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FOREWORD

Foreword from the First Edition

When I first got a summer job at MIT’s Project MAC almost 30 years ago, I was
delighted to be able to work with the DEC PDP-10 computer, which was more fun
to program in assembly language than any other computer, bar none, because of
its rich yet tractable set of instructions for performing bit tests, bit masking, field
manipulation, and operations on integers. Though the PDP-10 has not been manu-
factured for quite some years, there remains a thriving cult of enthusiasts who
keep old PDP-10 hardware running and who run old PDP-10 software—entire
operating systems and their applications—by using personal computers to simu-
late the PDP-10 instruction set. They even write new software; there is now at
least one Web site with pages that are served up by a simulated PDP-10. (Come
on, stop laughing—it’s no sillier than keeping antique cars running.)

I also enjoyed, in that summer of 1972, reading a brand-new MIT research
memo called HAKMEM, a bizarre and eclectic potpourri of technical trivia.1 The
subject matter ranged from electrical circuits to number theory, but what intrigued
me most was its small catalog of ingenious little programming tricks. Each such
gem would typically describe some plausible yet unusual operation on integers or
bit strings (such as counting the 1-bits in a word) that could easily be programmed
using either a longish fixed sequence of machine instructions or a loop, and then
show how the same thing might be done much more cleverly, using just four or
three or two carefully chosen instructions whose interactions are not at all obvious
until explained or fathomed. For me, devouring these little programming nuggets
was like eating peanuts, or rather bonbons—I just couldn’t stop—and there was a
certain richness to them, a certain intellectual depth, elegance, even poetry.

“Surely,” I thought, “there must be more of these,” and indeed over the years
I collected, and in some cases discovered, a few more. “There ought to be a book
of them.”

I was genuinely thrilled when I saw Hank Warren’s manuscript. He has sys-
tematically collected these little programming tricks, organized them thematically,
and explained them clearly. While some of them may be described in terms of
machine instructions, this is not a book only for assembly language programmers.
The subject matter is basic structural relationships among integers and bit strings

1. Why “HAKMEM”? Short for “hacks memo”; one 36-bit PDP-10 word could hold six 6-bit
characters, so a lot of the names PDP-10 hackers worked with were limited to six characters.
We were used to glancing at a six-character abbreviated name and instantly decoding the
contractions. So naming the memo “HAKMEM” made sense at the time—at least to the
hackers.
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in a computer and efficient techniques for performing useful operations on them.
These techniques are just as useful in the C or Java programming languages as
they are in assembly language.

Many books on algorithms and data structures teach complicated techniques
for sorting and searching, for maintaining hash tables and binary trees, for deal-
ing with records and pointers. They overlook what can be done with very tiny
pieces of data—bits and arrays of bits. It is amazing what can be done with just
binary addition and subtraction and maybe some bitwise operations; the fact that
the carry chain allows a single bit to affect all the bits to its left makes addition a
peculiarly powerful data manipulation operation in ways that are not widely
appreciated.

Yes, there ought to be a book about these techniques. Now it is in your hands,
and it’s terrific. If you write optimizing compilers or high-performance code, you
must read this book. You otherwise might not use this bag of tricks every single
day—but if you find yourself stuck in some situation where you apparently need
to loop over the bits in a word, or to perform some operation on integers and it just
seems harder to code than it ought, or you really need the inner loop of some inte-
ger or bit-fiddly computation to run twice as fast, then this is the place to look. Or
maybe you’ll just find yourself reading it straight through out of sheer pleasure.

Guy L. Steele, Jr.
Burlington, Massachusetts

April 2002
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PREFACE

Caveat Emptor: The cost of software
maintenance increases with the square of

the programmer’s creativity.

First Law of Programmer Creativity,
Robert D. Bliss, 1992

This is a collection of small programming tricks that I have come across over
many years. Most of them will work only on computers that represent integers in
two’s-complement form. Although a 32-bit machine is assumed when the register
length is relevant, most of the tricks are easily adapted to machines with other reg-
ister sizes.

This book does not deal with large tricks such as sophisticated sorting and
compiler optimization techniques. Rather, it deals with small tricks that usually
involve individual computer words or instructions, such as counting the number
of 1-bits in a word. Such tricks often use a mixture of arithmetic and logical
instructions.

It is assumed throughout that integer overflow interrupts have been masked
off, so they cannot occur. C, Fortran, and even Java programs run in this environ-
ment, but Pascal and Ada users beware!

The presentation is informal. Proofs are given only when the algorithm is not
obvious, and sometimes not even then. The methods use computer arithmetic,
“floor” functions, mixtures of arithmetic and logical operations, and so on. Proofs
in this domain are often difficult and awkward to express.

To reduce typographical errors and oversights, many of the algorithms have
been executed. This is why they are given in a real programming language, even
though, like every computer language, it has some ugly features. C is used for the
high-level language because it is widely known, it allows the straightforward mix-
ture of integer and bit-string operations, and C compilers that produce high-quality
object code are available.

Occasionally, machine language is used, employing a three-address format,
mainly for ease of readability. The assembly language used is that of a fictitious
machine that is representative of today’s RISC computers.

Branch-free code is favored, because on many computers, branches slow
down instruction fetching and inhibit executing instructions in parallel. Another
problem with branches is that they can inhibit compiler optimizations such as
instruction scheduling, commoning, and register allocation. That is, the compiler
may be more effective at these optimizations with a program that consists of a few
large basic blocks rather than many small ones.
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The code sequences also tend to favor small immediate values, comparisons
to zero (rather than to some other number), and instruction-level parallelism.
Although much of the code would become more concise by using table lookups
(from memory), this is not often mentioned. This is because loads are becoming
more expensive relative to arithmetic instructions, and the table lookup methods
are often not very interesting (although they are often practical). But there are
exceptional cases.

Finally, I should mention that the term “hacker” in the title is meant in the
original sense of an aficionado of computers—someone who enjoys making com-
puters do new things, or do old things in a new and clever way. The hacker is usu-
ally quite good at his craft, but may very well not be a professional computer
programmer or designer. The hacker’s work may be useful or may be just a game.
As an example of the latter, more than one determined hacker has written a pro-
gram which, when executed, writes out an exact copy of itself. 1 This is the sense
in which we use the term “hacker.” If you’re looking for tips on how to break into
someone else’s computer, you won’t find them here.
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1. One such program, written in C, is: 
main(){char*p="main(){char*p=%c%s%c;(void)printf(p,34,p,34,10);}%c";(void)printf(p,34,p,34,10);}

2 3 17 257 65537;

See www.HackersDelight.org
for additional material related
to this book.

http://www.HackersDelight.org
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 CHAPTER  1

INTRODUCTION

1–1  Notation
This book distinguishes between mathematical expressions of ordinary arithmetic
and those that describe the operation of a computer. In “computer arithmetic,”
operands are bit strings, or bit vectors, of some definite fixed length. Expressions
in computer arithmetic are similar to those of ordinary arithmetic, but the vari-
ables denote the contents of computer registers. The value of a computer arithme-
tic expression is simply a string of bits with no particular interpretation. An
operator, however, interprets its operands in some particular way. For example, a
comparison operator might interpret its operands as signed binary integers or as
unsigned binary integers; our computer arithmetic notation uses distinct symbols
to make the type of comparison clear.

The main difference between computer arithmetic and ordinary arithmetic is
that in computer arithmetic, the results of addition, subtraction, and multiplication
are reduced modulo  where n is the word size of the machine. Another differ-
ence is that computer arithmetic includes a large number of operations. In addition
to the four basic arithmetic operations, computer arithmetic includes logical and,
exclusive or, compare, shift left, and so on.

Unless specified otherwise, the word size is 32 bits, and signed integers are
represented in two’s-complement form.

Expressions of computer arithmetic are written similarly to those of ordinary
arithmetic, except that the variables that denote the contents of computer registers
are in bold face type. This convention is commonly used in vector algebra. We
regard a computer word as a vector of single bits. Constants also appear in bold-
face type when they denote the contents of a computer register. (This has no anal-
ogy with vector algebra because in vector algebra the only way to write a constant
is to display the vector’s components.)  When a constant denotes part of an instruc-
tion, such as the immediate field of a shift instruction, light-face type is used.

If an operator such as “+” has bold face operands, then that operator denotes
the computer’s addition operation (“vector addition”). If the operands are light-
faced, then the operator denotes the ordinary scalar arithmetic operation. We use a
light-faced variable x to denote the arithmetic value of a bold-faced variable x
under an interpretation (signed or unsigned) that should be clear from the context.
Thus, if x = 0x80000000 and y = 0x80000000, then, under signed integer inter-
pretation, , , and x + y = 0. Here, 0x80000000 is
hexadecimal notation for a bit string consisting of a 1-bit followed by 31 0-bits. 

Bits are numbered from the right, with the rightmost (least significant) bit
being bit 0. The terms “bits,” “nibbles,” “bytes,” “halfwords,” “words,” and “dou-
blewords” refer to lengths of 1, 4, 8, 16, 32, and 64 bits, respectively.

2n,

x y 2– 31= = x y+ 232–=
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Short and simple sections of code are written in computer algebra, using its
assignment operator (left arrow) and occasionally an if statement. In this role,
computer algebra is serving as little more than a machine-independent way of
writing assembly language code.

Programs too long or complex for computer algebra are written in the C pro-
gramming language, as defined by the ISO 1999 standard.

A complete description of C would be out of place in this book, but Table 1–1
contains a brief summary of most of the elements of C [H&S] that are used
herein. This is provided for the benefit of the reader who is familiar with some
procedural programming language, but not with C. Table 1–1 also shows the
operators of our computer-algebraic arithmetic language. Operators are listed
from highest precedence (tightest binding) to lowest. In the Precedence column,
L means left-associative; that is,

a • b • c = (a • b) • c

and R means right-associative. Our computer-algebraic notation follows C in pre-
cedence and associativity.

In addition to the notations described in Table 1–1, those of Boolean algebra
and of standard mathematics are used, with explanations where necessary.

TABLE 1–1.  EXPRESSIONS OF C AND COMPUTER ALGEBRA

Prece-
dence C

Computer
Algebra Description

0x… Hexadecimal, binary constants

16 a[k] Selecting the kth component

16 Different variables, or bit selection 
(clarified in text)

16 f(x,…) Function evaluation

16 Absolute value (but 
)

16 Negative of the absolute value

15 x++, x-- Postincrement, decrement

14 ++x, --x Preincrement, decrement

14 (type name)x Type conversion

14 R x to the kth power

14 ~x Bitwise not (one’s-complement)

14 !x Logical not (if then 1
else 0)

14 -x Arithmetic negation

0x…, 0b…

x0 x1 …, ,

f x …,( )

abs x( )
abs 231–( ) 231–=

nabs x( )

xk

x¬ x,

x 0=

x–

continues
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13 L x*y Multiplication, modulo word size

13 L x/y Signed integer division

13 L x/y Unsigned integer division

13 L x%y Remainder (may be negative), of 
 signed arguments

13 L x%y Remainder of unsigned
arguments

x reduced modulo y to the interval 
; signed arguments

12 L x + y, x - y Addition, subtraction

11 L x << y, x >> y Shift left, right with 0-fill (“logi-
cal” shifts)

11 L x >> y Shift right with sign-fill (“arithme-
tic” or “algebraic” shift)

11 L Rotate shift left, right

10 L x < y, x <= y,

x > y, x >= y 

Signed comparison

10 L x < y, x <= y,

x > y, x >= y

Unsigned comparison

9 L x == y, x != y Equality, inequality

8 L x & y Bitwise and

7 L x ^ y Bitwise exclusive or

7 L Bitwise equivalence ( )

6 L x | y Bitwise or

5 L x && y Conditional and (if  then 0

else if  then 0 else 1)

4 L x || y Conditional or (if  then 1

else if  then 1 else 0)

3 L Concatenation

2 R x = y Assignment

TABLE 1–1.  EXPRESSIONS OF C AND COMPUTER ALGEBRA, continued

Prece-
dence C

Computer
Algebra Description
x y*
x y÷

x y÷u

rem x y,( )
x y÷( ),

remu x y,( ) x y÷u ,

mod x y,( )
0 abs y( ) 1–,[ ]

x y+ x y–,

x y x y>>
u,<<

x y>>
s

x y<<
rot x y>>

rot,

x y x y,,<
x y x y,>

x y<u x y,u,

x y>u x yu,

x y x y,=
x y&

x y
x y x y( )¬

x y | 

x y& x 0=

y 0=

x y | x 0

y 0

x y||

x y
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Our computer algebra uses other functions in addition to “abs,” “rem,” and so
on. These are defined where introduced.

In C, the expression x < y < z means to evaluate x < y to a 0/1-valued result,
and then compare that result to z. In computer algebra, the expression 
means

C has three loop control statements: while, do, and for. The while state-
ment is written:

while (expression) statement

First, expression is evaluated. If true (nonzero), statement is executed and control
returns to evaluate expression again. If expression is false (0), the while-loop
terminates.

The do statement is similar, except the test is at the bottom of the loop. It is
written:

do statement while (expression)

First, statement is executed, and then expression is evaluated. If true, the process
is repeated, and if false, the loop terminates.

The for statement is written:

for (e1; e2; e3) statement

First, e1, usually an assignment statement, is executed. Then e2, usually a compar-
ison, is evaluated. If false, the for-loop terminates. If true, statement is executed.
Finally, e3, usually an assignment statement, is executed, and control returns to
evaluate e2 again. Thus, the familiar “do i = 1 to n” is written:

for (i = 1; i <= n; i++)

(This is one of the few contexts in which we use the postincrement operator.)
The ISO C standard does not specify whether right shifts (“>>” operator) of

signed quantities are 0-propagating or sign-propagating. In the C code herein, it is
assumed that if the left operand is signed, then a sign-propagating shift results (and
if it is unsigned, then a 0-propagating shift results, following ISO). Most modern C
compilers work this way.

It is assumed here that left shifts are “logical.” (Some machines, mostly older
ones, provide an “arithmetic” left shift, in which the sign bit is retained.)

Another potential problem with shifts is that the ISO C standard specifies that
if the shift amount is negative or is greater than or equal to the width of the left
operand, the result is undefined. But, nearly all 32-bit machines treat shift amounts
modulo 32 or 64. The code herein relies on one of these behaviors; an explanation
is given when the distinction is important.

x y z< <
x y<( ) y z<( ).&
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1–2  Instruction Set and Execution Time Model
To permit a rough comparison of algorithms, we imagine them being coded for a
machine with an instruction set similar to that of today’s general purpose RISC
computers, such as the IBM RS/6000, the Oracle SPARC, and the ARM architec-
ture. The machine is three-address and has a fairly large number of general pur-
pose registers—that is, 16 or more. Unless otherwise specified, the registers are 32
bits long. General register 0 contains a permanent 0, and the others can be used
uniformly for any purpose.

In the interest of simplicity there are no “special purpose” registers, such as a
condition register or a register to hold status bits, such as “overflow.” The
machine has no floating-point instructions. Floating-point is only a minor topic in
this book, being mostly confined to Chapter 17.

We recognize two varieties of RISC: a “basic RISC,” having the instructions
shown in Table 1–2, and a “full RISC,” having all the instructions of the basic
RISC, plus those shown in Table 1–3.

TABLE 1–2.  BASIC RISC INSTRUCTION SET

Opcode Mnemonic Operands Description

add, sub, mul, 
div, divu, rem, 
remu

RT,RA,RB RT RA op RB, where op is add, sub-
tract, multiply, divide signed, divide
unsigned, remainder signed, or remain-
der unsigned.

addi, muli RT,RA,I RT RA op I, where op is add or 
multiply, and I is a 16-bit signed immedi-
ate value.

addis RT,RA,I RT RA + (I << 16).

and, or, xor RT,RA,RB RT RA op RB, where op is bitwise 
and, or, or exclusive or.

andi, ori, xori RT,RA,Iu As above, except the last operand is a 
16-bit unsigned immediate value.

beq, bne, blt, 
ble, bgt, bge

RT,target Branch to target if RT = 0, or if RT 0,
or if RT < 0, or if RT 0, or if RT > 0, or 
if RT 0 (signed integer interpretation 
of RT).

bt, bf RT,target Branch true/false; same as bne/beq resp.

cmpeq, cmpne, 
cmplt, cmple,
cmpgt, cmpge, 
cmpltu, cmpleu, 
cmpgtu, cmpgeu

RT,RA,RB RT gets the result of comparing RA with 
RB; 0 if false and 1 if true. Mnemonics 
denote compare for equality, inequality,
less than, and so on, as for the branch 
instructions; and in addition, the suffix 
“u” denotes an unsigned comparison.

continues
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In Tables 1–2, 1–3, and 1–4, RA and RB appearing as source operands really
means the contents of those registers.

A real machine would have branch and link (for subroutine calls), branch to
the address contained in a register (for subroutine returns and “switches”), and
possibly some instructions for dealing with special purpose registers. It would, of
course, have a number of privileged instructions and instructions for calling on
supervisor services. It might also have floating-point instructions.

Some other computational instructions that a RISC computer might have are
identified in Table 1–3. These are discussed in later chapters.

It is convenient to provide the machine’s assembler with a few “extended
mnemonics.” These are like macros whose expansion is usually a single instruc-
tion. Some possibilities are shown in Table 1–4.

The load immediate instruction expands into one or two instructions, as
required by the immediate value I. For example, if , an or immediate
(ori) from R0 can be used. If , an add immediate (addi) from R0
can be used. If the rightmost 16 bits of I are 0, add immediate shifted (addis) can

cmpieq, cmpine, 
cmpilt, cmpile, 
cmpigt, cmpige

RT,RA,I Like the cmpeq group, except the sec-
ond comparand is a 16-bit signed imme-
diate value.

cmpiequ, cmpineu, 
cmpiltu, cmpileu, 
cmpigtu, cmpigeu

RT,RA,Iu Like the cmpltu group, except the sec-
ond comparand is a 16-bit unsigned 
immediate value.

ldbu, ldh, ldhu, 
ldw

RT,d(RA) Load an unsigned byte, signed halfword, 
unsigned halfword, or word into RT from 
memory at location RA + d, where d is 
a 16-bit signed immediate value.

mulhs, mulhu RT,RA,RB RT gets the high-order 32 bits of the prod-
uct of RA and RB; signed and unsigned.

not RT,RA RT  bitwise one’s-complement of RA.

shl, shr, shrs RT,RA,RB RT RA shifted left or right by the 
amount given in the rightmost six bits of 
RB; 0-fill except for shrs, which is 
sign-fill. (The shift amount is treated 
modulo 64.)

shli, shri, shrsi RT,RA,Iu RT RA shifted left or right by the 
amount given in the 5-bit immediate field.

stb, sth, stw RS,d(RA) Store a byte, halfword, or word, from RS
into memory at location RA + d, where 
d is a 16-bit signed immediate value.

