))
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Next?

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
'nil
(if (atom (cons (car xs)

(remb (cdr xs))))
'nil
(if (equal (car

(cons (car xs)
(remb (cdr xs))))

'?)
't
(memb?

(cdr
(cons (car xs)

(remb
(cdr xs))))))))

'nil)
't))

28

We can drop one if.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
'nil
(if (equal (car

(cons (car xs)
(remb (cdr xs))))

'?)
't
(memb?

(cdr
(cons (car xs)

(remb
(cdr xs)))))))

'nil)
't))

Here are two easy steps.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
'nil
(if (equal (car

(cons (car xs)
(remb

(cdr xs))))
'?)

't
(memb?

(cdr
(cons (car xs)

(remb
(cdr xs)))))))

'nil)
't))

29

We can use car/cons and cdr/cons in our
sleep at this point.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
'nil
(if (equal (car xs)

'?)
't
(memb?

(remb
(cdr xs)))))

'nil)
't))
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Anything special about the if in this
focus?
(if (atom xs)

't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
'nil
(if (equal (car xs) '?)

't
(memb?

(remb (cdr xs)))))
'nil)

't))

30

It is nested, of course.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
'nil
(memb?

(remb (cdr xs))))
'nil)

't))

What do we see in this focus?

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
'nil
(memb? (remb (cdr xs))))

'nil)
't))

31

Another chance to use the inductive
premise.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
'nil
'nil)

'nil)
't))

This is rather obvious.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

(equal (if (equal (car xs) '?)
'nil
'nil)

'nil)
't))

32

Certainly.

(if (atom xs)
't
(if (equal (memb? (remb (cdr xs))) 'nil)

't
't))

And now the proof of memb?/remb is
done.

33

Q.E.D.

Does the proof of memb?/remb look
familiar?

34

Yes, it looks like the proofs we did for
memb?/remb0, memb?/remb1, and
memb?/remb2.
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Insight: Build Up to Induction Gradually

Build up to a proof by induction over lists by proving
theorems about the empty list, lists with one element, lists
with two elements, and so on. Once the pattern of these
proofs is clear, the proof by induction should be similar.

Congratulations! We have learned how
to prove a theorem with induction.

35

Can we use induction for other proofs?

Proof by List Induction

To prove a claim C by induction over a list named x, prove

(if (atom x) C (if Ccdr C 't))

where Ccdr is C with x replaced by (cdr x).

Have we learned the answer to the
ultimate question of life, the universe,
and everything yet?†

†Thank you, Douglas Adams (1952-2001).

36

No, but we have learned how to do
induction.

Does that mean we know what the
inductive premise is for?

37

No, not completely. Perhaps, reading
this chapter one more time would help?

Perhaps. J-Bob can help with induction;
the proof of memb?/remb starts on
page 187.

38

Will do.

It is time for a hot fudge sundae.
39

Not exactly a breakfast of champions.
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The function ctx? determines whether its
argument contains '?. What value is
(ctx? '()) equal to?

1

'nil, because there is no '? in '().

What value is (ctx? '(a (? ?) c)) equal
to?

2

't, because there is a '? in '(a (? ?) c).

Define ctx?.
3

(defun ctx? (x)
(if (atom x)

(equal x '?)
(if (ctx? (car x))

't
(ctx? (cdr x)))))

measure: (size x)

We can show that ctx? is total. Here is
the claim we must prove.†

(if (natp (size x))
(if (atom x)

't
(if (< (size (car x)) (size x))

(if (ctx? (car x))
't
(< (size (cdr x)) (size x)))

'()))
'())

Although ctx? may not be total, we can
apply ctx? in its totality claim so long as
we do not use its definition via the Law
of Defun.

†This totality claim is more complex than
most others in this book. In chapter 8, we de-
scribe the process of creating totality claims in
detail.

4

Using natp/size, we know that (size x) is
a natural number. We can drop an if.

(if (atom x)
't
(if (< (size (car x)) (size x))

(if (ctx? (car x))
't
(< (size (cdr x)) (size x)))

'()))

Oh My, Stars! 89



What can we do with the size
comparisons using this premise?

(if (atom x)
't
(if (< (size (car x)) (size x))

(if (ctx? (car x))
't
(< (size (cdr x)) (size x)))

'()))

5

We can use size/car on the first
application of < and size/cdr on the
second application of <.

(if (atom x)
't
(if 't

(if (ctx? (car x))
't
't)

'()))

And then?
6

The proof is essentially done.

Recall sub from frame 88 of chapter 4.

(defun sub (x y)
(if (atom y)

(if (equal y '?)
x
y)

(cons (sub x (car y))
(sub x (cdr y)))))

measure: (size y)

State the claim that if x and y contain '?,
then so does (sub x y).

7

(dethm ctx?/sub (x y)
(if (ctx? x)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't))

Is ctx?/sub a theorem?

We have to prove it to find out. Can we
use induction to prove it?

8

Maybe,
but sub and ctx? are not quite like
remb and memb?.

How do they differ?
9

The functions sub and ctx? perform
natural recursion on the car, as well as
the cdr. The functions remb and memb?
only perform natural recursion on the
cdr.
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Proof by Star Induction

To prove a claim C by induction over cars and cdrs of a
variable named x, prove

(if (atom x) C (if Ccar (if Ccdr C 't) 't))

where Ccar is C with x replaced by (car x) and Ccdr is C with
x replaced by (cdr x).

Use our new kind of induction over y.

(if (ctx? x)
(if (ctx? y)

(equal (ctx? (sub x y)) 't)
't)

't)

10

Wow, using induction enlarges the claim!

(if (atom y)
(if (ctx? x)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't)
(if (if (ctx? x)

(if (ctx? (car y))
(equal (ctx? (sub x (car y))) 't)
't)

't)
(if (if (ctx? x)

(if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

't)
(if (ctx? x)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't)
't)

't))
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We now have an inductive premise for
the car as well as the cdr. There are four
versions of our original claim now,
written in orange. One is the case where
y is an atom, one is the case where y is a
cons, and the other two are inductive
premises. Can we make this claim
smaller?
(if (atom y)

(if (ctx? x)
(if (ctx? y)

(equal (ctx? (sub x y)) 't)
't)

't)
(if (if (ctx? x)

(if (ctx? (car y))
(equal (ctx? (sub x (car y))) 't)
't)

't)
(if (if (ctx? x)

(if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

't)
(if (ctx? x)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't)
't)

't))

11

Yes, we do so by using If Lifting on
(ctx? x). We also use if-same thrice to
simplify the final if else to 't.

(if (ctx? x)
(if (atom y)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

(if (if (ctx? (car y))
(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't)
't))

't)

Insight: Combine Ifs

When there are multiple ifs with the same question, com-
bine them into one if with If Lifting. Lift the ifs outside
any function applications and if questions.
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Next, use sub.

(if (ctx? x)
(if (atom y)

(if (ctx? y)
(equal (ctx? (sub x y))

't)
't)

(if (if (ctx? (car y))
(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't)
't))

't)

12

And if-nest-A using the premise (atom y).

(if (ctx? x)
(if (atom y)

(if (ctx? y)
(equal (ctx? (if (equal y '?)

x
y))

't)
't)

(if (if (ctx? (car y))
(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't)
't))

't)

Do we want to expand
(ctx? (if (equal y '?) x y))?

(if (ctx? x)
(if (atom y)

(if (ctx? y)
(equal (ctx? (if (equal y '?)

x
y))

't)
't)

(if (if (ctx? (car y))
(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't)
't))

't)

13

No, we want to lift the if outside the
applications of ctx? and equal.

(if (ctx? x)
(if (atom y)

(if (ctx? y)
(if (equal y '?)

(equal (ctx? x) 't)
(equal (ctx? y) 't))

't)
(if (if (ctx? (car y))

(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't)
't))

't)
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If the premise (ctx? x) is true, can we
rewrite (ctx? x) to 't in this if answer?

(if (ctx? x)
(if (atom y)

(if (ctx? y)
(if (equal y '?)

(equal (ctx? x) 't)
(equal (ctx? y) 't))

't)
(if (if (ctx? (car y))

(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't)
't))

't)

14

That sounds right. Shouldn’t we be able
to rewrite any premise to 't if it is true?

Not necessarily, since if is total. Its
question might have a value other than 't
or 'nil.

15

That’s true, and also surprising.

So, can we rewrite (ctx? x) to 't when it
is true?

16

We should be able to, since ctx? only
produces 't or 'nil.

What theorem rewrites (ctx? x) to 't?
17

We do not know of any. We must first
prove that (ctx? x) is equal to 't.

How many steps does that take?
18

We don’t know. The function ctx? is
recursive, so we may need to use
induction again.
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In that case, let’s state a new claim that
if (ctx? x) is true, it is equal to 't.

19

That is easy.

(dethm ctx?/t (x)
(if (ctx? x)

(equal (ctx? x) 't)
't))

Insight: Create Helpers for Induction

To rewrite the application of a recursive function, prove
a separate theorem about the recursive function using
induction. Do this if the current proof either does not
use induction, or uses induction for a different kind of
recursion from the function, or uses induction on different
arguments from the application.

Can we use ctx?/t now?

(if (ctx? x)
(if (atom y)

(if (ctx? y)
(if (equal y '?)

(equal (ctx? x) 't)
(equal (ctx? y) 't))

't)
(if (if (ctx? (car y))

(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't)
't))

't)

20

Yes, using these premises, if we prove
ctx?/t eventually.

(if (ctx? x)
(if (atom y)

(if (ctx? y)
(if (equal y '?)

(equal 't 't)
(equal 't 't))

't)
(if (if (ctx? (car y))

(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't)
't))

't)
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What can we do with this focus?

(if (ctx? x)
(if (atom y)

(if (ctx? y)
(if (equal y '?)

(equal 't 't)
(equal 't 't))

't)
(if (if (ctx? (car y))

(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't)
't))

't)

21

We use equal-same and if-same to rewrite
the entire focus to 't.
(if (ctx? x)

(if (atom y)
't
(if (if (ctx? (car y))

(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (ctx? (sub x y)) 't)
't)

't)
't))

't)

Does ctx?/t need to be proved
eventually?

22

Yes, it certainly does.

Use sub and simplify the result.

(if (ctx? x)
(if (atom y)

't
(if (if (ctx? (car y))

(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (ctx? (sub x y))

't)
't)

't)
't))

't)

23

Very well, we use if-nest-E and the
premise (atom y).

(if (ctx? x)
(if (atom y)

't
(if (if (ctx? (car y))

(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (ctx? (cons (sub x (car y))

(sub x (cdr y))))
't)

't)
't)

't))
't)
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Now use ctx?. Again, simplify the result.

(if (ctx? x)
(if (atom y)

't
(if (if (ctx? (car y))

(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (ctx? (cons (sub x (car y))

(sub x (cdr y))))
't)

't)
't)

't))
't)

24

This time we use atom/cons, car/cons,
cdr/cons, and if-false.

(if (ctx? x)
(if (atom y)

't
(if (if (ctx? (car y))

(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (if (ctx? (sub x (car y)))

't
(ctx? (sub x (cdr y))))

't)
't)

't)
't))

't)

Do we want to rewrite the applications
of ctx? written in orange?

(if (ctx? x)
(if (atom y)

't
(if (if (ctx? (car y))

(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? y)
(equal (if (ctx? (sub x (car y)))

't
(ctx? (sub x (cdr y))))

't)
't)

't)
't))

't)

25

No, they are each part of an inductive
premise. We rewrite the if question
above them, instead.

(if (ctx? x)
(if (atom y)

't
(if (if (ctx? (car y))

(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (if (ctx? (car y))
't
(ctx? (cdr y)))

(equal (if (ctx? (sub x (car y)))
't
(ctx? (sub x (cdr y))))

't)
't)

't)
't))

't)
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There are two ifs with the same question.

(if (ctx? x)
(if (atom y)

't
(if (if (ctx? (car y))

(equal (ctx? (sub x (car y))) 't)
't)

(if (if (ctx? (cdr y))
(equal (ctx? (sub x (cdr y))) 't)
't)

(if (if (ctx? (car y))
't
(ctx? (cdr y)))

(equal (if (ctx? (sub x (car y)))
't
(ctx? (sub x (cdr y))))

't)
't)

't)
't))

't)

26

Clearly, we should lift that if question.
We also use if-true twice.
(if (ctx? x)

(if (atom y)
't
(if (ctx? (car y))

(if (equal (ctx? (sub x (car y))) 't)
(if (if (ctx? (cdr y))

(equal (ctx? (sub x (cdr y))) 't)
't)

(equal (if (ctx? (sub x (car y)))
't
(ctx? (sub x (cdr y))))

't)
't)

't)
(if (if (ctx? (cdr y))

(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? (cdr y))
(equal (if (ctx? (sub x (car y)))

't
(ctx? (sub x (cdr y))))

't)
't)

't)))
't)
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Now we can use an inductive premise.

(if (ctx? x)
(if (atom y)

't
(if (ctx? (car y))

(if (equal (ctx? (sub x (car y))) 't)
(if (if (ctx? (cdr y))

(equal (ctx? (sub x (cdr y))) 't)
't)

(equal (if (ctx? (sub x (car y)))
't
(ctx? (sub x (cdr y))))

't)
't)

't)
(if (if (ctx? (cdr y))

(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? (cdr y))
(equal (if (ctx? (sub x (car y)))

't
(ctx? (sub x (cdr y))))

't)
't)

't)))
't)

27

And rewrite another if answer to 't.

(if (ctx? x)
(if (atom y)

't
(if (ctx? (car y))

't
(if (if (ctx? (cdr y))

(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? (cdr y))
(equal (if (ctx? (sub x (car y)))

't
(ctx? (sub x (cdr y))))

't)
't)

't)))
't)

Once again, there are two ifs with the
same question.

(if (ctx? x)
(if (atom y)

't
(if (ctx? (car y))

't
(if (if (ctx? (cdr y))

(equal (ctx? (sub x (cdr y))) 't)
't)

(if (ctx? (cdr y))
(equal (if (ctx? (sub x (car y)))

't
(ctx? (sub x (cdr y))))

't)
't)

't)))
't)

28

Time for If Lifting followed by if-same.

(if (ctx? x)
(if (atom y)

't
(if (ctx? (car y))

't
(if (ctx? (cdr y))

(if (equal (ctx? (sub x (cdr y))) 't)
(equal (if (ctx? (sub x (car y)))

't
(ctx? (sub x (cdr y))))

't)
't)

't)))
't)
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We can use the other inductive premise.

(if (ctx? x)
(if (atom y)

't
(if (ctx? (car y))

't
(if (ctx? (cdr y))

(if (equal (ctx? (sub x (cdr y))) 't)
(equal (if (ctx? (sub x (car y)))

't
(ctx? (sub x (cdr y))))

't)
't)

't)))
't)

29

And the rest is quite easily done.

't

Not quite!
30

That’s right,
we must still prove ctx?/t from
frame 20.

Here is the claim of ctx?/t. Does this
claim need induction?
(if (ctx? x)

(equal (ctx? x) 't)
't)

31

Yes, because ctx? uses recursion over
stars.

(if (atom x)
(if (ctx? x)

(equal (ctx? x) 't)
't)

(if (if (ctx? (car x))
(equal (ctx? (car x)) 't)
't)

(if (if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

(if (ctx? x)
(equal (ctx? x) 't)
't)

't)
't))
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Use ctx? on these two focuses.

(if (atom x)
(if (ctx? x)

(equal (ctx? x) 't)
't)

(if (if (ctx? (car x))
(equal (ctx? (car x)) 't)
't)

(if (if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

(if (ctx? x)
(equal (ctx? x) 't)
't)

't)
't))

32

We then use the premise (atom x) and
if-nest-A to drop the two resulting ifs.

(if (atom x)
(if (equal x '?)

(equal (equal x '?) 't)
't)

(if (if (ctx? (car x))
(equal (ctx? (car x)) 't)
't)

(if (if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

(if (ctx? x)
(equal (ctx? x) 't)
't)

't)
't))

Is this step obvious?

(if (atom x)
(if (equal x '?)

(equal (equal x† '?) 't)
't)

(if (if (ctx? (car x))
(equal (ctx? (car x)) 't)
't)

(if (if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

(if (ctx? x)
(equal (ctx? x) 't)
't)

't)
't))

†Hello, there! This is the focus.

33

Yes, indeed.

(if (atom x)
(if (equal x '?)

(equal (equal '? '?) 't)
't)

(if (if (ctx? (car x))
(equal (ctx? (car x)) 't)
't)

(if (if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

(if (ctx? x)
(equal (ctx? x) 't)
't)

't)
't))
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And this step?

(if (atom x)
(if (equal x '?)

(equal (equal '? '?) 't)
't)

(if (if (ctx? (car x))
(equal (ctx? (car x)) 't)
't)

(if (if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

(if (ctx? x)
(equal (ctx? x) 't)
't)

't)
't))

34

This is actually three steps: equal-same,
equal-same, and if-same.

(if (atom x)
't
(if (if (ctx? (car x))

(equal (ctx? (car x)) 't)
't)

(if (if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

(if (ctx? x)
(equal (ctx? x) 't)
't)

't)
't))

Now use ctx?, if-nest-E, and the premise
written in orange in both focuses.

(if (atom x)
't
(if (if (ctx? (car x))

(equal (ctx? (car x)) 't)
't)

(if (if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

(if (ctx? x)
(equal (ctx? x) 't)
't)

't)
't))

35

Very well.

(if (atom x)
't
(if (if (ctx? (car x))

(equal (ctx? (car x)) 't)
't)

(if (if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

(if (if (ctx? (car x))
't
(ctx? (cdr x)))

(equal (if (ctx? (car x))
't
(ctx? (cdr x)))

't)
't)

't)
't))
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What do these three ifs have in common?

(if (atom x)
't
(if (if (ctx? (car x))

(equal (ctx? (car x)) 't)
't)

(if (if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

(if (if (ctx? (car x))
't
(ctx? (cdr x)))

(equal (if (ctx? (car x))
't
(ctx? (cdr x)))

't)
't)

't)
't))

36

All three ifs have the question
(ctx? (car x)), so we use If Lifting. We
also use if-true once where the premise in
orange is false, and we use equal-same
and if-true at the second orange
expression.

(if (atom x)
't
(if (ctx? (car x))

(if (equal (ctx? (car x)) 't)
(if (if (ctx? (cdr x))

(equal (ctx? (cdr x)) 't)
't)

't
't)

't)
(if (if (ctx? (cdr x))

(equal (ctx? (cdr x)) 't)
't)

(if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

't)))

Is this step obvious?

(if (atom x)
't
(if (ctx? (car x))

(if (equal (ctx? (car x)) 't)
(if (if (ctx? (cdr x))

(equal (ctx? (cdr x)) 't)
't)

't
't)

't)
(if (if (ctx? (cdr x))

(equal (ctx? (cdr x)) 't)
't)

(if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

't)))

37

Yes, if we remember to use if-same twice.

(if (atom x)
't
(if (ctx? (car x))

't
(if (if (ctx? (cdr x))

(equal (ctx? (cdr x)) 't)
't)

(if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

't)))
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What do these two ifs have in common?

(if (atom x)
't
(if (ctx? (car x))

't
(if (if (ctx? (cdr x))

(equal (ctx? (cdr x)) 't)
't)

(if (ctx? (cdr x))
(equal (ctx? (cdr x)) 't)
't)

't)))

38

They have the question (ctx? (cdr x)) in
common, so we use If Lifting. We also
simplify the final if else using if-same.

(if (atom x)
't
(if (ctx? (car x))

't
(if (ctx? (cdr x))

(if (equal (ctx? (cdr x)) 't)
(equal (ctx? (cdr x)) 't)
't)

't)))

And now?

(if (atom x)
't
(if (ctx? (car x))

't
(if (ctx? (cdr x))

(if (equal (ctx? (cdr x)) 't)
(equal (ctx? (cdr x)) 't)
't)

't)))

39

We use the inductive premise to rewrite
(ctx? (cdr x)), and use equal-same to
rewrite this focus to 't.
(if (atom x)

't
(if (ctx? (car x))

't
(if (ctx? (cdr x))

(if (equal (ctx? (cdr x)) 't)
't
't)

't)))

What next?
40

We are done proving ctx?/t and ctx?/sub.

Maybe try out Star Induction with
J-Bob. The full proofs are on page 188.

41

We might try it out.
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Familiar with this function?

(defun member? (x ys)
(if (atom ys)

'nil
(if (equal x (car ys))

't
(member? x (cdr ys)))))

measure: (size ys)

Define set? that takes a list of atoms and
has the value 't if there are no duplicates
in the list and otherwise has the value
'nil.

1

It is straightforward with member?.

(defun set? (xs)
(if (atom xs)

't
(if (member? (car xs) (cdr xs))

'nil
(set? (cdr xs)))))

measure: (size xs)

Here is the claim that we need to prove
to show that member? is total.

(if (natp (size ys))
(if (atom ys)

't
(if (equal x (car ys))

't
(< (size (cdr ys)) (size ys))))

'nil)

2

As usual, we drop off the outer if using
natp/size and if-true.

(if (atom ys)
't
(if (equal x (car ys))

't
(< (size (cdr ys)) (size ys))))

Then we use size/cdr and the premise
(atom ys).

(if (atom ys)
't
(if (equal x (car ys))

't
(< (size (cdr ys)) (size ys))))

3

That’s familiar, too.

(if (atom ys)
't
(if (equal x (car ys))

't
't))

And then we are done.

(if (atom ys)
't
(if (equal x (car ys))

't
't))

4

By if-same twice.

't
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Now for the claim that set? is total. The
proof uses the identical sequence of six
steps as that of member?. How do the
totality proofs of set? and member?
differ?

(if (natp (size xs))
(if (atom xs)

't
(if (member? (car xs) (cdr xs))

't
(< (size (cdr xs)) (size xs))))

'nil)

5

The expression (equal x (car ys)) is
replaced by (member? (car xs) (cdr xs)),
but neither proof cares about that if
question.

Q.E.D.

't

Here is the definition of atoms. Can we
state and prove a claim about it?

(defun atoms (x)
(add-atoms x '()))

6

No, because we do not know what
add-atoms is.

Here is the definition of add-atoms. Can
we prove a claim about atoms now?

(defun add-atoms (x ys)
(if (atom x)

(if (member? x ys)
ys
(cons x ys))

(add-atoms (car x)
(add-atoms (cdr x) ys))))

measure: (size x)

7

No, we don’t yet know whether
add-atoms is total.

What do we need to know to determine
whether add-atoms is total?

8

We need to know its totality claim.

Good point. Does add-atoms have a
totality claim?

9

We do not know.
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What does a totality claim tell us about
a function?

10

A totality claim tells us that the
function’s measure decreases on every
recursive call.

Exactly. Can we state add-atoms’s claim?
11

Perhaps.

What is add-atoms’s measure?
12

Its measure is (size x).

Does add-atoms have a recursive
application?

13

Yes,

(add-atoms (car x)
(add-atoms (cdr x) ys)).

We must state that the measure (size x)
decreases for

(add-atoms (car x)
(add-atoms (cdr x) ys)).

What does it mean for the measure to
decrease for this recursive application?

14

We are not sure.

How would we use the Law of Defun for
the recursive application

(add-atoms (car x)
(add-atoms (cdr x) ys))?

15

By replacing x with (car x) and ys with
(add-atoms (cdr x) ys) in the body of
add-atoms.

Let’s do the same for the measure of
add-atoms.

16

As in, replace x with (car x) and ys with
(add-atoms (cdr x) ys) in (size x)?

Correct.
17

The result is (size (car x)).
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Exactly. The measure for the recursive
application

(add-atoms (car x)
(add-atoms (cdr x) ys))

is (size (cdr x)). What does it mean for
the measure to decrease for this recursive
application?

18

Perhaps it means that the measure for
this recursive application is less than the
measure for add-atoms.

How do we state that claim as an
expression?

19

Here is the expression:
(< (size (car x)) (size x)). Is this
add-atoms’s totality claim?

No, not yet. We still have one recursive
application left.

20

Yes, the second argument of the first
recursive application in add-atoms is also
recursive: (add-atoms (cdr x) ys).

What is the measure for the remaining
recursive application from add-atoms?

21

By replacing x with (cdr x) and ys with
ys in (size x), we get (size (cdr x)).

What next?
22

Next, we state the claim that the
measure decreases for the remaining
recursive application:
(< (size (cdr x)) (size x)).

Yes. We have separate statements for
each recursive application in add-atoms
that the measure must decrease. State
that both claims must be true.

23

That’s easy.

(if (< (size (car x)) (size x))
(< (size (cdr x)) (size x))
'nil)

Is this add-atoms’s totality claim?
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No, that is still not the complete totality
claim. Are we sure the expression in
frame 23 states that both
(< (size (car x)) (size x)) and
(< (size (cdr x)) (size x)) must be true?

24

Of course.

Conjunction

The conjunction of expressions e
1
. . . e

n
states that each of

e
1
, . . . , e

n
must be true.

The conjunction of zero expressions is 't.

The conjunction of one expression e
1

is e
1
.

The conjunction of e
1

and e
2

is e
1

if e
2

is 't, it is e
2

if e
1

is
't, and otherwise it is (if e

1
e
2

'nil).

The conjunction of three or more expressions e
1
e
2
. . . e

n
is

the conjunction of e
1

and the conjunction of e
2
. . . e

n
.

What does the claim in frame 23 state?
25

It states that the measure of add-atoms
must decrease for the function’s two
recursive applications.

When does add-atoms call itself
recursively?

26

When x is not an atom.

That’s right. For add-atoms to be total,
we only need to prove the claim in
frame 23 in the case where x is not an
atom. Restate the claim to say so.

27

What about the case where x is an atom?
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There are no recursive applications in
add-atoms when x is an atom, so there’s
nothing we need to prove.