TABLE 1–2.  BASIC RISC INSTRUCTION SET, continued

Opcode Mnemonic Operands Description

0 I 216<
215– I 0<
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TABLE 1–3.  ADDITIONAL INSTRUCTIONS FOR THE “FULL RISC”

Opcode Mnemonic Operands Description

abs, nabs RT,RA RT gets the absolute value, or the nega-
tive of the absolute value, of RA.

andc, eqv, nand, 
nor, orc

RT,RA,RB Bitwise and with complement (of RB),
equivalence, negative and, negative or,
and or with complement.

extr RT,RA,I,L Extract bits I through I+L-1 of RA,
and place them right-adjusted in RT, with 
0-fill.

extrs RT,RA,I,L Like extr, but sign-fill.

ins RT,RA,I,L Insert bits 0 through L-1 of RA into bits 
I through I+L-1 of RT.

nlz RT,RA RT gets the number of leading 0’s in RA
(0 to 32).

pop RT,RA RT gets the number of 1-bits in RA (0 to 
32).

ldb RT,d(RA) Load a signed byte into RT from memory 
at location RA + d, where d is a 16-bit 
signed immediate value.

moveq, movne, 
movlt, movle,
movgt, movge

RT,RA,RB RT RB if RA = 0, or if RA 0, and so 
on, else RT is unchanged.

shlr, shrr RT,RA,RB RT RA rotate-shifted left or right by 
the amount given in the rightmost five 
bits of RB.

shlri, shrri RT,RA,Iu RT RA rotate-shifted left or right by 
the amount given in the 5-bit immediate 
field.

trpeq, trpne, 
trplt, trple, 
trpgt, trpge, 
trpltu, trpleu, 
trpgtu, trpgeu

RA,RB Trap (interrupt) if RA = RB, or RA RB,
and so on.

trpieq, trpine, 
trpilt, trpile, 
trpigt, trpige

RA,I Like the trpeq group, except the sec-
ond comparand is a 16-bit signed imme-
diate value.

trpiequ, trpineu, 
trpiltu, trpileu,   
trpigtu, trpigeu

RA,Iu Like the trpltu group, except the sec-
ond comparand is a 16-bit unsigned 
immediate value.
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be used. Otherwise, two instructions are required, such as addis followed by
ori. (Alternatively, in the last case, a load from memory could be used, but for
execution time and space estimates we assume that two elementary arithmetic
instructions are used.)

Of course, which instructions belong in the basic RISC and which belong in
the full RISC is very much a matter of judgment. Quite possibly, divide unsigned
and the remainder instructions should be moved to the full RISC category. Con-
versely, possibly load byte signed should be in the basic RISC category. It is in
the full RISC set because it is probably of rather low frequency of use, and
because in some technologies it is difficult to propagate a sign bit through so
many positions and still make cycle time.

The distinction between basic and full RISC involves many other such ques-
tionable judgments, but we won’t dwell on them.

The instructions are limited to two source registers and one target, which sim-
plifies the computer (e.g., the register file requires no more than two read ports
and one write port). It also simplifies an optimizing compiler, because the com-
piler does not need to deal with instructions that have multiple targets. The price
paid for this is that a program that wants both the quotient and remainder of two
numbers (not uncommon) must execute two instructions (divide and remainder).
The usual machine division algorithm produces the remainder as a by-product, so
many machines make them both available as a result of one execution of divide.
Similar remarks apply to obtaining the doubleword product of two words.

The conditional move instructions (e.g., moveq) ostensibly have only two
source operands, but in a sense they have three. Because the result of the instruc-
tion depends on the values in RT, RA, and RB, a machine that executes instructions
out of order must treat RT in these instructions as both a use and a set. That is, an
instruction that sets RT, followed by a conditional move that sets RT, must be exe-
cuted in that order, and the result of the first instruction cannot be discarded. Thus,
the designer of such a machine may elect to omit the conditional move instructions
to avoid having to consider an instruction with (logically) three source operands.
On the other hand, the conditional move instructions do save branches.

Instruction formats are not relevant to the purposes of this book, but the full
RISC instruction set described above, with floating-point and a few supervisory

TABLE 1–4.  EXTENDED MNEMONICS

Extended
Mnemonic Expansion Description

b    target beq  R0,target Unconditional branch.

li   RT,I See text Load immediate, .

mov  RT,RA ori  RT,RA,0 Move register RA to RT.

neg  RT,RA sub  RT,R0,RA Negate (two’s-complement).

subi RT,RA,I addi RT,RA,–I Subtract immediate ( ).

231– I 232<

I 215–



ptg8736757

1–2 INSTRUCTION SET AND EXECUTION TIME MODEL 9

instructions added, can be implemented with 32-bit instructions on a machine with
32 general purpose registers (5-bit register fields). By reducing the immediate
fields of compare, load, store, and trap instructions to 14 bits, the same holds for a
machine with 64 general purpose registers (6-bit register fields).

Execution Time
We assume that all instructions execute in one cycle, except for the multiply,
divide, and remainder instructions, for which we do not assume any particular
execution time. Branches take one cycle whether they branch or fall through.

The load immediate instruction is counted as one or two cycles, depending on
whether one or two elementary arithmetic instructions are required to generate the
constant in a register.

Although load and store instructions are not often used in this book, we
assume they take one cycle and ignore any load delay (time lapse between when a
load instruction completes in the arithmetic unit and when the requested data is
available for a subsequent instruction).

However, knowing the number of cycles used by all the arithmetic and logical
instructions is often insufficient for estimating the execution time of a program.
Execution can be slowed substantially by load delays and by delays in fetching
instructions. These delays, although very important and increasing in importance,
are not discussed in this book. Another factor, one that improves execution time,
is what is called “instruction-level parallelism,” which is found in many contem-
porary RISC chips, particularly those for “high-end” machines.

These machines have multiple execution units and sufficient instruction-
dispatching capability to execute instructions in parallel when they are independent
(that is, when neither uses a result of the other, and they don’t both set the same
register or status bit). Because this capability is now quite common, the presence of
independent operations is often pointed out in this book. Thus, we might say that
such and such a formula can be coded in such a way that it requires eight instruc-
tions and executes in five cycles on a machine with unlimited instruction-level par-
allelism. This means that if the instructions are arranged in the proper order
(“scheduled”), a machine with a sufficient number of adders, shifters, logical units,
and registers can, in principle, execute the code in five cycles.

We do not make too much of this, because machines differ greatly in their
instruction-level parallelism capabilities. For example, an IBM RS/6000 proces-
sor from ca. 1992 has a three-input adder and can execute two consecutive add-
type instructions in parallel even when one feeds the other (e.g., an add feeding a
compare, or the base register of a load). As a contrary example, consider a simple
computer, possibly for low-cost embedded applications, that has only one read
port on its register file. Normally, this machine would take an extra cycle to do a
second read of the register file for an instruction that has two register input oper-
ands. However, suppose it has a bypass so that if an instruction feeds an operand
of the immediately following instruction, then that operand is available without
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reading the register file. On such a machine, it is actually advantageous if each
instruction feeds the next—that is, if the code has no parallelism.

Exercises

1. Express the loop

for (e1; e2; e3) statement

in terms of a while loop.
Can it be expressed as a do loop?

2. Code a loop in C in which the unsigned integer control variable i takes on all
values from 0 to and including the maximum unsigned number, 0xFFFFFFFF
(on a 32-bit machine).

3. For the more experienced reader: The instructions of the basic and full RISCs
defined in this book can be executed with at most two register reads and one
write. What are some common or plausible RISC instructions that either need
more source operands or need to do more than one register write?
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 CHAPTER  2

BASICS

2–1  Manipulating Rightmost Bits
Some of the formulas in this section find application in later chapters.

Use the following formula to turn off the rightmost 1-bit in a word, producing
0 if none (e.g., 01011000  01010000):

This can be used to determine if an unsigned integer is a power of 2 or is 0: apply
the formula followed by a 0-test on the result.

Use the following formula to turn on the rightmost 0-bit in a word, producing
all 1’s if none (e.g., 10100111  10101111):

Use the following formula to turn off the trailing 1’s in a word, producing x if
none (e.g., 10100111  10100000):

This can be used to determine if an unsigned integer is of the form , 0, or all
1’s: apply the formula followed by a 0-test on the result.

Use the following formula to turn on the trailing 0’s in a word, producing x if
none (e.g., 10101000  10101111):

Use the following formula to create a word with a single 1-bit at the position
of the rightmost 0-bit in x, producing 0 if none (e.g., 10100111  00001000):

Use the following formula to create a word with a single 0-bit at the position
of the rightmost 1-bit in x, producing all 1’s if none (e.g., 1010 1000 
11110111):

x x 1–( )&

x x 1+( ) | 

x x 1+( )&

2n 1–

x x 1–( ) | 

x¬ x 1+( )&

x¬ x 1–( ) | 
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Use one of the following formulas to create a word with 1’s at the positions of
the trailing 0’s in x, and 0’s elsewhere, producing 0 if none (e.g., 01011000 
00000111):

The first formula has some instruction-level parallelism.
Use the following formula to create a word with 0’s at the positions of the

trailing 1’s in x, and 1’s elsewhere, producing all 1’s if none (e.g., 10100111 
11111000):

Use the following formula to isolate the rightmost 1-bit, producing 0 if none
(e.g., 01011000  00001000):

Use the following formula to create a word with 1’s at the positions of the
rightmost 1-bit and the trailing 0’s in x, producing all 1’s if no 1-bit, and the inte-
ger 1 if no trailing 0’s (e.g., 01011000  00001111):

Use the following formula to create a word with 1’s at the positions of the
rightmost 0-bit and the trailing 1’s in x, producing all 1’s if no 0-bit, and the inte-
ger 1 if no trailing 1’s (e.g., 01010111  00001111):

Use either of the following formulas to turn off the rightmost contiguous
string of 1’s (e.g., 01011100 ==> 01000000) [Wood]:

These can be used to determine if a nonnegative integer is of the form  for
some : apply the formula followed by a 0-test on the result.

De Morgan’s Laws Extended
The logical identities known as De Morgan’s laws can be thought of as distribut-
ing, or “multiplying in,” the not sign. This idea can be extended to apply to the
expressions of this section, and a few more, as shown here. (The first two are De
Morgan’s laws.)

x¬ x 1–( ),   or&

x x– | ( ),   or¬

x x–&( ) 1–

x¬ x 1+( ) | 

x x–( )&

x x 1–( )

x x 1+( )

x x 1–( ) | ( ) 1+( ) x&( ),   or

x x–&( ) x+( ) x&

2j 2k–
j k 0
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As an example of the application of these formulas,  =
 =  = 

Right-to-Left Computability Test
There is a simple test to determine whether or not a given function can be imple-
mented with a sequence of add’s, subtract’s, and’s, or’s, and not’s [War]. We can,
of course, expand the list with other instructions that can be composed from the
basic list, such as shift left by a fixed amount (which is equivalent to a sequence of
add’s), or multiply. However, we exclude instructions that cannot be composed
from the list. The test is contained in the following theorem.

THEOREM. A function mapping words to words can be implemented with
word-parallel add, subtract, and, or, and not instructions if and only if
each bit of the result depends only on bits at and to the right of each input
operand.

That is, imagine trying to compute the rightmost bit of the result by looking
only at the rightmost bit of each input operand. Then, try to compute the next bit
to the left by looking only at the rightmost two bits of each input operand, and
continue in this way. If you are successful in this, then the function can be com-
puted with a sequence of add’s, and’s, and so on. If the function cannot be com-
puted in this right-to-left manner, then it cannot be implemented with a sequence
of such instructions.

The interesting part of this is the latter statement, and it is simply the contra-
positive of the observation that the functions add, subtract, and, or, and not can all
be computed in the right-to-left manner, so any combination of them must have
this property.

To see the “if” part of the theorem, we need a construction that is a little awk-
ward to explain. We illustrate it with a specific example. Suppose that a function
of two variables x and y has the right-to-left computability property, and suppose
that bit 2 of the result r is given by

(1)

x y&( )¬ x¬ y¬ | =

x y | ( )¬ x¬ y¬&=
x 1+( )¬ x¬ 1–=
x 1–( )¬ x¬ 1+=

x–¬ x 1–=
x y( )¬ x¬ y x y= =
x y( )¬ x¬ y x y= =
x y+( )¬ x¬ y–=
x y–( )¬ x¬ y+=

x x 1+( )– | ( )¬
x¬ x 1+( )–¬& x¬ x 1+( ) 1–( )& x¬ x& 0.=

r2 x2 x0 y1&( ). | =
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We number bits from right to left, 0 to 31. Because bit 2 of the result is a function
of bits at and to the right of bit 2 of the input operands, bit 2 of the result is “right-
to-left computable.”

Arrange the computer words x, x shifted left two, and y shifted left one, as
shown below. Also, add a mask that isolates bit 2.

Now, form the word-parallel and of lines 2 and 3, or the result with row 1 (follow-
ing Equation (1)), and and the result with the mask (row 4 above). The result is a
word of all 0’s except for the desired result bit in position 2. Perform similar com-
putations for the other bits of the result, or the 32 resulting words together, and the
result is the desired function.

This construction does not yield an efficient program; rather, it merely shows
that it can be done with instructions in the basic list.

Using the theorem, we immediately see that there is no sequence of such
instructions that turns off the leftmost 1-bit in a word, because to see if a certain
1-bit should be turned off, we must look to the left to see if it is the leftmost one.
Similarly, there can be no such sequence for performing a right shift, or a rotate
shift, or a left shift by a variable amount, or for counting the number of trailing 0’s
in a word (to count trailing 0’s, the rightmost bit of the result will be 1 if there are
an odd number of trailing 0’s, and we must look to the left of the rightmost posi-
tion to determine that).

A Novel Application
An application of the sort of bit twiddling discussed above is the problem of find-
ing the next higher number after a given number that has the same number of 1-
bits. You might very well wonder why anyone would want to compute that. It has
application where bit strings are used to represent subsets. The possible members
of a set are listed in a linear array, and a subset is represented by a word or
sequence of words in which bit i is on if member i is in the subset. Set unions are
computed by the logical or of the bit strings, intersections by and’s, and so on.

You might want to iterate through all the subsets of a given size. This is easily
done if you have a function that maps a given subset to the next higher number
(interpreting the subset string as an integer) with the same number of 1-bits.

A concise algorithm for this operation was devised by R. W. Gosper [HAK,
item 175].1 Given a word x that represents a subset, the idea is to find the

1. A variation of this algorithm appears in [H&S] sec. 7.6.7.

x31 x30 … x3 x2 x1 x0

x29 x28 … x1 x0 0 0
y30 y29 … y2 y1 y0 0
0 0 … 0 1 0 0
0 0 … 0 r2 0 0
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rightmost contiguous group of 1’s in x and the following 0’s, and “increment” that
quantity to the next value that has the same number of 1’s. For example, the string
xxx0 1111 0000, where xxx represents arbitrary bits, becomes xxx1 0000 0111.
The algorithm first identifies the “smallest” 1-bit in x, with  giving
0000 0001 0000. This is added to x, giving r = xxx1 0000 0000. The 1-bit here is
one bit of the result. For the other bits, we need to produce a right-adjusted string
of  1’s, where n is the size of the rightmost group of 1’s in x. This can be
done by first forming the exclusive or of r and x, which gives 0001 1111 0000 in
our example.

This has two too many 1’s and needs to be right-adjusted. This can be accom-
plished by dividing it by s, which right-adjusts it (s is a power of 2), and shifting it
right two more positions to discard the two unwanted bits. The final result is the
or of this and r.

In computer algebra notation, the result is y in

(2)

A complete C procedure is given in Figure 2–1. It executes in seven basic
RISC instructions, one of which is division. (Do not use this procedure with

 that causes division by 0.)
If division is slow but you have a fast way to compute the number of trailing

zeros function ntz(x), the number of leading zeros function nlz(x), or population
count (pop(x) is the number of 1-bits in x), then the last line of Equation (2) can be
replaced with one of the following formulas. (The first two methods can fail on a
machine that has modulo 32 shifts.)

unsigned snoob(unsigned x) {
   unsigned smallest, ripple, ones;

           // x = xxx0 1111 0000
   smallest = x & -x;     //     0000 0001 0000
   ripple = x + smallest;    //     xxx1 0000 0000
   ones = x ^ ripple;     //     0001 1111 0000
   ones = (ones >> 2)/smallest; //     0000 0000 0111
   return ripple | ones;    //     xxx1 0000 0111
}

FIGURE 2–1.  Next higher number with same number of 1-bits.

s x x,–&=

n 1–

s x x–&
r s x+
y r x r( ) 2>>

u( ) s÷u( ) | 

x 0;=

y r x r( ) 2 ntz x( )+( )>>
u( ) | 

y r x r( ) 33 nlz s( )–( )>>
u( ) | 

y r 1 pop x r( ) 2–( )<<( ) 1–( ) | 
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2–2  Addition Combined with Logical Operations
We assume the reader is familiar with the elementary identities of ordinary alge-
bra and Boolean algebra. Below is a selection of similar identities involving addi-
tion and subtraction combined with logical operations.

Equation (d) can be applied to itself repeatedly, giving 
and so on. Similarly, from (e) we have  So we can add or sub-
tract any constant using only the two forms of complementation.

Equation (f) is the dual of (j), where (j) is the well-known relation that shows
how to build a subtracter from an adder.