28

In that case, here is the new claim.

(if (atom x)
't
(if (< (size (car x)) (size x))

(< (size (cdr x)) (size x))
'nil))

This is the totality claim for add-atoms,
isn’t it?

Unfortunately not. But we are almost
finished.

29

Good. What’s next?

We have stated that the measure for
add-atoms must decrease when it makes
recursive calls. How many times can it
decrease?

30

At most (size x), surely.

What prevents the measure from
decreasing more than (size x) times?

31

Ah, of course!

(if (natp (size x))
(if (atom x)

't
(if (< (size (car x)) (size x))

(< (size (cdr x)) (size x))
'nil))

'nil)
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Constructing Totality Claims

Given a function (defun name (x
1
. . . x

n
) body) and a measure

m, construct a claim for subexpressions in body:

For variables and quoted literals, use 't.

For (if Q A E ) where the claims for Q , A, and E are c
q
, c

a
,

and c
e
, if c

a
and c

e
are the same use the conjunction of c

q

and c
a
, otherwise use the conjunction of c

q
and (if Q c

a
c
e
).

For any other expression E , consider each recursive appli-
cation (name e

1
. . . e

n
) in E . Construct the measure m

r
of

the recursive application by substituting e
1

for x
1
, . . . , e

n

for x
n

in m. The claim for E is the conjunction of (< m
r
m)

for every recursive application in E .

The totality claim for name is the conjunction of (natp m)
and the claim for body.

And that is the totality claim for
add-atoms.

32

Finally.

We can prove the totality claim for
add-atoms.
(if (natp (size x))

(if (atom x)
't
(if (< (size (car x)) (size x))

(< (size (cdr x)) (size x))
'nil))

'nil)

33

Easily done.

't

Can we prove something about
add-atoms now?

First let’s take a break. We can walk
through this totality proof with J-Bob on
page 192, and find out how J-Bob
constructs totality claims in Appendix C.

34

Or perhaps it is just time for a
mid-morning snack.
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Now that we know add-atoms and atoms
are total, can we state and prove a claim
about either of them?

1

No, we do not understand the definition
of add-atoms.

Given a value as its first argument and a
list of unique atoms as its second
argument, add-atoms adds all of the
atoms from the first argument to the
second argument, except those that are
already in the list. What value is
(add-atoms '(a � (b � (c � a))) '(d a e))†

equal to?

†The notation (x � y) inside a quoted literal
represents the result of (cons 'x 'y). Normally, we
only use cons when its second argument is a list.
In this chapter and in chapter 10, however, we
ignore this restriction in order to write simpler
functions and proofs.

2

'(b c d a e).

What value is
(add-atoms '((a � b) � (c � a)) '(d a e))
equal to?

3

'(b c d a e).

What value is
(add-atoms 'a '(d a e))
equal to?

4

'(d a e).

What value is
(add-atoms 'b '(d a e))
equal to?

5

'(b d a e).

What value is
(atoms '(((a � b) � (c � a)) � (d � (a � e))))
equal to?

6

'(b c d a e).
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We can now state a claim about atoms.

(dethm set?/atoms (a)
(equal (set? (atoms a)) 't))

7

Let’s try to prove it.

What do we do with this focus?

(equal (set? (atoms a)) 't)

8

We start by using atoms.

(equal (set? (add-atoms a '())) 't)

What now?
9

The function add-atoms treats a as either
an atom or as nested cons pairs. So, we
can use Star Induction.

In order to use induction, let’s create a
separate theorem about add-atoms.

10

Certainly.

(dethm set?/add-atoms (a)
(equal (set? (add-atoms a '())) 't))

What is the inductive claim we must
prove?

(equal (set? (add-atoms a '())) 't)

11

Here it is.

(if (atom a)
(equal (set? (add-atoms a '())) 't)
(if (equal (set? (add-atoms (car a) '())) 't)

(if (equal (set? (add-atoms (cdr a) '())) 't)
(equal (set? (add-atoms a '())) 't)
't)

't))
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Let’s use add-atoms on a and '(). Do the
recursive applications correspond to our
inductive premises?

(if (atom a)
(equal (set? (add-atoms a '())) 't)
(if (equal (set? (add-atoms (car a) '())) 't)

(if (equal (set? (add-atoms (cdr a) '())) 't)
(equal (set?

(add-atoms a '()))
't)

't)
't))

12

No, they do not; the inductive premise
for (car a) and the recursive application
for (car a) do not match. In the inductive
premise, the second argument is
(add-atoms (cdr a) '()). In the recursive
application, the second argument is '().

(if (atom a)
(equal (set? (add-atoms a '())) 't)
(if (equal (set? (add-atoms (car a) '())) 't)

(if (equal (set? (add-atoms (cdr a) '())) 't)
(equal (set?

(if (atom a)
(if (member? a '())

'()
(cons a '()))

(add-atoms (car a)
(add-atoms (cdr a) '()))))

't)
't)

't))

Star Induction is not helping us in this
proof. We need inductive premises that
match the recursion in our functions.

13

We only know List Induction and Star
Induction, and neither of them look like
the recursion in add-atoms.

Does add-atoms use natural recursion?
14

Yes, for only one argument. The
argument x is replaced by (car x) and
(cdr x) in the recursive applications. The
argument ys, however, stays ys in one
recursive application and becomes
(add-atoms (cdr x) ys) in the other.

Why isn’t

(add-atoms (car x)
(add-atoms (cdr x) ys))

a natural recursion?

15

In a natural recursion, every argument
must stay the same or be a structural
part of the given one. The argument
(add-atoms (cdr x) ys) is neither the
same as ys, nor a part of ys. If add-atoms
does not use natural recursion, can we
prove set?/atoms by induction?
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Induction uses inductive premises, which
are natural recursions for proofs.
Without natural recursion, our proof
does not have the right inductive
premises. We are stuck.

16

Is there hope?

Yes, but we need to find a kind of
induction that matches the recursion in
add-atoms.

17

Is there a kind of induction like that?

We can create a new kind of induction.
Given any total, recursive function, we
can always state inductive claims based
on the recursion in the function.

18

That’s surprising. Does that mean we
can create a whole new kind of induction
just for add-atoms?

Absolutely. To begin, we need to state a
claim in terms of add-atoms that we want
to use our new kind of induction on.

19

How about the claim in frame 11?

(equal (set? (add-atoms a '())) 't)

That’s a start, but in order for induction
to substitute the correct inductive
premises, we need the arguments of
add-atoms to be variables. Can we state
a more general claim where the
arguments are both variables?

20

We certainly can.

(equal (set? (add-atoms a bs)) 't)

Is that claim true?
21

No, (equal (set? (add-atoms 'a '(b b))) 't)
is a counterexample.

What must be true of bs for the claim to
hold?

22

If bs is a list with no duplicates, then
(add-atoms a bs) is also a list with no
duplicates.
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Can we state that claim?
23

Certainly.

(dethm set?/add-atoms (a bs)
(if (set? bs)

(equal (set? (add-atoms a bs)) 't)
't))

Now how does induction for add-atoms
work?

What must the inductive claim for
set?/add-atoms state?

24

Good question. We do not know.

The inductive claim for set?/add-atoms
must state that in the cases where
add-atoms does not call itself,
set?/add-atoms is true, and in the cases
where add-atoms does call itself,
set?/add-atoms is true of the original
arguments if it is also true of the
arguments to the recursive applications.

25

How do we state that?

In what case is add-atoms non-recursive?
26

When x is an atom, add-atoms is
non-recursive.

In that case, we must state that
set?/add-atoms is true.

27

In other words, we must state

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't).

That’s easy so far.

Precisely. What case remains?
28

The case where x is not an atom.
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In that case, we must also state that
set?/add-atoms is true.

29

Can inductive claims really be this
simple?

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't)

Not quite. We must still address
recursive applications in add-atoms.
What is the first recursive application?

30

(add-atoms (car x)
(add-atoms (cdr x) ys)).

We must state that set?/add-atoms holds
for the arguments of this recursive
application.

31

In other words, replace x with (car x)
and ys with (add-atoms (cdr x) ys) in
set?/add-atoms.

Almost. In set?/add-atoms, do x and ys
appear?

32

No, they do not.

An inductive claim does not necessarily
use the same variables as the recursive
function it is based on. Recall that in
frame 20 we do choose to use variables as
the arguments to add-atoms in
set?/add-atoms. What variables do we
use?

33

We use a and bs.

What is the first recursive application in
add-atoms, if we use a and bs instead of x
and ys?

34

(add-atoms (car a)
(add-atoms (cdr a) bs)).

How do we state that set?/add-atoms
holds for the arguments of this recursive
application?

35

We replace a with (car a) and bs with
(add-atoms (cdr a) bs) in set?/add-atoms.
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Very good. What is the result?
36

(if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)

What next?

The recursive application
(add-atoms (cdr a) bs) remains.

37

Presumably, we must replace a with
(car a) and bs with bs in set?/add-atoms.

That presumption is correct, indeed.
38

(if (set? bs)
(equal (set? (add-atoms (cdr a) bs))

't)
't)

What is this expression for?

The expressions in frames 36 and 38 are
the inductive premises for the inductive
claim of set?/add-atoms.

39

Interesting.

Inductive Premises
Given a claim c, a recursive application (name e

1
. . . e

n
),

and variables x
1
. . . x

n
, the inductive premise for this ap-

plication is c where x
1

is e
1
, . . . , x

n
is e

n
.
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Next, state that if both inductive
premises are true, set?/add-atoms must
be true.

40

(if (if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)
(if (if (set? bs)

(equal (set? (add-atoms (cdr a) bs))
't)

't)
(if (set? bs)

(equal (set? (add-atoms a bs))
't)

't)
't)

't).

Are we sure that this expression states
that if the inductive premises in
frames 36 and 38 are true, then
set?/add-atoms must be true as well?

41

Indubitably.

Implication

An implication states that some premises imply a conclu-
sion. In other words, when the premises e

1
. . . e

n
are true,

the conclusion e
0

must be true as well.

For zero premises, the implication is e
0
.

For one premise e
1
, the implication is (if e

1
e
0

't).

For two or more premises e
1
e
2
. . . e

n
, state that e

1
implies

that the conjunction of the premises e
2
. . . e

n
imply the

conclusion e
0
.
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In frames 27 and 40, we state claims
about set?/add-atoms for the cases where
a is an atom and where a is not an atom.

42

What is left to do?

Put the two cases together, of course.
43

We can certainly do that:

(if (atom a)
(if (set? bs)

(equal (set? (add-atoms a bs)) 't)
't)

(if (if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)
(if (if (set? bs)

(equal (set? (add-atoms (cdr a) bs))
't)

't)
(if (set? bs)

(equal (set? (add-atoms a bs)) 't)
't)

't)
't)).
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Defun Induction
Given a claim c, a function (defun namef (x

1
. . . x

n
) bodyf ),

and a choice of variables y
1
. . . y

n
, we construct a claim for

subexpressions of body i, where body i is bodyf with x
1
replaced

by y
1
, . . . , and x

n
replaced by y

n
:

For (if Q A E ) where the claims for A and E are c
a

and c
e
,

state that the inductive premises of Q imply c
ae
, where c

ae

is c
a

if c
a

is equal to c
e
, and (if Q c

a
c
e
) otherwise.

For any other expression E , state that the inductive
premises of E imply c.

The inductive claim of c is the claim for body i.

That is the inductive claim for
set?/add-atoms, using induction based on
the definition of add-atoms.

44

There is nothing to it!

Really?
45

No, not really.

We have stated the claim to prove
set?/add-atoms by Defun Induction using
add-atoms.

46

Impressive! How does this differ from
List Induction or Star Induction?

Actually, these forms of induction do not
differ. List Induction and Star Induction
are each based on Defun Induction. We
define a function for each that produces
the appropriate inductive premises.

47

What functions are those?
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We use list-induction for List Induction.

(defun list-induction (x)
(if (atom x)

'()
(cons (car x)

(list-induction (cdr x)))))

measure: (size x)

48

How about Star Induction?

We use star-induction, of course.

(defun star-induction (x)
(if (atom x)

x
(cons (star-induction (car x))

(star-induction (cdr x)))))

measure: (size x)

49

Are there other function definitions we
should use for common forms of
induction?

None come to mind, but they have a way
of popping up when we least expect
them.

50

Does Defun Induction work for every
function we write?

The ways that we construct inductive
claims and totality claims work for every
function, but they work better for some
functions than others.

51

Which functions are those?

When we construct inductive claims and
totality claims, we assume that if
expressions are outside all other
expressions; we ignore if expressions in
the arguments of applications.

52

What happens when an if expression is
inside the argument of an application?
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In some cases we might get a claim we
cannot prove, even though our defun is
total or our dethm is actually a theorem.

53

What can we do then?

There are trickier ways to create totality
claims and inductive claims that work
for all ifs. But we can always just rewrite
our functions to have the ifs on the
outside.

54

How?

With If Lifting, of course!
55

Of course. Then can we write totality
claims and inductive claims that work
for every total function?

No, not every total function.† There is
always more to learn.

†Some total functions do not have a natu-
ral number measure. Many more functions can
be proved total by using ordinal numbers. See
“Restless for More?” for further reading.

56

Now back to the proof, please!
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We should try to prove set?/add-atoms
again using Defun Induction on
add-atoms.
(dethm set?/add-atoms (a bs)

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't))

57

And here again is the inductive claim
from frame 43.

(if (atom a)
(if (set? bs)

(equal (set? (add-atoms a bs)) 't)
't)

(if (if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)
(if (if (set? bs)

(equal (set? (add-atoms (cdr a) bs)) 't)
't)

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't)

't)
't))

Next, we use add-atoms, if-nest-A, and
the premise (atom a).

(if (atom a)
(if (set? bs)

(equal (set? (add-atoms a bs))
't)

't)
(if (if (set? (add-atoms (cdr a) bs))

(equal (set? (add-atoms (car a)
(add-atoms (cdr a) bs)))

't)
't)

(if (if (set? bs)
(equal (set? (add-atoms (cdr a) bs)) 't)
't)

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't)

't)
't))

58

Yes, these steps are easy.

(if (atom a)
(if (set? bs)

(equal (set? (if (member? a bs)
bs
(cons a bs)))

't)
't)

(if (if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)
(if (if (set? bs)

(equal (set? (add-atoms (cdr a) bs)) 't)
't)

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't)

't)
't))
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What comes next?

(if (atom a)
(if (set? bs)

(equal (set? (if (member? a bs)
bs
(cons a bs)))

't)
't)

(if (if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)
(if (if (set? bs)

(equal (set? (add-atoms (cdr a) bs)) 't)
't)

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't)

't)
't))

59

If Lifting on (member? a bs).

(if (atom a)
(if (set? bs)

(equal (if (member? a bs)
(set? bs)
(set? (cons a bs)))

't)
't)

(if (if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)
(if (if (set? bs)

(equal (set? (add-atoms (cdr a) bs)) 't)
't)

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't)

't)
't))

If (set? bs) is true in the premise, then it
should be equal to 't, right?

(if (atom a)
(if (set? bs)

(equal (if (member? a bs)
(set? bs)
(set? (cons a bs)))

't)
't)

(if (if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)
(if (if (set? bs)

(equal (set? (add-atoms (cdr a) bs)) 't)
't)

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't)

't)
't))

60

That seems reasonable.

(if (atom a)
(if (set? bs)

(equal (if (member? a bs)
't
(set? (cons a bs)))

't)
't)

(if (if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)
(if (if (set? bs)

(equal (set? (add-atoms (cdr a) bs)) 't)
't)

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't)

't)
't))
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How can we do that?
61

With the claim set?/t.

(dethm set?/t (xs)
(if (set? xs)

(equal (set? xs) 't)
't))

Like ctx?/t in frame 19 of chapter 7, we
state set?/t as a separate claim, and we
must eventually prove the claim.

Now we use set? with the argument
(cons a bs).

(if (atom a)
(if (set? bs)

(equal (if (member? a bs)
't
(set? (cons a bs)))

't)
't)

(if (if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)
(if (if (set? bs)

(equal (set? (add-atoms (cdr a) bs)) 't)
't)

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't)

't)
't))

62

We simplify the result using atom/cons,
car/cons, cdr/cons twice, and if-false.

(if (atom a)
(if (set? bs)

(equal (if (member? a bs)
't
(if (member? a bs)

'nil
(set? bs)))

't)
't)

(if (if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)
(if (if (set? bs)

(equal (set? (add-atoms (cdr a) bs)) 't)
't)

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't)

't)
't))

It looks like our premises (set? bs) and
(member? a bs) are about to come in
handy.
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Then let’s use those premises.

(if (atom a)
(if (set? bs)

(equal (if (member? a bs)
't
(if (member? a bs)

'nil
(set? bs)))

't)
't)

(if (if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)
(if (if (set? bs)

(equal (set? (add-atoms (cdr a) bs)) 't)
't)

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't)

't)
't))

63

And with a few more rewrites, we finish
the case where a is an atom.
(if (atom a)

't
(if (if (set? (add-atoms (cdr a) bs))

(equal (set? (add-atoms (car a)
(add-atoms (cdr a) bs)))

't)
't)

(if (if (set? bs)
(equal (set? (add-atoms (cdr a) bs)) 't)
't)

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't)

't)
't))

Do these two ifs have anything in
common?

(if (atom a)
't
(if (if (set? (add-atoms (cdr a) bs))

(equal (set? (add-atoms (car a)
(add-atoms (cdr a) bs)))

't)
't)

(if (if (set? bs)
(equal (set? (add-atoms (cdr a) bs)) 't)
't)

(if (set? bs)
(equal (set? (add-atoms a bs)) 't)
't)

't)
't))

64

Certainly, they have the same if
question. We can combine them using If
Lifting, of course. We use if-same twice
in the final if else, as well.

(if (atom a)
't
(if (set? bs)

(if (if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)
(if (equal (set? (add-atoms (cdr a) bs)) 't)

(equal (set? (add-atoms a bs)) 't)
't)

't)
't))
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We use If Lifting again, since both if
questions essentially ask
(set? (add-atoms (cdr a) bs)).

(if (atom a)
't
(if (set? bs)

(if (if (set? (add-atoms (cdr a) bs))
(equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't)
(if (equal (set? (add-atoms (cdr a) bs)) 't)

(equal (set? (add-atoms a bs)) 't)
't)

't)
't))

65

We also simplify the else of the new if
using if-true.

(if (atom a)
't
(if (set? bs)

(if (set? (add-atoms (cdr a) bs))
(if (equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

(if (equal (set? (add-atoms (cdr a) bs)) 't)
(equal (set? (add-atoms a bs)) 't)
't)

't)
(if (equal (set? (add-atoms (cdr a) bs)) 't)

(equal (set? (add-atoms a bs)) 't)
't))

't))

The if questions written in orange both
mean the same thing as
(set? (add-atoms (cdr a) bs)), but we
can’t simplify them using if-nest-A or
if-nest-E. Do we have a way to rewrite
these?
(if (atom a)

't
(if (set? bs)

(if (set? (add-atoms (cdr a) bs))
(if (equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

(if (equal (set? (add-atoms (cdr a) bs)) 't)
(equal (set? (add-atoms a bs)) 't)
't)

't)
(if (equal (set? (add-atoms (cdr a) bs)) 't)

(equal (set? (add-atoms a bs)) 't)
't))

't))

66

In the case where the premise
(set? (add-atoms (cdr a) bs)) is true, it is
equal to 't by set?/t. In the case where
the premise is false, it is equal to 'nil.

Changing the Rules 131



In that case, we need a new claim to say
that it is equal to 'nil.

67

Naturally.

(dethm set?/nil (xs)
(if (set? xs)

't
(equal (set? xs) 'nil)))

Let’s use our new theorem.

(if (atom a)
't
(if (set? bs)

(if (set? (add-atoms (cdr a) bs))
(if (equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

(if (equal (set? (add-atoms (cdr a) bs)) 't)
(equal (set? (add-atoms a bs)) 't)
't)

't)
(if (equal (set? (add-atoms (cdr a) bs)) 't)

(equal (set? (add-atoms a bs)) 't)
't))

't))

68

Very well. We shall use set?/t and
set?/nil with the premise written in
orange.

(if (atom a)
't
(if (set? bs)

(if (set? (add-atoms (cdr a) bs))
(if (equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

(if (equal 't 't)
(equal (set? (add-atoms a bs)) 't)
't)

't)
(if (equal 'nil 't)

(equal (set? (add-atoms a bs)) 't)
't))

't))

132 Chapter 9



Simplify both ifs.

(if (atom a)
't
(if (set? bs)

(if (set? (add-atoms (cdr a) bs))
(if (equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

(if (equal 't 't)
(equal (set? (add-atoms a bs)) 't)
't)

't)
(if (equal 'nil 't)

(equal (set? (add-atoms a bs)) 't)
't))

't))

69

Easy, using equal twice, if-true, and
if-false.
(if (atom a)

't
(if (set? bs)

(if (set? (add-atoms (cdr a) bs))
(if (equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

(equal (set? (add-atoms a bs)) 't)
't)

't)
't))

Use add-atoms.

(if (atom a)
't
(if (set? bs)

(if (set? (add-atoms (cdr a) bs))
(if (equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

(equal (set? (add-atoms a bs))
't)

't)
't)

't))

70

We also drop an if using if-nest-E and the
outermost premise.

(if (atom a)
't
(if (set? bs)

(if (set? (add-atoms (cdr a) bs))
(if (equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

(equal (set? (add-atoms (car a)
(add-atoms (cdr a) bs)))

't)
't)

't)
't))
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And now?

(if (atom a)
't
(if (set? bs)

(if (set? (add-atoms (cdr a) bs))
(if (equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

(equal (set? (add-atoms (car a)
(add-atoms (cdr a) bs)))

't)
't)

't)
't))

71

We can finally use the first inductive
premise.

(if (atom a)
't
(if (set? bs)

(if (set? (add-atoms (cdr a) bs))
(if (equal (set? (add-atoms (car a)

(add-atoms (cdr a) bs)))
't)

't
't)

't)
't))

And then we are essentially done.

Let’s return to set?/atoms. Are we ready
to prove it?

(dethm set?/atoms (a)
(equal (set? (atoms a)) 't))

72

Hopefully.

This proof is a little surprising, a little
fun, and a little proof.

73

That sounds a little exciting.

First, use atoms.

(equal (set? (atoms a)) 't)

74

Very well. Can we use set?/add-atoms
here?
(equal (set? (add-atoms a '())) 't)

Not yet, we need a premise. if-true makes
room for one.

(equal (set? (add-atoms a '())) 't)

Surprise number one: if-true yields a
premise wherever we need one.

75

We need this premise to be (set? '()).
How can we rewrite 't to (set? '())?

(if 't
(equal (set? (add-atoms a '())) 't)
't)
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The if-true theorem rewrites 't to an if
that has the same answer and else as the
body of set?, where xs is '().

(if 't
(equal (set? (add-atoms a '())) 't)
't)

Surprise number two: if-true lets us
supply any else expression we like.

76

And the question of the if?

(if (if 't
't
(if (member? (car '()) (cdr '()))

'nil
(set? (cdr '()))))

(equal (set? (add-atoms a '())) 't)
't)

Using atom rewrites 't to the if question
from set?, again where xs is '().

(if (if 't
't
(if (member? (car '()) (cdr '()))

'nil
(set? (cdr '()))))

(equal (set? (add-atoms a '())) 't)
't)

Surprise number three: we can “run”
atom in reverse, since 't and (atom '())
are equal.

77

And now?

(if (if (atom '())
't
(if (member? (car '()) (cdr '()))

'nil
(set? (cdr '()))))

(equal (set? (add-atoms a '())) 't)
't)

We use set?, where xs is '()!

(if (if (atom '())
't
(if (member? (car '()) (cdr '()))

'nil
(set? (cdr '()))))

(equal (set? (add-atoms a '())) 't)
't)

The fourth and final surprise: we can use
the Law of Defun to rewrite the body of
set? where xs is '() to an application of
set?.

78

And now we can use set?/add-atoms.

(if (set? '())
(equal (set? (add-atoms a '())) 't)
't)
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Exactly.

(if (set? '())
(equal (set? (add-atoms a '())) 't)
't)

79

And now we are virtually done.

't

Wasn’t that a little fun?
80

And quite surprising.

Do we need to prove set?/t and set?/nil?
81

Certainly we must.

Try them out with J-Bob on page 193.
82

Can we try Defun Induction with J-Bob
as well?

Of course. Appendix A tells how to use
J-Bob for Defun Induction, and
Appendix C shows how J-Bob constructs
inductive claims.

83

That is good to know.

Now we know everything there is to
learn about Defun Induction.

84

Well, perhaps not everything.

Go back through this chapter if
necessary. Defun Induction can take
time.

85

It certainly can.
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What value is

(cons
(cons

(cons
(cons 'french 'toast)
'and)

'maple)
'syrup)

equal to?

1

'((((french � toast) � and) � maple) � syrup).

How many conses are in

'((((french � toast) � and) � maple) � syrup)?

2

Four, since each “ �” counts for one cons.

What value is

(rotate
'((((french � toast) � and) � maple) � syrup))

equal to?

3

'(((french � toast) � and) � (maple � syrup)).

How many conses are in

'(((french � toast) � and) � (maple � syrup))?

4

Four again.

What value is

(rotate
'(((french � toast) � and) � (maple � syrup))).

equal to?

5

'((french � toast) � (and � (maple � syrup))).
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How many conses are in

'((french � toast) � (and � (maple � syrup)))?

6

Still four.

What value is

(rotate
'((french � toast) � (and � (maple � syrup)))).

equal to?

7

'(french � (toast � (and � (maple � syrup)))).

How many conses are in

'(french � (toast � (and � (maple � syrup))))?