Equations (g) and (h) are from HAKMEM memo [HAK, item 23]. Equation
(g) forms a sum by first computing the sum with carries ignored  and
then adding in the carries. Equation (h) is simply modifying the addition oper-
ands so that the combination  never occurs at any bit position; it is replaced
with

a.
b.
c.
d.
e.
f.
g.
h.
i.
j.
k.
l.

m.
n.
o.
p.
q.
r.
s.
t.
u.
v.

x– x¬ 1+=
x 1–( )¬=

x¬ x– 1–=
x¬– x 1+=
x–¬ x 1–=

x y+ x y¬– 1–=
x y( ) 2 x y&( )+=
x y | ( ) x y&( )+=

2 x y | ( ) x y( )–=
x y– x y¬ 1+ +=

x y( ) 2 x¬ y&( )–=
x y¬&( ) x¬ y&( )–=

2 x y¬&( ) x y( )–=
x y x y | ( ) x y&( )–=

x y¬& x y | ( ) y–=
x x y&( )–=

x y–( )¬ y x– 1–=
x¬ y+=

x y x y&( ) x y | ( ) 1––=
x y&( ) x y | ( )¬+=

x y | x y¬&( ) y+=
x y& x¬ y | ( ) x¬–=

x¬–¬– x 2,+=
x–¬–¬ x 2.–=

x y( ),

0 1+
1 0.+
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It can be shown that in the ordinary addition of binary numbers with each bit
independently equally likely to be 0 or 1, a carry occurs at each position with
probability about 0.5. However, for an adder built by preconditioning the inputs
using (g), the probability is about 0.25. This observation is probably not of value
in building an adder, because for that purpose the important characteristic is the
maximum number of logic circuits the carry must pass through, and using (g)
reduces the number of stages the carry propagates through by only one.

Equations (k) and (l) are duals of (g) and (h), for subtraction. That is, (k) has
the interpretation of first forming the difference ignoring the borrows 
and then subtracting the borrows. Similarly, Equation (l) is simply modifying the
subtraction operands so that the combination  never occurs at any bit posi-
tion; it is replaced with 

Equation (n) shows how to implement exclusive or in only three instructions
on a basic RISC. Using only and-or-not logic requires four instructions

 Similarly, (u) and (v) show how to implement and and
or in three other elementary instructions, whereas using DeMorgan’s laws
requires four.

2–3  Inequalities among Logical and Arithmetic Expressions
Inequalities among binary logical expressions whose values are interpreted as
unsigned integers are nearly trivial to derive. Here are two examples:

These can be derived from a list of all binary logical operations, shown in Table 2–1.
Let  and  represent two columns in Table 2–1. If for each row

in which  is 1,  also is 1, then for all  
Clearly, this extends to word-parallel logical operations. One can easily read off
such relations (most of which are trivial) as , and so on.
Furthermore, if two columns have a row in which one entry is 0 and the other is 1,

TABLE 2–1.  THE 16 BINARY LOGICAL OPERATIONS

x y

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

x y 

1 1–
0 0.–

x y |   x y& & .

x y  x y |     and
u 

x y&  x y .
u 

f x y( ) g x y( )
f x y( ) g x y( ) x y , f x y( ) g x y( ).

u 

x y&  x x y |  
u 


u 

0 x
y

&

x
y


& x x


y

&

y x
y



x
y

 | x
y

 | 



 x

y
 y

 x
y


 | x



x


y
 | x

y
&




 1



ptg8736757

18 BASICS 2–4

and another row in which the entries are 1 and 0, respectively, then no inequality
relation exists between the corresponding logical expressions. So the question of
whether or not  is completely and easily solved for all binary logi-
cal functions f and g.

Use caution when manipulating these relations. For example, for ordinary
arithmetic, if  and  then  but this inference is not valid if
“+” is replaced with or.

Inequalities involving mixed logical and arithmetic expressions are more
interesting. Below is a small selection.

The proofs of these are quite simple, except possibly for the relation 
 By  we mean the absolute value of  which can be computed

within the domain of unsigned numbers as  This relation
can be proven by induction on the length of x and y (the proof is a little easier if
you extend them on the left rather than on the right).

2–4 Absolute Value Function
If your machine does not have an instruction for computing the absolute value,
this computation can usually be done in three or four branch-free instructions.
First, compute  and then one of the following:

By “ ” we mean, of course,  or 
If you have  fast multiplication by a variable whose value is ±1, the following

will do:

f x y,( ) g x y,( )u

x y+ a z x, z y+ a,

a.

b.
c.
d.

e.

x y | ( ) max x y,( )u

x y&( ) min x y,( )u

x y | ( ) x y   if the addition does not overflow+u

x y | ( ) x y   if the addition overflows+>u

x y– x y( )u

x y– u

x y( ). x y– x y,–
max x y,( ) min x y,( ).–

y x 31,>>
s

abs
x y( ) y–
x y+( ) y

x 2x y&( )–

nabs
y x y( )–
y x–( ) y

2x y&( ) x–

2x x x+ x 1.<<

x 30>>
s( ) 1 | ( ) x*
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2–5  Average of Two Integers
The following formula can be used to compute the average of two unsigned inte-
gers,  without causing overflow [Dietz]:

(3)

The formula below computes  for unsigned integers:

To compute the same quantities (“floor and ceiling averages”) for signed inte-
gers, use the same formulas, but with the unsigned shift replaced with a signed
shift.

For signed integers, one might also want the average with the division by 2
rounded toward 0. Computing this “truncated average” (without causing overflow)
is a little more difficult. It can be done by computing the floor average and then
correcting it. The correction is to add 1 if, arithmetically,  is negative and odd.
But  is negative if and only if the result of (3), with the unsigned shift
replaced with a signed shift, is negative. This leads to the following method (seven
instructions on the basic RISC, after commoning the subexpression ):

Some common special cases can be done more efficiently. If x and y are signed
integers and known to be nonnegative, then the average can be computed as simply

 The sum can overflow, but the overflow bit is retained in the register
that holds the sum, so that the unsigned shift moves the overflow bit to the proper
position and supplies a zero sign bit.

If x and y are unsigned integers and  or if x and y are signed integers and
 (signed comparison), then the average is given by  These

are floor averages, for example, the average of –1 and 0 is –1.

2–6  Sign Extension
By “sign extension,” we mean to consider a certain bit position in a word to be the
sign bit, and we wish to propagate that to the left, ignoring any other bits present.
The standard way to do this is with shift left logical followed by shift right signed.
However, if these instructions are slow or nonexistent on your machine, it can be

x y+( ) 2⁄ ,

x y&( ) x y( ) 1>>
u( )+

x y+( ) 2⁄

x y | ( ) x y( ) 1>>
u( )–

x y+
x y+

x y

t x y&( ) x y( ) 1>>
s( );+

t t 31>>
u( ) x y( )&( )+

x y+( ) 1.>>
u

x y,u

x y x y x–( ) 1>>
u( ).+
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done with one of the following, where we illustrate by propagating bit position 7
to the left:

The “+” above can also be “–” or “ .” The second formula is particularly useful if
you know that the unwanted high-order bits are all 0’s, because then the and can
be omitted.

2–7  Shift Right Signed from Unsigned
If your machine does not have the shift right signed instruction, it can be com-
puted using the formulas shown below. The first formula is from [GM], and the
second is based on the same idea. These formulas hold for  and, if the
machine has mod-64 shifts, the last holds for  The last formula holds
for any n if by “holds” we mean “treats the shift amount to the same modulus as
does the logical shift.”

When n is a variable, each formula requires five or six instructions on a
basic RISC.

In the first two formulas, an alternative for the expression  is

If n is a constant, the first two formulas require only three instructions on
many machines. If  the function can be done in two instructions with

2–8 Sign Function
The sign, or signum, function is defined by

x 0x00000080+( ) 0x000000FF&( ) 0x00000080–
x 0x000000FF&( ) 0x00000080( ) 0x00000080–

x 0x0000007F&( ) x 0x00000080&( )–

0 n 31
0 n 63.

x 0x80000000+( ) n>>
u( ) 0x80000000 n>>

u( )–

t 0x80000000 n;>>
u x n>>

u( ) t( ) t–

t x 0x80000000&( ) n;>>
u x n>>

u( ) t t+( )–

x n>>
u( ) x 31>>

u( )– 31 n–<<( ) | 

t x 31>>
u( );– x t( ) n>>

u( ) t

0x80000000 n>>
u

1 31 n.–<<

n 31,=
x 31>>

u( ).–

sign x( )
1– x 0,<,
0 x 0,=,
1 x 0.>,

=
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It can be calculated with four instructions on most machines [Hop]:

If you don’t have shift right signed, then use the substitute noted at the end of
Section 2–7, giving the following nicely symmetric formula (five instructions):

Comparison predicate instructions permit a three-instruction solution, with
either

(4)

Finally, we note that the formula  almost works; it
fails only for 

2–9 Three-Valued Compare Function
The three-valued compare function, a slight generalization of the sign function, is
defined by

There are both signed and unsigned versions, and unless otherwise specified, this
section applies to both.

Comparison predicate instructions permit a three-instruction solution, an
obvious generalization of Equations in (4):

A solution for unsigned integers on PowerPC is shown below [CWG]. On
this machine, “carry” is “not borrow.”

   subf  R5,Ry,Rx  # R5 <-- Rx - Ry.
   subfc R6,Rx,Ry   # R6 <-- Ry - Rx, set carry.
   subfe R7,Ry,Rx   # R7 <-- Rx - Ry + carry, set carry.
   subfe R8,R7,R5   # R8 <-- R5 - R7 + carry, (set carry).

x 31>>
s( ) x– 31>>

u( ) | 

x 31>>
u( )– x– 31>>

u( ) | 

x 0>( ) x 0<( ),  or–
x 0( ) x 0( ).–

x– 31>>
u( ) x 31>>

u( )–
x 231.–=

cmp x y,( )
1– x y,<,
0 x y,=,
1 x y.>,

=

x y>( ) x y<( ),   or–
x y( ) x y( ).–
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If limited to the instructions of the basic RISC, there does not seem to be any
particularly good way to compute this function. The comparison predicates 

 and so on, require about five instructions (see Section 2–12), leading to a
solution in about 12 instructions (using a small amount of commonality in com-
puting  and ). On the basic RISC it’s probably preferable to use com-
pares and branches (six instructions executed worst case if compares can be
commoned).

2–10 Transfer of Sign Function
The transfer of sign function, called ISIGN in Fortran, is defined by

This function can be calculated (modulo ) with four instructions on most
machines:

2–11  Decoding a “Zero Means 2n” Field
Sometimes a 0 or negative value does not make much sense for a quantity, so it is
encoded in an n-bit field with a 0 value being understood to mean , and a non-
zero value having its normal binary interpretation. An example is the length field
of PowerPC’s load string word immediate (lswi) instruction, which occupies
five bits. It is not useful to have an instruction that loads zero bytes when the
length is an immediate quantity, but it is definitely useful to be able to load 32
bytes. The length field could be encoded with values from 0 to 31 denoting
lengths from 1 to 32, but the “zero means 32” convention results in simpler logic
when the processor must also support a corresponding instruction with a variable
(in-register) length that employs straight binary encoding (e.g., PowerPC’s lswx
instruction).

It is trivial to encode an integer in the range 1 to  into the “zero means ”
encoding—simply mask the integer with  To do the decoding without a
test-and-branch is not quite as simple, but here are some possibilities, illustrated
for a 3-bit field. They all require three instructions, not counting possible loads of
constants.

x y,<
x y,

x y< x y>

ISIGN x y,( ) abs x( )    y 0,,
abs x( )– y 0.<,

=

232

t y 31;>>
s

ISIGN x y,( ) abs x( ) t( ) t–=
 abs x( ) t+( ) t=

t x y( ) 31;>>
s

ISIGN x y,( ) x t( ) t–=
x t+( ) t=

2n

2n 2n

2n 1.–
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2–12  Comparison Predicates
A “comparison predicate” is a function that compares two quantities, producing a
single bit result of 1 if the comparison is true, and 0 if the comparison is false.
Below we show branch-free expressions to evaluate the result into the sign posi-
tion. To produce the 1/0 value used by some languages (e.g., C), follow the code
with a shift right of 31. To produce the  result used by some other languages
(e.g., Basic), follow the code with a shift right signed of 31.

These formulas are, of course, not of interest on machines such as MIPS and
our model RISC, which have comparison instructions that compute many of these
predicates directly, placing a 0/1-valued result in a general purpose register.

A machine instruction that computes the negative of the absolute value is
handy here. We show this function as “nabs.” Unlike absolute value, it is well
defined in that it never overflows. Machines that do not have nabs, but have the
more usual abs, can use  for  If x is the maximum negative

x 1–( ) 7&( ) 1+

x 7+( ) 7&( ) 1+
x 1–( ) 8– | ( ) 9+

x 7+( ) 8– | ( ) 9+

x 7+( ) 8 | ( ) 7–
x 1–( ) 8&( ) x+

8 x– 7&( )–

x– 8– | ( )–

1– 0⁄

x y:= abs x y–( ) 1–
abs x y– 0x80000000+( )
nlz x y–( ) 26<<

nlz x y–( ) 5>>
u( )–

x y– y x– | ( )¬
x y: nabs x y–( )

nlz x y–( ) 32–

x y– y x– | 

x y:< x y–( ) x y( ) x y–( ) x( )&[ ]

x y¬&( ) x y( ) x y–( )&( ) | 
nabs doz y x,( )( )                             [GSO]

x y: x y¬ | ( ) x y( ) y x–( )¬ | ( )&

x y( ) 1>>
s( ) x y¬&( )                    [GSO]+

x y:<u x¬ y&( ) x y( ) x y–( )&( ) | 

x¬ y&( ) x¬ y | ( ) x y–( )&( ) | 

x y:u x¬ y | ( ) x y( ) y x–( )¬ | ( )&

abs x( )– nabs x( ).
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number, this overflows twice, but the result is correct. (We assume that the absolute
value and the negation of the maximum negative number is itself.) Because some
machines have neither abs nor nabs, we give an alternative that does not use them.

The “nlz” function is the number of leading 0’s in its argument. The “doz”
function (difference or zero) is described on page 41. For   and so on,
interchange x and y in the formulas for   and so on. The add of
0x8000 0000 can be replaced with any instruction that inverts the high-order bit
(in x, y, or ).

Another class of formulas can be derived from the observation that the predi-
cate  is given by the sign of  and the subtraction in that expres-
sion cannot overflow. The result can be fixed up by subtracting 1 in the cases in
which the shifts discard essential information, as follows:

These execute in seven instructions on most machines (six if it has and not),
which is no better than what we have above (five to seven instructions, depending
upon the fullness of the set of logic instructions).

The formulas above involving nlz are due to [Shep], and his formula for the
 predicate is particularly useful, because a minor variation of it gets the

predicate evaluated to a 1/0-valued result with only three instructions:

Signed comparisons to 0 are frequent enough to deserve special mention.
There are some formulas for these, mostly derived directly from the above. Again,
the result is in the sign position.

x y,> x y,
x y,< x y,

x y–

x y< x 2⁄ y 2⁄ ,–

x y:<

x y:<u
x 1>>

s( ) y 1>>
s( )– x¬ y 1& &( )–

x 1>>
u( ) y 1>>

u( )– x¬ y 1& &( )–

x y=

nlz x y–( ) 5.>>
u

x 0:= abs x( ) 1–

abs x 0x80000000+( )
nlz x( ) 26<<

nlz x( ) 5>>
u( )–

x x– | ( )¬

x¬ x 1–( )&
x 0: nabs x( )

nlz x( ) 32–

x x– | 

x 1>>
u( ) x               [CWG]–
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Signed comparisons can be obtained from their unsigned counterparts by
biasing the signed operands upward by  and interpreting the results as
unsigned integers. The reverse transformation also works.2 Thus, we have

Similar relations hold for , , and so on. In these relations, one can use addi-
tion, subtraction, or exclusive or with  They are all equivalent, as they simply
invert the sign bit. An instruction like the basic RISC’s add immediate shifted is
useful to avoid loading the constant 

Another way to get signed comparisons from unsigned is based on the fact
that if x and y have the same sign, then  whereas if they have oppo-
site signs, then  [Lamp]. Again, the reverse transformation also
works, so we have

where  and  are the sign bits of x and y, respectively. Similar relations hold
for , , and so on.

Using either of these devices enables computing all the usual comparison
predicates other than = and  in terms of any one of them, with at most three addi-
tional instructions on most machines. For example, let us take  as primitive,
because it is one of the simplest to implement (it is the carry bit from ). Then
the other predicates can be obtained as follows:

2. This is useful to get unsigned comparisons in Java, which lacks unsigned integers.

x 0:< x
x 0: x x 1–( ) | 

x x–¬ | 
x 0:> x nabs x( )

x 1>>
s( ) x–

x– x¬&
x 0: x¬

231

x y< x 231+ y 231+<u ,=

x y<u x 231– y 231.–<=

u

231.

231.

x y< x y,<u=
x y< x y>u=

x y< x y<u( ) x31 y31 and=

x y<u x y<( ) x31 y31,=

x31 y31u

x yu

y x–

x y< y 231+ x 231+u( )¬=

x y x 231+ y 231+u=
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Comparison Predicates from the Carry Bit
If the machine can easily deliver the carry bit into a general purpose register, this
may permit concise code for some of the comparison predicates. Below are  sev-
eral of these relations. The notation carry(expression) means the carry bit gener-
ated by the outermost operation in expression. We assume the carry bit for the
subtraction  is what comes out of the adder for , which is the com-
plement of “borrow.”

For  use the complement of the expression for  and similarly for other
relations involving “greater than.”

The GNU Superoptimizer has been applied to the problem of computing pred-
icate expressions on the IBM RS/6000 computer and its close relative PowerPC
[GK]. The RS/6000 has instructions for abs(x), nabs(x), doz(x, y), and a number of
forms of add and subtract that use the carry bit. It was found that the RS/6000 can

x y> x 231+ y 231+u( )¬=

x y y 231+ x 231+u=

x y<u y xu( )¬=

x y>u x yu( )¬=

x yu y xu=

x y– x y 1+ +

x y:= carry 0 x y–( )–( ), or carry x y+( ) 1+( ), or
carry x y– 1–( ) 1+( )

x y: carry x y–( ) 1–( ), i.e., carry x y–( ) 1–( )+( )

x y:< carry x 231+( ) y 231+( )–( ), or carry x y–( ) x31 y31¬¬

x y: carry y 231+( ) x 231+( )–( ), or carry y x–( ) x31 y31

x y:<u carry x y–( )¬

x y:u carry y x–( )
x 0:= carry 0 x–( ), or carry x 1+( )
x 0: carry x 1–( ), i.e., carry x 1–( )+( )
x 0:< carry x x+( )
x 0: carry 231 x 231+( )–( )

x y,> x y,
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compute all the integer predicate expressions with three or fewer elementary (one-
cycle) instructions, a result that surprised even the architects of the machine. “All”
includes the six two-operand signed comparisons and the four two-operand
unsigned comparisons, all of these with the second operand being 0, and all in
forms that produce a 1/0 result or a –1/0 result. PowerPC, which lacks abs(x),
nabs(x), and doz(x, y), can compute all the predicate expressions in four or fewer
elementary instructions.