8

Yet again, four!

Define rotate.
9

(defun rotate (x)
(cons (car (car x))

(cons (cdr (car x)) (cdr x))))

Is rotate/cons a theorem?

(dethm rotate/cons (x y z)
(equal (rotate (cons (cons x y) z))

(cons x (cons y z))))

10

We can find out.

Use rotate.

(equal (rotate (cons (cons x y) z))
(cons x (cons y z)))

11

The claim is starting to look
complicated.

(equal (cons (car (car (cons (cons x y) z)))
(cons (cdr (car (cons (cons x y) z)))

(cdr (cons (cons x y) z))))
(cons x (cons y z)))

140 Chapter 10



Simplify with car/cons and cdr/cons.

(equal (cons (car (car (cons (cons x y) z)))
(cons (cdr (car (cons (cons x y) z)))

(cdr (cons (cons x y) z))))
(cons x (cons y z)))

12

Much better.

(equal (cons x
(cons y

z))
(cons x (cons y z)))

And now . . .

(equal (cons x (cons y z))
(cons x (cons y z)))

13

We are done!

't

What value is

(align
'(french � (toast � (and � (maple � syrup)))))

equal to?

14

'(french � (toast � (and � (maple � syrup)))).

What value is

(align
'((french � toast) � (and � (maple � syrup))))

equal to?

15

'(french � (toast � (and � (maple � syrup)))).

What value is

(align
'(((french � toast) � and) � (maple � syrup)))

equal to?

16

'(french � (toast � (and � (maple � syrup)))).

What value is

(align
'((((french � toast) � and) � maple) � syrup))

equal to?

17

'(french � (toast � (and � (maple � syrup)))).
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Define align.
18

(defun align (x)
(if (atom x)

x
(if (atom (car x))

(cons (car x) (align (cdr x)))
(align (rotate x)))))

measure: (size x)

Is (size x) an appropriate measure for
align?

19

The measure (size x) has always worked.

Then let’s see if we can prove that align
is total. Of course, (natp (size x)) is 't.

(if (natp (size x))
(if (atom x)

't
(if (atom (car x))

(< (size (cdr x)) (size x))
(< (size (rotate x)) (size x))))

'nil)

20

Yes, and by if-true, we remove the outer
if.

(if (atom x)
't
(if (atom (car x))

(< (size (cdr x)) (size x))
(< (size (rotate x)) (size x))))

Use size/cdr and the premise (atom x).

(if (atom x)
't
(if (atom (car x))

(< (size (cdr x)) (size x))
(< (size (rotate x)) (size x))))

21

Simple.

(if (atom x)
't
(if (atom (car x))

't
(< (size (rotate x)) (size x))))

Use cons/car+cdr twice.

(if (atom x)
't
(if (atom (car x))

't
(< (size (rotate x))

(size x))))

22

Easy, since the focus is in the if else of
the premise (atom x).

(if (atom x)
't
(if (atom (car x))

't
(< (size (rotate (cons (car x) (cdr x))))

(size (cons (car x) (cdr x))))))
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And again, using the other premise.

(if (atom x)
't
(if (atom (car x))

't
(< (size (rotate (cons (car x)

(cdr x))))
(size (cons (car x)

(cdr x))))))

23

A snap.

(if (atom x)
't
(if (atom (car x))

't
(< (size (rotate (cons (cons (car (car x))

(cdr (car x)))
(cdr x))))

(size (cons (cons (car (car x))
(cdr (car x)))

(cdr x))))))

Now use the theorem rotate/cons.

(if (atom x)
't
(if (atom (car x))

't
(< (size (rotate (cons (cons (car (car x))

(cdr (car x)))
(cdr x))))

(size (cons (cons (car (car x))
(cdr (car x)))

(cdr x))))))

24

Oh, so that’s why we proved rotate/cons!

(if (atom x)
't
(if (atom (car x))

't
(< (size (cons (car (car x))

(cons (cdr (car x))
(cdr x))))

(size (cons (cons (car (car x))
(cdr (car x)))

(cdr x))))))

Exactly. Sometimes it’s nice to think of
a theorem ahead of time that makes it
easier to prove things about a function.

25

What if we hadn’t thought of rotate/cons
ahead of time?

Then this proof would have been a little
longer while we worked through all the
car/cons and cdr/cons, but we’d get to
the same place in the end.

26

That’s helpful to know.
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Insight: Create Helpers for Repetition

If a proof performs similar sequences of steps over and
over, state a theorem that can perform the same rewrite
as those steps via the Law of Dethm. Use that theorem in
place of the sequence of steps to shorten the proof.

What next?
27

We have to prove that the size of

(cons (car (car x))
(cons (cdr (car x)) (cdr x)))

is smaller than the size of

(cons
(cons (car (car x)) (cdr (car x)))
(cdr x)).

Is the size of

(cons (car (car x))
(cons (cdr (car x)) (cdr x)))

smaller than the size of

(cons
(cons (car (car x)) (cdr (car x)))
(cdr x))?

28

It doesn’t look smaller; it just looks
rearranged.

Perhaps (size x) is not the right measure.
29

How can we tell?

Find a counterexample to the totality
claim for align.

What value is (size x) equal to when x is
'((((french � toast) � and) � maple) � syrup)?

30

'4.
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What value is (size x) equal to when x is

(rotate
'((((french � toast) � and) � maple) � syrup))?

31

'4.

What is the value of the totality claim
for align in frame 20 where x is

'((((french � toast) � and) � maple) � syrup)?

32

'nil, since '4 is not less than '4. Does that
mean that align is not a total function?

Not necessarily,
perhaps we just need to pick a better
measure.

33

How do we do that?

The function wt returns '1 for an atom,
and twice the wt of the car plus the wt of
the cdr for a cons. What value is

(wt
'((((french � toast) � and) � maple) � syrup))

equal to?

34

'31.
What does the name wt mean?

It is short for weight. What value is

(wt
'(((french � toast) � and) � (maple � syrup)))

equal to?

35

'17.

What value is

(wt
'((french � toast) � (and � (maple � syrup))))

equal to?

36

'11.
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What value is

(wt
'(french � (toast � (and � (maple � syrup)))))

equal to?

37

'9.

Define wt.
38

It’s quite tricky, isn’t it?

Yes, we know. Here it is.

(defun wt (x)
(if (atom x)

'1
(+ (+ (wt (car x)) (wt (car x)))

(wt (cdr x)))))

measure: (size x)

39

Is (size x) the right measure this time?

Yes, we double-checked. But let’s prove
it.
(if (natp (size x))

(if (atom x)
't
(if (< (size (car x)) (size x))

(< (size (cdr x)) (size x))
'nil))

'nil)

40

This is the same step as in frame 20.

(if (atom x)
't
(if (< (size (car x)) (size x))

(< (size (cdr x)) (size x))
'nil))

What do we do next?

(if (atom x)
't
(if (< (size (car x)) (size x))

(< (size (cdr x)) (size x))
'nil))

41

We use size/car and size/cdr, since we
know x is not an atom.
(if (atom x)

't
(if 't

't
'nil))
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This proof is easy.

(if (atom x)
't
(if 't

't
'nil))

42

Indeed, it is.

't

We still need to prove align is total.
43

This time, we choose wt as the measure.

(defun align (x)
(if (atom x)

x
(if (atom (car x))

(cons (car x) (align (cdr x)))
(align (rotate x)))))

measure: (wt x)

Here is our totality claim, although we
could have constructed it step by step.

(if (natp (wt x))
(if (atom x)

't
(if (atom (car x))

(< (wt (cdr x)) (wt x))
(< (wt (rotate x)) (wt x))))

'nil)

Is (wt x) always a natural number?

44

We don’t know, but we suspect so. For
now we rewrite (natp (wt x)) to 't and
use if-true to drop the outer if.

(if (atom x)
't
(if (atom (car x))

(< (wt (cdr x)) (wt x))
(< (wt (rotate x)) (wt x))))

We must prove our claim about wt and
natp later.

(dethm natp/wt (x)
(equal (natp (wt x)) 't))
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Is the definition of wt helpful here?

(if (atom x)
't
(if (atom (car x))

(< (wt (cdr x))
(wt x))

(< (wt (rotate x)) (wt x))))

45

Yes, and so are if-nest-E and the premise
(atom x).

(if (atom x)
't
(if (atom (car x))

(< (wt (cdr x))
(+ (+ (wt (car x)) (wt (car x)))

(wt (cdr x))))
(< (wt (rotate x)) (wt x))))

Now what?
46

We need to know how + and < work.

We assume that 0+ x = x, x+ y = y+ x,
and x+ (y + z) = (x+ y) + z, among
other things.

47

Yes, we have heard the rumors.

The Axioms of + and <

(dethm identity-+ (x)
(if (natp x) (equal (+ '0 x) x) 't))

(dethm commute-+ (x y)
(equal (+ x y) (+ y x)))

(dethm associate-+ (x y z)
(equal (+ (+ x y) z) (+ x (+ y z))))

(dethm positives-+ (x y)
(if (< '0 x) (if (< '0 y) (equal (< '0 (+ x y)) 't) 't) 't))

(dethm natp/+ (x y)
(if (natp x) (if (natp y) (equal (natp (+ x y)) 't) 't) 't))

(dethm common-addends-< (x y z)
(equal (< (+ x z) (+ y z)) (< x y)))
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Using these new axioms, how can we
rewrite our claim?

48

We should cancel the (wt (cdr x)) in both
arguments to < using
common-addends-<.

(if (atom x)
't
(if (atom (car x))

(< (wt (cdr x))
(+ (+ (wt (car x)) (wt (car x)))

(wt (cdr x))))
(< (wt (rotate x)) (wt x))))

For that, we must add something to the
first argument of <.

49

We can add '0 to the first (wt (cdr x))
without changing its value.

Only if (wt (cdr x)) is a natural number.

(if (atom x)
't
(if (atom (car x))

(< (wt (cdr x))
(+ (+ (wt (car x))

(wt (car x)))
(wt (cdr x))))

(< (wt (rotate x)) (wt x))))

50

The claim natp/wt (frame 44) states that
it is, and if-true yields a place to put the
corresponding premise, as in frame 75 of
chapter 9.

(if (atom x)
't
(if (atom (car x))

(if (natp (wt (cdr x)))
(< (wt (cdr x))

(+ (+ (wt (car x))
(wt (car x)))

(wt (cdr x))))
't)

(< (wt (rotate x)) (wt x))))

Now we have the premise that
(wt (cdr x)) is a natural number.

(if (atom x)
't
(if (atom (car x))

(if (natp (wt (cdr x)))
(< (wt (cdr x))

(+ (+ (wt (car x))
(wt (car x)))

(wt (cdr x))))
't)

(< (wt (rotate x)) (wt x))))

51

Therefore we use identity-+.

(if (atom x)
't
(if (atom (car x))

(if (natp (wt (cdr x)))
(< (+ '0 (wt (cdr x)))

(+ (+ (wt (car x))
(wt (car x)))

(wt (cdr x))))
't)

(< (wt (rotate x)) (wt x))))
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Next?

(if (atom x)
't
(if (atom (car x))

(if (natp (wt (cdr x)))
(< (+ '0

(wt (cdr x)))
(+ (+ (wt (car x))

(wt (car x)))
(wt (cdr x))))

't)
(< (wt (rotate x)) (wt x))))

52

At last, we cancel (wt (cdr x)) using
common-addends-<.

(if (atom x)
't
(if (atom (car x))

(if (natp (wt (cdr x)))
(< '0

(+ (wt (car x))
(wt (car x))))

't)
(< (wt (rotate x)) (wt x))))

Is (+ (wt (car x)) (wt (car x))) positive?
53

It is positive if (wt (car x)) is positive.

It seems we need another premise. The
claim natp/wt rewrites this focus to 't,
provided that we eventually prove the
claim.

(if (atom x)
't
(if (atom (car x))

(if (natp (wt (cdr x)))
(< '0 (+ (wt (car x))

(wt (car x))))
't)

(< (wt (rotate x)) (wt x))))

54

We also make the claim positive/wt, and
rewrite this focus to a new premise.

(dethm positive/wt (x)
(equal (< '0 (wt x)) 't))

(if (atom x)
't
(if (atom (car x))

(if (< '0 (wt (car x)))
(< '0 (+ (wt (car x))

(wt (car x))))
't)

(< (wt (rotate x)) (wt x))))

We must, of course, prove positive/wt.

What do we use the new premise for?

(if (atom x)
't
(if (atom (car x))

(if (< '0 (wt (car x)))
(< '0 (+ (wt (car x))

(wt (car x))))
't)

(< (wt (rotate x)) (wt x))))

55

For positives-+, of course., and then
followed by if-same.

(if (atom x)
't
(if (atom (car x))

't
(< (wt (rotate x)) (wt x))))
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One < comparison down.

(if (atom x)
't
(if (atom (car x))

't
(< (wt (rotate x))

(wt x))))

56

And one to go.

(if (atom x)
't
(if (atom (car x))

't
(< (wt (cons (car (car x))

(cons (cdr (car x))
(cdr x))))

(wt x))))

Here, we use wt. Can we also use
atom/cons and if-false to drop the
resulting if?

(if (atom x)
't
(if (atom (car x))

't
(< (wt (cons (car (car x))

(cons (cdr (car x))
(cdr x))))

(wt x))))

57

Yes, and car/cons twice and cdr/cons
once as well.

(if (atom x)
't
(if (atom (car x))

't
(< (+ (+ (wt (car (car x)))

(wt (car (car x))))
(wt (cons (cdr (car x))

(cdr x))))
(wt x))))

Are the same steps useful again?

(if (atom x)
't
(if (atom (car x))

't
(< (+ (+ (wt (car (car x)))

(wt (car (car x))))
(wt (cons (cdr (car x))

(cdr x))))
(wt x))))

58

Absolutely!

(if (atom x)
't
(if (atom (car x))

't
(< (+ (+ (wt (car (car x)))

(wt (car (car x))))
(+ (+ (wt (cdr (car x)))

(wt (cdr (car x))))
(wt (cdr x))))

(wt x))))
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Do we use the same steps a third time?

(if (atom x)
't
(if (atom (car x))

't
(< (+ (+ (wt (car (car x)))

(wt (car (car x))))
(+ (+ (wt (cdr (car x)))

(wt (cdr (car x))))
(wt (cdr x))))

(wt x))))

59

No, this time we only use wt and
if-nest-E, along with the premise
(atom x).

(if (atom x)
't
(if (atom (car x))

't
(< (+ (+ (wt (car (car x)))

(wt (car (car x))))
(+ (+ (wt (cdr (car x)))

(wt (cdr (car x))))
(wt (cdr x))))

(+ (+ (wt (car x))
(wt (car x)))

(wt (cdr x))))))

Let’s use wt in these two focuses. Is
there an obvious simplification we can do
after that?
(if (atom x)

't
(if (atom (car x))

't
(< (+ (+ (wt (car (car x)))

(wt (car (car x))))
(+ (+ (wt (cdr (car x)))

(wt (cdr (car x))))
(wt (cdr x))))

(+ (+ (wt (car x))
(wt (car x)))

(wt (cdr x))))))

60

Yes. Since we know that (car x) is not an
atom, we use if-nest-E on both focuses.

(if (atom x)
't
(if (atom (car x))

't
(< (+ (+ (wt (car (car x)))

(wt (car (car x))))
(+ (+ (wt (cdr (car x)))

(wt (cdr (car x))))
(wt (cdr x))))

(+ (+ (+ (+ (wt (car (car x)))
(wt (car (car x))))

(wt (cdr (car x))))
(+ (+ (wt (car (car x)))

(wt (car (car x))))
(wt (cdr (car x)))))

(wt (cdr x))))))

My, how the claim has grown!
61

What next?
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Do the new axioms help make our claim
smaller?
(if (atom x)

't
(if (atom (car x))

't
(< (+ (+ (wt (car (car x)))

(wt (car (car x))))
(+ (+ (wt (cdr (car x)))

(wt (cdr (car x))))
(wt (cdr x))))

(+ (+ (+ (+ (wt (car (car x)))
(wt (car (car x))))

(wt (cdr (car x))))
(+ (+ (wt (car (car x)))

(wt (car (car x))))
(wt (cdr (car x)))))

(wt (cdr x))))))

62

They might. First we use associate-+.

(if (atom x)
't
(if (atom (car x))

't
(< (+ (+ (+ (wt (car (car x)))

(wt (car (car x))))
(+ (wt (cdr (car x)))

(wt (cdr (car x)))))
(wt (cdr x)))

(+ (+ (+ (+ (wt (car (car x)))
(wt (car (car x))))

(wt (cdr (car x))))
(+ (+ (wt (car (car x)))

(wt (car (car x))))
(wt (cdr (car x)))))

(wt (cdr x))))))

Great choice. Why?

(if (atom x)
't
(if (atom (car x))

't
(< (+ (+ (+ (wt (car (car x)))

(wt (car (car x))))
(+ (wt (cdr (car x)))

(wt (cdr (car x)))))
(wt (cdr x)))

(+ (+ (+ (+ (wt (car (car x)))
(wt (car (car x))))

(wt (cdr (car x))))
(+ (+ (wt (car (car x)))

(wt (car (car x))))
(wt (cdr (car x)))))

(wt (cdr x))))))

63

Now we can cancel out (wt (cdr x)) using
common-addends-<.

(if (atom x)
't
(if (atom (car x))

't
(< (+ (+ (wt (car (car x)))

(wt (car (car x))))
(+ (wt (cdr (car x)))

(wt (cdr (car x)))))
(+ (+ (+ (wt (car (car x)))

(wt (car (car x))))
(wt (cdr (car x))))

(+ (+ (wt (car (car x)))
(wt (car (car x))))

(wt (cdr (car x))))))))
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The claim is already smaller. What
next?

(if (atom x)
't
(if (atom (car x))

't
(< (+ (+ (wt (car (car x)))

(wt (car (car x))))
(+ (wt (cdr (car x)))

(wt (cdr (car x)))))
(+ (+ (+ (wt (car (car x)))

(wt (car (car x))))
(wt (cdr (car x))))

(+ (+ (wt (car (car x)))
(wt (car (car x))))

(wt (cdr (car x))))))))

64

We prepare to cancel out expressions
again using associate-+ and commute-+.

(if (atom x)
't
(if (atom (car x))

't
(< (+ (wt (cdr (car x)))

(+ (+ (wt (car (car x)))
(wt (car (car x))))

(wt (cdr (car x)))))
(+ (+ (+ (wt (car (car x)))

(wt (car (car x))))
(wt (cdr (car x))))

(+ (+ (wt (car (car x)))
(wt (car (car x))))

(wt (cdr (car x))))))))

Go on.

(if (atom x)
't
(if (atom (car x))

't
(< (+ (wt (cdr (car x)))

(+ (+ (wt (car (car x)))
(wt (car (car x))))

(wt (cdr (car x)))))
(+ (+ (+ (wt (car (car x)))

(wt (car (car x))))
(wt (cdr (car x))))

(+ (+ (wt (car (car x)))
(wt (car (car x))))

(wt (cdr (car x))))))))

65

We use common-addends-< once again to
cancel out expressions in this focus.

(if (atom x)
't
(if (atom (car x))

't
(< (wt (cdr (car x)))

(+ (+ (wt (car (car x)))
(wt (car (car x))))

(wt (cdr (car x)))))))
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Can we cancel out more?

(if (atom x)
't
(if (atom (car x))

't
(< (wt (cdr (car x)))

(+ (+ (wt (car (car x)))
(wt (car (car x))))

(wt (cdr (car x)))))))

66

Yes, we can cancel (wt (cdr (car x))) on
both sides. First, we use if-true and
natp/wt to set up a new premise.

(if (atom x)
't
(if (atom (car x))

't
(if (natp (wt (cdr (car x))))

(< (wt (cdr (car x)))
(+ (+ (wt (car (car x)))

(wt (car (car x))))
(wt (cdr (car x)))))

't)))

And then?

(if (atom x)
't
(if (atom (car x))

't
(if (natp (wt (cdr (car x))))

(< (wt (cdr (car x)))
(+ (+ (wt (car (car x)))

(wt (car (car x))))
(wt (cdr (car x)))))

't)))

67

We add '0 to the first argument of <,
since we have a premise stating it is a
natural number.
(if (atom x)

't
(if (atom (car x))

't
(if (natp (wt (cdr (car x))))

(< (+ '0 (wt (cdr (car x))))
(+ (+ (wt (car (car x)))

(wt (car (car x))))
(wt (cdr (car x)))))

't)))

Next?

(if (atom x)
't
(if (atom (car x))

't
(if (natp (wt (cdr (car x))))

(< (+ '0
(wt (cdr (car x))))

(+ (+ (wt (car (car x)))
(wt (car (car x))))

(wt (cdr (car x)))))
't)))

68

We use common-addends-< one last time.

(if (atom x)
't
(if (atom (car x))

't
(if (natp (wt (cdr (car x))))

(< '0
(+ (wt (car (car x)))

(wt (car (car x)))))
't)))
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Now we must show that
(+ (wt (car (car x))) (wt (car (car x)))) is
positive.

(if (atom x)
't
(if (atom (car x))

't
(if (natp (wt (cdr (car x))))

(< '0
(+ (wt (car (car x)))

(wt (car (car x)))))
't)))

69

To start, we replace the inner if question
using natp/wt and positive/wt.

(if (atom x)
't
(if (atom (car x))

't
(if (< '0 (wt (car (car x))))

(< '0
(+ (wt (car (car x)))

(wt (car (car x)))))
't)))

Can we use the new premise?

(if (atom x)
't
(if (atom (car x))

't
(if (< '0 (wt (car (car x))))

(< '0 (+ (wt (car (car x)))
(wt (car (car x)))))

't)))

70

We rewrite the remaining < comparison
to 't with positives-+.

(if (atom x)
't
(if (atom (car x))

't
(if (< '0 (wt (car (car x))))

't
't)))

And then?
71

By three uses of if-same, we are done.

We’ve earned a break.
72

But what about proving natp/wt and
positive/wt?

We prove them starting on page 197.
73

Okay, we shall continue, then, but not
before taking a small snack.
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Now we know that align is total.
74

Can we prove this theorem?

(dethm align/align (x)
(equal (align (align x)) (align x)))

That’s a good idea. Is align/align likely
to be true?

75

In frames 14–17, there are no
counterexamples.

Can we prove align/align by induction?
76

The function align is recursive.

Yes, can we use induction based on the
definition of align?

77

Probably, but how does that work?

It is like stating the claim that align is
total.

78

Yes, we already know how to do that.

Here is our claim.

(equal (align (align x)) (align x))

Create the inductive claim we must
prove. Use Defun Induction on align.

79

Now we have an inductive premise for
(align (cdr x)), and another for
(align (rotate x)).

(if (atom x)
(equal (align (align x)) (align x))
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

(equal (align (align x)) (align x))
't)

(if (equal (align (align (rotate x)))
(align (rotate x)))

(equal (align (align x)) (align x))
't)))
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Use align in both focuses.

(if (atom x)
(equal (align (align x)) (align x))
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

(equal (align (align x)) (align x))
't)

(if (equal (align (align (rotate x)))
(align (rotate x)))

(equal (align (align x)) (align x))
't)))

80

The definition of align includes the if
question (atom x), which is already a
premise. We can use if-nest-A in both
focuses, too.

(if (atom x)
(equal (align x) x)
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

(equal (align (align x)) (align x))
't)

(if (equal (align (align (rotate x)))
(align (rotate x)))

(equal (align (align x)) (align x))
't)))

In frame 80, we see that (align x) is equal
to x when x is an atom by the definition
of align and if-nest-A.

(if (atom x)
(equal (align x) x)
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

(equal (align (align x)) (align x))
't)

(if (equal (align (align (rotate x)))
(align (rotate x)))

(equal (align (align x)) (align x))
't)))

81

And since x is equal to x, we apply
equal-same.

(if (atom x)
't
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

(equal (align (align x)) (align x))
't)

(if (equal (align (align (rotate x)))
(align (rotate x)))

(equal (align (align x)) (align x))
't)))
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Use align twice, again.

(if (atom x)
't
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

(equal (align
(align x))

(align x))
't)

(if (equal (align (align (rotate x)))
(align (rotate x)))

(equal (align (align x)) (align x))
't)))

82

That’s easy. We can simplify it using
these premises, as well.

(if (atom x)
't
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

(equal (align
(cons (car x) (align (cdr x))))

(cons (car x)
(align (cdr x))))

't)
(if (equal (align (align (rotate x)))

(align (rotate x)))
(equal (align (align x)) (align x))
't)))

What else have we used to do this
rewrite?

83

We used if-nest-E and if-nest-A for the
questions (atom x) and (atom (car x)),
respectively, taken from the definition of
align.
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Use the definition of align to rewrite the
application whose argument is
(cons (car x) (align (cdr x))). Take the
next four steps, too.

(if (atom x)
't
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

(equal (align (cons (car x)
(align (cdr x))))

(cons (car x)
(align (cdr x))))

't)
(if (equal (align (align (rotate x)))

(align (rotate x)))
(equal (align (align x)) (align x))
't)))

84

Easy, using atom/cons, cdr/cons, and
car/cons twice.

(if (atom x)
't
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

(equal (if 'nil
(cons (car x)

(align (cdr x)))
(if (atom (car x))

(cons (car x)
(align (align (cdr x))))

(align
(rotate

(cons (car x)
(align (cdr x)))))))

(cons (car x)
(align (cdr x))))

't)
(if (equal (align (align (rotate x)))

(align (rotate x)))
(equal (align (align x)) (align x))
't)))
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Next simplify the ifs in this focus.