How the Computer Sets the Comparison Predicates
Most computers have a way of evaluating the integer comparison predicates to a
1-bit result. The result bit may be placed in a “condition register” or, for some
machines (such as our RISC model), in a general purpose register. In either case,
the facility is often implemented by subtracting the comparison operands and then
performing a small amount of logic on the result bits to determine the 1-bit com-
parison result.

Below is the logic for these operations. It is assumed that the machine com-
putes  as , and the following quantities are available in the result:

Co, the carry out of the high-order position
Ci, the carry into the high-order position
N, the sign bit of the result
Z, which equals 1 if the result, exclusive of Co, is all-0, and is otherwise 0

Then we have the following in Boolean algebra notation (juxtaposition denotes
and, + denotes or):

x y– x y 1+ +

V: Ci Co          (signed overflow)
x y:= Z

x y: Z

x y:< N V
x y: N V( ) Z+

x y:> N V( )Z

x y: N V
x y:<u Co

x y:u Co Z+

x y:>u CoZ
x y:u Co
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2–13  Overflow Detection
“Overflow” means that the result of an arithmetic operation is too large or too
small to be correctly represented in the target register. This section discusses
methods that a programmer might use to detect when overflow has occurred, with-
out using the machine’s “status bits” that are often supplied expressly for this pur-
pose. This is important, because some machines do not have such status bits (e.g.,
MIPS), and even if the machine is so equipped, it is often difficult or impossible to
access the bits from a high-level language.

Signed Add/Subtract
When overflow occurs on integer addition and subtraction, contemporary
machines invariably discard the high-order bit of the result and store the low-order
bits that the adder naturally produces. Signed integer overflow of addition occurs
if and only if the operands have the same sign and the sum has a sign opposite to
that of the operands. Surprisingly, this same rule applies even if there is a carry
into the adder—that is, if the calculation is  This is important for the
application of adding multiword signed integers, in which the last addition is a
signed addition of two fullwords and a carry-in that may be 0 or +1.

To prove the rule for addition, let x and y denote the values of the one-word
signed integers being added, let c (carry-in) be 0 or 1, and assume for simplicity a
4-bit machine. Then if the signs of x and y are different,

or similar bounds apply if x is nonnegative and y is negative. In either case, by
adding these inequalities and optionally adding in 1 for c,

This is representable as a 4-bit signed integer, and thus overflow does not occur
when the operands have opposite signs.

Now suppose x and y have the same sign. There are two cases:

Thus,

x y 1.+ +

8– x 1, and–
0 y 7,

8– x y c+ + 7.

a( )
8– x 1–
8– y 1–

b( )
0 x 7
0 y 7

a( )
16– x y c+ + 1–

b( )
0 x y c+ + 15.
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Overflow occurs if the sum is not representable as a 4-bit signed integer—
that is, if

In case (a), this is equivalent to the high-order bit of the 4-bit sum being 0, which
is opposite to the sign of x and y. In case (b), this is equivalent to the high-order bit
of the 4-bit sum being 1, which again is opposite to the sign of x and y.

For subtraction of multiword integers, the computation of interest is
 where again c is 0 or 1, with a value of 1 representing a borrow-in.

From an analysis similar to the above, it can be seen that overflow in the final
value of  occurs if and only if x and y have opposite signs and the sign of

 is opposite to that of x (or, equivalently, the same as that of y).
This leads to the following expressions for the overflow predicate, with the

result being in the sign position. Following these with a shift right or shift right
signed of 31 produces a 1/0- or a 1/0-valued result.

By choosing the second alternative in the first column, and the first alternative in
the second column (avoiding the equivalence operation), our basic RISC can eval-
uate these tests with three instructions in addition to those required to compute

 or . A fourth instruction (branch if negative) can be added to
branch to code where the overflow condition is handled.

If executing with overflow interrupts enabled, the programmer may wish to
test to see if a certain addition or subtraction will cause overflow, in a way that
does not cause it. One branch-free way to do this is as follows:

The assignment to z in the left column sets  if x and y have the
same sign, and sets  if they differ. Then, the addition in the second expres-
sion is done with  and y having different signs, so it can’t overflow. If x and
y are nonnegative, the sign bit in the second expression will be 1 if and only if

—that is, iff  which is the condition for over-
flow in evaluating  If x and y are negative, the sign bit in the second
expression will be 1 iff —that is, iff  which

a( )
16– x y c+ + 9–

b( )
8 x y c+ + 15.

x y– c,–

x y– c–
x y– c–

x y c+ +

x y( ) x y c+ +( ) x( )&
x y c+ +( ) x( ) x y c+ +( ) y( )&

x y– c–

x y( ) x y– c–( ) x( )&
x y– c–( ) x( ) x y– c–( ) y( )&

x y c+ + x y– c–

x y c+ +

z x y( ) 0x80000000&
z x z( ) y+ c+( ) y( )&

x y– c–

z x y( ) 0x80000000&
z x z( ) y– c–( ) y( )&

z 0x80000000=
z 0=

x z

x 231–( ) y c+ + 0 x y c+ + 231,
x y c.+ +

x 231+( ) y c+ + 0< x y c 231,–<+ +
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again is the condition for overflow. The and with z ensures the correct result (0 in
the sign position) if x and y have opposite signs. Similar remarks apply to the
case of subtraction (right column). The code executes in nine instructions on the
basic RISC.

It might seem that if the carry from addition is readily available, this might
help in computing the signed overflow predicate. This does not seem to be the
case; however, one method along these lines is as follows.

If x is a signed integer, then  is correctly represented as an unsigned
number and is obtained by inverting the high-order bit of x. Signed overflow in the
positive direction occurs if —that is, if 
This latter condition is characterized by carry occurring in the unsigned add
(which means that the sum is greater than or equal to ) and the high-order bit
of the sum being 1. Similarly,  overflow in the negative direction occurs if the
carry is 0 and the high-order bit of the sum is also 0.

This gives the following algorithm for detecting overflow for signed addition:

Compute  giving sum s and carry c.
Overflow occurred iff c equals the high-order bit of s.

The sum is the correct sum for the signed addition, because inverting the high-
order bits of both operands does not change their sum.

For subtraction, the algorithm is the same except that in the first step a sub-
traction replaces the addition. We assume that the carry is that which is generated
by computing  as  The subtraction is the correct difference for the
signed subtraction.

These formulas are perhaps interesting, but on most machines they would not
be quite as efficient as the formulas that do not even use the carry bit (e.g., over-
flow =  for addition, and  for subtraction,
where s and d are the sum and difference, respectively, of x and y).

How the Computer Sets Overflow for Signed Add/Subtract
Machines often set “overflow” for signed addition by means of the logic “the
carry into the sign position is not equal to the carry out of the sign position.” Curi-
ously, this logic gives the correct overflow indication for both addition and sub-
traction, assuming the subtraction  is done by  Furthermore, it is
correct whether or not there is a carry- or borrow-in. This does not seem to lead to
any particularly good methods for computing the signed overflow predicate in
software, however, even though it is easy to compute the carry into the sign posi-
tion. For addition and subtraction, the carry/borrow into the sign position is given
by the sign bit after evaluating the following expressions (where c is 0 or 1):

In fact, these expressions give, at each position i, the carry/borrow into position i.

x 231+

x y+ 231 x 231+( ) y 231+( )+ 3 231.

232

x 231( ) y 231( ),+

x y– x y 1.+ +

x y( ) s x( )& x y( ) d x( )&

x y– x y 1.+ +

carry
x y c+ +( ) x y

borrow
x y– c–( ) x y



ptg8736757

2–13 OVERFLOW DETECTION 31

Unsigned Add/Subtract
The following branch-free code can be used to compute the overflow predicate for
unsigned add/subtract, with the result being in the sign position. The expressions
involving a right shift are probably useful only when it is known that  The
expressions in brackets compute the carry or borrow generated from the least sig-
nificant position.

For unsigned add’s and subtract’s, there are much simpler formulas in terms
of comparisons [MIPS]. For unsigned addition, overflow (carry) occurs if the sum
is less (by unsigned comparison) than either of the operands. This and similar for-
mulas are given below. Unfortunately, there is no way in these formulas to allow
for a variable c that represents the carry- or borrow-in. Instead, the program must
test c, and use a different type of comparison depending upon whether c is 0 or 1.

The first formula for each case above is evaluated before the add/subtract that may
overflow, and it provides a way to do the test without causing overflow. The sec-
ond formula for each case is evaluated after the add/subtract that may overflow.

There does not seem to be a similar simple device (using comparisons) for
computing the signed overflow predicate.

Multiplication
For multiplication, overflow means that the result cannot be expressed in 32 bits
(it can always be expressed in 64 bits, whether signed or unsigned). Checking for
overflow is simple if you have access to the high-order 32 bits of the product. Let
us denote the two halves of the 64-bit product by  and  Then
the overflow predicates can be computed as follows [MIPS]:

c 0.=

x y c, unsigned+ +
x y&( ) x y | ( ) x y c+ +( )¬&( ) | 

x 1>>
u( ) y 1>>

u( ) x y&( ) x y | ( ) c&( ) | ( ) 1&[ ]+ +

x y– c, unsigned–
x¬ y&( ) x y( ) x y– c–( )&( ) | 

x¬ y&( ) x¬ y | ( ) x y– c–( )&( ) | 

x 1>>
u( ) y 1>>

u( )– x¬ y&( ) x¬ y | ( ) c&( ) | ( ) 1&[ ]–

x y, unsigned+

x¬ y<u

x y+ x<u

x y 1, unsigned+ +

x¬ yu

x y 1+ + xu

x y, unsigned–

x y<u

x y– x>u

x y– 1, unsigned–

x yu

x y– 1– xu

hi x y×( ) lo x y×( ).
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One way to check for overflow of multiplication is to do the multiplication
and then check the result by dividing. Care must be taken not to divide by 0, and
there is a further complication for signed multiplication. Overflow occurs if the
following expressions are true:

The complication arises when  and  In this case the multiplica-
tion overflows, but the machine may very well give a result of  This causes
the division to overflow, and thus any result is possible (for some machines).
Therefore, this case has to be checked separately, which is done by the term

 The above expressions use the “conditional and” operator to
prevent dividing by 0 (in C, use the && operator).

It is also possible to use division to check for overflow of multiplication with-
out doing the multiplication (that is, without causing overflow). For unsigned inte-
gers, the product overflows iff  or  or, since x is an
integer,  Expressed in computer arithmetic, this is

For signed integers, the determination of overflow of  is not so simple.
If x and y have the same sign, then overflow occurs iff . If they have
opposite signs, then overflow occurs iff . These conditions can be tested
as indicated in Table 2–2, which employs signed division. This test is awkward to
implement, because of the four cases. It is difficult to unify the expressions very
much because of problems with overflow and with not being able to represent the
number .

The test can be simplified if unsigned division is available. We can use the
absolute values of x and y, which are correctly represented under unsigned integer
interpretation. The complete test can then be computed as shown below. The vari-
able if x and y have the same sign, and  otherwise.

TABLE 2–2.  OVERFLOW TEST FOR SIGNED MULTIPLICATION

x y, unsigned×
hi x y×( ) 0

x y, signed×

hi x y×( ) lo x y×( ) 31>>
s( )

Unsigned
z x y*

y 0 z y÷u x&

Signed
z x y*

y 0< x 231–=&( ) y 0 z y÷ x&( ) | 

x 231–= y 1.–=
231.–

y 0< x 231.–=&

xy 232 1,–> x 232 1–( ) y⁄( ),>
x 232 1–( ) y⁄ .>

y 0 x& 0xFFFFFFFF y÷u( ).>u

x y*
xy 231 1–>

xy 231–<

 231+

c 231 1–= c 231=

y 0> y 0

x 0> x 0x7FFFFFFF y÷> y 0x80000000 x÷<

x 0 x 0x80000000 y÷< x 0 y 0x7FFFFFFF x÷<&
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The number of leading zeros instruction can be used to give an estimate of
whether or not  will overflow, and the estimate can be refined to give an
accurate determination. First, consider the multiplication of unsigned numbers. It
is easy to show that if x and y, as 32-bit quantities, have m and n leading 0’s,
respectively, then the 64-bit product has either  or  leading 0’s (or
64, if either  or ). Overflow occurs if the 64-bit product has fewer
than 32 leading 0’s. Hence,

For  overflow may or may not occur. In this case, the
overflow assessment can be made by evaluating . This will not over-
flow. Since xy is 2t or, if y is odd, 2t + x, the product xy overflows if . These
considerations lead to a plan for computing xy, but branching to “overflow” if the
product overflows. This plan is shown in Figure 2–2.

For the multiplication of signed integers, we can make a partial determination
of whether or not overflow occurs from the number of leading 0’s of nonnegative
arguments, and the number of leading 1’s of negative arguments. Let

   unsigned x, y, z, m, n, t;

   m = nlz(x);
   n = nlz(y);
   if (m + n <= 30) goto overflow;
   t = x*(y >> 1);
   if ((int)t < 0) goto overflow;
   z = t*2;
   if (y & 1) {
      z = z + x;
      if (z < x) goto overflow; 
   }
   // z is the correct product of x and y.

FIGURE 2–2.  Determination of overflow of unsigned multiplication.

c x y( ) 31>>
s( ) 231+

x abs x( )
y abs y( )
y 0 x& c y÷u( )>u

x y*

m n+ m n 1+ +
x 0= y 0=

nlz x( ) nlz y( )+ 32: Multiplication definitely does not overflow.
nlz x( ) nlz y( )+ 30: Multiplication definitely does overflow.

nlz x( ) nlz y( )+ 31,=
t x y 2⁄=

t 231

m nlz x( ) nlz x( ), and+=
n nlz y( ) nlz y( ).+=
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Then, we have

There are two ambiguous cases: 32 and 33. The case  overflows
only when both arguments are negative and the true product is exactly 
(machine result is ), so it can be recognized by a test that the product has the
correct sign (that is, overflow occurred if ). When

, the distinction is not so easily made.
We will not dwell on this further, except to note that an overflow estimate for

signed multiplication can also be made based on  but
again there are two ambiguous cases (a sum of 31 or 32).

Division
For the signed division  overflow occurs if the following expression is true:

Most machines signal overflow (or trap) for the indeterminate form 
Straightforward code for evaluating this expression, including a final branch

to the overflow handling code, consists of seven instructions, three of which are
branches. There do not seem to be any particularly good tricks to improve on this,
but here are a few possibilities:

That is, evaluate the large expression in brackets, and branch if the result is less
than 0. This executes in about nine instructions, counting the load of the constant
and the final branch, on a machine that has the indicated instructions and that gets
the “compare to 0” for free.

Some other possibilities are to first compute z from

(three instructions on many machines), and then do the test and branch on
 in one of the following ways:

These execute in nine, seven, and eight instructions, respectively, on a machine
that has the indicated instructions. The last line represents a good method for
PowerPC.

m n+ 34: Multiplication definitely does not overflow.
m n+ 31: Multiplication definitely does overflow.

m n+ 33=
231

231–
m n m n*( ) 0<

m n+ 32=

nlz abs x( )( ) nlz abs y( )( ),+

x y,÷

y 0= x 0x80000000= y 1–=&( ) | 

0 0÷ .

abs y 0x80000000( ) abs x( ) abs y 0x80000000( )&( ) | [ ] 0<

z x 0x80000000( ) y 1+( ) | 

y 0= z | 0=

y y– | ( ) z z– | ( )&( ) 0
nabs y( ) nabs z( )&( ) 0

nlz y( ) nlz z( ) | ( ) 5>>
u( ) 0
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For the unsigned division , overflow occurs if and only if 
Some machines have a “long division” instruction (see page 192), and you

may want to predict, using elementary instructions, when it would overflow. We
will discuss this in terms of an instruction that divides a doubleword by a fullword,
producing a fullword quotient and possibly also a fullword remainder.

Such an instruction overflows if either the divisor is 0 or if the quotient cannot
be represented in 32 bits. Typically, in these overflow cases both the quotient and
remainder are incorrect. The remainder cannot overflow in the sense of being too
large to represent in 32 bits (it is less than the divisor in magnitude), so the test that
the remainder will be correct is the same as the test that the quotient will be correct.

We assume the machine either has 64-bit general registers or 32-bit registers
and there is no problem doing elementary operations (shifts, adds, and so forth) on
64-bit quantities. For example, the compiler might implement a doubleword inte-
ger data type.

In the unsigned case the test is trivial: for  with x a doubleword and y a
fullword, the division will not overflow if (and only if) either of the following
equivalent expressions is true.

On a 32-bit machine, the shifts need not be done; simply compare y to the register
that contains the high-order half of x. To ensure correct results on a 64-bit machine,
it is also necessary to check that the divisor y is a 32-bit quantity (e.g., check that

).
The signed case is more interesting. It is first necessary to check that 

and, on a 64-bit machine, that y is correctly represented in 32 bits (check that
 Assuming these tests have been done, the table that fol-

lows shows how the tests might be done to determine precisely whether or not the
quotient is representable in 32 bits by considering separately the four cases of the
dividend and divisor each being positive or negative. The expressions in the table
are in ordinary arithmetic, not computer arithmetic.

In each column, each relation follows from the one above it in an if-and-only-
if way. To remove the floor and ceiling functions, some relations from Theorem D1
on page 183 are used.

x y÷u y 0.=

x y÷

y 0 x y 32<<( )<&

y 0 x 32>>
u( ) y<&

y 32>>
u( ) 0=

y 0

y 32<<( ) 32>>
s( ) y).=

x 0 y 0>,

x y⁄ 231<

x y⁄ 231<

x 231y<

x 0 y 0<,

x y⁄ 231–
x y⁄ 231– 1–>

x y⁄ 231– 1–>

x 231y– y–<

x 231 y–( ) y–( )+<

x 0< y 0>,

x y⁄ 231–
x y⁄ 231– 1–>

x y⁄ 231– 1–>

x 231y– y–>

x– 231y y+<

x 0< y 0<,

x y⁄ 231<

x y⁄ 231<

x 231y>

x– 231 y–( )<
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As an example of interpreting this table, consider the leftmost column. It
applies to the case in which  and  In this case the quotient is 
and this must be strictly less than  to be representable as a 32-bit quantity. From
this it follows that the real number x/y must be less than  or x must be less than

 This test can be implemented by shifting y left 31 positions and comparing
the result to x.

When the signs of x and y differ, the quotient of conventional division is
 Because the quotient is negative, it can be as small as 

In the bottom row of each column the comparisons are all of the same type
(less than). Because of the possibility that x is the maximum negative number, in
the third and fourth columns an unsigned comparison must be used. In the first two
columns the quantities being compared begin with a leading 0-bit, so an unsigned
comparison can be used there, too.

These tests can, of course, be implemented by using conditional branches to
separate out the four cases, doing the indicated arithmetic, and then doing a final
compare and branch to the code for the overflow or non-overflow case. However,
branching can be reduced by taking advantage of the fact that when y is negative,
–y is used, and similarly for x. Hence the tests can be made more uniform by using
the absolute values of x and y. Also, using a standard device for optionally doing
the additions in the second and third columns results in the following scheme:

Using the three-instruction method of computing the absolute value (see page 18),
on a 64-bit version of the basic RISC this amounts to 12 instructions, plus a condi-
tional branch.

2–14  Condition Code Result of Add, Subtract, and Multiply
Many machines provide a “condition code” that characterizes the result of integer
arithmetic operations. Often there is only one add instruction, and the character-
ization reflects the result for both unsigned and signed interpretation of the oper-
ands and result (but not for mixed types). The characterization usually consists of
the following: 

• Whether or not carry occurred (unsigned overflow)

• Whether or not signed overflow occurred

• Whether the 32-bit result, interpreted as a signed two’s-complement inte-
ger and ignoring carry and overflow, is negative, 0, or positive

x 0 y 0.> x y⁄ ,
231

231,
231y.

x y⁄ . 231.–

x x=
y y=

x y( ) 63>>
s( ) y&=

if x y 31<<( ) +<u( ) then {will not overflow} 
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Some older machines give an indication of whether the infinite precision
result (that is, 33-bit result for add’s and subtract’s) is positive, negative, or 0.
However, this indication is not easily used by compilers of high-level languages,
and so has fallen out of favor.

For addition, only nine of the 12 combinations of these events are possible.
The ones that cannot occur are “no carry, overflow, result > 0,” “no carry, over-
flow, result = 0,” and “carry, overflow, result < 0.” Thus, four bits are, just barely,
needed for the condition code. Two of the combinations are unique in the sense
that only one value of inputs produces them: Adding 0 to itself is the only way to
get “no carry, no overflow, result = 0,” and adding the maximum negative number
to itself is the only way to get “carry, overflow, result = 0.” 

For subtraction, let us assume that to compute  the machine actually
computes  with the carry produced as for an add (in this scheme the
meaning of “carry” is reversed for subtraction, in that carry = 1 signifies that the
result fits in a single word, and carry = 0 signifies that the result does not fit in a
single word). Then for subtraction, only seven combinations of events are possi-
ble. The ones that cannot occur are the three that cannot occur for addition, plus
“no carry, no overflow, result = 0,” and “carry, overflow, result = 0.”

If a machine’s multiplier can produce a doubleword result, then two multiply
instructions are desirable: one for signed and one for unsigned operands. (On a
4-bit machine, in hexadecimal,  signed, and  unsigned.)
For these instructions, neither carry nor overflow can occur, in the sense that the
result will always fit in a doubleword.

For a multiplication instruction that produces a one-word result (the low-
order word of the doubleword result), let us take “carry” to mean that the result
does not fit in a word with the operands and result interpreted as unsigned inte-
gers, and let us take “overflow” to mean that the result does not fit in a word with
the operands and result interpreted as signed two’s-complement integers. Then
again, there are nine possible combinations of results, with the missing ones being
“no carry, overflow, result > 0,” “no carry, overflow, result = 0,” and “carry, no
overflow, result = 0.” Thus, considering addition, subtraction, and multiplication
together, ten combinations can occur.

2–15  Rotate Shifts
These are rather trivial. Perhaps surprisingly, this code works for n ranging from 0
to 32 inclusive, even if the shifts are mod-32.

If your machine has double-length shifts, they can be used to do rotate shifts.
These instructions might be written

x y–
x y 1,+ +

F F× 01= F F× E1=

Rotate left n: y x n<<( ) x 32 n–( )>>
u( ) | 

Rotate right n: y x n>>
u( ) x 32 n–( )<<( ) | 
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   shldi RT,RA,RB,I
   shrdi RT,RA,RB,I

They treat the concatenation of RA and RB as a single double-length quantity, and
shift it left or right by the amount given by the immediate field I. (If the shift
amount is in a register, the instructions are awkward to implement on most RISCs
because they require reading three registers.) The result of the left shift is the high-
order word of the shifted double-length quantity, and the result of the right shift is
the low-order word.

 Using shldi, a rotate left of Rx can be accomplished by

   shldi RT,Rx,Rx,I

and similarly a rotate right shift can be accomplished with shrdi.
A rotate left shift of one position can be accomplished by adding the contents

of a register to itself with “end-around carry” (adding the carry that results from the
addition to the sum in the low-order position). Most machines do not have that
instruction, but on many machines it can be accomplished with two instructions:
(1) add the contents of the register to itself, generating a carry (into a status regis-
ter), and (2) add the carry to the sum.

2–16  Double-Length Add/Subtract
Using one of the expressions shown on page 31 for overflow of unsigned addition
and subtraction, we can easily implement double-length addition and subtraction
without accessing the machine’s carry bit. To illustrate with double-length addi-
tion, let the operands be  and , and the result be . Sub-
script 1 denotes the most significant half, and subscript 0 the least significant. We
assume that all 32 bits of the registers are used. The less significant words are
unsigned quantities.

This executes in nine instructions. The second line can be  permit-
ting a four-instruction solution on machines that have this comparison operator in
a form that gives the result as a 1 or 0 in a register, such as the “SLTU” (Set on
Less Than Unsigned) instruction on MIPS [MIPS].

Similar code for double-length subtraction  is

x1 x0,( ) y1 y0,( ) z1 z0,( )

z0 x0 y0+

c x0 y0&( ) x0 y0 | ( ) z0¬&( ) | [ ] 31>>
u

z1 x1 y1 c+ +

c z0 x0<u( ),

x y–( )

z0 x0 y0–

b x¬ 0 y0&( ) x0 y0( ) z0&( ) | [ ] 31>>
u

z1 x1 y1– b–
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This executes in eight instructions on a machine that has a full set of logical
instructions. The second line can be  permitting a four-instruction
solution on machines that have the “SLTU” instruction.

Double-length addition and subtraction can be done in five instructions on
most machines by representing the multiple-length data using only 31 bits of the
least significant words, with the high-order bit being 0 except momentarily when
it contains a carry or borrow bit.

2–17  Double-Length Shifts
Let  be a pair of 32-bit words to be shifted left or right as if they were a
single 64-bit quantity, with  being the most significant half. Let  be the
result, interpreted similarly. Assume the shift amount n is a variable ranging from
0 to 63. Assume further that the machine’s shift instructions are modulo 64 or
greater. That is, a shift amount in the range 32 to 63 or –32 to –1 results in an all-0
word, unless the shift is a signed right shift, in which case the result is 32 sign bits
from the word shifted. (This code will not work on the Intel x86 machines, which
have mod-32 shifts.)

Under these assumptions, the shift left double operation can be accomplished
as follows (eight instructions):

The main connective in the first assignment must be or, not plus, to give the cor-
rect result when  If it is known that  the last term of the first
assignment can be omitted, giving a six-instruction solution.

Similarly, a shift right double unsigned operation can be done with

Shift right double signed is more difficult, because of an unwanted sign prop-
agation in one of the terms. Straightforward code follows:

If your machine has the conditional move instructions, it is a simple matter to
express this in branch-free code, in which form it takes eight instructions. If the
conditional move instructions are not available, the operation can be done in ten

b x0 y0<u( ),

x1 x0,( )
x1 y1 y0,( )

y1 x1 n<< x0 32 n–( )>>
u x0 n 32–( )<< |  | 

y0 x0 n<<

n 32.= 0 n 32,

y0 x0 n>>
u x1 32 n–( )<< x1 n 32–( )>>

u |  | 

y1 x1 n>>
u

if n 32<  then y0 x0 n>>
u x1 32 n–( )<< | 

else y0 x1 n 32–( )>>
s

y1 x1 n>>
s
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instructions by using the familiar device of constructing a mask with the shift right
signed 31 instruction to mask the unwanted sign propagating term:

2–18  Multibyte Add, Subtract, Absolute Value
Some applications deal with arrays of short integers (usually bytes or halfwords),
and often execution is faster if they are operated on a word at a time. For definite-
ness, the examples here deal with the case of four 1-byte integers packed into a
word, but the techniques are easily adapted to other packings, such as a word con-
taining a 12-bit integer and two 10-bit integers, and so on. These techniques are of
greater value on 64-bit machines, because more work is done in parallel.

Addition must be done in a way that blocks the carries from one byte into
another. This can be accomplished by the following two-step method:

1. Mask out the high-order bit of each byte of each operand and add (there
will then be no carries across byte boundaries).

2. Fix up the high-order bit of each byte with a 1-bit add of the two operands
and the carry into that bit.

The carry into the high-order bit of each byte is given by the high-order bit of
each byte of the sum computed in step 1. The subsequent similar method works
for subtraction:

These execute in eight instructions, counting the load of 0x7F7F7F7F, on a
machine that has a full set of logical instructions. (Change the and and or of
0x80808080 to and not and or not, respectively, of 0x7F7F7F7F.)

There is a different technique for the case in which the word is divided into
only two fields. In this case, addition can be done by means of a 32-bit addition fol-
lowed by subtracting out the unwanted carry. On page 30 we noted that the expres-
sion  gives the carries into each position. Using this and similar
observations about subtraction gives the following code for adding/subtracting two
halfwords modulo  (seven instructions):

y0 x0 n>>
u x1 32 n–( )<< x1 n 32–( )>>

s( ) 32 n–( ) 31>>
s( )&[ ] |  | 

y1 x1 n>>
s

Addition

s x 0x7F7F7F7F&( ) y 0x7F7F7F7F&( )+

s x y( ) 0x80808080&( ) s

Subtraction

d x 0x80808080 | ( ) y 0x7F7F7F7F&( )–

d x y( ) 0x7F7F7F7F | ( ) d

x y+( ) x y

216
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Multibyte absolute value is easily done by complementing and adding 1 to
each byte that contains a negative integer (that is, has its high-order bit on). The
following code sets each byte of y equal to the absolute value of each byte of x
(eight instructions):

The third line could as well be . The addition of b in the fourth line
cannot carry across byte boundaries, because the quantity  has a high-order
0 in each byte.

2–19  Doz, Max, Min
The “doz” function is “difference or zero,” defined as follows:

It has been called “first grade subtraction” because the result is 0 if you try to take
away too much.3 If implemented as a computer instruction, perhaps its most impor-
tant use is to implement the max(x, y) and min(x, y) functions (in both signed and
unsigned forms) in just two simple instructions, as will be seen. Implementing
max(x, y) and min(x, y) in hardware is difficult because the machine would need
paths from the output ports of the register file back to an input port, bypassing the
adder. These paths are not normally present. If supplied, they would be in a region
that’s often crowded with wiring for register bypasses. The situation is illustrated in
Figure 2–3. The adder is used (by the instruction) to do the subtraction x – y. The
high-order bits of the result of the subtraction (sign bit and carries, as described on
page 27) define whether x y or x < y. The comparison result is fed to a multiplexor

3. Mathematicians name the operation monus and denote it with The terms positive differ-
ence and saturated subtraction are also used.

Addition
s x y+

c s x y( ) 0x00010000&
s s c–

Subtraction
d x y–

b d x y( ) 0x00010000&
d d b+

a x 0x80808080&

b a 7>>
u

m a b–( ) a | 
y x m( ) b+

// Isolate signs.

// Integer 1 where    is negative.

// 0xFF where    is negative.
// Complement and add 1 where negative.

x
x

m a a b–+
x m

Signed

doz x y,( ) x y– ,   x y,
0, x y.<

=

Unsigned

dozu x y,( ) x y– ,   x y,u

0, x y.<u
=

.–.
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(MUX) that selects either x or y as the result to write into the target register. These
paths, from register file outputs x and y to the multiplexor, are not normally present
and would have little use. The difference or zero instructions can be implemented
without these paths because it is the output of the adder (or 0) that is fed back to the
register file.

Using difference or zero, max(x, y) and min(x, y) can be implemented in two
instructions as follows:

In the signed case, the result of the difference or zero instruction can be nega-
tive. This happens if overflow occurs in the subtraction. Overflow should be
ignored; the addition of y or subtraction from x will overflow again, and the result
will be correct. When doz(x, y) is negative, it is actually the correct difference if it
is interpreted as an unsigned integer.

Suppose your computer does not have the difference or zero instructions, but
you want to code doz(x, y), max(x, y), and so forth, in an efficient branch-free way.
In the next few paragraphs we show how these functions might be coded if your
machine has the conditional move instructions, comparison predicates, efficient
access to the carry bit, or none of these. 

If your machine has the conditional move instructions, it can get doz(x, y) in
three instructions, and destructive4 max(x, y) and min(x, y) in two instructions. For
example, on the full RISC,  can be calculated as follows (r0 is a per-
manent zero register):

FIGURE 2–3. Implementing max(x, y) and min(x, y).

4. A destructive operation is one that overwrites one or more of its arguments.

Register File

MUX
x y

Adder

Signed
max x y,( ) y doz x y,( )+=
min x y,( ) x doz x y,( )–=

Unsigned
maxu x y,( ) y dozu x y,( )+=
minu x y,( ) x dozu x y,( )–=

z doz x y,( )
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    sub    z,x,y        Set z = x - y.
    cmplt  t,x,y  Set t = 1 if x < y, else 0.
    movne  z,t,r0   Set z = 0 if x < y.

Also on the full RISC,  can be calculated as follows:

    cmplt  t,x,y  Set t = 1 if x < y, else 0.
    movne  x,t,y    Set x = y if x < y.

The min function, and the unsigned counterparts, are obtained by changing the
comparison conditions.

These functions can be computed in four or five instructions using compari-
son predicates (three or four if the comparison predicates give a result of –1 for
“true”):

On some machines, the carry bit may be a useful aid to computing the
unsigned versions of these functions. Let  denote the bit that comes
out of the adder for the operation  moved to a register. Thus,

 = 1 iff  Then we have

On most machines that have a subtract that generates a carry or borrow, and
another form of subtract that uses that carry or borrow as an input, the expression

 can be computed in one more instruction after the subtraction of y
from x. For example, on the Intel x86 machines,  can be computed in
four instructions as follows:

   sub eax,ecx   ; Inputs x and y are in eax and ecx resp.
   sbb edx,edx   ; edx = 0 if x >= y, else -1.
   and eax,edx   ; 0 if x >= y, else x - y.
   add eax,ecx   ; Add y, giving y if x >= y, else x.

In this way, all three of the functions can be computed in four instructions (three
instructions for  if the machine has and with complement).

x max x y,( )

doz x y,( ) x y–( ) x y( )–&=
max x y,( ) y doz x y,( )+=

x y( ) x y( )–&( ) y=
min x y,( ) x doz x y,( )–=

x y( ) x y( )–&( ) y=

carry x y–( )
x y 1,+ +

carry x y–( ) x y.

dozu x y,( ) x y–( ) carry x y–( ) 1–( )¬&( )=

maxu x y,( ) x x y–( ) carry x y–( ) 1–( )&( )–=

minu x y,( ) y x y–( ) carry x y–( ) 1–( )&( )+=

carry x y–( ) 1–
minu x y,( )

dozu x y,( )
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A method that applies to nearly any RISC is to use one of the above expres-
sions that employ a comparison predicate, and to substitute for the predicate one of
the expressions given on page 23. For example:

These require from seven to ten instructions, depending on the computer’s instruc-
tion set, plus one more to get max or min.

These operations can be done in four branch-free basic RISC instructions if it
is known that  (that is an expression in ordinary arithmetic,
not computer arithmetic). The same code works for both signed and unsigned inte-
gers, with the same restriction on x and y. A sufficient condition for these formulas
to be valid is that, for signed integers,  and for unsigned inte-
gers,

Some uses of the difference or zero instruction are given here. In these, the
result of doz(x, y) must be interpreted as an unsigned integer.

1. It directly implements the Fortran IDIM function.

2. To compute the absolute value of a difference [Knu7]:

Corollary:  (other three-instruction solutions
are given on page 18).

3. To clamp the upper limit of the true sum of unsigned integers x and y to
the maximum positive number  [Knu7]:

4. Some comparison predicates (four instructions each):

d x y–
doz x y,( ) d d x y( ) d x( )&( )( ) 31>>

s[ ]&=

dozu x y,( ) d x¬ y&( ) x y( ) d&( ) | ( ) 31>>
s[ ]¬&=

231– x y– 231 1–

230– x y, 230 1,–
0 x y, 231 1.–

doz x y,( ) dozu x y,( ) x y–( ) x y–( ) 31>>
s( )¬&= =

max x y,( ) maxu x y,( ) x x y–( ) x y–( ) 31>>
s( )&( )–= =

min x y,( ) minu x y,( ) y x y–( ) x y–( ) 31>>
s( )&( )+= =

x y– doz x y,( ) doz y x,( ),       signed arguments,+=
dozu x y,( ) dozu y x,( ),   unsigned arguments.+=

x doz x 0,( ) doz 0 x,( )+=

232 1–( )

dozu x¬ y,( ).¬

x y> doz x y,( ) doz x y,( )– | ( ) 31,>>
u=

x y>u dozu x y,( ) dozu x y,( )– | ( ) 31.>>
u=
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5. The carry bit from the addition x + y (five instructions):

The expression doz(x, –y), with the result interpreted as an unsigned integer, is
in most cases the true sum x + y with the lower limit clamped at 0. However, it fails
if y is the maximum negative number and x is not.