(if (atom x)
't
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

(equal (if 'nil
(cons (car x)

(align (cdr x)))
(if (atom (car x))

(cons (car x)
(align (align (cdr x))))

(align
(rotate

(cons (car x)
(align (cdr x)))))))

(cons (car x)
(align (cdr x))))

't)
(if (equal (align (align (rotate x)))

(align (rotate x)))
(equal (align (align x)) (align x))
't)))

85

Done, using the helpful premise in
orange.

(if (atom x)
't
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

(equal (cons (car x)
(align (align (cdr x))))

(cons (car x)
(align (cdr x))))

't)
(if (equal (align (align (rotate x)))

(align (rotate x)))
(equal (align (align x)) (align x))
't)))

Apply the inductive premise using
equal-if.

(if (atom x)
't
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

(equal (cons (car x)
(align (align (cdr x))))

(cons (car x)
(align (cdr x))))

't)
(if (equal (align (align (rotate x)))

(align (rotate x)))
(equal (align (align x)) (align x))
't)))

86

This is the premise corresponding to
natural recursion. We can remove the
equal in the if answer, too.

(if (atom x)
't
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

't
't)

(if (equal (align (align (rotate x)))
(align (rotate x)))

(equal (align (align x)) (align x))
't)))
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Which way do we use the inductive
premise? Do we rewrite
(align (align (cdr x))) to (align (cdr x)) or
vice versa?

87

Does it matter?

No. Either way makes both arguments
to equal the same.

88

Great.

What next?

(if (atom x)
't
(if (atom (car x))

(if (equal (align (align (cdr x)))
(align (cdr x)))

't
't)

(if (equal (align (align (rotate x)))
(align (rotate x)))

(equal (align (align x)) (align x))
't)))

89

We drop an if.

(if (atom x)
't
(if (atom (car x))

't
(if (equal (align (align (rotate x)))

(align (rotate x)))
(equal (align (align x)) (align x))
't)))

Once again, expand (align x).

(if (atom x)
't
(if (atom (car x))

't
(if (equal (align (align (rotate x)))

(align (rotate x)))
(equal (align (align x))

(align x))
't)))

90

And four if-nest-Es using two premises.

(if (atom x)
't
(if (atom (car x))

't
(if (equal (align (align (rotate x)))

(align (rotate x)))
(equal (align (align (rotate x)))

(align (rotate x)))
't)))
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There’s only one more case. We have to
use the other inductive premise.

(if (atom x)
't
(if (atom (car x))

't
(if (equal (align (align (rotate x)))

(align (rotate x)))
(equal (align (align (rotate x)))

(align (rotate x)))
't)))

91

Like this?

(if (atom x)
't
(if (atom (car x))

't
(if (equal (align (align (rotate x)))

(align (rotate x)))
(equal (align (rotate x))

(align (rotate x)))
't)))

Correct.

(if (atom x)
't
(if (atom (car x))

't
(if (equal (align (align (rotate x)))

(align (rotate x)))
(equal (align (rotate x))

(align (rotate x)))
't)))

92

And now we are done.

(if (atom x)
't
(if (atom (car x))

't
't))

That’s it for this proof. Feel free to visit
J-Bob on page 196.

93

Finally, Q.E.D.!

Quick, Eat Doughnuts!
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We’re now going to use J-Bob to explore
how we rewrite expressions.

1

What is J-Bob?†

†Thank you, J Moore and Bob Boyer.

Patience. We will discover what J-Bob is
by experimenting with it.†

†To play along, find J-Bob on page 202 or at
http://the-little-prover.org/.

2

Intriguing.

What value is this expression equal to?

(J-Bob/step (prelude)

’(car (cons ’ham ’(cheese)))

’())

3

The value,

’(car (cons ’ham ’(cheese)))

which represents the expression we start
with in frame 8 of chapter 1.

What are J-Bob/step’s three
arguments?

4

Here are our words:
The first argument to J-Bob/step is a
list of representations of definitions, in
this case (prelude) representing
J-Bob’s axioms and initial functions.
The second argument represents an
expression to rewrite. The third
argument is a list of steps, processed
first to last, to rewrite the expression.
Here the list of steps is empty.

Do the first and second arguments to
J-Bob/step make sense?

5

What are representations of expressions
and definitions?
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We represent expressions and definitions
as quoted values. For instance, to
represent the expression x, we write ’x,
which is short for (quote x). Our
expressions include variable names, e.g.
’x; quoted values e.g. ”eggs; if
expressions, e.g. ’(if x y z), described
in chapter 2; and function applications
e.g. ’(cons ’eggs x). Definitions may
be theorems or functions, such as
’(dethm truth () ’t) and
’(defun id (x) x), described in
chapter 3.

6

And what are steps to rewrite an
expression?

We shall see. What value is this
expression equal to?

(J-Bob/step (prelude)

’(car (cons ’ham ’(cheese)))

’((() (car/cons ’ham ’(cheese)))))

7

The value,

’’ham

which represents the result of the rewrite
in frame 8 of chapter 1. But why is there
an empty list in the first step?

That list is the path to the focus. The
path is a list of directions from the
current expression to the subexpression
representing the focus in the pending
rewrite. Here, since the focus is the
entire expression (otherwise put, the
context is empty), the path is empty as
well.

8

Okay.

What value is this expression equal to?

(J-Bob/step (prelude)

’(equal ’flapjack (atom (cons a b)))

’(((2) (atom/cons a b))

(() (equal ’flapjack ’nil))))

9

The value,

’’nil

which represents the result of the rewrite
in frame 16 of chapter 1.
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What value is this expression equal to?

(J-Bob/step (prelude)

’(atom (cdr (cons (car (cons p q)) ’())))

’(((1 1 1) (car/cons p q))

((1) (cdr/cons p ’()))

(() (atom ’()))))

10

The value,

’’t

which represents the result of the rewrite
in frame 29 of chapter 1. But how does
J-Bob find this value?

How do we find the step in frame 29 of
chapter 1?

11

We use car/cons on p and q in the focus.

Does J-Bob have that information?
12

Yes, we see cons with arguments p and
q. But what about the focus?

Good question. Where is the focus in
frame 29 of chapter 1?

13

Inside the 1st argument to atom, which is
(cdr (cons (car (cons p q)) ’()));
inside the 1st argument to cdr, which is
(cons (car (cons p q)) ’()), which
is inside 1st argument to cons, which is
(car (cons p q)), which then allows us
to use car/cons with p and q.

What value is this expression equal to?

(J-Bob/step (prelude)

’(if a c c)

’())

14

The value,

’(if a c c)

which represents the expression we start
with in frame 5 of chapter 2.

What value is this expression equal to?

(J-Bob/step (prelude)

’(if a c c)

’((() (if-same a c))))

15

The value,

’c

which represents the result of the rewrite
in frame 5 of chapter 2.
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What value is this expression equal to?

(J-Bob/step (prelude)

’(if a c c)

’((() (if-same a c))

(()

(if-same

(if (equal a ’t)

(if (equal ’nil ’nil) a b)

(equal ’or

(cons ’black ’(coffee))))

c))))

16

The value,

’(if (if (equal a ’t)

(if (equal ’nil ’nil)

a

b)

(equal ’or

(cons ’black ’(coffee))))

c

c)

which represents the result of the rewrite
in frame 7 of chapter 2.

What value is this expression equal to?

(J-Bob/step (prelude)

’(if a c c)

’((() (if-same a c))

(()

(if-same

(if (equal a ’t)

(if (equal ’nil ’nil)

a

b)

(equal ’or

(cons ’black ’(coffee))))

c))

((Q E 2) (cons ’black ’(coffee)))))

17

The value,

’(if (if (equal a ’t)

(if (equal ’nil ’nil)

a

b)

(equal ’or

’(black coffee)))

c

c)

which represents the result of the rewrite
in frame 7 of chapter 2. But how does
J-Bob find this value?

How do we find the step in frame 7 of
chapter 2?

18

We use cons on 'black and '(coffee) in the
focus.

Does J-Bob have that information?
19

Yes, we see cons with arguments ’black
and ’(coffee). But what about the
focus?

An excellent question. Where is the
focus in frame 11 of chapter 2?

20

Inside the question of the outer if, in the
else of the middle if, in the second
argument to the outer cons.
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Exactly. The (Q E 2) in the proof step
in frame 17 of chapter 2 describes the
path to this focus: in the Question of the
outer if, in the Else of the middle if,
and in the 2nd argument of the outer
cons. How would we find the focus in
the first argument of the outer cons?

21

(Q E 1), right?

Yes. What value is this expression equal
to?

(J-Bob/step (prelude)

’(if a c c)

’((() (if-same a c))

(()

(if-same

(if (equal a ’t)

(if (equal ’nil ’nil)

a

b)

(equal ’or

(cons ’black ’(coffee))))

c))

((Q E 2) (cons ’black ’(coffee)))

((Q A Q) (equal-same ’nil))))

22

As expected, the result of the rewrite in
frame 12 of chapter 2.

’(if (if (equal a ’t)

(if ’t

a

b)

(equal ’or

’(black coffee)))

c

c)

One more time.

(J-Bob/step (prelude)

’(if a c c)

’((() (if-same a c))

(()

(if-same

(if (equal a ’t)

(if (equal ’nil ’nil)

a

b)

(equal ’or

(cons ’black ’(coffee))))

c))

((Q E 2) (cons ’black ’(coffee)))

((Q A Q) (equal-same ’nil))

((Q A 2) (if-true a b))))

23

We expected the result of the rewrite in
frame 14 of chapter 2, but instead the
expression has not changed from
frame 22 of chapter 2. Why?

’(if (if (equal a ’t)

(if ’t a b)

(equal ’or

’(black coffee)))

c

c)
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What is the path to this focus in
frame 14 of chapter 2?

24

This focus is in the question of the outer
if and in the else of the middle if.

And what path do we give J-Bob/step

for the last step in frame 23 of chapter 2?

25

(Q E 2),
which means in the Q of the outer if,
in the E of the middle if, and in the
2nd argument of an application. But
there is no application there!

Exactly. J-Bob stops when a step is
incorrect, and does not perform any
more rewrites. The J-Bob/step function
returns whatever expression it has when
it encounters the invalid step.

26

That is quite useful to know.

Just once more; this time for certain.
Now we have the correct path for the
rewrite.
(J-Bob/step (prelude)

’(if a c c)

’((() (if-same a c))

(()

(if-same

(if (equal a ’t)

(if (equal ’nil ’nil)

a

b)

(equal ’or

(cons ’black ’(coffee))))

c))

((Q E 2) (cons ’black ’(coffee)))

((Q A Q) (equal-same ’nil))

((Q A) (if-true a b))))

27

And this time, we get the right result.

’(if (if (equal a ’t)

a

(equal ’or

’(black coffee)))

c

c)

How does J-Bob arrive at this step?
28

The step ((Q A) (if-true a b))

describes the focus in the question of the
outer if and the answer of the middle if

as (Q A). The axiom to use is if-true
and its arguments are a and b.
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What value is this expression equal to?

(J-Bob/prove (prelude)

’())

29

A representation of the expression ’t.

’’t

What value is this expression equal to?

(J-Bob/prove (prelude)

’(((defun pair (x y)

(cons x (cons y ’())))

nil)))

30

Also ”t. But why? What are the two
arguments to J-Bob/prove?

’’t

The first argument is a list of definitions,
and the second argument is a list of proof
attempts. Each proof attempt starts with
a definition and a seed. A seed is extra
information outside of the definition used
to generate the claim that must be
proved. For the kinds of proofs we see in
chapter 3, the seed is always nil. In later
chapters, we see other kinds of seeds.

31

Why does J-Bob/prove return ”t?

The result of J-Bob/prove in frame 30
of chapter 3 is ”t because the given
defun is non-recursive; the only proof
attempt therefore succeeds.

32

All right.

What value is this expression equal to?

(J-Bob/prove (prelude)

’(((defun pair (x y)

(cons x (cons y ’())))

nil)

((defun first-of (x)

(car x))

nil)

((defun second-of (x)

(car (cdr x)))

nil)))

33

Still ”t, because first-of and
second-of are non-recursive.
’’t
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What value is this expression equal to?

(J-Bob/prove (prelude)

’(((defun pair (x y)

(cons x (cons y ’())))

nil)

((defun first-of (x)

(car x))

nil)

((defun second-of (x)

(car (cdr x)))

nil)

((dethm first-of-pair (a b)

(equal (first-of (pair a b)) a))

nil)))

34

The body of first-of-pair, because we
have not proved the theorem.

’(equal (first-of (pair a b)) a)

What value is this expression equal to?

(J-Bob/prove (prelude)

’(((defun pair (x y)

(cons x (cons y ’())))

nil)

((defun first-of (x)

(car x))

nil)

((defun second-of (x)

(car (cdr x)))

nil)

((dethm first-of-pair (a b)

(equal (first-of (pair a b)) a))

nil

((1 1) (pair a b)))))

35

It is a representation of the result of the
rewrite in frame 12 of chapter 3.

’(equal (first-of (cons a (cons b ’()))) a)

And why?
36

Perhaps because we have one step in the
proof attempt for first-of-pair.

Precisely. As we add steps to a proof,
J-Bob performs the rewrites in order.

37

Handy.
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What value is this expression equal to?

(J-Bob/prove (prelude)

’(((defun pair (x y)

(cons x (cons y ’())))

nil)

((defun first-of (x)

(car x))

nil)

((defun second-of (x)

(car (cdr x)))

nil)

((dethm first-of-pair (a b)

(equal (first-of (pair a b)) a))

nil

((1 1) (pair a b))

((1) (first-of (cons a (cons b ’()))))

((1) (car/cons a (cons b ’())))

(() (equal-same a)))))

38

”t again, because the second argument
to J-Bob/prove includes a complete
proof of first-of-pair.

’’t

Now we have proved a theorem with
J-Bob.

39

What if we want to prove more?

We can add more proofs to the second
argument of J-Bob/prove.

40

Does the second argument keep growing
forever?

Perhaps. But we can also use
J-Bob/define if we want to record our
proofs so far.

41

How does that work?
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We replace J-Bob/prove with
J-Bob/define, which produces a list of
all the theorems we know or have proved
so far. We put this expression in a
defun, here named
prelude+first-of-pair, to record our
work.
(defun prelude+first-of-pair ()

(J-Bob/define (prelude)

’(((defun pair (x y)

(cons x (cons y ’())))

nil)

((defun first-of (x)

(car x))

nil)

((defun second-of (x)

(car (cdr x)))

nil)

((dethm first-of-pair (a b)

(equal (first-of (pair a b)) a))

nil

((1 1) (pair a b))

((1) (first-of (cons a (cons b ’()))))

((1) (car/cons a (cons b ’())))

(() (equal-same a))))))

42

Then what?

Once we record our work with
J-Bob/define, we can use it to start a
new proof attempt. For example, what
value is this expression equal to?

(J-Bob/prove (prelude)

’(((dethm second-of-pair (a b)

(equal (second-of (pair a b)) b))

nil)))

43

That is not what we expect. What is
wrong?

’’nil

Can we prove second-of-pair based
only on the prelude?

44

Of course not. We need the definitions of
second-of and pair that are saved in
prelude+first-of-pair to prove
second-of-pair.
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In order to use the definitions in
prelude+first-of-pair, we must pass
them as the first argument to
J-Bob/prove.

(J-Bob/prove (prelude+first-of-pair)

’(((dethm second-of-pair (a b)

(equal (second-of (pair a b)) b))

nil)))

45

And now we start a proof attempt for
second-of-pair.

’(equal (second-of (pair a b)) b)

What if we give several proof attempts
to J-Bob/prove without finishing them?

(J-Bob/prove (prelude+first-of-pair)

’(((dethm second-of-pair (a b)

(equal (second-of (pair a b)) b))

nil)

((defun in-pair? (xs)

(if (equal (first-of xs) ’?)

’t

(equal (second-of xs) ’?)))

nil)

((dethm in-first-of-pair (b)

(equal (in-pair? (pair ’? b)) ’t))

nil)

((dethm in-second-of-pair (a)

(equal (in-pair? (pair a ’?)) ’t))

nil)))

46

Does J-Bob ignore the first two dethms?

’(equal (in-pair? (pair a ’?)) ’t)

J-Bob/prove shows us the expression
from the last unfinished proof attempt,
but we must finish all the proofs to get
”t.

47

That makes sense. Does J-Bob/define
start at the last proof, too?

J-Bob/define only includes a definition
in its result when it has been completely
proved, including everything that comes
before it. Use J-Bob/prove to work on
unfinished proofs, then use
J-Bob/define when the proofs are
finished.

48

Got it.
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Below, we include complete proofs that
are certified by J-Bob.

49

We can’t wait to play along.

What value is this expression equal to?

(J-Bob/prove (prelude)

’(((defun list? (x)

(if (atom x)

(equal x ’())

(list? (cdr x))))

nil)))

50

A representation of the expression ’nil.
Is that because list? is recursive?
’’nil

Exactly. J-Bob won’t give us ”t until we
prove each defun total.

51

How do we do that?

We must pass the measure of list?,
defined in frame 69 of chapter 4, as the
seed of our proof attempt. What does
J-Bob/prove produce?

(J-Bob/prove (prelude)

’(((defun list? (x)

(if (atom x)

(equal x ’())

(list? (cdr x))))

(size x))))

52

A representation of the totality claim for
list?.

’(if (natp (size x))

(if (atom x)

’t

(< (size (cdr x)) (size x)))

’nil)
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We prove a totality claim from a defun

by adding proof steps, just like any other
claim.
(J-Bob/prove (prelude)

’(((defun list? (x)

(if (atom x)

(equal x ’())

(list? (cdr x))))

(size x)

((Q) (natp/size x))

(()

(if-true

(if (atom x)

’t

(< (size (cdr x)) (size x)))

’nil))

((E) (size/cdr x))

(() (if-same (atom x) ’t)))))

53

Sensible.

’’t

Can we prove totality of memb? and remb

using J-Bob?

54

Perhaps. Is that difficult?

Not at all. We use the measure
expressions of memb? and remb as the
seed for their respective proof attempts.

(J-Bob/prove (prelude)

’(((defun memb? (xs)

(if (atom xs)

’nil

(if (equal (car xs) ’?)

’t

(memb? (cdr xs)))))

(size xs))

((defun remb (xs)

(if (atom xs)

’()

(if (equal (car xs) ’?)

(remb (cdr xs))

(cons (car xs) (remb (cdr xs))))))

(size xs))))

55

But it appears we must still fill in the
proof steps.

’(if (natp (size xs))

(if (atom xs)

’t

(< (size (cdr xs)) (size xs)))

’nil)
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Naturally.
56

Do we need to start from
prelude+first-of-pair instead of
prelude?

We can use prelude+first-of-pair, or
we can use prelude if we do not need
the definitions of pair, first-of, and
first-of-pair.

57

And can we save our work when we have
proved memb? and remb are total?

Certainly. We can save the definitions as
prelude+memb?+remb with
J-Bob/define.

58

Good.

Are we ready to try induction with
J-Bob?

59

Ready and eager.

Saved our work from frame 56 of
chapter 5?

60

Of course.

Then we must use list-induction in
the seed of our proof attempt and give a
single variable name for the list we want
to consider for induction. We should also
remember to start off with memb? and
remb from chapter5.

(J-Bob/prove (chapter5)

’(((dethm memb?/remb (xs)

(equal (memb? (remb xs)) ’nil))

(list-induction xs))))

61

And then?

’(if (atom xs)

(equal (memb? (remb xs)) ’nil)

(if (equal (memb? (remb (cdr xs))) ’nil)

(equal (memb? (remb xs)) ’nil)

’t))

After we generate the inductive claim,
we just add steps to the proof until it is
done.

62

That’s not hard at all.
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Ready to do more induction with J-Bob?
63

We are star-struck.

Star Induction works similarly to List
Induction. Use star-induction in the
seed for a dethm and name the variable
on which to do induction.
(J-Bob/prove (prelude)

’(((defun sub (x y)

(if (atom y)

(if (equal y ’?) x y)

(cons (sub x (car y))

(sub x (cdr y)))))

(size y))

((defun ctx? (x)

(if (atom x)

(equal x ’?)

(if (ctx? (car x))

’t

(ctx? (cdr x)))))

(size x))

((dethm ctx?/sub (x y)

(if (ctx? x)

(if (ctx? y)

(equal (ctx? (sub x y)) ’t)

’t)

’t))

(star-induction y))))

64

How excellently simple.

’(if (atom y)

(if (ctx? x)

(if (ctx? y)

(equal (ctx? (sub x y)) ’t)

’t)

’t)

(if (if (ctx? x)

(if (ctx? (car y))

(equal

(ctx? (sub x (car y)))

’t)

’t)

’t)

(if (if (ctx? x)

(if (ctx? (cdr y))

(equal

(ctx? (sub x (cdr y)))

’t)

’t)

’t)

(if (ctx? x)

(if (ctx? y)

(equal

(ctx? (sub x y))

’t)

’t)

’t)

’t)

’t))

Do we already know how to do Defun
Induction with J-Bob?

65

Yes, we do it in frames 61 and 64. The
functions list-induction and
star-induction are defined in prelude

on page 214.
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Chapter 1 Examples
(defun chapter1.example1 ()

(J-Bob/step (prelude)

’(car (cons ’ham ’(eggs)))

’(((1) (cons ’ham ’(eggs)))

(() (car ’(ham eggs))))))

(defun chapter1.example2 ()

(J-Bob/step (prelude)

’(atom ’())

’((() (atom ’())))))

(defun chapter1.example3 ()

(J-Bob/step (prelude)

’(atom (cons ’ham ’(eggs)))

’(((1) (cons ’ham ’(eggs)))

(() (atom ’(ham eggs))))))

(defun chapter1.example4 ()

(J-Bob/step (prelude)

’(atom (cons a b))

’((() (atom/cons a b)))))

(defun chapter1.example5 ()

(J-Bob/step (prelude)

’(equal ’flapjack (atom (cons a b)))

’(((2) (atom/cons a b))

(() (equal ’flapjack ’nil)))))

(defun chapter1.example6 ()

(J-Bob/step (prelude)

’(atom (cdr (cons (car (cons p q)) ’())))

’(((1 1 1) (car/cons p q))

((1) (cdr/cons p ’()))

(() (atom ’())))))

(defun chapter1.example7 ()

(J-Bob/step (prelude)

’(atom (cdr (cons (car (cons p q)) ’())))

’(((1) (cdr/cons (car (cons p q)) ’()))

(() (atom ’())))))

(defun chapter1.example8 ()

(J-Bob/step (prelude)

’(car (cons (equal (cons x y) (cons x y)) ’(and crumpets)))

’(((1 1) (equal-same (cons x y)))

((1) (cons ’t ’(and crumpets)))

(() (car ’(t and crumpets))))))

(defun chapter1.example9 ()

(J-Bob/step (prelude)

’(equal (cons x y) (cons ’bagels ’(and lox)))

’((() (equal-swap (cons x y) (cons ’bagels ’(and lox)))))))

(defun chapter1.example10 ()

(J-Bob/step (prelude)

’(cons y (equal (car (cons (cdr x) (car y))) (equal (atom x) ’nil)))

’(((2 1) (car/cons (cdr x) (car y))))))
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(defun chapter1.example11 ()

(J-Bob/step (prelude)

’(cons y (equal (car (cons (cdr x) (car y))) (equal (atom x) ’nil)))

’(((2 1) (car/cons (car (cons (cdr x) (car y))) ’(oats)))

((2 2 2) (atom/cons (atom (cdr (cons a b))) (equal (cons a b) c)))

((2 2 2 1 1 1) (cdr/cons a b))

((2 2 2 1 2) (equal-swap (cons a b) c)))))

(defun chapter1.example12 ()

(J-Bob/step (prelude)

’(atom (car (cons (car a) (cdr b))))

’(((1) (car/cons (car a) (cdr b))))))

Chapter 2 Examples
(defun chapter2.example1 ()

(J-Bob/step (prelude)

’(if (car (cons a b)) c c)

’(((Q) (car/cons a b))

(() (if-same a c))

(()

(if-same

(if (equal a ’t) (if (equal ’nil ’nil) a b) (equal ’or (cons ’black ’(coffee))))

c))

((Q E 2) (cons ’black ’(coffee)))

((Q A Q) (equal-same ’nil))

((Q A) (if-true a b))

((Q A) (equal-if a ’t)))))

(defun chapter2.example2 ()

(J-Bob/step (prelude)

’(if (atom (car a))

(if (equal (car a) (cdr a)) ’hominy ’grits)

(if (equal (cdr (car a)) ’(hash browns))

(cons ’ketchup (car a))

(cons ’mustard (car a))))

’(((E A 2) (cons/car+cdr (car a)))

((E A 2 2) (equal-if (cdr (car a)) ’(hash browns))))))

(defun chapter2.example3 ()

(J-Bob/step (prelude)

’(cons ’statement

(cons (if (equal a ’question) (cons n ’(answer)) (cons n ’(else)))

(if (equal a ’question) (cons n ’(other answer)) (cons n ’(other else)))))

’(((2)

(if-same (equal a ’question)

(cons (if (equal a ’question) (cons n ’(answer)) (cons n ’(else)))

(if (equal a ’question) (cons n ’(other answer)) (cons n ’(other else))))))

((2 A 1) (if-nest-A (equal a ’question) (cons n ’(answer)) (cons n ’(else))))

((2 E 1) (if-nest-E (equal a ’question) (cons n ’(answer)) (cons n ’(else))))

((2 A 2)

(if-nest-A (equal a ’question) (cons n ’(other answer)) (cons n ’(other else))))

((2 E 2)

(if-nest-E (equal a ’question)

(cons n ’(other answer))

(cons n ’(other else)))))))
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Chapter 3 Proofs
(defun defun.pair ()

(J-Bob/define (prelude)

’(((defun pair (x y)

(cons x (cons y ’())))

nil))))

(defun defun.first-of ()

(J-Bob/define (defun.pair)

’(((defun first-of (x)

(car x))

nil))))

(defun defun.second-of ()

(J-Bob/define (defun.first-of)

’(((defun second-of (x)

(car (cdr x)))

nil))))

(defun dethm.first-of-pair ()

(J-Bob/define (defun.second-of)

’(((dethm first-of-pair (a b)

(equal (first-of (pair a b)) a))

nil

((1 1) (pair a b))

((1) (first-of (cons a (cons b ’()))))

((1) (car/cons a (cons b ’())))

(() (equal-same a))))))

(defun dethm.second-of-pair ()

(J-Bob/define (dethm.first-of-pair)

’(((dethm second-of-pair (a b)

(equal (second-of (pair a b)) b))

nil

((1) (second-of (pair a b)))

((1 1 1) (pair a b))

((1 1) (cdr/cons a (cons b ’())))

((1) (car/cons b ’()))

(() (equal-same b))))))

(defun defun.in-pair? ()

(J-Bob/define (dethm.second-of-pair)

’(((defun in-pair? (xs)

(if (equal (first-of xs) ’?) ’t (equal (second-of xs) ’?)))

nil))))

(defun dethm.in-first-of-pair ()

(J-Bob/define (defun.in-pair?)

’(((dethm in-first-of-pair (b)

(equal (in-pair? (pair ’? b)) ’t))

nil

((1 1) (pair ’? b))

((1) (in-pair? (cons ’? (cons b ’()))))

((1 Q 1) (first-of (cons ’? (cons b ’()))))

((1 Q 1) (car/cons ’? (cons b ’())))

((1 Q) (equal-same ’?))

((1) (if-true ’t (equal (second-of (cons ’? (cons b ’()))) ’?)))

(() (equal-same ’t))))))
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(defun dethm.in-second-of-pair ()

(J-Bob/define (dethm.in-first-of-pair)

’(((dethm in-second-of-pair (a)

(equal (in-pair? (pair a ’?)) ’t))

nil

((1 1) (pair a ’?))

((1) (in-pair? (cons a (cons ’? ’()))))

((1 Q 1) (first-of (cons a (cons ’? ’()))))

((1 Q 1) (car/cons a (cons ’? ’())))

((1 E 1) (second-of (cons a (cons ’? ’()))))

((1 E 1 1) (cdr/cons a (cons ’? ’())))

((1 E 1) (car/cons ’? ’()))

((1 E) (equal-same ’?))

((1) (if-same (equal a ’?) ’t))

(() (equal-same ’t))))))

Chapter 4 Proofs
(defun defun.list0? ()

(J-Bob/define (dethm.in-second-of-pair)

’(((defun list0? (x)

(equal x ’()))

nil))))

(defun defun.list1? ()

(J-Bob/define (defun.list0?)

’(((defun list1? (x)

(if (atom x) ’nil (list0? (cdr x))))

nil))))

(defun defun.list2? ()

(J-Bob/define (defun.list1?)

’(((defun list2? (x)

(if (atom x) ’nil (list1? (cdr x))))

nil))))

(defun dethm.contradiction ()

(J-Bob/prove

(list-extend (prelude)

’(defun partial (x)

(if (partial x) ’nil ’t)))

’(((dethm contradiction () ’nil)

nil

(() (if-same (partial x) ’nil))

((A) (if-nest-A (partial x) ’nil ’t))

((E) (if-nest-E (partial x) ’t ’nil))

((A Q) (partial x))

((E Q) (partial x))

((A Q) (if-nest-A (partial x) ’nil ’t))

((E Q) (if-nest-E (partial x) ’nil ’t))

((A) (if-false ’nil ’t))

((E) (if-true ’t ’nil))

(() (if-same (partial x) ’t))))))
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(defun defun.list? ()

(J-Bob/define (defun.list2?)

’(((defun list? (x)

(if (atom x) (equal x ’()) (list? (cdr x))))

(size x)

((Q) (natp/size x))

(() (if-true (if (atom x) ’t (< (size (cdr x)) (size x))) ’nil))

((E) (size/cdr x))

(() (if-same (atom x) ’t))))))

(defun defun.sub ()

(J-Bob/define (defun.list?)

’(((defun sub (x y)

(if (atom y) (if (equal y ’?) x y) (cons (sub x (car y)) (sub x (cdr y)))))

(size y)

((Q) (natp/size y))

(()

(if-true

(if (atom y)

’t

(if (< (size (car y)) (size y)) (< (size (cdr y)) (size y)) ’nil))

’nil))

((E Q) (size/car y))

((E A) (size/cdr y))

((E) (if-true ’t ’nil))

(() (if-same (atom y) ’t))))))

Chapter 5 Proofs
(defun defun.memb? ()

(J-Bob/define (defun.sub)

’(((defun memb? (xs)

(if (atom xs) ’nil (if (equal (car xs) ’?) ’t (memb? (cdr xs)))))

(size xs)

((Q) (natp/size xs))

(()

(if-true

(if (atom xs) ’t (if (equal (car xs) ’?) ’t (< (size (cdr xs)) (size xs))))

’nil))

((E E) (size/cdr xs))

((E) (if-same (equal (car xs) ’?) ’t))

(() (if-same (atom xs) ’t))))))

(defun defun.remb ()

(J-Bob/define (defun.memb?)

’(((defun remb (xs)

(if (atom xs)

’()

(if (equal (car xs) ’?) (remb (cdr xs)) (cons (car xs) (remb (cdr xs))))))

(size xs)

((Q) (natp/size xs))

(() (if-true (if (atom xs) ’t (< (size (cdr xs)) (size xs))) ’nil))

((E) (size/cdr xs))

(() (if-same (atom xs) ’t))))))
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(defun dethm.memb?/remb0 ()

(J-Bob/define (defun.remb)

’(((dethm memb?/remb0 ()

(equal (memb? (remb ’())) ’nil))

nil

((1 1) (remb ’()))

((1 1 Q) (atom ’()))

((1 1)

(if-true ’()

(if (equal (car ’()) ’?) (remb (cdr ’())) (cons (car ’()) (remb (cdr ’()))))))

((1) (memb? ’()))

((1 Q) (atom ’()))

((1) (if-true ’nil (if (equal (car ’()) ’?) ’t (memb? (cdr ’())))))

(() (equal-same ’nil))))))

(defun dethm.memb?/remb1 ()

(J-Bob/define (dethm.memb?/remb0)

’(((dethm memb?/remb1 (x1)

(equal (memb? (remb (cons x1 ’()))) ’nil))

nil

((1 1) (remb (cons x1 ’())))

((1 1 Q) (atom/cons x1 ’()))

((1 1)

(if-false ’()

(if (equal (car (cons x1 ’())) ’?)

(remb (cdr (cons x1 ’())))

(cons (car (cons x1 ’())) (remb (cdr (cons x1 ’())))))))

((1 1 Q 1) (car/cons x1 ’()))

((1 1 A 1) (cdr/cons x1 ’()))

((1 1 E 1) (car/cons x1 ’()))

((1 1 E 2 1) (cdr/cons x1 ’()))

((1)

(if-same (equal x1 ’?)

(memb? (if (equal x1 ’?) (remb ’()) (cons x1 (remb ’()))))))

((1 A 1) (if-nest-A (equal x1 ’?) (remb ’()) (cons x1 (remb ’()))))

((1 E 1) (if-nest-E (equal x1 ’?) (remb ’()) (cons x1 (remb ’()))))

((1 A) (memb?/remb0))

((1 E) (memb? (cons x1 (remb ’()))))

((1 E Q) (atom/cons x1 (remb ’())))

((1 E)

(if-false ’nil

(if (equal (car (cons x1 (remb ’()))) ’?)

’t

(memb? (cdr (cons x1 (remb ’())))))))

((1 E Q 1) (car/cons x1 (remb ’())))

((1 E E 1) (cdr/cons x1 (remb ’())))

((1 E) (if-nest-E (equal x1 ’?) ’t (memb? (remb ’()))))

((1 E) (memb?/remb0))

((1) (if-same (equal x1 ’?) ’nil))

(() (equal-same ’nil))))))

(defun dethm.memb?/remb2 ()

(J-Bob/define (dethm.memb?/remb1)

’(((dethm memb?/remb2 (x1 x2)

(equal (memb? (remb (cons x2 (cons x1 ’())))) ’nil))

nil
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((1 1) (remb (cons x2 (cons x1 ’()))))

((1 1 Q) (atom/cons x2 (cons x1 ’())))

((1 1)

(if-false ’()

(if (equal (car (cons x2 (cons x1 ’()))) ’?)

(remb (cdr (cons x2 (cons x1 ’()))))

(cons (car (cons x2 (cons x1 ’())))

(remb (cdr (cons x2 (cons x1 ’()))))))))

((1 1 Q 1) (car/cons x2 (cons x1 ’())))

((1 1 A 1) (cdr/cons x2 (cons x1 ’())))

((1 1 E 1) (car/cons x2 (cons x1 ’())))

((1 1 E 2 1) (cdr/cons x2 (cons x1 ’())))

((1)

(if-same (equal x2 ’?)

(memb?

(if (equal x2 ’?) (remb (cons x1 ’())) (cons x2 (remb (cons x1 ’())))))))

((1 A 1)

(if-nest-A (equal x2 ’?) (remb (cons x1 ’())) (cons x2 (remb (cons x1 ’())))))

((1 E 1)

(if-nest-E (equal x2 ’?) (remb (cons x1 ’())) (cons x2 (remb (cons x1 ’())))))

((1 A) (memb?/remb1 x1))

((1 E) (memb? (cons x2 (remb (cons x1 ’())))))

((1 E Q) (atom/cons x2 (remb (cons x1 ’()))))

((1 E)

(if-false ’nil

(if (equal (car (cons x2 (remb (cons x1 ’())))) ’?)

’t

(memb? (cdr (cons x2 (remb (cons x1 ’()))))))))

((1 E Q 1) (car/cons x2 (remb (cons x1 ’()))))

((1 E E 1) (cdr/cons x2 (remb (cons x1 ’()))))

((1 E) (if-nest-E (equal x2 ’?) ’t (memb? (remb (cons x1 ’())))))

((1 E) (memb?/remb1 x1))

((1) (if-same (equal x2 ’?) ’nil))

(() (equal-same ’nil))))))

Chapter 6 Proofs
(defun dethm.memb?/remb ()

(J-Bob/define (dethm.memb?/remb2)

’(((dethm memb?/remb (xs)

(equal (memb? (remb xs)) ’nil))

(list-induction xs)

((A 1 1) (remb xs))

((A 1 1)

(if-nest-A (atom xs)

’()

(if (equal (car xs) ’?) (remb (cdr xs)) (cons (car xs) (remb (cdr xs))))))

((A 1) (memb? ’()))

((A 1 Q) (atom ’()))

((A 1) (if-true ’nil (if (equal (car ’()) ’?) ’t (memb? (cdr ’())))))

((A) (equal-same ’nil))

((E A 1 1) (remb xs))
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((E A 1 1)

(if-nest-E (atom xs)

’()

(if (equal (car xs) ’?) (remb (cdr xs)) (cons (car xs) (remb (cdr xs))))))

((E A 1)

(if-same (equal (car xs) ’?)

(memb?

(if (equal (car xs) ’?) (remb (cdr xs)) (cons (car xs) (remb (cdr xs)))))))

((E A 1 A 1)

(if-nest-A (equal (car xs) ’?) (remb (cdr xs)) (cons (car xs) (remb (cdr xs)))))

((E A 1 E 1)

(if-nest-E (equal (car xs) ’?) (remb (cdr xs)) (cons (car xs) (remb (cdr xs)))))

((E A 1 A) (equal-if (memb? (remb (cdr xs))) ’nil))

((E A 1 E) (memb? (cons (car xs) (remb (cdr xs)))))

((E A 1 E Q) (atom/cons (car xs) (remb (cdr xs))))

((E A 1 E)

(if-false ’nil

(if (equal (car (cons (car xs) (remb (cdr xs)))) ’?)

’t

(memb? (cdr (cons (car xs) (remb (cdr xs))))))))

((E A 1 E Q 1) (car/cons (car xs) (remb (cdr xs))))

((E A 1 E E 1) (cdr/cons (car xs) (remb (cdr xs))))

((E A 1 E) (if-nest-E (equal (car xs) ’?) ’t (memb? (remb (cdr xs)))))

((E A 1 E) (equal-if (memb? (remb (cdr xs))) ’nil))

((E A 1) (if-same (equal (car xs) ’?) ’nil))

((E A) (equal-same ’nil))

((E) (if-same (equal (memb? (remb (cdr xs))) ’nil) ’t))

(() (if-same (atom xs) ’t))))))

Chapter 7 Proofs
(defun defun.ctx? ()

(J-Bob/define (dethm.memb?/remb)

’(((defun ctx? (x)

(if (atom x) (equal x ’?) (if (ctx? (car x)) ’t (ctx? (cdr x)))))

(size x)

((Q) (natp/size x))

(()

(if-true

(if (atom x)

’t

(if (< (size (car x)) (size x))

(if (ctx? (car x)) ’t (< (size (cdr x)) (size x)))

’nil))

’nil))

((E Q) (size/car x))

((E A E) (size/cdr x))

((E A) (if-same (ctx? (car x)) ’t))

((E) (if-true ’t ’nil))

(() (if-same (atom x) ’t))))))

(defun dethm.ctx?/sub ()

(J-Bob/define (defun.ctx?)

’(((dethm ctx?/t (x)

(if (ctx? x) (equal (ctx? x) ’t) ’t))
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(star-induction x)

((A A 1) (ctx? x))

((A A 1) (if-nest-A (atom x) (equal x ’?) (if (ctx? (car x)) ’t (ctx? (cdr x)))))

((A Q) (ctx? x))

((A Q) (if-nest-A (atom x) (equal x ’?) (if (ctx? (car x)) ’t (ctx? (cdr x)))))

((A A 1 1) (equal-if x ’?))

((A A 1) (equal-same ’?))

((A A) (equal-same ’t))

((A) (if-same (equal x ’?) ’t))

((E A A A 1) (ctx? x))

((E A A A 1)

(if-nest-E (atom x) (equal x ’?) (if (ctx? (car x)) ’t (ctx? (cdr x)))))

((E)

(if-same (ctx? (car x))

(if (if (ctx? (car x)) (equal (ctx? (car x)) ’t) ’t)

(if (if (ctx? (cdr x)) (equal (ctx? (cdr x)) ’t) ’t)

(if (ctx? x) (equal (if (ctx? (car x)) ’t (ctx? (cdr x))) ’t) ’t)

’t)

’t)))

((E A Q) (if-nest-A (ctx? (car x)) (equal (ctx? (car x)) ’t) ’t))

((E A A A A 1) (if-nest-A (ctx? (car x)) ’t (ctx? (cdr x))))

((E E Q) (if-nest-E (ctx? (car x)) (equal (ctx? (car x)) ’t) ’t))

((E E A A A 1) (if-nest-E (ctx? (car x)) ’t (ctx? (cdr x))))

((E A A A A) (equal-same ’t))

((E E)

(if-true

(if (if (ctx? (cdr x)) (equal (ctx? (cdr x)) ’t) ’t)

(if (ctx? x) (equal (ctx? (cdr x)) ’t) ’t)

’t)

’t))

((E A A A) (if-same (ctx? x) ’t))

((E A A) (if-same (if (ctx? (cdr x)) (equal (ctx? (cdr x)) ’t) ’t) ’t))

((E A) (if-same (equal (ctx? (car x)) ’t) ’t))

((E E A Q) (ctx? x))

((E E A Q)

(if-nest-E (atom x) (equal x ’?) (if (ctx? (car x)) ’t (ctx? (cdr x)))))

((E E A Q) (if-nest-E (ctx? (car x)) ’t (ctx? (cdr x))))

((E E)

(if-same (ctx? (cdr x))

(if (if (ctx? (cdr x)) (equal (ctx? (cdr x)) ’t) ’t)

(if (ctx? (cdr x)) (equal (ctx? (cdr x)) ’t) ’t)

’t)))

((E E A Q) (if-nest-A (ctx? (cdr x)) (equal (ctx? (cdr x)) ’t) ’t))

((E E A A) (if-nest-A (ctx? (cdr x)) (equal (ctx? (cdr x)) ’t) ’t))

((E E E Q) (if-nest-E (ctx? (cdr x)) (equal (ctx? (cdr x)) ’t) ’t))

((E E E A) (if-nest-E (ctx? (cdr x)) (equal (ctx? (cdr x)) ’t) ’t))

((E E E) (if-same ’t ’t))

((E E A A 1) (equal-if (ctx? (cdr x)) ’t))

((E E A A) (equal-same ’t))

((E E A) (if-same (equal (ctx? (cdr x)) ’t) ’t))

((E E) (if-same (ctx? (cdr x)) ’t))

((E) (if-same (ctx? (car x)) ’t))

(() (if-same (atom x) ’t)))

((dethm ctx?/sub (x y)

(if (ctx? x) (if (ctx? y) (equal (ctx? (sub x y)) ’t) ’t) ’t))
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(star-induction y)

(()

(if-same (ctx? x)

(if (atom y)

(if (ctx? x) (if (ctx? y) (equal (ctx? (sub x y)) ’t) ’t) ’t)

(if (if (ctx? x)

(if (ctx? (car y)) (equal (ctx? (sub x (car y))) ’t) ’t)

’t)

(if (if (ctx? x)

(if (ctx? (cdr y)) (equal (ctx? (sub x (cdr y))) ’t) ’t)

’t)

(if (ctx? x) (if (ctx? y) (equal (ctx? (sub x y)) ’t) ’t) ’t)

’t)

’t))))

((A A) (if-nest-A (ctx? x) (if (ctx? y) (equal (ctx? (sub x y)) ’t) ’t) ’t))

((A E Q)

(if-nest-A (ctx? x) (if (ctx? (car y)) (equal (ctx? (sub x (car y))) ’t) ’t) ’t))

((A E A Q)

(if-nest-A (ctx? x) (if (ctx? (cdr y)) (equal (ctx? (sub x (cdr y))) ’t) ’t) ’t))

((A E A A) (if-nest-A (ctx? x) (if (ctx? y) (equal (ctx? (sub x y)) ’t) ’t) ’t))

((E A) (if-nest-E (ctx? x) (if (ctx? y) (equal (ctx? (sub x y)) ’t) ’t) ’t))

((E E Q)

(if-nest-E (ctx? x) (if (ctx? (car y)) (equal (ctx? (sub x (car y))) ’t) ’t) ’t))

((E E A Q)

(if-nest-E (ctx? x) (if (ctx? (cdr y)) (equal (ctx? (sub x (cdr y))) ’t) ’t) ’t))

((E E A A) (if-nest-E (ctx? x) (if (ctx? y) (equal (ctx? (sub x y)) ’t) ’t) ’t))

((E E A) (if-same ’t ’t))

((E E) (if-same ’t ’t))

((E) (if-same (atom y) ’t))

((A A A 1 1) (sub x y))

((A A A 1 1)

(if-nest-A (atom y)

(if (equal y ’?) x y)

(cons (sub x (car y)) (sub x (cdr y)))))

((A A A) (if-same (equal y ’?) (equal (ctx? (if (equal y ’?) x y)) ’t)))

((A A A A 1 1) (if-nest-A (equal y ’?) x y))

((A A A E 1 1) (if-nest-E (equal y ’?) x y))

((A A A A 1) (ctx?/t x))

((A A A A) (equal-same ’t))

((A A A E 1) (ctx?/t y))

((A A A E) (equal-same ’t))

((A A A) (if-same (equal y ’?) ’t))

((A A) (if-same (ctx? y) ’t))

((A E A A A 1 1) (sub x y))

((A E A A A 1 1)

(if-nest-E (atom y)

(if (equal y ’?) x y)

(cons (sub x (car y)) (sub x (cdr y)))))

((A E A A A 1) (ctx? (cons (sub x (car y)) (sub x (cdr y)))))

((A E A A A 1 Q) (atom/cons (sub x (car y)) (sub x (cdr y))))

((A E A A A 1 E Q 1) (car/cons (sub x (car y)) (sub x (cdr y))))

((A E A A A 1 E E 1) (cdr/cons (sub x (car y)) (sub x (cdr y))))
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((A E A A A 1)

(if-false (equal (cons (sub x (car y)) (sub x (cdr y))) ’?)

(if (ctx? (sub x (car y))) ’t (ctx? (sub x (cdr y))))))

((A E A A Q) (ctx? y))

((A E A A Q)

(if-nest-E (atom y) (equal y ’?) (if (ctx? (car y)) ’t (ctx? (cdr y)))))

((A E)

(if-same (ctx? (car y))

(if (if (ctx? (car y)) (equal (ctx? (sub x (car y))) ’t) ’t)

(if (if (ctx? (cdr y)) (equal (ctx? (sub x (cdr y))) ’t) ’t)

(if (if (ctx? (car y)) ’t (ctx? (cdr y)))

(equal (if (ctx? (sub x (car y))) ’t (ctx? (sub x (cdr y)))) ’t)

’t)

’t)

’t)))

((A E A Q) (if-nest-A (ctx? (car y)) (equal (ctx? (sub x (car y))) ’t) ’t))

((A E A A A Q) (if-nest-A (ctx? (car y)) ’t (ctx? (cdr y))))

((A E E Q) (if-nest-E (ctx? (car y)) (equal (ctx? (sub x (car y))) ’t) ’t))

((A E E A A Q) (if-nest-E (ctx? (car y)) ’t (ctx? (cdr y))))

((A E A A A)

(if-true (equal (if (ctx? (sub x (car y))) ’t (ctx? (sub x (cdr y)))) ’t) ’t))

((A E E)

(if-true

(if (if (ctx? (cdr y)) (equal (ctx? (sub x (cdr y))) ’t) ’t)

(if (ctx? (cdr y))

(equal (if (ctx? (sub x (car y))) ’t (ctx? (sub x (cdr y)))) ’t)

’t)

’t)

’t))

((A E A A A 1 Q) (equal-if (ctx? (sub x (car y))) ’t))

((A E A A A 1) (if-true ’t (ctx? (sub x (cdr y)))))

((A E A A A) (equal-same ’t))

((A E A A) (if-same (if (ctx? (cdr y)) (equal (ctx? (sub x (cdr y))) ’t) ’t) ’t))

((A E A) (if-same (equal (ctx? (sub x (car y))) ’t) ’t))

((A E E)

(if-same (ctx? (cdr y))

(if (if (ctx? (cdr y)) (equal (ctx? (sub x (cdr y))) ’t) ’t)

(if (ctx? (cdr y))

(equal (if (ctx? (sub x (car y))) ’t (ctx? (sub x (cdr y)))) ’t)

’t)

’t)))

((A E E A Q) (if-nest-A (ctx? (cdr y)) (equal (ctx? (sub x (cdr y))) ’t) ’t))

((A E E A A)

(if-nest-A (ctx? (cdr y))

(equal (if (ctx? (sub x (car y))) ’t (ctx? (sub x (cdr y)))) ’t)

’t))

((A E E E Q) (if-nest-E (ctx? (cdr y)) (equal (ctx? (sub x (cdr y))) ’t) ’t))

((A E E E A)

(if-nest-E (ctx? (cdr y))

(equal (if (ctx? (sub x (car y))) ’t (ctx? (sub x (cdr y)))) ’t)

’t))

((A E E E) (if-same ’t ’t))

((A E E A A 1 E) (equal-if (ctx? (sub x (cdr y))) ’t))

((A E E A A 1) (if-same (ctx? (sub x (car y))) ’t))
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((A E E A A) (equal-same ’t))

((A E E A) (if-same (equal (ctx? (sub x (cdr y))) ’t) ’t))

((A E E) (if-same (ctx? (cdr y)) ’t))

((A E) (if-same (ctx? (car y)) ’t))

((A) (if-same (atom y) ’t))

(() (if-same (ctx? x) ’t))))))

Chapter 8 Proofs
(defun defun.member? ()

(J-Bob/define (dethm.ctx?/sub)

’(((defun member? (x ys)

(if (atom ys) ’nil (if (equal x (car ys)) ’t (member? x (cdr ys)))))

(size ys)

((Q) (natp/size ys))

(()

(if-true

(if (atom ys) ’t (if (equal x (car ys)) ’t (< (size (cdr ys)) (size ys))))

’nil))

((E E) (size/cdr ys))

((E) (if-same (equal x (car ys)) ’t))

(() (if-same (atom ys) ’t))))))

(defun defun.set? ()

(J-Bob/define (defun.member?)

’(((defun set? (xs)

(if (atom xs) ’t (if (member? (car xs) (cdr xs)) ’nil (set? (cdr xs)))))

(size xs)

((Q) (natp/size xs))

(()

(if-true

(if (atom xs)

’t

(if (member? (car xs) (cdr xs)) ’t (< (size (cdr xs)) (size xs))))

’nil))

((E E) (size/cdr xs))

((E) (if-same (member? (car xs) (cdr xs)) ’t))

(() (if-same (atom xs) ’t))))))

(defun defun.add-atoms ()

(J-Bob/define (defun.set?)