The IBM RS/6000 computer, and its predecessor the 801, have the signed ver-
sion of difference or zero. Knuth’s MMIX computer [Knu7] has the unsigned ver-
sion (including some varieties that operate on parts of words in parallel). This
raises the question of how to get the signed version from the unsigned version, and
vice versa. This can be done as follows (where the additions and subtractions sim-
ply complement the sign bit):

Some other identities that may be useful are:

The relation  fails if either x or y, but not both, is the max-
imum negative number.

2–20  Exchanging Registers
A very old trick is exchanging the contents of two registers without using a third
[IBM]:

This works well on a two-address machine. The trick also works if ⊕ is
replaced by the ≡ logical operation (complement of exclusive or) and can be made
to work in various ways with add’s and subtract’s:

Unfortunately, each of these has an instruction that is unsuitable for a two-address
machine, unless the machine has “reverse subtract.”

carry x y+( ) x y¬>u dozu x y¬,( ) dozu x y¬,( )– | ( ) 31.>> u= =

doz x y,( ) dozu x 231 y 231+,+( ),=
dozu x y,( ) doz x 231 y 231–,–( ).=

doz x y¬,¬( ) doz y x,( ),=
dozu x¬ y¬,( ) dozu y x,( ).=

doz x y–,–( ) doz y x,( )=

x x y⊕←
y y x⊕←
x x y⊕←

x x y+←
y x y–←
x x y–←

                    
x x y–←
y y x+←
x y x–←

                    
x y x–←
y y x–←
x x y+←
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This little trick can actually be useful in the application of double buffering,
in which two pointers are swapped. The first instruction can be factored out of the
loop in which the swap is done (although this negates the advantage of saving a
register):

Exchanging Corresponding Fields of Registers
The problem here is to exchange the contents of two registers x and y wherever a
mask bit  and to leave x and y unaltered wherever  By “corre-
sponding” fields, we mean that no shifting is required. The 1-bits of m need not be
contiguous. The straightforward method is as follows:

By using “temporaries” for the four and expressions, this can be seen to require
seven instructions, assuming that either m or  can be loaded with a single
instruction and the machine has and not as a single instruction. If the machine is
capable of executing the four (independent) and expressions in parallel, the execu-
tion time is only three cycles.

A method that is probably better (five instructions, but four cycles on a
machine with unlimited instruction-level parallelism) is shown in column (a)
below. It is suggested by the “three exclusive or” code for exchanging registers.

The steps in column (b) do the same exchange as that of column (a), but column
(b) is useful if m does not fit in an immediate field, but  does, and the machine
has the equivalence instruction.

Still another method is shown in column (c) above [GLS1]. It also takes five
instructions (again assuming one instruction must be used to load m into a regis-
ter), but executes in only three cycles on a machine with sufficient instruction-
level parallelism.

Outside the loop: t x y
Inside the loop: x x t

y y t

mi 1,= mi 0.=

x' x m&( ) y m&( ) | 

y y m&( ) x m&( ) | 
x x'

m

(a)
x x y
y y x m&( )
x x y

(b)
x x y
y y x m | ( )
x x y

          (c)

t x y( ) m&
x x t
y y t

m
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Exchanging Two Fields of the Same Register
Assume a register x has two fields (of the same length) that are to be swapped,
without altering other bits in the register. That is, the object is to swap fields B and
D without altering fields A, C, and E, in the computer word illustrated below. The
fields are separated by a shift distance k.

Straightforward code would shift D and B to their new positions, and com-
bine the words with and and or operations, as follows:

Here, m is a mask with 1’s in field D (and 0’s elsewhere), and m′ is a mask with
1’s in fields A, C, and E. This code requires 11 instructions and five cycles on a
machine with unlimited instruction-level parallelism, allowing for four instruc-
tions to generate the two masks.

A method that requires only eight instructions and executes in five cycles,
under the same assumptions, is shown below [GLS1]. It is similar to the code in
column (c) on page 46 for interchanging corresponding fields of two registers.
Again, m is a mask that isolates field D.

The idea is that  contains  in position D (and 0’s elsewhere), and  con-
tains  in position B. This code, and the straightforward code given earlier,
work correctly if B and D are “split fields”—that is, if the 1-bits of mask m are not
contiguous.

Conditional Exchange
The exchange methods of the preceding two sections, which are based on exclu-
sive or, degenerate into no-operations if the mask m is 0. Hence, they can perform
an exchange of entire registers, or of corresponding fields of two registers, or of
two fields of the same register, if m is set to all 1’s if some condition c is true, and
to all 0’s if c is false. This gives branch-free code if m can be set up without
branching.

A Ex:

k

DCB

t1 x m&( ) k<<=

t2 x k>> u( ) m&=

x′ x m′&( ) t1 t2 |  | =

t1 x x k>> u( )⊕[ ] m&=

t2 t1 k<<=

x′ x t1 t2⊕ ⊕=

t1 B D⊕ t2
B D⊕



ptg8736757

48 BASICS 2–21

2–21  Alternating among Two or More Values
Suppose a variable x can have only two possible values a and b, and you wish to
assign to x the value other than its current one, and you wish your code to be inde-
pendent of the values of a and b. For example, in a compiler x might be an opcode
that is known to be either branch true or branch false, and whichever it is, you
want to switch it to the other. The values of the opcodes branch true and branch
false are arbitrary, probably defined by a C #define or enum declaration in a
header file.

The straightforward code to do the switch is

    if (x == a) x = b;
    else x = a;

or, as is often seen in C programs,

    x = x == a ? b : a;

A far better (or at least more efficient) way to code it is either

If a and b are constants, these require only one or two basic RISC instructions. Of
course, overflow in calculating  can be ignored.

This raises the question: Is there some particularly efficient way to cycle
among three or more values? That is, given three arbitrary but distinct constants a,
b, and c, we seek an easy-to-evaluate function f that satisfies

It is perhaps interesting to note that there is always a polynomial for such a
function. For the case of three constants,

(5)

(The idea is that if  the first and last terms vanish, and the middle term sim-
plifies to b, and so on.) This requires 14 arithmetic operations to evaluate, and for
arbitrary a, b, and c, the intermediate results exceed the computer’s word size. But it
is just a quadratic; if written in the usual form for a polynomial and evaluated using

x a b x,   or–+
x a b x.

a b+

f a( ) b,=
f b( ) c,   and=
f c( ) a.=

f x( ) x a–( ) x b–( )
c a–( ) c b–( )

---------------------------------a x b–( ) x c–( )
a b–( ) a c–( )

---------------------------------b x c–( ) x a–( )
b c–( ) b a–( )

---------------------------------c.+ +=

x a,=
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Horner’s rule,5 it would require only five arithmetic operations (four for a quadratic
with integer coefficients, plus one for a final division). Rearranging Equation (5)
accordingly gives

This is getting too complicated to be interesting, or practical.
Another method, similar to Equation (5) in that just one of the three terms

survives, is

This takes 11 instructions if the machine has the equal predicate, not counting
loads of constants. Because the two addition operations are combining two 0 val-
ues with a nonzero, they can be replaced with or or exclusive or operations.

The formula can be simplified by precalculating  and  and then
using [GLS1]:

Each of these operations takes eight instructions, but on most machines these are
probably no better than the straightforward C code shown below, which executes
in four to six instructions for small a, b, and c.

Pursuing this matter, there is an ingenious branch-free method of cycling
among three values on machines that do not have comparison predicate instruc-
tions [GLS1]. It executes in eight instructions on most machines.

Because a, b, and c are distinct, there are two bit positions,  and , where
the bits of a, b, and c are not all the same, and where the “odd one out” (the one

5. Horner’s rule simply factors out x. For example, it evaluates the fourth-degree polynomial
 as  For a polynomial of degree n

it takes n multiplications and n additions, and it is very suitable for the multiply-add
instruction.

   if (x == a) x = b;
   else if (x == b) x = c;
   else x = a;

ax4 bx3 cx2 dx e+ + + + x x x ax b+( ) c+( ) d+( ) e.+

f x( ) 1
a b–( ) a c–( ) b c–( )

-------------------------------------------------- a b–( )a b c–( )b c a–( )c+ +[ ]x2{=

a b–( )b2 b c–( )c2 c a–( )a2+ +[ ]x+
a b–( )a2b b c–( )b2c c a–( )ac2+ +[ ] }+ .

f x( ) x = c( )–( ) a&( ) x = a( )–( ) b&( ) x = b( )–( ) c&( ).+ +=

a c– b c,–

f x( ) x = c( )–( ) a c–( )&( ) x = a( )–( ) b c–( )&( ) c,   or+ +=

f x( ) x = c( )–( ) a c( )&( ) x = a( )–( ) b c( )&( ) c.=

n1 n2
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whose bit differs in that position from the other two) is different in positions 
and  This is illustrated below for the values 21, 31, and 20, shown in binary.

Without loss of generality, rename a, b, and c so that a has the odd one out
in position  and b has the odd one out in position  as shown above. Then
there are two possibilities for the values of the bits at position  namely

 = (0, 1, 1) or (1, 0, 0). Similarly, there are two possibilities for the
bits at position  namely  = (0, 1, 0) or (1, 0, 1). This makes four
cases in all, and formulas for each of these cases are shown below.

Case 1.  = (0, 1, 1),  = (0, 1, 0):

Case 2.  = (0, 1, 1),  = (1, 0, 1):

Case 3.  = (1, 0, 0),  = (0, 1, 0):

Case 4.  = (1, 0, 0),  = (1, 0, 1):

In these formulas, the left operand of each multiplication is a single bit. A
multiplication by 0 or 1 can be converted into an and with a value of 0 or all 1’s.
Thus, the formulas can be rewritten as illustrated below for the first formula.

Because all variables except x are constants, this can be evaluated in eight instruc-
tions on the basic RISC. Here again, the additions and subtractions can be
replaced with exclusive or.

This idea can be extended to cycling among four or more constants. The
essence of the idea is to find bit positions   at which the bits uniquely
identify the constants. For four constants, three bit positions always suffice. Then

n1
n2.

1 0 1 0 1    c
1 1 1 1 1    a
1 0 1 0 0    b
 n1   n2   

n1 n2,
n1,

an1
bn1

cn1
, ,( )

n2, an2
bn2

cn2
, ,( )

an1
bn1

cn1
, ,( ) an2

bn2
cn2

, ,( )

f x( ) xn1
a b–( )* xn2

c a–( )* b+ +=

an1
bn1

cn1
, ,( ) an2

bn2
cn2

, ,( )

f x( ) xn1
a b–( )* xn2

a c–( )* b c a–+( )+ +=

an1
bn1

cn1
, ,( ) an2

bn2
cn2

, ,( )

f x( ) xn1
b a–( )* xn2

c a–( )* a+ +=

an1
bn1

cn1
, ,( ) an2

bn2
cn2

, ,( )

f x( ) xn1
b a–( )* xn2

a c–( )* c+ +=

f x( ) x 31 n1–( )<<( ) 31>> 
s( ) a b–( )&( ) x 31 n2–( )<<( ) 31>> 

s( ) c a–( )&( ) b+ +=

n1, n2, …,
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(for four constants) solve the following equation for s, t, u, and v (that is, solve the
system of four linear equations in which  is a, b, c, or d, and the coefficients

 are 0 or 1):

If the four constants are uniquely identified by only two bit positions, the equation
to solve is

2–22  A Boolean Decomposition Formula
In this section, we have a look at the minimum number of binary Boolean opera-
tions, or instructions, that suffice to implement any Boolean function of three, four,
or five variables. By a “Boolean function” we mean a Boolean-valued function of
Boolean arguments.

Our notation for Boolean algebra uses “+” for or, juxtaposition for and,  for
exclusive or, and either an overbar or a prefix ¬ for not. These operators can be
applied to single-bit operands or “bitwise” to computer words. Our main result is
the following theorem:

THEOREM.  If f(x, y, z) is a Boolean function of three variables, then it can
be decomposed into the form g(x, y)  zh(x, y), where g and h are Bool-
ean functions of two variables.6

Proof [Ditlow]. f(x, y, z) can be expressed as a sum of minterms, and then 
and z can be factored out of their terms, giving

Because the operands to “+” cannot both be 1, the or can be replaced with exclu-
sive or, giving

where we have twice used the identity 

6. Logic designers will recognize this as Reed-Muller, a.k.a positive Davio, decomposition.
According to Knuth [Knu4, 7.1.1], it was known to I. I. Zhegalkin [Matematicheskii Sbornik
35 (1928), 311–369]. It is sometimes referred to as the Russian decomposition.

f x( )
xni

f x( ) xn1
s xn2

t xn3
u v+ + +=

f x( ) xn1
s xn2

t xn1
xn2

u v.+ + +=

z

f x y z, ,( ) zf0 x y,( ) zf1 x y,( ).+=

f x y z, ,( ) zf0 x y,( ) zf1 x y,( )=

 1 z( )f0 x y,( ) zf1 x y,( )=

f0 x y,( ) zf0 x y,( ) zf1 x y,( )=

f0 x y,( ) z f0 x y,( ) f1 x y,( )( ),=

a b( )c ac bc.=
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This is in the required form with  and  =
  incidentally, is  with  and  is

 with 

COROLLARY. If a computer’s instruction set includes an instruction for
each of the 16 Boolean functions of two variables, then any Boolean
function of three variables can be implemented with four (or fewer)
instructions.

One instruction implements  another implements  and these are
combined with and and exclusive or.

As an example, consider the Boolean function that is 1 if exactly two of x, y,
and z are 1:

Before proceeding, the interested reader might like to try to implement f with four
instructions, without using the theorem.

From the proof of the theorem,

which is four instructions.
Clearly, the theorem can be extended to functions of four or more variables.

That is, any Boolean function  can be decomposed into the form
 Thus, a function of four variables can

be decomposed as follows:

This shows that a computer that has an instruction for each of the 16 binary Bool-
ean functions can implement any function of four variables with ten instructions.
Similarly, any function of five variables can be implemented with 22 instructions.

However, it is possible to do much better. For functions of four or more vari-
ables there is probably no simple plug-in equation like the theorem gives, but
exhaustive computer searches have been done. The results are that any Boolean
function of four variables can be implemented with seven binary Boolean instruc-
tions, and any such function of five variables can be implemented with 12 such
instructions [Knu4, 7.1.2].

g x y,( ) f0 x y,( )= h x y,( )
f0 x y,( ) f1 x y,( ). f0 x y,( ), f x y z, ,( ) z 0,= f1 x y,( )
f x y z, ,( ) z 1.=

g x y,( ), h x y,( ),

f x y z, ,( ) xyz xyz xyz.+ +=

f x y z, ,( ) f0 x y,( ) z f0 x y,( ) f1 x y,( )( )=

xy z xy xy xy+( )( )=
xy z x y+( ),=

f x1 x2 … xn, , ,( )
g x1 x2 … xn 1–, , ,( ) xnh x1 x2 … xn 1–, , ,( ).

f w x y z, , ,( ) g w x y, ,( ) zh w x y, ,( ), where=
g w x y, ,( ) g1 w x,( ) yh1 w x,( ) and=

h w x y, ,( ) g2 w x,( ) yh2 w x,( ).=
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In the case of five variables, only 1920 of the  functions
require 12 instructions, and these 1920 functions are all essentially the same func-
tion. The variations are obtained by permuting the arguments, replacing some
arguments with their complements, or complementing the value of the function.

2–23  Implementing Instructions for All 16 Binary Boolean 
Operations
The instruction sets of some computers include all 16 binary Boolean operations.
Many of the instructions are useless in that their function can be accomplished with
another instruction. For example, the function f(x, y) = 0 simply clears a register,
and most computers have a variety of ways to do that. Nevertheless, one reason a
computer designer might choose to implement all 16 is that there is a simple and
quite regular circuit for doing it.

Refer to Table 2–1 on page 17, which shows all 16 binary Boolean functions.
To implement these functions as instructions, choose four of the opcode bits to be
the same as the function values shown in the table. Denoting these opcode bits by

   and  reading from the bottom up in the table, and the input registers
by x and y, the circuit for implementing all 16 binary Boolean operations is
described by the logic expression

For example, with = = = = 0, the instruction computes the zero func-
tion, f(x, y) = 0. With = 1 and the other opcode bits 0 it is the and instruction.
With = = 0 and = = 1 it is exclusive or, and so forth.

This can be implemented with n 4:1 MUXs, where n is the word size of the
machine. The data bits of x and y are the select lines, and the four opcode bits are
the data inputs to each MUX. The MUX is a standard building block in today’s
technology, and it is usually a very fast circuit. It is illustrated below.

The function of the circuit is to select c0, c1, c2, or c3 to be the output, depending on
whether x and y are 00, 01, 10, or 11, respectively. It is like a four-position rotary switch.

Elegant as this is, it is somewhat expensive in opcode points, using 16 of them.
There are a number of ways to implement all 16 Boolean operations using only
eight opcode points, at the expense of less regular logic. One such scheme is illus-
trated in Table 2–3.

225 4,294,967,296=

c0, c1, c2, c3,

c0xy c1xy c2xy c3xy.+ + +

c0 c1 c2 c3
c0

c0 c3 c1 c2

  4:1
MUX

select

x y

c0

c1
c2
c3

output
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The eight operations not shown in the table can be done with the eight instruc-
tions shown, by interchanging the inputs or by having both register fields of the
instruction refer to the same register. See exercise 13.

IBM’s POWER architecture uses this scheme, with the minor difference that
POWER has or with complement rather than complement and or. The scheme
shown in Table 2–3 allows the last four instructions to be implemented by comple-
menting the result of the first four instructions, respectively.