’(((defun add-atoms (x ys)

(if (atom x)

(if (member? x ys) ys (cons x ys))

(add-atoms (car x) (add-atoms (cdr x) ys))))

(size x)

((Q) (natp/size x))

(()

(if-true

(if (atom x)

’t

(if (< (size (car x)) (size x)) (< (size (cdr x)) (size x)) ’nil))

’nil))

((E Q) (size/car x))

((E A) (size/cdr x))

((E) (if-true ’t ’nil))

(() (if-same (atom x) ’t))))))
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(defun defun.atoms ()

(J-Bob/define (defun.add-atoms)

’(((defun atoms (x)

(add-atoms x ’()))

nil))))

Chapter 9 Proofs
(defun dethm.set?/atoms.attempt ()

(J-Bob/prove (defun.atoms)

’(((dethm set?/add-atoms (a)

(equal (set? (add-atoms a ’())) ’t))

(star-induction a)

((E A A 1 1) (add-atoms a ’())))

((dethm set?/atoms (a)

(equal (set? (atoms a)) ’t))

nil

((1 1) (atoms a))

((1) (set?/add-atoms a))

(() (equal-same ’t))))))

(defun dethm.set?/atoms ()

(J-Bob/define (defun.atoms)

’(((dethm set?/t (xs)

(if (set? xs) (equal (set? xs) ’t) ’t))

(list-induction xs)

((A A 1) (set? xs))

((A A 1)

(if-nest-A (atom xs) ’t (if (member? (car xs) (cdr xs)) ’nil (set? (cdr xs)))))

((A A) (equal-same ’t))

((A) (if-same (set? xs) ’t))

((E A A 1) (set? xs))

((E A A 1)

(if-nest-E (atom xs) ’t (if (member? (car xs) (cdr xs)) ’nil (set? (cdr xs)))))

((E A Q) (set? xs))

((E A Q)

(if-nest-E (atom xs) ’t (if (member? (car xs) (cdr xs)) ’nil (set? (cdr xs)))))

((E A)

(if-same (member? (car xs) (cdr xs))

(if (if (member? (car xs) (cdr xs)) ’nil (set? (cdr xs)))

(equal (if (member? (car xs) (cdr xs)) ’nil (set? (cdr xs))) ’t)

’t)))

((E A A Q) (if-nest-A (member? (car xs) (cdr xs)) ’nil (set? (cdr xs))))

((E A A A 1) (if-nest-A (member? (car xs) (cdr xs)) ’nil (set? (cdr xs))))

((E A E Q) (if-nest-E (member? (car xs) (cdr xs)) ’nil (set? (cdr xs))))

((E A E A 1) (if-nest-E (member? (car xs) (cdr xs)) ’nil (set? (cdr xs))))

((E A A) (if-false (equal ’nil ’t) ’t))

((E)

(if-same (set? (cdr xs))

(if (if (set? (cdr xs)) (equal (set? (cdr xs)) ’t) ’t)

(if (member? (car xs) (cdr xs))

’t

(if (set? (cdr xs)) (equal (set? (cdr xs)) ’t) ’t))

’t)))

((E A Q) (if-nest-A (set? (cdr xs)) (equal (set? (cdr xs)) ’t) ’t))

((E A A E) (if-nest-A (set? (cdr xs)) (equal (set? (cdr xs)) ’t) ’t))
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((E E Q) (if-nest-E (set? (cdr xs)) (equal (set? (cdr xs)) ’t) ’t))

((E E A E) (if-nest-E (set? (cdr xs)) (equal (set? (cdr xs)) ’t) ’t))

((E E A) (if-same (member? (car xs) (cdr xs)) ’t))

((E E) (if-same ’t ’t))

((E A A E 1) (equal-if (set? (cdr xs)) ’t))

((E A A E) (equal-same ’t))

((E A A) (if-same (member? (car xs) (cdr xs)) ’t))

((E A) (if-same (equal (set? (cdr xs)) ’t) ’t))

((E) (if-same (set? (cdr xs)) ’t))

(() (if-same (atom xs) ’t)))

((dethm set?/nil (xs)

(if (set? xs) ’t (equal (set? xs) ’nil)))

(list-induction xs)

((A Q) (set? xs))

((A Q)

(if-nest-A (atom xs) ’t (if (member? (car xs) (cdr xs)) ’nil (set? (cdr xs)))))

((A) (if-true ’t (equal (set? xs) ’nil)))

((E A E 1) (set? xs))

((E A E 1)

(if-nest-E (atom xs) ’t (if (member? (car xs) (cdr xs)) ’nil (set? (cdr xs)))))

((E A Q) (set? xs))

((E A Q)

(if-nest-E (atom xs) ’t (if (member? (car xs) (cdr xs)) ’nil (set? (cdr xs)))))

((E A)

(if-same (member? (car xs) (cdr xs))

(if (if (member? (car xs) (cdr xs)) ’nil (set? (cdr xs)))

’t

(equal (if (member? (car xs) (cdr xs)) ’nil (set? (cdr xs))) ’nil))))

((E A A Q) (if-nest-A (member? (car xs) (cdr xs)) ’nil (set? (cdr xs))))

((E A A E 1) (if-nest-A (member? (car xs) (cdr xs)) ’nil (set? (cdr xs))))

((E A E Q) (if-nest-E (member? (car xs) (cdr xs)) ’nil (set? (cdr xs))))

((E A E E 1) (if-nest-E (member? (car xs) (cdr xs)) ’nil (set? (cdr xs))))

((E A A E) (equal-same ’nil))

((E A A) (if-same ’nil ’t))

((E)

(if-same (set? (cdr xs))

(if (if (set? (cdr xs)) ’t (equal (set? (cdr xs)) ’nil))

(if (member? (car xs) (cdr xs))

’t

(if (set? (cdr xs)) ’t (equal (set? (cdr xs)) ’nil)))

’t)))

((E A Q) (if-nest-A (set? (cdr xs)) ’t (equal (set? (cdr xs)) ’nil)))

((E A A E) (if-nest-A (set? (cdr xs)) ’t (equal (set? (cdr xs)) ’nil)))

((E E Q) (if-nest-E (set? (cdr xs)) ’t (equal (set? (cdr xs)) ’nil)))

((E E A E) (if-nest-E (set? (cdr xs)) ’t (equal (set? (cdr xs)) ’nil)))

((E A A) (if-same (member? (car xs) (cdr xs)) ’t))

((E A) (if-same ’t ’t))

((E E A E 1) (equal-if (set? (cdr xs)) ’nil))

((E E A E) (equal-same ’nil))

((E E A) (if-same (member? (car xs) (cdr xs)) ’t))

((E E) (if-same (equal (set? (cdr xs)) ’nil) ’t))

((E) (if-same (set? (cdr xs)) ’t))

(() (if-same (atom xs) ’t)))

((dethm set?/add-atoms (a bs)

(if (set? bs) (equal (set? (add-atoms a bs)) ’t) ’t))
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(add-atoms a bs)

((A A 1 1) (add-atoms a bs))

((A A 1 1)

(if-nest-A (atom a)

(if (member? a bs) bs (cons a bs))

(add-atoms (car a) (add-atoms (cdr a) bs))))

((A A 1) (if-same (member? a bs) (set? (if (member? a bs) bs (cons a bs)))))

((A A 1 A 1) (if-nest-A (member? a bs) bs (cons a bs)))

((A A 1 E 1) (if-nest-E (member? a bs) bs (cons a bs)))

((A A 1 A) (set?/t bs))

((A A 1 E) (set? (cons a bs)))

((A A 1 E Q) (atom/cons a bs))

((A A 1 E E Q 1) (car/cons a bs))

((A A 1 E E Q 2) (cdr/cons a bs))

((A A 1 E E E 1) (cdr/cons a bs))

((A A 1 E) (if-false ’t (if (member? a bs) ’nil (set? bs))))

((A A 1 E) (if-nest-E (member? a bs) ’nil (set? bs)))

((A A 1 E) (set?/t bs))

((A A 1) (if-same (member? a bs) ’t))

((A A) (equal-same ’t))

((A) (if-same (set? bs) ’t))

((E)

(if-same (set? bs)

(if (if (set? (add-atoms (cdr a) bs))

(equal (set? (add-atoms (car a) (add-atoms (cdr a) bs))) ’t)

’t)

(if (if (set? bs) (equal (set? (add-atoms (cdr a) bs)) ’t) ’t)

(if (set? bs) (equal (set? (add-atoms a bs)) ’t) ’t)

’t)

’t)))

((E A A Q) (if-nest-A (set? bs) (equal (set? (add-atoms (cdr a) bs)) ’t) ’t))

((E A A A) (if-nest-A (set? bs) (equal (set? (add-atoms a bs)) ’t) ’t))

((E E A Q) (if-nest-E (set? bs) (equal (set? (add-atoms (cdr a) bs)) ’t) ’t))

((E E A A) (if-nest-E (set? bs) (equal (set? (add-atoms a bs)) ’t) ’t))

((E E A) (if-same ’t ’t))

((E E)

(if-same

(if (set? (add-atoms (cdr a) bs))

(equal (set? (add-atoms (car a) (add-atoms (cdr a) bs))) ’t)

’t)

’t))

((E A)

(if-same (set? (add-atoms (cdr a) bs))

(if (if (set? (add-atoms (cdr a) bs))

(equal (set? (add-atoms (car a) (add-atoms (cdr a) bs))) ’t)

’t)

(if (equal (set? (add-atoms (cdr a) bs)) ’t)

(equal (set? (add-atoms a bs)) ’t)

’t)

’t)))

((E A A Q)

(if-nest-A (set? (add-atoms (cdr a) bs))

(equal (set? (add-atoms (car a) (add-atoms (cdr a) bs))) ’t)

’t))
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((E A E Q)

(if-nest-E (set? (add-atoms (cdr a) bs))

(equal (set? (add-atoms (car a) (add-atoms (cdr a) bs))) ’t)

’t))

((E A E)

(if-true

(if (equal (set? (add-atoms (cdr a) bs)) ’t)

(equal (set? (add-atoms a bs)) ’t)

’t)

’t))

((E A A A Q 1) (set?/t (add-atoms (cdr a) bs)))

((E A E Q 1) (set?/nil (add-atoms (cdr a) bs)))

((E A A A Q) (equal ’t ’t))

((E A E Q) (equal ’nil ’t))

((E A A A) (if-true (equal (set? (add-atoms a bs)) ’t) ’t))

((E A E) (if-false (equal (set? (add-atoms a bs)) ’t) ’t))

((E A A A 1 1) (add-atoms a bs))

((E A A A 1 1)

(if-nest-E (atom a)

(if (member? a bs) bs (cons a bs))

(add-atoms (car a) (add-atoms (cdr a) bs))))

((E A A A 1) (equal-if (set? (add-atoms (car a) (add-atoms (cdr a) bs))) ’t))

((E A A A) (equal-same ’t))

((E A A)

(if-same (equal (set? (add-atoms (car a) (add-atoms (cdr a) bs))) ’t) ’t))

((E A) (if-same (set? (add-atoms (cdr a) bs)) ’t))

((E) (if-same (set? bs) ’t))

(() (if-same (atom a) ’t)))

((dethm set?/atoms (a)

(equal (set? (atoms a)) ’t))

nil

((1 1) (atoms a))

(() (if-true (equal (set? (add-atoms a ’())) ’t) ’t))

((Q) (if-true ’t (if (member? (car ’()) (cdr ’())) ’nil (set? (cdr ’())))))

((Q Q) (atom ’()))

((Q) (set? ’()))

((A 1) (set?/add-atoms a ’()))

((A) (equal-same ’t))

(() (if-same (set? ’()) ’t))))))

Chapter 10 Proofs
(defun defun.rotate ()

(J-Bob/define (dethm.set?/atoms)

’(((defun rotate (x)

(cons (car (car x)) (cons (cdr (car x)) (cdr x))))

nil))))

(defun dethm.rotate/cons ()

(J-Bob/define (defun.rotate)

’(((dethm rotate/cons (x y z)

(equal (rotate (cons (cons x y) z)) (cons x (cons y z))))

nil

((1) (rotate (cons (cons x y) z)))

((1 1 1) (car/cons (cons x y) z))
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((1 1) (car/cons x y))

((1 2 1 1) (car/cons (cons x y) z))

((1 2 1) (cdr/cons x y))

((1 2 2) (cdr/cons (cons x y) z))

(() (equal-same (cons x (cons y z))))))))

(defun defun.align.attempt ()

(J-Bob/prove (dethm.rotate/cons)

’(((defun align (x)

(if (atom x)

x

(if (atom (car x)) (cons (car x) (align (cdr x))) (align (rotate x)))))

(size x)

((Q) (natp/size x))

(()

(if-true

(if (atom x)

’t

(if (atom (car x))

(< (size (cdr x)) (size x))

(< (size (rotate x)) (size x))))

’nil))

((E A) (size/cdr x))

((E E 1 1 1) (cons/car+cdr x))

((E E 2 1) (cons/car+cdr x))

((E E 1 1 1 1) (cons/car+cdr (car x)))

((E E 2 1 1) (cons/car+cdr (car x)))

((E E 1 1) (rotate/cons (car (car x)) (cdr (car x)) (cdr x)))))))

(defun defun.wt ()

(J-Bob/define (dethm.rotate/cons)

’(((defun wt (x)

(if (atom x) ’1 (+ (+ (wt (car x)) (wt (car x))) (wt (cdr x)))))

(size x)

((Q) (natp/size x))

(()

(if-true

(if (atom x)

’t

(if (< (size (car x)) (size x)) (< (size (cdr x)) (size x)) ’nil))

’nil))

((E Q) (size/car x))

((E A) (size/cdr x))

((E) (if-true ’t ’nil))

(() (if-same (atom x) ’t))))))

(defun defun.align ()

(J-Bob/define (defun.wt)

’(((dethm natp/wt (x)

(equal (natp (wt x)) ’t))

(star-induction x)

((A 1 1) (wt x))

((A 1 1) (if-nest-A (atom x) ’1 (+ (+ (wt (car x)) (wt (car x))) (wt (cdr x)))))

((A 1) (natp ’1))

((A) (equal-same ’t))

((E A A 1 1) (wt x))
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((E A A 1 1)

(if-nest-E (atom x) ’1 (+ (+ (wt (car x)) (wt (car x))) (wt (cdr x)))))

((E A A)

(if-true (equal (natp (+ (+ (wt (car x)) (wt (car x))) (wt (cdr x)))) ’t) ’t))

((E A A Q) (equal-if (natp (wt (car x))) ’t))

((E A A A)

(if-true (equal (natp (+ (+ (wt (car x)) (wt (car x))) (wt (cdr x)))) ’t) ’t))

((E A A A Q) (natp/+ (wt (car x)) (wt (car x))))

((E A A Q) (equal-if (natp (wt (car x))) ’t))

((E A A Q) (equal-if (natp (wt (cdr x))) ’t))

((E A A A A 1) (natp/+ (+ (wt (car x)) (wt (car x))) (wt (cdr x))))

((E A A A A) (equal-same ’t))

((E A A A) (if-same (natp (+ (wt (car x)) (wt (car x)))) ’t))

((E A A) (if-same (natp (wt (cdr x))) ’t))

((E A) (if-same (equal (natp (wt (cdr x))) ’t) ’t))

((E) (if-same (equal (natp (wt (car x))) ’t) ’t))

(() (if-same (atom x) ’t)))

((dethm positive/wt (x)

(equal (< ’0 (wt x)) ’t))

(star-induction x)

((A 1 2) (wt x))

((A 1 2) (if-nest-A (atom x) ’1 (+ (+ (wt (car x)) (wt (car x))) (wt (cdr x)))))

((A 1) (< ’0 ’1))

((A) (equal-same ’t))

((E A A 1 2) (wt x))

((E A A 1 2)

(if-nest-E (atom x) ’1 (+ (+ (wt (car x)) (wt (car x))) (wt (cdr x)))))

((E A A)

(if-true (equal (< ’0 (+ (+ (wt (car x)) (wt (car x))) (wt (cdr x)))) ’t) ’t))

((E A A Q) (equal-if (< ’0 (wt (car x))) ’t))

((E A A A)

(if-true (equal (< ’0 (+ (+ (wt (car x)) (wt (car x))) (wt (cdr x)))) ’t) ’t))

((E A A A Q) (positives-+ (wt (car x)) (wt (car x))))

((E A A Q) (equal-if (< ’0 (wt (car x))) ’t))

((E A A Q) (equal-if (< ’0 (wt (cdr x))) ’t))

((E A A A A 1) (positives-+ (+ (wt (car x)) (wt (car x))) (wt (cdr x))))

((E A A A A) (equal-same ’t))

((E A A A) (if-same (< ’0 (+ (wt (car x)) (wt (car x)))) ’t))

((E A A) (if-same (< ’0 (wt (cdr x))) ’t))

((E A) (if-same (equal (< ’0 (wt (cdr x))) ’t) ’t))

((E) (if-same (equal (< ’0 (wt (car x))) ’t) ’t))

(() (if-same (atom x) ’t)))

((defun align (x)

(if (atom x)

x

(if (atom (car x)) (cons (car x) (align (cdr x))) (align (rotate x)))))

(wt x)

((Q) (natp/wt x))

(()

(if-true

(if (atom x)

’t

(if (atom (car x)) (< (wt (cdr x)) (wt x)) (< (wt (rotate x)) (wt x))))

’nil))

((E A 2) (wt x))
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((E A 2) (if-nest-E (atom x) ’1 (+ (+ (wt (car x)) (wt (car x))) (wt (cdr x)))))

((E A)

(if-true (< (wt (cdr x)) (+ (+ (wt (car x)) (wt (car x))) (wt (cdr x)))) ’t))

((E A Q) (natp/wt (cdr x)))

((E A A 1) (identity-+ (wt (cdr x))))

((E A A) (common-addends-< ’0 (+ (wt (car x)) (wt (car x))) (wt (cdr x))))

((E A Q) (natp/wt (cdr x)))

((E A Q) (positive/wt (car x)))

((E A A) (positives-+ (wt (car x)) (wt (car x))))

((E A) (if-same (< ’0 (wt (car x))) ’t))

((E E 1 1) (rotate x))

((E E 1) (wt (cons (car (car x)) (cons (cdr (car x)) (cdr x)))))

((E E 1 Q) (atom/cons (car (car x)) (cons (cdr (car x)) (cdr x))))

((E E 1)

(if-false ’1

(+ (+ (wt (car (cons (car (car x)) (cons (cdr (car x)) (cdr x)))))

(wt (car (cons (car (car x)) (cons (cdr (car x)) (cdr x))))))

(wt (cdr (cons (car (car x)) (cons (cdr (car x)) (cdr x))))))))

((E E 1 1 1 1) (car/cons (car (car x)) (cons (cdr (car x)) (cdr x))))

((E E 1 1 2 1) (car/cons (car (car x)) (cons (cdr (car x)) (cdr x))))

((E E 1 2 1) (cdr/cons (car (car x)) (cons (cdr (car x)) (cdr x))))

((E E 1 2) (wt (cons (cdr (car x)) (cdr x))))

((E E 1 2 Q) (atom/cons (cdr (car x)) (cdr x)))

((E E 1 2)

(if-false ’1

(+ (+ (wt (car (cons (cdr (car x)) (cdr x))))

(wt (car (cons (cdr (car x)) (cdr x)))))

(wt (cdr (cons (cdr (car x)) (cdr x)))))))

((E E 1 2 1 1 1) (car/cons (cdr (car x)) (cdr x)))

((E E 1 2 1 2 1) (car/cons (cdr (car x)) (cdr x)))

((E E 1 2 2 1) (cdr/cons (cdr (car x)) (cdr x)))

((E E 2) (wt x))

((E E 2) (if-nest-E (atom x) ’1 (+ (+ (wt (car x)) (wt (car x))) (wt (cdr x)))))

((E E 2 1 1) (wt (car x)))

((E E 2 1 1)

(if-nest-E (atom (car x))

’1

(+ (+ (wt (car (car x))) (wt (car (car x)))) (wt (cdr (car x))))))

((E E 2 1 2) (wt (car x)))

((E E 2 1 2)

(if-nest-E (atom (car x))

’1

(+ (+ (wt (car (car x))) (wt (car (car x)))) (wt (cdr (car x))))))

((E E 1)

(associate-+

(+ (wt (car (car x))) (wt (car (car x))))

(+ (wt (cdr (car x))) (wt (cdr (car x))))

(wt (cdr x))))

((E E)

(common-addends-<

(+ (+ (wt (car (car x))) (wt (car (car x))))

(+ (wt (cdr (car x))) (wt (cdr (car x)))))

(+ (+ (+ (wt (car (car x))) (wt (car (car x)))) (wt (cdr (car x))))

(+ (+ (wt (car (car x))) (wt (car (car x)))) (wt (cdr (car x)))))

(wt (cdr x))))
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((E E 1)

(associate-+

(+ (wt (car (car x))) (wt (car (car x))))

(wt (cdr (car x)))

(wt (cdr (car x)))))

((E E 1)

(commute-+

(+ (+ (wt (car (car x))) (wt (car (car x)))) (wt (cdr (car x))))

(wt (cdr (car x)))))

((E E)

(common-addends-<

(wt (cdr (car x)))

(+ (+ (wt (car (car x))) (wt (car (car x)))) (wt (cdr (car x))))

(+ (+ (wt (car (car x))) (wt (car (car x)))) (wt (cdr (car x))))))

((E E)

(if-true

(< (wt (cdr (car x)))

(+ (+ (wt (car (car x))) (wt (car (car x)))) (wt (cdr (car x)))))

’t))

((E E Q) (natp/wt (cdr (car x))))

((E E A 1) (identity-+ (wt (cdr (car x)))))

((E E A)

(common-addends-<

’0

(+ (wt (car (car x))) (wt (car (car x))))

(wt (cdr (car x)))))

((E E Q) (natp/wt (cdr (car x))))

((E E Q) (positive/wt (car (car x))))

((E E A) (positives-+ (wt (car (car x))) (wt (car (car x)))))

((E E) (if-same (< ’0 (wt (car (car x)))) ’t))

((E) (if-same (atom (car x)) ’t))

(() (if-same (atom x) ’t))))))

(defun dethm.align/align ()

(J-Bob/define (defun.align)

’(((dethm align/align (x)

(equal (align (align x)) (align x)))

(align x)

((A 1 1) (align x))

((A 1 1)

(if-nest-A (atom x)

x

(if (atom (car x)) (cons (car x) (align (cdr x))) (align (rotate x)))))

((A 2) (align x))

((A 2)

(if-nest-A (atom x)

x

(if (atom (car x)) (cons (car x) (align (cdr x))) (align (rotate x)))))

((A 1) (align x))

((A 1)

(if-nest-A (atom x)

x

(if (atom (car x)) (cons (car x) (align (cdr x))) (align (rotate x)))))

((A) (equal-same x))

((E A A 1 1) (align x))
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((E A A 1 1)

(if-nest-E (atom x)

x

(if (atom (car x)) (cons (car x) (align (cdr x))) (align (rotate x)))))

((E A A 1 1)

(if-nest-A (atom (car x)) (cons (car x) (align (cdr x))) (align (rotate x))))

((E A A 2) (align x))

((E A A 2)

(if-nest-E (atom x)

x

(if (atom (car x)) (cons (car x) (align (cdr x))) (align (rotate x)))))

((E A A 2)

(if-nest-A (atom (car x)) (cons (car x) (align (cdr x))) (align (rotate x))))

((E A A 1) (align (cons (car x) (align (cdr x)))))

((E A A 1 Q) (atom/cons (car x) (align (cdr x))))

((E A A 1 E Q 1) (car/cons (car x) (align (cdr x))))

((E A A 1 E A 1) (car/cons (car x) (align (cdr x))))

((E A A 1 E A 2 1) (cdr/cons (car x) (align (cdr x))))

((E A A 1)

(if-false (cons (car x) (align (cdr x)))

(if (atom (car x))

(cons (car x) (align (align (cdr x))))

(align (rotate (cons (car x) (align (cdr x))))))))

((E A A 1)

(if-nest-A (atom (car x))

(cons (car x) (align (align (cdr x))))

(align (rotate (cons (car x) (align (cdr x)))))))

((E A A 1 2) (equal-if (align (align (cdr x))) (align (cdr x))))

((E A A) (equal-same (cons (car x) (align (cdr x)))))

((E A) (if-same (equal (align (align (cdr x))) (align (cdr x))) ’t))

((E E A 1 1) (align x))

((E E A 1 1)

(if-nest-E (atom x)

x

(if (atom (car x)) (cons (car x) (align (cdr x))) (align (rotate x)))))

((E E A 1 1)

(if-nest-E (atom (car x)) (cons (car x) (align (cdr x))) (align (rotate x))))

((E E A 2) (align x))

((E E A 2)

(if-nest-E (atom x)

x

(if (atom (car x)) (cons (car x) (align (cdr x))) (align (rotate x)))))

((E E A 2)

(if-nest-E (atom (car x)) (cons (car x) (align (cdr x))) (align (rotate x))))

((E E A 1) (equal-if (align (align (rotate x))) (align (rotate x))))

((E E A) (equal-same (align (rotate x))))

((E E) (if-same (equal (align (align (rotate x))) (align (rotate x))) ’t))

((E) (if-same (atom (car x)) ’t))

(() (if-same (atom x) ’t))))))
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The definition of J-Bob follows; it is also at
http://the-little-prover.org/. J-Bob
is defined in its own language. We first
present an implementation of this lan-
guage in both ACL2 and Scheme; we en-
courage the reader to implement J-Bob
and its language in any other language
of choice. There will necessarily be dif-
ferences between implementations in dif-
ferent languages. For example, in ACL2,
(equal 'nil '()) is equal to 't while in Scheme
it is equal to 'nil. We have chosen the
examples in this book so that the differ-
ence never arises. Both implementations
of J-Bob are correct and self-consistent be-
cause they implement the nine operators
to be consistent with J-Bob’s axioms.

ACL2. We have chosen the programs in
this book to be mostly compatible with the
ACL2 theorem prover, on which much of
this book is based. Expressions, function
definitions, and eight of our nine built-in
operators are compatible with ACL2. Both
dethm and size must be defined in ACL2:

(defun if->implies (exp hyps)
(case-match exp

((’if Q A E)
(append

(if->implies A ‘(,@hyps ,Q))
(if->implies E ‘(,@hyps (not ,Q)))))

((’equal X Y)
‘((:rewrite :corollary

(implies (and ,@hyps)
(equal ,X ,Y)))))

(& ’())))

(defmacro dethm (name args body)
(declare (ignore args))
(let ((rules (if->implies body ’())))

‘(defthm ,name ,body
:rule-classes ,rules)))

(defun size (x)
(if (atom x)

’0
(+ ’1 (size (car x)) (size (cdr x)))))

Scheme. The language of programs in
this book can be defined in Scheme by re-
defining if to operate on 't and 'nil rather
than #t and #f, defining the missing built-in
operators, and by changing some existing
operators to be total : to return a value no
matter what input they are given. Here is
the code to do so:

(define s.car car)
(define s.cdr cdr)
(define s.+ +)
(define s.< <)
(define (num x) (if (number? x) x 0))

(define (if/nil Q A E)
(if (equal? Q ’nil) (E) (A)))

(define (atom x) (if (pair? x) ’nil ’t))
(define (car x) (if (pair? x) (s.car x) ’()))
(define (cdr x) (if (pair? x) (s.cdr x) ’()))
(define (equal x y) (if (equal? x y) ’t ’nil))
(define (natp x)

(if (integer? x) (if (< x 0) ’nil ’t) ’nil))
(define (+ x y) (s.+ (num x) (num y)))
(define (< x y)

(if (s.< (num x) (num y)) ’t ’nil))

(define-syntax if
(syntax-rules ()

((_ Q A E)
(if/nil Q (lambda () A) (lambda () E)))))

(define-syntax defun
(syntax-rules ()

((_ name (arg ...) body)
(define (name arg ...) body))))

(define-syntax dethm
(syntax-rules ()

((_ name (arg ...) body)
(define (name arg ...) body))))

(defun size (x)
(if (atom x)

’0
(+ ’1 (size (car x)) (size (cdr x)))))
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J-Bob. J-Bob, like ACL2, disallows for-
ward references; therefore we write J-Bob
in a bottom-up style. We adopt two nam-
ing conventions for functions. Construc-
tors of tagged lists end in -c. Except for
equal, atom, natp, and <, functions that
return either true or false end in ?.

Every theorem and function presented
in the chapters of the book has been ver-
ified using ACL2 in addition to the step-
by-step proofs we present using J-Bob.

The first definitions in our implemen-
tation of J-Bob are simple functions for list
manipulation.

(defun list0 () ’())
(defun list0? (x) (equal x ’()))

(defun list1 (x) (cons x (list0)))
(defun list1? (x)

(if (atom x) ’nil (list0? (cdr x))))
(defun elem1 (xs) (car xs))

(defun list2 (x y) (cons x (list1 y)))
(defun list2? (x)

(if (atom x) ’nil (list1? (cdr x))))
(defun elem2 (xs) (elem1 (cdr xs)))

(defun list3 (x y z) (cons x (list2 y z)))
(defun list3? (x)

(if (atom x) ’nil (list2? (cdr x))))
(defun elem3 (xs) (elem2 (cdr xs)))

(defun tag (sym x) (cons sym x))
(defun tag? (sym x)

(if (atom x) ’nil (equal (car x) sym)))
(defun untag (x) (cdr x))

(defun member? (x ys)
(if (atom ys)

’nil
(if (equal x (car ys))

’t
(member? x (cdr ys)))))

We have chosen our data representations
to mirror the syntax of the language of
J-Bob. Our four kinds of expressions are
quote, if, function application, and vari-
able reference. This allows J-Bob to ac-
cept quoted expressions using the same
syntax as J-Bob’s definition. For defining
functions and theorems, we use defun and
dethm, respectively.

(defun quote-c (value)
(tag ’quote (list1 value)))

(defun quote? (x)
(if (tag? ’quote x) (list1? (untag x)) ’nil))

(defun quote.value (e) (elem1 (untag e)))

(defun if-c (Q A E) (tag ’if (list3 Q A E)))
(defun if? (x)

(if (tag? ’if x) (list3? (untag x)) ’nil))
(defun if.Q (e) (elem1 (untag e)))
(defun if.A (e) (elem2 (untag e)))
(defun if.E (e) (elem3 (untag e)))

(defun app-c (name args) (cons name args))
(defun app? (x)

(if (atom x)
’nil
(if (quote? x)

’nil
(if (if? x)

’nil
’t))))

(defun app.name (e) (car e))
(defun app.args (e) (cdr e))

(defun var? (x)
(if (equal x ’t)

’nil
(if (equal x ’nil)

’nil
(if (natp x)

’nil
(atom x)))))

(defun defun-c (name formals body)
(tag ’defun (list3 name formals body)))

(defun defun? (x)
(if (tag? ’defun x) (list3? (untag x)) ’nil))

(defun defun.name (def) (elem1 (untag def)))
(defun defun.formals (def) (elem2 (untag def)))
(defun defun.body (def) (elem3 (untag def)))

(defun dethm-c (name formals body)
(tag ’dethm (list3 name formals body)))

(defun dethm? (x)
(if (tag? ’dethm x) (list3? (untag x)) ’nil))

(defun dethm.name (def) (elem1 (untag def)))
(defun dethm.formals (def) (elem2 (untag def)))
(defun dethm.body (def) (elem3 (untag def)))

The if-QAE and QAE-if functions convert
between an if expression and a list of its
three subexpressions. The rator? function
recognizes operators and rator.formals

produces the formal argument list of each.
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(defun if-QAE (e)
(list3 (if.Q e) (if.A e) (if.E e)))

(defun QAE-if (es)
(if-c (elem1 es) (elem2 es) (elem3 es)))

(defun rator? (name)
(member? name

’(equal atom car cdr cons natp size + <)))

(defun rator.formals (rator)
(if (member? rator ’(atom car cdr natp size))

’(x)
(if (member? rator ’(equal cons + <))

’(x y)
’nil)))

The def.name and def.formals functions
extract parts of values that may be either
a defun or a dethm.

(defun def.name (def)
(if (defun? def)

(defun.name def)
(if (dethm? def)

(dethm.name def)
def)))

(defun def.formals (def)
(if (dethm? def)

(dethm.formals def)
(if (defun? def)

(defun.formals def)
’())))

The function if-c-when-necessary con-
structs an if when its answer and else are
distinct; conjunction and implication

combine lists of expressions using appro-
priate nested ifs.

(defun if-c-when-necessary (Q A E)
(if (equal A E) A (if-c Q A E)))

(defun conjunction (es)
(if (atom es)

(quote-c ’t)
(if (atom (cdr es))

(car es)
(if-c (car es)

(conjunction (cdr es))
(quote-c ’nil)))))

(defun implication (es e)
(if (atom es)

e
(if-c (car es)

(implication (cdr es) e)
(quote-c ’t))))

The next group of functions manipulate
sets and association lists. These associ-
ation lists are represented as lists of def-
initions; lookup finds a definition in a
list by comparing a given name to the
def.name of each list element. The func-
tion undefined? reports when none of the
definitions in a list match a given name.

The args-arity? and app-arity?

functions determine whether an applica-
tion has the right number of arguments.

(defun args-arity? (def args)
(if (dethm? def)

’nil
(if (defun? def)

(arity? (defun.formals def) args)
(if (rator? def)

(arity? (rator.formals def) args)
’nil))))

(defun app-arity? (defs app)
(args-arity? (lookup (app.name app) defs)

(app.args app)))

(defun lookup (name defs)
(if (atom defs)

name
(if (equal (def.name (car defs)) name)

(car defs)
(lookup name (cdr defs)))))

(defun undefined? (name defs)
(if (var? name)

(equal (lookup name defs) name)
’nil))

J-Bob makes sure its inputs are sensible be-
fore proceeding with a proof; the functions
expr? and exprs? check expressions and
lists of expressions, respectively, to make
sure that undefined names are not used,
applications have the right number of ar-
guments, etc. If ’any is passed for the list
of bound variables, J-Bob allows unbound
variables; function and theorem bodies
must only use bound variables, while proof
steps may freely introduce new variables.

(defun bound? (var vars)
(if (equal vars ’any) ’t (member? var vars)))
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(defun exprs? (defs vars es)
(if (atom es)

’t
(if (var? (car es))

(if (bound? (car es) vars)
(exprs? defs vars (cdr es))
’nil)

(if (quote? (car es))
(exprs? defs vars (cdr es))
(if (if? (car es))

(if (exprs? defs vars
(if-QAE (car es)))

(exprs? defs vars (cdr es))
’nil)

(if (app? (car es))
(if (app-arity? defs (car es))

(if (exprs? defs vars
(app.args (car es)))

(exprs? defs vars (cdr es))
’nil)

’nil)
’nil))))))

(defun expr? (defs vars e)
(exprs? defs vars (list1 e)))

Sets are represented as lists with no du-
plicates. Functions included are subset?,
list-extend, and list-union, which also
preserves the left-to-right ordering of ele-
ments in a predictable way that is conve-
nient for constructing totality claims and
inductive claims.

(defun subset? (xs ys)
(if (atom xs)

’t
(if (member? (car xs) ys)

(subset? (cdr xs) ys)
’nil)))

(defun list-extend (xs x)
(if (atom xs)

(list1 x)
(if (equal (car xs) x)

xs
(cons (car xs)

(list-extend (cdr xs) x)))))

(defun list-union (xs ys)
(if (atom ys)

xs
(list-union (list-extend xs (car ys))

(cdr ys))))

The functions get-arg and set-arg pro-
cess argument lists indexed from 1.

(defun get-arg-from (n args from)
(if (atom args)

’nil
(if (equal n from)

(car args)
(get-arg-from n (cdr args) (+ from ’1)))))

(defun get-arg (n args)
(get-arg-from n args ’1))

(defun set-arg-from (n args y from)
(if (atom args)

’()
(if (equal n from)

(cons y (cdr args))
(cons (car args)

(set-arg-from n (cdr args) y
(+ from ’1))))))

(defun set-arg (n args y)
(set-arg-from n args y ’1))

Several predicates operate on argument
lists: <=len reports whether a given index
is less than or equal to the length of an
argument list; arity? reports whether a
list of formal arguments and a list of ac-
tual arguments have the same length; and
formals? reports whether a given list rep-
resents distinct formal arguments.

(defun <=len-from (n args from)
(if (atom args)

’nil
(if (equal n from)

’t
(<=len-from n (cdr args) (+ from ’1)))))

(defun <=len (n args)
(if (< ’0 n) (<=len-from n args ’1) ’nil))

(defun arity? (vars es)
(if (atom vars)

(atom es)
(if (atom es)

’nil
(arity? (cdr vars) (cdr es)))))

(defun formals? (vars)
(if (atom vars)

’t
(if (var? (car vars))

(if (member? (car vars) (cdr vars))
’nil
(formals? (cdr vars)))

’nil)))

The path to a focus is recognized by path?

and direction?.
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(defun direction? (dir)
(if (natp dir)

’t
(member? dir ’(Q A E))))

(defun path? (path)
(if (atom path)

’t
(if (direction? (car path))

(path? (cdr path))
’nil)))

The function quoted-exprs? is a predicate
that recognizes lists of quoted literals.

(defun quoted-exprs? (args)
(if (atom args)

’t
(if (quote? (car args))

(quoted-exprs? (cdr args))
’nil)))

The arguments to a proof step’s applica-
tion are checked by step-args?, which al-
lows free variables but requires the argu-
ments to an operator to be quoted literals.

(defun step-args? (defs def args)
(if (dethm? def)

(if (arity? (dethm.formals def) args)
(exprs? defs ’any args)
’nil)

(if (defun? def)
(if (arity? (defun.formals def) args)

(exprs? defs ’any args)
’nil)

(if (rator? def)
(if (arity? (rator.formals def) args)

(quoted-exprs? args)
’nil)

’nil))))

(defun step-app? (defs app)
(step-args? defs

(lookup (app.name app) defs)
(app.args app)))

The steps? function checks the syntax of
proof steps to make sure they each contain
a path and an application of a theorem
or function name to the right number of
syntactically valid expressions. In the case
of operators, the arguments must be quote
expressions.

(defun step? (defs step)
(if (path? (elem1 step))

(if (app? (elem2 step))
(step-app? defs (elem2 step))
’nil)

’nil))

(defun steps? (defs steps)
(if (atom steps)

’t
(if (step? defs (car steps))

(steps? defs (cdr steps))
’nil)))

The seed of a proof is the induction scheme
for a theorem’s proof or a measure for
a function’s totality proof. An induction
scheme must be an application of a defined
function to a sequence of distinct variables,
as checked by induction-scheme?. A
measure may be any syntactically valid ex-
pression that refers only to previously de-
fined functions and the formal arguments
of the function being defined, which are
checked by seed?.

(defun induction-scheme-for? (def vars e)
(if (defun? def)

(if (arity? (defun.formals def) (app.args e))
(if (formals? (app.args e))

(subset? (app.args e) vars)
’nil)

’nil)
’nil))

(defun induction-scheme? (defs vars e)
(if (app? e)

(induction-scheme-for?
(lookup (app.name e) defs)
vars
e)

’nil))

(defun seed? (defs def seed)
(if (equal seed ’nil)

’t
(if (defun? def)

(expr? defs (defun.formals def) seed)
(if (dethm? def)

(induction-scheme? defs
(dethm.formals def)
seed)

’nil))))
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Individual definitions are checked by def?,
which checks that defuns and dethms have
unique names, valid formal argument lists,
and syntactically valid body expressions.

(defun extend-rec (defs def)
(if (defun? def)

(list-extend defs
(defun-c

(defun.name def)
(defun.formals def)
(app-c (defun.name def)

(defun.formals def))))
defs))

(defun def-contents? (known-defs formals body)
(if (formals? formals)

(expr? known-defs formals body)
’nil))

(defun def? (known-defs def)
(if (dethm? def)

(if (undefined? (dethm.name def)
known-defs)

(def-contents? known-defs
(dethm.formals def)
(dethm.body def))

’nil)
(if (defun? def)

(if (undefined? (defun.name def)
known-defs)

(def-contents?
(extend-rec known-defs def)
(defun.formals def)
(defun.body def))

’nil)
’nil)))

(defun defs? (known-defs defs)
(if (atom defs)

’t
(if (def? known-defs (car defs))

(defs? (list-extend known-defs (car defs))
(cdr defs))

’nil)))

J-Bob checks lists of proofs using proofs?,
which in turn checks the definitions, seeds,
and proof steps of each one using the pre-
viously described functions.

(defun list2-or-more? (pf)
(if (atom pf)

’nil
(if (atom (cdr pf))

’nil
’t)))

(defun proof? (defs pf)
(if (list2-or-more? pf)

(if (def? defs (elem1 pf))
(if (seed? defs (elem1 pf) (elem2 pf))

(steps? (extend-rec defs (elem1 pf))
(cdr (cdr pf)))

’nil)
’nil)

’nil))

We define substitution in sub-e and its
helpers, which maintain separate, corre-
sponding lists of formal arguments and the
actual arguments to replace them with.

(defun proofs? (defs pfs)
(if (atom pfs)

’t
(if (proof? defs (car pfs))

(proofs?
(list-extend defs (elem1 (car pfs)))
(cdr pfs))

’nil)))

(defun sub-var (vars args var)
(if (atom vars)

var
(if (equal (car vars) var)

(car args)
(sub-var (cdr vars) (cdr args) var))))

(defun sub-es (vars args es)
(if (atom es)

’()
(if (var? (car es))

(cons (sub-var vars args (car es))
(sub-es vars args (cdr es)))

(if (quote? (car es))
(cons (car es)

(sub-es vars args (cdr es)))
(if (if? (car es))

(cons
(QAE-if

(sub-es vars args
(if-QAE (car es))))

(sub-es vars args (cdr es)))
(cons

(app-c (app.name (car es))
(sub-es vars args

(app.args (car es))))
(sub-es vars args (cdr es))))))))

(defun sub-e (vars args e)
(elem1 (sub-es vars args (list1 e))))
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The expr-recs and exprs-recs functions
extract the recursive applications from the
body of a function definition, given the
function’s name and the expression(s) in
question.

(defun exprs-recs (f es)
(if (atom es)

’()
(if (var? (car es))

(exprs-recs f (cdr es))
(if (quote? (car es))

(exprs-recs f (cdr es))
(if (if? (car es))

(list-union
(exprs-recs f (if-QAE (car es)))
(exprs-recs f (cdr es)))

(if (equal (app.name (car es)) f)
(list-union

(list1 (car es))
(list-union

(exprs-recs f
(app.args (car es)))

(exprs-recs f (cdr es))))
(list-union

(exprs-recs f (app.args (car es)))
(exprs-recs f

(cdr es)))))))))
(defun expr-recs (f e)

(exprs-recs f (list1 e)))

The function totality/claim and its cor-
responding function induction/claim are
responsible for constructing totality claims
and inductive claims, respectively. These
functions construct their claims following
the steps described in chapters 8 and 9,
extended to account for recursive appli-
cations in the question of an if. These
definitions rely on the predictable ordering
of elements produced by list-union.

(defun totality/< (meas formals app)
(app-c ’<

(list2 (sub-e formals (app.args app) meas)
meas)))

(defun totality/meas (meas formals apps)
(if (atom apps)

’()
(cons

(totality/< meas formals (car apps))
(totality/meas meas formals (cdr apps)))))

(defun totality/if (meas f formals e)
(if (if? e)

(conjunction
(list-extend

(totality/meas meas formals
(expr-recs f (if.Q e)))

(if-c-when-necessary (if.Q e)
(totality/if meas f formals

(if.A e))
(totality/if meas f formals

(if.E e)))))
(conjunction

(totality/meas meas formals
(expr-recs f e)))))

(defun totality/claim (meas def)
(if (equal meas ’nil)

(if (equal (expr-recs (defun.name def)
(defun.body def))

’())
(quote-c ’t)
(quote-c ’nil))

(if-c
(app-c ’natp (list1 meas))
(totality/if meas (defun.name def)

(defun.formals def)
(defun.body def))

(quote-c ’nil))))
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(defun induction/prems (vars claim apps)
(if (atom apps)

’()
(cons

(sub-e vars (app.args (car apps)) claim)
(induction/prems vars claim (cdr apps)))))

(defun induction/if (vars claim f e)
(if (if? e)

(implication
(induction/prems vars claim

(expr-recs f (if.Q e)))
(if-c-when-necessary (if.Q e)

(induction/if vars claim f (if.A e))
(induction/if vars claim f (if.E e))))

(implication
(induction/prems vars claim

(expr-recs f e))
claim)))

(defun induction/defun (vars claim def)
(induction/if vars claim (defun.name def)

(sub-e (defun.formals def) vars
(defun.body def))))

(defun induction/claim (defs seed def)
(if (equal seed ’nil)

(dethm.body def)
(induction/defun (app.args seed)

(dethm.body def)
(lookup (app.name seed) defs))))

Proof steps find the focus of a claim and
the premises based on a path constructed
as a list of directions: ’Q, ’A, ’E, or a
positive natural number, just like a walk-
ing path is constructed from the directions
North, South, East, and West. Now that
we have reached the final focus, we con-
sider the second argument of the proof
step: (name arg ...). Next we substitute
the variables of the associated conclusion—
either a theorem body or a rewrite associ-
ated with applying a function—with the
arguments (arg ...), thus producing an
instantiated conclusion.

Before we are permitted to use this
instantiated theorem, we must check the
premises with follow-prems against the
instantiated theorem. This leads to an
equality as the instantiated conclusion that
represents two provably equal expressions.

(defun find-focus-at-direction (dir e)
(if (equal dir ’Q)

(if.Q e)
(if (equal dir ’A)

(if.A e)
(if (equal dir ’E)

(if.E e)
(get-arg dir (app.args e))))))

(defun rewrite-focus-at-direction (dir e1 e2)
(if (equal dir ’Q)

(if-c e2 (if.A e1) (if.E e1))
(if (equal dir ’A)

(if-c (if.Q e1) e2 (if.E e1))
(if (equal dir ’E)

(if-c (if.Q e1) (if.A e1) e2)
(app-c (app.name e1)

(set-arg dir (app.args e1) e2))))))

(defun focus-is-at-direction? (dir e)
(if (equal dir ’Q)

(if? e)
(if (equal dir ’A)

(if? e)
(if (equal dir ’E)

(if? e)
(if (app? e)

(<=len dir (app.args e))
’nil)))))

(defun focus-is-at-path? (path e)
(if (atom path)

’t
(if (focus-is-at-direction? (car path) e)

(focus-is-at-path? (cdr path)
(find-focus-at-direction (car path) e))

’nil)))

(defun find-focus-at-path (path e)
(if (atom path)

e
(find-focus-at-path (cdr path)

(find-focus-at-direction (car path) e))))

(defun rewrite-focus-at-path (path e1 e2)
(if (atom path)

e2
(rewrite-focus-at-direction (car path) e1

(rewrite-focus-at-path (cdr path)
(find-focus-at-direction (car path) e1)
e2))))
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(defun prem-A? (prem path e)
(if (atom path)

’nil
(if (equal (car path) ’A)

(if (equal (if.Q e) prem)
’t
(prem-A? prem (cdr path)

(find-focus-at-direction (car path)
e)))

(prem-A? prem (cdr path)
(find-focus-at-direction (car path)

e)))))

(defun prem-E? (prem path e)
(if (atom path)

’nil
(if (equal (car path) ’E)

(if (equal (if.Q e) prem)
’t
(prem-E? prem (cdr path)

(find-focus-at-direction (car path)
e)))

(prem-E? prem (cdr path)
(find-focus-at-direction (car path)

e)))))

(defun follow-prems (path e thm)
(if (if? thm)

(if (prem-A? (if.Q thm) path e)
(follow-prems path e (if.A thm))
(if (prem-E? (if.Q thm) path e)

(follow-prems path e (if.E thm))
thm))

thm))

The function apply-op applies an operator
to a list of values and returns a value.

(defun unary-op (rator rand)
(if (equal rator ’atom)

(atom rand)
(if (equal rator ’car)

(car rand)
(if (equal rator ’cdr)

(cdr rand)
(if (equal rator ’natp)

(natp rand)
(if (equal rator ’size)

(size rand)
’nil))))))

(defun binary-op (rator rand1 rand2)
(if (equal rator ’equal)

(equal rand1 rand2)
(if (equal rator ’cons)

(cons rand1 rand2)
(if (equal rator ’+)

(+ rand1 rand2)
(if (equal rator ’<)

(< rand1 rand2)
’nil)))))

(defun apply-op (rator rands)
(if (member? rator ’(atom car cdr natp size))

(unary-op rator (elem1 rands))
(if (member? rator ’(equal cons + <))

(binary-op rator
(elem1 rands)
(elem2 rands))

’nil)))

When a proof step’s application refers to
an operator, eval-op produces an expres-
sion representing the value of that appli-
cation, and rands function extracts the
values of the operator’s quoted arguments.

(defun rands (args)
(if (atom args)

’()
(cons (quote.value (car args))

(rands (cdr args)))))

(defun eval-op (app)
(quote-c

(apply-op (app.name app)
(rands (app.args app)))))

The proof steps rewrite the focus within a
claim to one that is provably equal to it.
There are three kinds of proof steps as is
evident in the definition of equality/def.
A proof step may use the operators (equal,
atom, car, cdr, cons, natp, size, +, or <)
applied to quoted values, yielding a quoted
value; the definition of a function; or a
possibly conditional equality in any defined
theorem. In each proof step, J-Bob pro-
duces two expressions that may be rewrit-
ten to each other.

These two expressions are then passed
along to equality with the final focus.
This function checks whether either ex-
pression is equal to the final focus.
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If so, equality performs the rewrite
by returning the other expression as the
new focus. If not, the proof step has
failed and equality returns the final fo-
cus unchanged. In either case, we are
left to expand out the context around this
possibly new focus. Thus, as the recur-
sion of equality/path cautiously unwinds
into rewrite-focus-at-direction, we go
backwards one direction at a time, rebuild-
ing the original context yielding either a
new claim with the new focus or the origi-
nal claim.

(defun app-of-equal? (e)
(if (app? e)

(equal (app.name e) ’equal)
’nil))

(defun equality (focus a b)
(if (equal focus a)

b
(if (equal focus b)

a
focus)))

(defun equality/equation (focus concl-inst)
(if (app-of-equal? concl-inst)

(equality focus
(elem1 (app.args concl-inst))
(elem2 (app.args concl-inst)))

focus))

(defun equality/path (e path thm)
(if (focus-is-at-path? path e)

(rewrite-focus-at-path path e
(equality/equation

(find-focus-at-path path e)
(follow-prems path e thm)))

e))

(defun equality/def (claim path app def)
(if (rator? def)

(equality/path claim path
(app-c ’equal (list2 app (eval-op app))))

(if (defun? def)
(equality/path claim path

(sub-e (defun.formals def)
(app.args app)
(app-c ’equal

(list2
(app-c (defun.name def)

(defun.formals def))
(defun.body def)))))

(if (dethm? def)
(equality/path claim path

(sub-e (dethm.formals def)
(app.args app)
(dethm.body def)))

claim))))

The function rewrite/steps rewrites the
given claim according to each proof step
in the list of suggested proof steps, stop-
ping either when there are no more proof
steps or when a proof step fails. A proof
step is considered to fail when it rewrites
a claim to the same claim. The function
rewrite/continue passes the new claim
that results from the first proof step to
rewrite/steps and the old claim.