Historical Notes
The algebra of logic expounded in George Boole’s An Investigation of the Laws of
Thought (1854)7 is somewhat different from what we know today as “Boolean
algebra.” Boole used the integers 1 and 0 to represent truth and falsity, respec-
tively, and he showed how they could be manipulated with the methods of ordinary
numerical algebra to formalize natural language statements involving “and,” “or,”
and “except.” He also used ordinary algebra to formalize statements in set theory
involving intersection, union of disjoint sets, and complementation. He also for-
malized statements in probability theory, in which the variables take on real num-
ber values from 0 to 1. The work often deals with questions of philosophy, religion,
and law.

Boole is regarded as a great thinker about logic because he formalized it,
allowing complex statements to be manipulated mechanically and flawlessly with
the familiar methods of ordinary algebra.

Skipping ahead in history, there are a few programming languages that include
all 16 Boolean operations. IBM’s PL/I (ca. 1966) includes a built-in function
named BOOL. In BOOL(x, y, z), z is a bit string of length four (or converted to that

TABLE 2–3. EIGHT SUFFICIENT BOOLEAN INSTRUCTIONS

Function
Values Formula

Instruction
Mnemonic (Name)

0001 and
0010 andc (and with complement)
0110 xor (exclusive or)
0111 or
1110 nand (negative and)

1101 cor (complement and or)

1001 eqv (equivalence)

1000 nor (negative or)

7. The entire 335-page work is available at www.gutenberg.org/etext/15114.

xy
xy

x y
x y+

xy
xy, or x y+

x y, or x y
x y+

http://www.gutenberg.org/etext/15114
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if necessary), and x and y are bit strings of equal length (or converted to that if nec-
essary). Argument z specifies the Boolean operation to be performed on x and y.
Binary 0000 is the zero function, 0001 is xy, 0010 is  and so forth.

Another such language is Basic for the Wang System 2200B computer (ca.
1974), which provides a version of BOOL that operates on character strings rather
than on bit strings or integers [Neum].

Still another such language is MIT PDP-6 Lisp, later called MacLisp [GLS1].

Exercises

1. David de Kloet suggests the following code for the snoob function, for 
where the final assignment to y is the result:

This is essentially the same as Gosper’s code (page 15), except the right shift
is done with a while-loop rather than with a divide instruction. Because divi-
sion is usually costly in time, this might be competitive with Gosper’s code if
the while-loop is not executed too many times. Let n be the length of the bit
strings x and y, k the number of 1-bits in the strings, and assume the code is
executed for all values of x that have exactly k 1-bits. Then for each invocation
of the function, how many times, on average, will the body of the while-loop
be executed?

2. The text mentions that a left shift by a variable amount is not right-to-left com-
putable. Consider the function  [Knu8]. This is a left shift by a
variable amount, but it can be computed by

which are all right-to-left computable operations. What is going on here? Can
you think of another such function?

3. Derive Dietz’s formula for the average of two unsigned integers,

xy,

x 0,

y x x x–&( )+

x x y¬&

while x 1&( ) = 0( ) x x 1>>
s

x x 1>>
s

y y x | 

x x 1&( )<<

x x 1&( )*x,   or+
x x x 1&( )–( )&( ),+

x y&( ) x y( ) 1>>
u( ).+
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4. Give an overflow-free method for computing the average of four unsigned
integers,

5. Many of the comparison predicates shown on page 23 can be simplified sub-
stantially if bit 31 of either x or y is known. Show how the seven-instruction
expression for  can be simplified to three basic RISC, non-comparison,
instructions if

6. Show that if two numbers, possibly distinct, are added with “end-around
carry,” the addition of the carry bit cannot generate another carry out of the
high-order position.

7. Show how end-around carry can be used to do addition if negative numbers
are represented in one’s-complement notation. What is the maximum number
of bit positions that a carry (from any bit position) might be propagated
through?

8. Show that the MUX operation, (x & m) | (y & ~m), can be done in three
instructions on the basic RISC (which does not have the and with complement
instruction).

9. Show how to implement  in four instructions with and-or-not logic.

10. Given a 32-bit word x and two integer variables i and j (in registers), show
code to copy the bit of x at position i to position j. The values of i and j have
no relation, but assume that 

11. How many binary Boolean instructions are sufficient to evaluate any n-variable
Boolean function if it is decomposed recursively by the method of the theorem?

12. Show that alternative decompositions of Boolean functions of three variables
are
(a)  (the “negative Davio decomposition”), and
(b)

13. It is mentioned in the text that all 16 binary Boolean operations can be done
with the eight instructions shown in Table 2-3, by interchanging the inputs or
by having both register fields of the instruction refer to the same register.
Show how to do this.

14. Suppose you are not concerned about the six Boolean functions that are really
constants or unary functions, namely f(x, y) = 0, 1, x, y,  and  but you want
your instruction set to compute the other ten functions with one instruction.
Can this be done with fewer than eight binary Boolean instruction types
(opcodes)?

15. Exercise 13 shows that eight instruction types suffice to compute any of the 16
two-operand Boolean operations with one R-R (register-register) instruction.
Show that six instruction types suffice in the case of R-I (register-immediate)

a b c d+ + +( ) 4⁄ .

x yu

y31 0.=

x y

0 i j, 31.

f x y z, ,( ) g x y,( ) zh x y,( )=
f x y z, ,( ) g x y,( ) z h x y,( )+( ).=

x, y,
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instructions. With R-I instructions, the input operands cannot be interchanged
or equated, but the second input operand (the immediate field) can be comple-
mented or, in fact, set to any value at no cost in execution time. Assume for
simplicity that the immediate fields are the same length as the general purpose
registers.

16. Show that not all Boolean functions of three variables can be implemented
with three binary logical instructions.
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 CHAPTER  3 

POWER-OF-2 BOUNDARIES

3–1  Rounding Up/Down to a Multiple of a Known Power of 2
Rounding an unsigned integer x down to, for example, the next smaller multiple
of 8 is trivial:  does it. An alternative is  These work for
signed integers as well, provided “round down” means to round in the negative
direction (e.g., ).

Rounding up is almost as easy. For example, an unsigned integer x can be
rounded up to the next greater multiple of 8 with either of

These expressions are correct for signed integers as well, provided “round up”
means to round in the positive direction. The second term of the second expres-
sion is useful if you want to know how much you must add to x to make it a mul-
tiple of 8 [Gold].

To round a signed integer to the nearest multiple of 8 toward 0, you can com-
bine the two expressions above in an obvious way:

An alternative for the first line is  which is useful if the
machine lacks and immediate, or if the constant is too large for its immediate
field.

Sometimes the rounding factor is given as the log2 of the alignment amount
(e.g., a value of 3 means to round to a multiple of 8). In this case, code such as the
following can be used, where k = log2(alignment amount):

x 8–& x 3>>
u( ) 3.<<

37–( ) 8–( )& 40–=

x 7+( ) 8,   or–&

x x– 7&( ).+

t x 31>>
s( ) 7;&

x t+( ) 8–&

t x 2>>
s( ) 29>>

u ,

round down: x 1–( ) k<<( )&

x k>>
u( ) k<<

round up: t 1 k<<( ) 1– ; x t+( ) t¬&

t 1–( ) k<< ; x t– 1–( ) t&
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3–2  Rounding Up/Down to the Next Power of 2
We define two functions that are similar to floor and ceiling, but which are
directed roundings to the closest integral power of 2, rather than to the closest
integer. Mathematically, they are defined by

The initial letters of the function names are intended to suggest “floor” and “ceil-
ing.” Thus,  is the greatest power of 2 that is  and  is the least
power of 2 that is  These definitions make sense even when x is not an integer
(e.g., flp2(0.1) = 0.0625). The functions satisfy several relations analogous to those
involving floor and ceiling, such as those shown below, where n is an integer.

Computationally, we deal only with the case in which x is an integer, and we
take it to be unsigned, so the functions are well defined for all x. We require the
value computed to be the arithmetically correct value modulo  (that is, we
take  to be 0 for ). The functions are tabulated below for a few
values of x.

flp2 x( )
undefined,
0,

2 log2x ,

x 0,<
x 0,=
otherwise;

= clp2 x( )
undefined,
0,

2 log2x ,

x 0,<
x 0,=
otherwise.

=

flp2 x( ) x, clp2 x( )
x.

x x   iff x is an integer=
x n+ x n+=
x x––=

flp2 x( ) clp2 x( )  iff x is a power of 2 or is 0=
flp2 2nx( ) 2nflp2 x( )=
clp2 x( ) 1 flp2 1 x⁄( )⁄ , x 0=

232

clp2 x( ) x 231>

x
0
1
2
3
4
5
…

231 1–
231

231 1+
…

232 1–

flp2 x( )
0
1
2
2
4
4

…

230

231

231

…

231

clp2 x( )
0
1
2
4
4
8
…

231

231

0
…
0
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Functions flp2 and clp2 are connected by the relations shown below. These
can be used to compute one from the other, subject to the indicated restrictions.

The round-up and round-down functions can be computed quite easily with
the number of leading zeros instruction, as shown below. However, for these rela-
tions to hold for  and  the computer must have its shift instructions
defined to produce 0 for shift amounts of –1, 32, and 63. Many machines (e.g.,
PowerPC) have “mod-64” shifts, which do this. In the case of –1, it is adequate if
the machine shifts in the opposite direction (that is, a shift left of –1 becomes a
shift right of 1).

Rounding Down
Figure 3–1 illustrates a branch-free algorithm that might be useful if number of
leading zeros is not available. This algorithm is based on right-propagating the
leftmost 1-bit, and executes in 12 instructions.

Figure 3–2 shows two simple loops that compute the same function. All vari-
ables are unsigned integers. The loop on the right keeps turning off the rightmost
1-bit of x until  and then returns the previous value of x.

unsigned flp2(unsigned x) {
   x = x | (x >> 1);
   x = x | (x >> 2);
   x = x | (x >> 4);
   x = x | (x >> 8);
   x = x | (x >> 16);
   return x - (x >> 1);
}

FIGURE 3–1.  Greatest power of 2 less than or equal to x, branch free.

clp2 x( ) 2 flp2 x 1–( ),         x 1,=
flp2 2x 1–( ),         1 x 231,=

flp2 x( ) clp2 x 2÷u 1+( ),     x 0,=

clp2 x 1+( ) 2÷u , x 231.<=

x 0= x 231,>

flp2 x( ) 1 31 nlz x( )–( )<<=
1 nlz x( ) 31( )<<=

0x80000000 nlz x( )>>
u=

clp2 x( ) 1 32 nlz x 1–( )–( )<<=

0x80000000 nlz x 1–( ) 1–( )>>
u=

x 0,=
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The loop on the left executes in  instructions. The loop on the
right, for  executes in  instructions,1 if the comparison to 0 is
zero-cost.

Rounding Up
The right-propagation trick yields a good algorithm for rounding up to the next
power of 2. This algorithm, shown in Figure 3–3, is branch free and runs in 12
instructions.

An attempt to compute this with the obvious loop does not work out very well:

   y = 1;

   while (y < x)     // Unsigned comparison.
      y = 2*y;
   return y;

This code returns 1 for  which is probably not what you want, loops for-
ever for , and executes in  instructions, where n is the power of 2 of
the returned integer. Thus, it is slower than the branch-free code, in terms of
instructions executed, for  ( ).

   y = 0x80000000;           do {
   while (y > x)                y = x;
      y = y >> 1;               x = x & (x - 1);
   return y;                 } while(x != 0);
                             return y;

FIGURE 3–2.  Greatest power of 2 less than or equal to x, simple loops.

1. pop(x) is the number of 1-bits in x.

unsigned clp2(unsigned x) {
   x = x - 1;
   x = x | (x >> 1);
   x = x | (x >> 2);
   x = x | (x >> 4);
   x = x | (x >> 8);
   x = x | (x >> 16);
   return x + 1;
}

FIGURE 3–3.  Least power of 2 greater than or equal to x.

4 nlz x( ) 3+
x 0,≠ 4 pop x( )

x 0,=
x 231> 4n 3+

n 3≥ x 8≥
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3–3  Detecting a Power-of-2 Boundary Crossing
Assume memory is divided into blocks that are a power of 2 in size, starting at
address 0. The blocks may be words, doublewords, pages, and so on. Then, given
a starting address a and a length l, we wish to determine whether or not the
address range from a to   crosses a block boundary. The quantities
a and l are unsigned and any values that fit in a register are possible.

If  or 1, a boundary crossing does not occur, regardless of a. If l
exceeds the block size, a boundary crossing does occur, regardless of a. For very
large values of l (wraparound is possible), a boundary crossing can occur even if
the first and last bytes of the address range are in the same block. 

There is a surprisingly concise way to detect boundary crossings on the IBM
System/370 [CJS]. This method is illustrated below for a block size of 4096 bytes
(a common page size).

        O   RA,=A(-4096)
                      ALR RA,RL
                      BO  CROSSES

The first instruction forms the logical or of RA (which contains the starting
address a) and the number 0xFFFFF000. The second instruction adds in the
length and sets the machine’s 2-bit condition code. For the add logical instruction,
the first bit of the condition code is set to 1 if a carry occurred, and the second bit
is set to 1 if the 32-bit register result is nonzero. The last instruction branches if
both bits are set. At the branch target, RA will contain the length that extends
beyond the first page (this is an extra feature that was not asked for).

If, for example,  and  a carry occurs, but the register result
is 0, so the program properly does not branch to label CROSSES.

Let us see how this method can be adapted to RISC machines, which
generally do not have branch on carry and register result nonzero. Using a block
size of 8 for notational simplicity, the method of [CJS] branches to CROSSES
if a carry occurred ( ) and the register result is nonzero
(  Thus, it is equivalent to the predicate

This in turn is equivalent to getting a carry in the final addition in evaluating
 If the machine has branch on carry, this can be used directly,

giving a solution in about five instructions, counting a load of the constant –8.
If the machine does not have branch on carry, we can use the fact that carry

occurs in  iff  (see “Unsigned Add/Subtract” on page 31) to obtain
the expression

a l 1,–+ l 2,

l 0=

a 0= l 4096,=

a 8– | ( ) l+ 232

a 8– | ( ) l+ 232 ).

a 8– | ( ) l+ 232.>

a 8– | ( ) 1–( ) l.+

x y+ x¬ y<u

a 8– | ( ) 1–( )¬ l.<u
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Using various identities such as  gives the following equiva-
lent expressions for the “boundary crossed” predicate:

These can be evaluated in five or six instructions on most RISC computers, count-
ing the final conditional branch.

Using another tack, clearly an 8-byte boundary is crossed iff

This cannot be directly evaluated because of the possibility of overflow (which
occurs if l is very large), but it is easily rearranged to  which can
be directly evaluated on the computer (no part of it overflows). This gives the
expression

which can be evaluated in five instructions on most RISCs (four if it has subtract
from immediate). If a boundary crossing occurs, the length that extends beyond
the first block is given by  which can be calculated with one
additional instruction (subtract).

This formula can be easily understood from the figure below [Kumar], which
illustrates that a &7 is the offset of a in its block, and thus is the space
remaining in the block.

Exercises

1. Show how to round an unsigned integer to the nearest multiple of 8, with the
halfway case (a) rounding up, (b) rounding down, and (c) rounding up or
down, whichever makes the next bit to the left a zero (“unbiased” rounding).

2. Show how to round an unsigned integer to the nearest multiple of 10, with the
halfway case (a) rounding up, (b) rounding down, and (c) rounding up or
down, whichever results in an even multiple of 10. Feel free to use division,

x 1–( )¬ x–=

a 8– | ( )– l<u

a 8– | ( )¬ 1+ l<u

a¬ 7&( ) 1+ l<u

a 7&( ) l 1–+ 8.

8 a 7&( )– l,<

8 a 7&( )– l<u ,

l 8 a 7&( )–( ),–

8 a 7&( )–

8

a &7
a

……
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remaindering, and multiplication instructions, and don’t be concerned about
values very close to the largest unsigned integer.

3. Code a function in C that does an “unaligned load.” The function is given an
address a and it loads the four bytes from addresses a through  into a 32-
bit register, as if those four bytes contained an integer. Parameter a addresses
the low-order byte (that is, the machine is little-endian). The function should
be branch free, it should execute at most two load instructions and, if a is full-
word aligned, it must not attempt to load from address  because that
may be in a read-protected block.

a 3+

a 4,+
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 CHAPTER  4

ARITHMETIC BOUNDS

4–1  Checking Bounds of Integers
By “bounds checking” we mean to verify that an integer x is within two bounds a
and b—that is, that

We first assume that all quantities are signed integers.
An important application is the checking of array indexes. For example, sup-

pose a one-dimensional array A can be indexed by values from 1 to 10. Then, for a
reference  a compiler might generate code to check that

and to branch or trap if this is not the case. In this section we show that this check
can be done with a single comparison, by performing the equivalent check [PL8]:

This is probably better code, because it involves only one compare-branch (or
compare-trap), and because the quantity  is probably needed anyway for the
array addressing calculations.

Does the implementation

always work, even if overflow may occur in the subtractions? It does, provided we
somehow know that  In the case of array bounds checking, language rules
may require that an array not have a number of elements (or number of elements
along any axis) that are 0 or negative, and this rule can be verified at compile time
or, for dynamic extents, at array allocation time. In such an environment, the
transformation above is correct, as we will now show.

It is convenient to use a lemma, which is good to know in its own right.

LEMMA. If a and b are signed integers and  then the computed
value  correctly represents the arithmetic value  if the com-
puted value is interpreted as unsigned.

Proof. (Assume a 32-bit machine.) Because  the true difference 
is in the range 0 to  =  If the true difference is in the

a x b.

A i( ),

1 i 10

i 1– 9.u

i 1–

a x b x a– b a–u

a b.

a b,
b a– b a,–

a b, b a–
231 1–( ) 231–( )– 232 1.–
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range 0 to  then the machine result is correct (because the result is repre-
sentable under signed interpretation), and the sign bit is off. Hence the machine
result is correct under either signed or unsigned interpretation.

If the true difference is in the range  to  then the machine result
will differ by some multiple of  (because the result is not representable under
signed interpretation). This brings the result (under signed interpretation) to the
range  to –1. The machine result is too low by  and the sign bit is on.
Reinterpreting the result as unsigned increases it by  because the sign bit is
given a weight of +  rather than  Hence the reinterpreted result is correct.