(defun rewrite/step (defs claim step)
(equality/def claim (elem1 step) (elem2 step)

(lookup (app.name (elem2 step)) defs)))

(defun rewrite/continue (defs steps old new)
(if (equal new old)

new
(if (atom steps)

new
(rewrite/continue defs (cdr steps) new

(rewrite/step defs new (car steps))))))

(defun rewrite/steps (defs claim steps)
(if (atom steps)

claim
(rewrite/continue defs (cdr steps) claim

(rewrite/step defs claim (car steps)))))
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(defun rewrite/prove (defs def seed steps)
(if (defun? def)

(rewrite/steps defs
(totality/claim seed def)
steps)

(if (dethm? def)
(rewrite/steps defs

(induction/claim defs seed def)
steps)

(quote-c ’nil))))

(defun rewrite/prove+1 (defs pf e)
(if (equal e (quote-c ’t))

(rewrite/prove defs (elem1 pf) (elem2 pf)
(cdr (cdr pf)))

e))

(defun rewrite/prove+ (defs pfs)
(if (atom pfs)

(quote-c ’t)
(rewrite/prove+1 defs (car pfs)

(rewrite/prove+
(list-extend defs (elem1 (car pfs)))
(cdr pfs)))))

(defun rewrite/define (defs def seed steps)
(if (equal (rewrite/prove defs def seed steps)

(quote-c ’t))
(list-extend defs def)
defs))

(defun rewrite/define+1 (defs1 defs2 pfs)
(if (equal defs1 defs2)

defs1
(if (atom pfs)

defs2
(rewrite/define+1 defs2

(rewrite/define defs2
(elem1 (car pfs))
(elem2 (car pfs))
(cdr (cdr (car pfs))))

(cdr pfs)))))

(defun rewrite/define+ (defs pfs)
(if (atom pfs)

defs
(rewrite/define+1 defs

(rewrite/define defs
(elem1 (car pfs))
(elem2 (car pfs))
(cdr (cdr (car pfs))))

(cdr pfs))))

Our proof assistant, J-Bob, has an inter-
active front-end: J-Bob/prove. It accepts
a list of established definitions (theorems
or functions) and a list of proof attempts.
Each proof attempt is a list of two or more
elements: a proposed definition (defun or

dethm), a seed (measure expression or in-
duction scheme), and zero or more proof
steps. A proof step specifies a justification
for an individual rewrite contributing to a
proof that the proposed theorem is true or
that the proposed function is total.

J-Bob/prove processes proof attempts
in reverse order, attempting the last one
first, similarly to how we prove align’s to-
tality claim first in chapter 10 before re-
turning to natp/wt and positive/wt. If a
proof fails at any point, rewrite/prove+
stops and produces the result of the last
correct rewrite. Otherwise it produces the
final quoted expression ”t.

J-Bob/define is designed to extend an
existing set of definitions with a list of defi-
nitions if the corresponding proof attempts
succeed. Finally, J-Bob/step processes a
sequence of rewriting steps in order with-
out any proof attempt. As in the recess
of chapter 2, this can be used to explore
rewriting without an explicit goal of ”t.

(defun J-Bob/step (defs e steps)
(if (defs? ’() defs)

(if (expr? defs ’any e)
(if (steps? defs steps)

(rewrite/steps defs e steps)
e)

e)
e))

(defun J-Bob/prove (defs pfs)
(if (defs? ’() defs)

(if (proofs? defs pfs)
(rewrite/prove+ defs pfs)
(quote-c ’nil))

(quote-c ’nil)))

(defun J-Bob/define (defs pfs)
(if (defs? ’() defs)

(if (proofs? defs pfs)
(rewrite/define+ defs pfs)
defs)

defs))
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(defun axioms ()
’((dethm atom/cons (x y)

(equal (atom (cons x y)) ’nil))
(dethm car/cons (x y)

(equal (car (cons x y)) x))
(dethm cdr/cons (x y)

(equal (cdr (cons x y)) y))
(dethm equal-same (x)

(equal (equal x x) ’t))
(dethm equal-swap (x y)

(equal (equal x y) (equal y x)))
(dethm if-same (x y)

(equal (if x y y) y))
(dethm if-true (x y)

(equal (if ’t x y) x))
(dethm if-false (x y)

(equal (if ’nil x y) y))
(dethm if-nest-E (x y z)

(if x ’t (equal (if x y z) z)))
(dethm if-nest-A (x y z)

(if x (equal (if x y z) y) ’t))
(dethm cons/car+cdr (x)

(if (atom x)
’t
(equal (cons (car x) (cdr x)) x)))

(dethm equal-if (x y)
(if (equal x y) (equal x y) ’t))

(dethm natp/size (x)
(equal (natp (size x)) ’t))

(dethm size/car (x)
(if (atom x)

’t
(equal (< (size (car x)) (size x)) ’t)))

(dethm size/cdr (x)
(if (atom x)

’t
(equal (< (size (cdr x)) (size x)) ’t)))

(dethm associate-+ (a b c)
(equal (+ (+ a b) c) (+ a (+ b c))))

(dethm commute-+ (x y)
(equal (+ x y) (+ y x)))

(dethm natp/+ (x y)
(if (natp x)

(if (natp y)
(equal (natp (+ x y)) ’t)
’t)

’t))
(dethm positives-+ (x y)

(if (< ’0 x)
(if (< ’0 y)

(equal (< ’0 (+ x y)) ’t)
’t)

’t))
(dethm common-addends-< (x y z)

(equal (< (+ x z) (+ y z)) (< x y)))
(dethm identity-+ (x)

(if (natp x) (equal (+ ’0 x) x) ’t))))

The function axioms produces a list of
the axioms we use in the preceding chap-
ters, and prelude extends it with the
definitions and proofs of totality claims
of list-induction and star-induction

used for List Induction and Star Induction,
respectively.

(defun prelude ()
(J-Bob/define (axioms)

’(((defun list-induction (x)
(if (atom x)

’()
(cons (car x)

(list-induction (cdr x)))))
(size x)
((A E) (size/cdr x))
((A) (if-same (atom x) ’t))
((Q) (natp/size x))
(() (if-true ’t ’nil)))

((defun star-induction (x)
(if (atom x)

x
(cons (star-induction (car x))

(star-induction (cdr x)))))
(size x)
((A E A) (size/cdr x))
((A E Q) (size/car x))
((A E) (if-true ’t ’nil))
((A) (if-same (atom x) ’t))
((Q) (natp/size x))
(() (if-true ’t ’nil))))))
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We hope that you have enjoyed reading this book, and have enjoyed playing with our
proof assistant J-Bob. If you want to find out more about proofs and logic, there are
several options for where to turn next.

J-Bob is named after J Moore and Bob Boyer, who wrote one of the earliest
mechanical theorem provers called Nqthm. The modern version of Nqthm, written by
J Moore and Matt Kaufmann, is called ACL2. ACL2 allows you to play with theorems
like you can in J-Bob, but does a lot of the “heavy lifting” for you. That way you
can prove more complicated theorems with less effort. In fact, ACL2 can prove every
totality claim and theorem in this book given only the relevant defuns and dethms. It
does all the rest of the work for you.

ACL2 can be found at http://www.cs.utexas.edu/users/moore/acl2/. For a
simple user interface to ACL2, try “Dracula,” available at http://dracula-lang.org/,
which adds tools such as syntax checking, automated testing, and the ability to prove
theorems about programs that use pictures and animations. For access to more powerful
ACL2 features, check out the “ACL2 Sedan” at http://acl2s.ccs.neu.edu/acl2s/

doc/, which adds even more automation to totality proofs and supports the full range
of ACL2’s features.

J-Bob and ACL2 are not the only kind of mechanical theorem provers that exist.
There are many others that support different languages of expressions. Examples include
Agda (http://wiki.portal.chalmers.se/agda/), Coq (http://coq.inria.fr/),
Isabelle/HOL (http://www.cl.cam.ac.uk/research/hvg/Isabelle/), PVS (http:
//pvs.csl.sri.com/), and Twelf (http://twelf.org/).

We can also recommend some further reading on the topic of proofs and logic. The
modern founder of the use of recursion in Logic is Thoralf Albert Skolem. In Skolem’s
1919 paper (published in 1923), he observed that one could use the recursive mode of
thought to avoid “some” used in Whitehead and Russell’s Principia Mathematica. The
ideas of this paper were important to the development of the Boyer-Moore Theorem
Prover. Among other books that we think you might find worthwhile are the books on
Logic and Mathematics mentioned below. Not all the books are easy to find or to read,
but most have survived the test of time.

R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, Inc., New
York, 1979.

A. Chlipala. Certified Programming with Dependent Types. MIT Press, 2013.

J. N. Crossley, C. J. Ash, C. J. Brickhill, J. C. Stillwell, and N. H. Williams. What
is Mathematical Logic? Oxford University Press, 1972.

M. Kaufmann, P. Manolios, and J S. Moore. Computer Aided Reasoning: An
Approach. Kluwer Academic Publishers, 2000.

D. MacKenzie. Mechanizing Proof: Computing, Risk, and Trust. MIT Press,
2004.
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J. McCarthy. A Basis for a Mathematical Theory of Computation. In P. Braffort
and D. Hershberg (Eds.), Computer Programming and Formal Systems. North-
Holland Publishing Company, Amsterdam, The Netherlands, 1963.

E. Mendelson. Introduction to Mathematical Logic. D. Van Nostrand Company,
Inc., Princeton, New Jersey, 1964.

R. Péter. Recursive Functions Third Revised Edition. Academic Press, New York,
1967.

Pierce, B. C., et al. Software Foundations. http://www.cis.upenn.edu/

~bcpierce/sf (2010-2015).

T. A. Skolem. The foundations of elementary arithmetic established by means of
the recursive mode of thought, without the use of apparent variables ranging over
infinite domains, in From Frege to Gödel: A Source Book in Mathematical Logic,
1879–1931 (Jean van Heijenoort, ed.), pages 302–333. Harvard Univ. Press, 1967.
Paper written in 1919 and appeared in published form in 1923.

P. Suppes. Introduction to Logic. D. Van Nostrand Company, Inc., Princeton,
New Jersey, 1957.

M. Wand. Induction, Recursion, and Programming. Elsevier North Holland, Inc.,
1980.

A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge: Cambridge
University Press, in 3 vols, 1910, 1912, 1913. Second edition, 1925 (Vol. 1), 1927
(Vols 2, 3). Abridged as Principia Mathematica to *56, Cambridge University
Press, 1962.
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Afterword

In January 1984, I went to Indiana to get my PhD from Dan Friedman. Among
other ideas, he was well known for The Little LISPer, which everybody used to teach
recursion. Back then, recursion seemed so complicated, but Dan’s book helped everyone
understand it.

A year later, Dan put me to work on a revision of The Little LISPer. It had aged
a bit since its first appearance in 1974, and I had proposed some small improvements
that he liked. We spent nine long months working it all out. For me, as a second year
graduate student, it was an exhilarating experience. Working with Dan, I learned a
lot about how to take a research insight and think it over until the explanation was
accessible to freshman students.

Fast forward. In the spring of 2008, I proposed a novel kind of freshman course that
would explain the role of logic and theorem proving in programming. I asked two of my
PhD students, Dale Vaillancourt and Carl Eastlund, to join me. Our goal was to develop
a course in which students would first program functions like sub, add-atoms, plus some
small video games and then make up and prove theorems about them. We used the
ACL2 proof assistant, a brilliant system for true experts, but it became clear quickly
that freshman students needed a simple way to interact with this complex system.

Carl took on the task of creating an interactive development environment in which
students could create programs and proofs together. We also continued to think about
how to teach the material. I eventually realized that we needed Dan’s way of studying,
twisting, refining this material. So I discussed the project with him, and he suggested
the Little book approach. But Little books have always been Dan’s forte, and Carl
had acquired a deeper understanding of ACL2 than most people on the planet. What
would be more natural than for the two of them, for “grandfather” and “grandson,” to
co-author a Little book?

The Little Prover is the result of this collaboration. Like all of its predecessors, the
book distills a topic to its essential elements. Here you find out about the mechanical
method of using structural induction in proofs, which is critical for all current appli-
cations of logic to programming, and the J-Bob proof assistant, which can check such
proofs. Study this book, work through it, and you will comprehend. And all you need
to get through the book, is an understanding of The Little LISPer.

Now I have come full circle. I enjoyed the journey, and I hope you did, too.

Matthias Felleisen
Boston, Massachusetts
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', see quote
(), 4
�, see dotted pair
<=len, see J-Bob
<=len-from, see J-Bob

A, see if answer
ACL2, 203
add-atoms, see function
align, see function
align/align, see theorem
answer, see if answer
app-arity?, see J-Bob
app-c, see J-Bob
app-of-equal?, see J-Bob
app.args, see J-Bob
app.name, see J-Bob
app?, see J-Bob
apply-op, see J-Bob
args-arity?, see J-Bob
arity?, see J-Bob
associate-+, see axiom
atom, see operator
atom/cons, see axiom
atoms, see function
attention, 20
axiom, 7, 7, 8

associate-+, 148

atom/cons, 5, 8, 26

car/cons, 6, 8, 12, 26

cdr/cons, 6, 8, 26

common-addends-<, 148

commute-+, 148

cons/car+cdr, 25, 26

equal-if, 17, 18

equal-same, 9, 10, 18

versus equal, 17
equal-swap, 9, 10, 18

identity-+, 148

if-false, 15, 27

if-nest-A, 27, 29
if-nest-E, 27, 30
if-same, 15, 27

in reverse, 16
if-true, 15, 17, 27

natp/+, 148

natp/size, 53

positives-+, 148

size/car, 53

size/cdr, 53

axioms, see J-Bob
Axioms of

+ and <, 148

Cons, 8, 26

Equal, 10, 18

If, 15, 27

Size, 53

binary-op, see J-Bob
black, 5
blue, 5
bound?, see J-Bob

car, see operator
car/cons, see axiom
cdr, see operator
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cdr/cons, see axiom
claim, 33, 34

totality, see totality claim
common-addends-<, see axiom
commute-+, see axiom
conclusion, 18, 19
condition, 18, 22–24
conjunction, 111, 113
conjunction, see J-Bob
cons, see operator
cons/car+cdr, see axiom
Constructing Totality Claims, 113

context, 5
contradiction, see theorem
counterexample, 118, 144, 157
ctx?, see function
ctx?/sub, see theorem
ctx?/t, see theorem

def-contents?, see J-Bob
def.formals, see J-Bob
def.name, see J-Bob
def?, see J-Bob
defs?, see J-Bob
defun, xii, see also The Law of Defun
Defun Induction, 124, 118–127, 157
defun-c, see J-Bob
defun.body, see J-Bob
defun.formals, see J-Bob
defun.name, see J-Bob
defun?, see J-Bob
dethm, xiii, 8, 12, see also The Law of

Dethm
dethm-c, see J-Bob
dethm.body, see J-Bob
dethm.formals, see J-Bob
dethm.name, see J-Bob
dethm?, see J-Bob
direction?, see J-Bob
dotted pair, 115

dotted pairs, 139–141, 145–146

E, see if else
elem1, see J-Bob

elem2, see J-Bob
elem3, see J-Bob
else, see if else
equal, 3

both directions, 10
equal, see operator
equal-if, see axiom
equal-same, see axiom
equal-swap, see axiom
equality, see J-Bob
equality/def, see J-Bob
equality/equation, see J-Bob
equality/path, see J-Bob
eval-op, see J-Bob
evaluate, xi
expr-recs, see J-Bob
expr?, see J-Bob
expression, xii, 3
exprs-recs, see J-Bob
exprs?, see J-Bob
extend-rec, see J-Bob

find-focus-at-direction, see J-Bob
find-focus-at-path, see J-Bob
first-of, see function
first-of-pair, see theorem
focus, 5

whole expression, 6
focus-is-at-direction?, see J-Bob
focus-is-at-path?, see J-Bob
follow-prems, see J-Bob
food, xiii
formals?, see J-Bob
function, xii, see also operator

add-atoms, 108–113, 115, 192
align, 142, 141–145, 147–156, 197,

200
application, xii
atom, 45
atoms, 108, 115, 193
built-in, xii
ctx?, 89–90, 188
equal, 43
first-of, 33, 183
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in-pair?, 36

index2, 46
list-induction, 125, 178
list0?, 43–44, 184
list1?, 44–45, 184
list2?, 46–184
list3?, 50

list?, 50–54, 185
measure, 52

memb?, 59, 60, 185
measure, 59

member?, 107, 192
pair, 33, 183
partial, 47

totality claim, 57
remb, 59, 60–61, 185
rembmeasure, 60
rotate, 140, 139–140, 196
second-of, 33, 183
set?, 107, 108, 192
star-induction, 125, 179
sub, 56, 55–56, 90
sub?, 185
wt, 146, 145–147, 197

get-arg, see J-Bob
get-arg-from, see J-Bob

identity-+, see axiom
if, xii, 15, 45, 94, see also Axioms of If

answer, xii, 16

else, xii, 16

question, xii, 16

If Lifting, 28–31, 66–67, 67, 72, 81, 92,
93, 98, 99, 103, 104, 126, 128,
130, 131

if-c, see J-Bob
if-c-when-necessary, see J-Bob
if-false, see axiom
if-nest-A, see axiom
if-nest-E, see axiom
if-QAE, see J-Bob
if-same, see axiom
if-true, see axiom

if.A, see J-Bob
if.E, see J-Bob
if.Q, see J-Bob
if?, see J-Bob
implication, 122

implication, see J-Bob
in-first-of-pair, see theorem
in-pair?, see function
in-second-of-pair, see theorem
induction, xi, 77

defun, see Defun Induction
on lists, see List Induction
on nested conses, see Star Induc-

tion
induction-scheme-for?, see J-Bob
induction-scheme?, see J-Bob
induction/claim, see J-Bob
induction/defun, see J-Bob
induction/if, see J-Bob
induction/prems, see J-Bob
inductive claim, 119–124
inductive premise, 79, 82, 99, 100, 104,

117–118, 120–121, 124, 134,
157, 161, 163

constructing, 121

Insight
Build Up to Induction Gradually,

86

Combine Ifs, 92

Don’t Touch Inductive Premises,
83

Helper Theorems for Induction, 95

Helper Theorems for Repetition,
144

Know Theorems and Axioms, 69

Pull Ifs Outward, 68

Rewrite from the Inside Out, 63

Skip Irrelevant Expressions, 39

J-Bob, xiii, 165–179, 203–215
<=len, 206

<=len-from, 206

app-arity?, 205

app-c, 204
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app-of-equal?, 212

app.args, 204

app.name, 204

app?, 204

apply-op, 211

args-arity?, 205

arity?, 206

axioms, 214

binary-op, 211

bound?, 205

conjunction, 205

def-contents?, 208

def.formals, 205

def.name, 205

def?, 208

defs?, 208

defun-c, 204

defun.body, 204

defun.formals, 204

defun.name, 204

defun?, 204

dethm-c, 204

dethm.body, 204

dethm.formals, 204

dethm.name, 204

dethm?, 204

direction?, 207

elem1, 204

elem2, 204

elem3, 204

equality, 212

equality/def, 212

equality/equation, 212

equality/path, 212

eval-op, 211

expr-recs, 209

expr?, 206

exprs-recs, 209

exprs?, 206

extend-rec, 208

find-focus-at-direction, 210

find-focus-at-path, 210

focus-is-at-direction?, 210

focus-is-at-path?, 210

follow-prems, 211

formals?, 206

get-arg, 206

get-arg-from, 206

if-c, 204

if-c-when-necessary, 205

if-QAE, 205

if.A, 204

if.E, 204

if.Q, 204

if?, 204

implication, 205

induction-scheme-for?, 207

induction-scheme?, 207

induction/claim, 210

induction/defun, 210

induction/if, 210

induction/prems, 210

J-Bob/define, 173, 213

J-Bob/prove, 171, 213

J-Bob/step, 167, 213

list-extend, 206

list-union, 206

list0, 204

list0?, 204

list1, 204

list1?, 204

list2, 204

list2-or-more?, 208

list2?, 204

list3, 204

list3?, 204

lookup, 205

member?, 204

path?, 207

prelude, 214

prem-A?, 211

prem-E?, 211

proof?, 208

proofs?, 208

QAE-if, 205

quote-c, 204
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quote.value, 204

quote?, 204

quoted-exprs?, 207

rands, 211

rator.formals, 205

rator?, 205

rewrite-focus-at-direction, 210

rewrite-focus-at-path, 210

rewrite/continue, 212

rewrite/define, 213

rewrite/define+, 213

rewrite/define+1, 213

rewrite/prove, 213

rewrite/prove+, 213

rewrite/prove+1, 213

rewrite/step, 212

rewrite/steps, 212

seed?, 207

set-arg, 206

set-arg-from, 206

step-app?, 207

step-args?, 207

step?, 207

steps?, 207

sub-e, 208

sub-es, 208

sub-var, 208

subset?, 206

tag, 204

tag?, 204

totality/<, 209

totality/claim, 209

totality/if, 209

totality/meas, 209

unary-op, 211

undefined?, 205

untag, 204

var?, 204

J-Bob/define, see J-Bob
J-Bob/prove, see J-Bob
J-Bob/step, see J-Bob
jabberwocky, 20

The Law of Defun, 34, 47

The Law of Dethm, 12, 18

condition, see condition
list, xii, 43, 50

circular, 50
improper, see dotted pair
infinite, 50

List Induction, 78, 86, 124
list-extend, see J-Bob
list-induction, see function
list-union, see J-Bob
list0, see J-Bob
list0?, see function, see also J-Bob
list1, see J-Bob
list1?, see function, see also J-Bob
list2, see J-Bob
list2-or-more?, see J-Bob
list2?, see function, see also J-Bob
list3, see J-Bob
list3?, see function, see also J-Bob
list?, see function
literal, xii
The Little LISPer, 3
The Little Schemer, 3
lookup, see J-Bob

measure, 51, 52, 109–113
memb?, see function
memb?/remb, see theorem
memb?/remb0, see theorem
memb?/remb1, see theorem
memb?/remb2, see theorem
memb?/remb3, see theorem
member?, see function, see also J-Bob

natp/+, see axiom
natp/size, see axiom
natp/wt, see theorem
natural number, xii, 53, 113
natural recursion, 77, 78, 79, 90, 117–

118, 161
nil, 3
notation, xii

operator, 45
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+, 146, see also Axioms of + and
<

<, 113, see also Axioms of + and
<

atom, 4, see also Axioms of Cons
car, 3, see also Axioms of Cons
cdr, 3, see also Axioms of Cons
cons, 3, see also Axioms of Cons

dotted, see dotted pair
equal, 8, see also Axioms of Equal

versus equal-same, 17
natp, 53, 113
size, 52, see also Axioms of Size

orange, 20
ordinal number, 126

pair, see function
partial, see function
partial function, 47

path?, see J-Bob
positive/wt, see theorem
positives-+, see axiom
prelude, 165
prelude, see J-Bob
prem-A?, see J-Bob
prem-E?, see J-Bob
premise, 20

inductive, see inductive premise
proof, 34

proof assistant, xiii
proof attempt, 171

Proof by
Induction, 100
List Induction, see List Induction
Star Induction, see Star Induction

proof?, see J-Bob
proofs?, see J-Bob
prove, 34

Q, see if question
QAE-if, see J-Bob
question, see if question
quote, xii, 3
quote-c, see J-Bob

quote.value, see J-Bob
quote?, see J-Bob
quoted-exprs?, see J-Bob

rands, see J-Bob
rator.formals, see J-Bob
rator?, see J-Bob
recursion, 50, 77, 79

natural, see natural recursion
recursive function, xi
remb, see function
reverse, xi
rewrite, 3
rewrite-focus-at-direction, see J-Bob
rewrite-focus-at-path, see J-Bob
rewrite/continue, see J-Bob
rewrite/define, see J-Bob
rewrite/define+, see J-Bob
rewrite/define+1, see J-Bob
rewrite/prove, see J-Bob
rewrite/prove+, see J-Bob
rewrite/prove+1, see J-Bob
rewrite/step, see J-Bob
rewrite/steps, see J-Bob
rotate, see function
rotate/cons, see theorem

Scheme, 203
second-of, see function
second-of-pair, see theorem
seed, 171

induction
on lists, see list-induction
on nested conses, see star-

induction
measure, 176
recursive function, 176

seed?, see J-Bob
set-arg, see J-Bob
set-arg-from, see J-Bob
set?, see function
set?/add-atoms, see theorem, see theo-

rem
set?/atoms, see theorem
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set?/nil, see theorem
set?/t, see theorem
size/car, see axiom
size/cdr, see axiom
Star Induction, 91, 116, 124
star-induction, see function
step, 5, 34, 165
step-app?, see J-Bob
step-args?, see J-Bob
step?, see J-Bob
steps?, see J-Bob
sub, see function
sub-e, see J-Bob
sub-es, see J-Bob
sub-var, see J-Bob
subset?, see J-Bob
symbol, xii

t, 4
tag, see J-Bob
tag?, see J-Bob
theorem, xiii, 8, 34

align/align, 157–163, 201
contradiction, 47–50, 184
ctx?/sub, 90–100, 190
ctx?/t, 95, 100–104, 190
first-of-pair, 33–35, 183
helper, 95, 116, 119, 129, 131, 141,

147, 150
if-false, 49
in-first-of-pair, 36–38, 184
in-pair?, 183
in-second-of-pair, 38–40, 184

memb?/remb, 78–85, 187
memb?/remb0, 61–62, 186
memb?/remb1, 63–70, 186
memb?/remb2, 71–74, 187
memb?/remb3, 75

natp/wt, 147, 200
positive/wt, 150, 200
rotate/cons, 140–141, 197
second-of-pair, 35–36, 183
set?/add-atoms, 116–117, 119–

134, 136, 193, 195
set?/atoms, 116, 134–136, 193, 195
set?/nil, 131, 195
set?/t, 129, 195

total, 43, 47
totality claim, 53, 108–113, see also

Constructing Totality Claims
non-recursive function, 55

totality/<, see J-Bob
totality/claim, see J-Bob
totality/if, see J-Bob
totality/meas, see J-Bob

unary-op, see J-Bob
undefined?, see J-Bob
untag, see J-Bob

value, 3
finite, 50

var?, see J-Bob
variable, xii, 16

wt, see function
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