The “bounds theorem” is

THEOREM. If a and b are signed integers and  then

. (1)

Proof. We distinguish three cases, based on the value of x. In all cases, by the
lemma, since  the computed value  is equal to the arithmetic value

 if  is interpreted as unsigned, as it is in Equation (1).
Case 1,  In this case,  interpreted as unsigned is 

Whatever the values of x and b are (within the range of 32-bit numbers),

Therefore

and hence

In this case, both sides of Equation (1) are false.
Case 2,  Then, arithmetically,  Because  by the

lemma  equals the computed value  if the latter is interpreted as
unsigned. Hence

that is, both sides of Equation (1) are true.
Case 3,  Then  Because in this case  (because

), by the lemma  equals the value of  if the latter is interpreted as
unsigned. Hence

that is, both sides of Equation (1) are false.

231 1,–

231 232 1,–
232

231– 232,
232,

231 231.–

a b,

a x b x a– b a–u=

a b, b a–
b a– b a–

x a:< x a– x a– 232.+

x 232+ b.>

x a– 232+ b a,–>

x a– b a.–>u

a x b: x a– b a.– a x,
x a– x a–

x a– b a;–u

x b:> x a– b a.–> x a>
b a x a– x a–

x a– b a;–>u
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The theorem stated above is also true if a and b are unsigned integers. This is
because for unsigned integers the lemma holds trivially, and the above proof is
also valid.

Below is a list of similar bounds-checking transformations, with the theorem
above stated again. These all hold for either signed or unsigned interpretations of
a, b, and x.

(2)

In the last rule,  can be replaced with 
There are some quite different transformations that may be useful when the

test is of the form  This is a test to see if a signed quantity x
can be correctly represented as an n-bit two’s-complement integer. To illustrate
with  the following tests are equivalent:

Equation (b) is simply an application of the preceding material in this section.
Equation (c) is as well, after shifting x right seven positions. Equations (c) – (f)
and possibly (g) are probably useful only if the constants in Equations (a) and (b)
exceed the size of the immediate fields of the computer’s compare and add
instructions.

Another special case involving powers of 2 is

or, more generally,

if a b then a x b x a– b a–u b x– b a–u= =

if a b then a x b< x a– b a–<u=

if a b then a x< b b x– b a–<u=

if a b<  then a x b< < x a– 1– b a– 1–<u b x– 1– b a– 1–<u= =

b a– 1– b a¬+ .

2n 1–– x 2n 1– 1.–

n 8,=

a. 128– x 127

b. x 128+ 255u

c. x 7>>
s( ) 1+ 1u

d. x 7>>
s x 31>>

s=

e. x 7>>
s( ) x 31>>

u( )+ 0=

f. x 24<<( ) 24>>
s x=

g. x x 31>>
s( ) 127

0 x 2n 1– x n>>
u( ) 0,=

a x a 2n 1–+ x a–( ) n>>
u( ) 0.=
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4–2  Propagating Bounds through Add’s and Subtract’s
Some optimizing compilers perform “range analysis” of expressions. This is the
process of determining, for each occurrence of an expression in a program, upper
and lower bounds on its value. Although this optimization is not a really big win-
ner, it does permit improvements such as omitting the range check on a C
“switch” statement and omitting some subscript bounds checks that compilers
may provide as a debugging aid.

Suppose we have bounds on two variables x and y as follows, where all quan-
tities are unsigned:

(3)

Then, how can we compute tight bounds on   and ? Arithmeti-
cally, of course,  but the point is that the additions may
overflow.

The way to calculate the bounds is expressed in the following:

THEOREM. If a, b, c, d, x, and y are unsigned integers and

then

(4)

(5)

(6)

Inequalities (4) say that the bounds on  are “normally”  and 
but if the calculation of  does not overflow and the calculation of  does
overflow, then the bounds are 0 and the maximum unsigned integer. Equations (5)
are interpreted similarly, but the true result of a subtraction being less than 0 con-
stitutes an overflow (in the negative direction).

a x b,   and
c y d.

x y,+ x y,– x–
a c+ x y+ b d;+

a x b   andu u

c y d,u u

0 x y+ 232 1–u u    if   a c+ 232 1–   and  b d+ 232,

a c+ x y+ b d+u u      otherwise;

0 x y– 232 1–u u    if   a d– 0<   and  b c– 0,

a d– x y– b c–u u  otherwise;

0 x– 232 1–u u if   a 0=   and  b 0,

b– x– a–u u        otherwise.

x y+ a c+ b d,+
a c+ b d+
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Proof. If neither  nor  overflows, then  with x and y in the
indicated ranges, cannot overflow, making the computed results equal to the true
results, so the second inequality of (4) holds. If both  and  overflow,
then so also does  Now arithmetically, it is clear that

This is what is calculated when the three terms overflow. Hence, in this case also,

If  does not overflow, but  does, then

Because  takes on all values in the range  to  it takes on the val-
ues  and —that is, the computed value  takes on the values

 and 0 (although it doesn’t take on all values in that range).
Lastly, the case that  overflows, but  does not, cannot occur,

because  and 
This completes the proof of inequalities (4). The proof of (5) is similar, but

“overflow” means that a true difference is less than 0.
Inequalities (6) can be proved by using (5) with  and then

renaming the variables. (The expression  with x an unsigned number means to
compute the value of  or of  if you prefer.)

Because unsigned overflow is so easy to recognize (see “Unsigned Add/
Subtract” on page 31), these results are easily embodied in code, as shown in
Figure 4–1, for addition and subtraction. The computed lower and upper limits are
variables s and t, respectively.

Signed Numbers
The case of signed numbers is not so clean. As before, suppose we have bounds
on two variables x and y as follows, where all quantities are signed:

s = a + c;
t = b + d;
if (s >= a && t < b) {
   s = 0;
   t = 0xFFFFFFFF;}

s = a - d;
t = b - c;
if (s > a && t <= b) {
   s = 0;
   t = 0xFFFFFFFF;}

FIGURE 4–1.  Propagating unsigned bounds through addition and subtraction operations.

a c+ b d+ x y,+

a c+ b d+
x y.+

a c 232–+ x y 232–+ b d 232.–+

a c+ x y+ b d.+u u

a c+ b d+

a c+ 232 1–    and b d+ 232.

x y+ a c+ b d,+
232 1– 232 x y+

232 1–
a c+ b d+

a b c d.

a b 0,= =
x–

232 x,– x¬ 1+

a x b,   and
c y d.
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We wish to compute tight bounds on   and . The reasoning is very
similar to that for the case of unsigned numbers, and the results for addition are
shown below.

(7)

The first row means that if both of the additions  and  overflow in the
negative direction, then the computed sum  lies between the computed sums

 and  This is because all three computed sums are too high by the same
amount  The second row means that if the addition  overflows in the neg-
ative direction, and the addition  either does not overflow or overflows in the
positive direction, then the computed sum  can take on the extreme negative
number and the extreme positive number (although perhaps not all values in between),
which is not difficult to show. The other rows are interpreted similarly.

The rules for propagating bounds on signed numbers through the subtraction
operation can easily be derived by rewriting the bounds on y as

and using the rules for addition. The results are shown below.

The rules for negation can be derived from the rules for subtraction by taking
 omitting some impossible combinations, simplifying, and renaming.

The results are as follows:

C code for the case of signed numbers is a bit messy. We will consider only
addition. It seems to be simplest to check for the two cases in (7) in which the
computed limits are the extreme negative and positive numbers. Overflow in the

x y,+ x y,– x–

a c+ 231–< b d+ 231–<,  : a c+ x y+ b d+
a c 231–<+ b d+ 231–,  : 231– x y+ 231 1–

231– a c+ 231< b d 231<+,  : a c+ x y+ b d+
231– a c+ 231< b d+ 231,  : 231– x y+ 231 1–

a c+ 231 b d+ 231,  : a c+ x y+ b d+

a c+ b d+
x y+

a c+ b d.+
232( ). a c+

b d+
x y+

d– y– c–

a d– 231–< b c– 231–<,  : a d– x y– b c–
a d– 231–< b c– 231–,  : 231– x y– 231 1–

231– a d– 231< b c– 231<,  : a d– x y– b c–
231– a d– 231< b c– 231,  : 231– x y– 231 1–

a d– 231 b c– 231,  : a d– x y– b c–

a b 0,= =

a = 231– b = 231–,  : x–  = 231–
a = 231– b 231–,  : 231– x– 231 1–

a 231–  : b– x– a–
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negative direction occurs if the two operands are negative and the sum is nonneg-
ative (see “Signed Add/Subtract” on page 28). Thus, to check for the condition
that  we could let s = a + c; and then code something like “if
(a < 0 && c < 0 && s >= 0) ….” It will be more efficient,1 however, to perform
logical operations directly on the arithmetic variables, with the sign bit containing
the true/false result of the logical operations. Then, we write the above condition
as “if ((a & c & ~s) < 0) ….” These considerations lead to the program frag-
ment shown in Figure 4–2.

Here u is true (sign bit is 1) if the addition a + c overflows in the negative
direction, and the addition b + d does not overflow in the negative direction. Vari-
able v is true if the addition a + c does not overflow and the addition b + d over-
flows in the positive direction. The former condition can be expressed as “a and c
have different signs, or a and s have the same sign.” The “if” test is equivalent
to “if (u < 0 || v < 0)—that is, if u or v is true.”

4–3  Propagating Bounds through Logical Operations
As in the preceding section, suppose we have bounds on two variables x and y as
follows, where all quantities are unsigned:

(8)

Then what are some reasonably tight bounds on    and 
Combining inequalities (8) with some inequalities from Section 2–3 on

page 17, and noting that  yields

   s = a + c;
   t = b + d;
   u = a & c & ~s & ~(b & d & ~t);
   v = ((a ^ c) | ~(a ^ s)) & (~b & ~d & t);
   if ((u | v) < 0) {
      s = 0x80000000;
      t = 0x7FFFFFFF;}

FIGURE 4–2.  Propagating signed bounds through an addition operation.

1. In the sense of more compact, less branchy, code; faster-running code may result from check-
ing first for the case of no overflow, assuming the limits are not likely to be large.

a c 231,–<+

a x b,   and
c y d.

x y, | x y,& x y, x?¬

x¬ 232 1– x,–=

max a c,( ) x y | ( ) b d,+
0 x y&( ) min b d,( ),
0 x y( ) b d,   and+
b¬ x¬ a,¬
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where it is assumed that the addition  does not overflow. These are easy to
compute and might be good enough for the compiler application mentioned in the
preceding section; however, the bounds in the first three inequalities are not tight.
For example, writing constants in binary, suppose

(9)

Then, by inspection (e.g., trying all 36 possibilities for x and y), we see that
 Thus, the lower bound is not  nor is it

 and the upper bound is not  nor is it 
Given the values of a, b, c, and d in inequalities (8), how can one obtain tight

bounds on the logical expressions? Consider first the minimum value attained by
 A reasonable guess might be the value of this expression with x and y both

at their minima—that is,  Example (9), however, shows that the minimum
can be lower than this.

To find the minimum, our procedure is to start with  and  and
then find an amount by which to increase either x or y so as to reduce the value of

 The result will be this reduced value. Rather than assigning a and c to x
and y, we work directly with a and c, increasing one of them when doing so is
valid and it may reduce the value of 

The procedure is to scan the bits of a and c from left to right. If both bits are
0, the result will have a 0 in that position. If both bits are 1, the result will have a 1
in that position (clearly, no values of x and y could make the result less). In these
cases, continue the scan to the next bit position. If one scanned bit is 1 and the
other is 0, then it is possible that changing the 0 to 1 and setting all the following
bits in that bound’s value to 0 will reduce the value of  This change will not
increase the value of  because the result has a 1 in that position anyway,
from the other bound. Therefore, form the number with the 0 changed to 1 and
subsequent bits changed to 0. If that is less than or equal to the corresponding
upper limit, the change can be made; do it, and the result is the or of the modified
value with the other lower bound. If the change cannot be made (because the
altered value exceeds the corresponding upper bound), continue the scan to the
next bit position.

That’s all there is to it. It might seem that after making the change the scan
should continue, looking for other opportunities to further reduce the value of

 However, even if a position is found that allows a 0 to be changed to 1, set-
ting the subsequent bits to 0 does not reduce the value of , because those bits
are already 0.

C code for this algorithm is shown in Figure 4–3. We assume that the com-
piler will move the subexpressions ~a & c and a & ~c out of the loop. More sig-
nificantly, if the number of leading zeros instruction is available, the program can
be speeded up by initializing m with

   m = 0x80000000 >> nlz(a ^ c);

b d+

00010 x 00100,   and≤ ≤
01001 y 10100.≤ ≤

01010 x y | ( ) 10111.≤ ≤ max a c,( ),
a c, | b d,+ b d. | 

x y. | 
a c. | 

x a= y c,=

x y. | 

a c. | 

a c. | 
a c, | 

a c. | 
a c | 



ptg8736757

4–3 PROPAGATING BOUNDS THROUGH LOGICAL OPERATIONS 75

This skips over initial bit positions in which a and c are both 0 or both 1. For this
speedup to be effective when a ^ c is 0 (that is, when a = c), the machine’s shift
right instruction should be mod-64. If number of leading zeros is not available, it
may be worthwhile to use some version of the flp2 function (see page 60) with
argument a ^ c.

Now let us consider the maximum value attained by  with the variables
bounded as shown in inequalities (8). The algorithm is similar to that for the mini-
mum, except it scans the values of bounds b and d (from left to right), looking for
a position in which both bits are 1. If such a position is found, the algorithm tries
to increase the value of  by decreasing one of the bounds by changing the 1
to 0, and setting all subsequent bits in that bound to 1. If this is acceptable (if the
resulting value is greater than or equal to the corresponding lower bound), the
change is made and the result is the value of  using the modified bound. If
the change cannot be done, it is attempted on the other bound. If the change can-
not be done to either bound, the scan continues. C code for this algorithm is shown
in Figure 4–4. Here the subexpression b & d can be moved out of the loop, and the
algorithm can be speeded up by initializing m with

    m = 0x80000000 >> nlz(b & d);

There are two ways in which we might propagate the bounds of inequalities
(8) through the expression  algebraic and direct computation. The algebraic
method uses DeMorgan’s rule:

unsigned minOR(unsigned a, unsigned b,
               unsigned c, unsigned d) {
   unsigned m, temp;

   m = 0x80000000;
   while (m != 0) {
      if (~a & c & m) {
         temp = (a | m) & -m;
         if (temp <= b) {a = temp; break;}
      }
      else if (a & ~c & m) {
         temp = (c | m) & -m;
         if (temp <= d) {c = temp; break;}
      }
      m = m >> 1;
   }
   return a | c;
}

FIGURE 4–3.  Minimum value of  with bounds on x and y.x y | 

x y, | 

b d | 

b d | 

x y:&

x y& x¬ y¬ | ( )¬=
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Because we know how to propagate bounds precisely through or, and it is trivial
to propagate them through not ( ), we have

For the direct computation method, the code is very similar to that for propa-
gating bounds through or. It is shown in Figures 4–5 and 4–6.

unsigned maxOR(unsigned a, unsigned b,
  unsigned c, unsigned d) {

   unsigned m, temp;

   m = 0x80000000;
   while (m != 0) {
      if (b & d & m) {
         temp = (b - m) | (m - 1);
         if (temp >= a) {b = temp; break;}
         temp = (d - m) | (m - 1);
         if (temp >= c) {d = temp; break;}
      }
      m = m >> 1;
   }
   return b | d;
}

FIGURE 4–4.  Maximum value of  with bounds on x and y.

unsigned minAND(unsigned a, unsigned b,
  unsigned c, unsigned d) {

   unsigned m, temp;

   m = 0x80000000;
   while (m != 0) {
      if (~a & ~c & m) {
         temp = (a | m) & -m;
         if (temp <= b) {a = temp; break;}
         temp = (c | m) & -m;
         if (temp <= d) {c = temp; break;}
      }
      m = m >> 1;
   }
   return a & c;
}

FIGURE 4–5.  Minimum value of  with bounds on x and y.

x y | 

a x bu u b¬ x¬ a¬u u

minAND a b c d, , ,( ) maxOR b¬ a¬ d¬ c¬, , ,( ),   and¬=
maxAND a b c d, , ,( ) minOR b¬ a¬ d¬ c¬, , ,( ).¬=

x y&
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The algebraic method of finding bounds on expressions in terms of the func-
tions for and, or, and not works for all the binary logical expressions except exclu-
sive or and equivalence. The reason these two present a difficulty is that when
expressed in terms of and, or, and not, there are two terms containing x and y. For
example, we are to find

The two operands of the or cannot be separately minimized (without proof that it
works, which actually it does), because we seek one value of x and one value of y
that minimizes the whole or expression.

The following expressions can be used to propagate bounds through exclusive
or:

It is straightforward to evaluate the minXOR and maxXOR functions by
direct computation. The code for minXOR is the same as that for minOR
(Figure 4–3) except with the two break statements removed, and the return
value changed to a ^ c. The code for maxXOR is the same as that for maxOR
(Figure 4–4) except with the four lines under the if clause replaced with

unsigned maxAND(unsigned a, unsigned b,
  unsigned c, unsigned d) {

   unsigned m, temp;

   m = 0x80000000;
   while (m != 0) {
      if (b & ~d & m) {
         temp = (b & ~m) | (m - 1);
         if (temp >= a) {b = temp; break;}
      }
      else if (~b & d & m) {
         temp = (d & ~m) | (m - 1);
         if (temp >= c) {d = temp; break;}
      }
      m = m >> 1;
   }
   return b & d;
}

FIGURE 4–6.  Maximum value of  with bounds on x and y.x y&

min
a x b
c y d

x y( ) min
a x b
c y d

x y¬&( ) x¬ y&( ) | ( ).=

minXOR a b c d, , ,( ) minAND a b d¬ c¬, , ,( ) minAND b¬ a¬ c d, , ,( ), | =
maxXOR a b c d, , ,( ) maxOR(0 maxAND a b d¬ c¬, , ,( ),,=

0 maxAND b¬ a¬ c d, , ,( ), ).
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      temp = (b - m) | (m - 1);
      if (temp >= a) b = temp;
      else {
         temp = (d - m) | (m - 1);
         if (temp >= c) d = temp;
      }

and the return value changed to b ^ d.

Signed Bounds
If the bounds are signed integers, propagating them through logical expressions is
substantially more complicated. The calculation is irregular if 0 is within the range
a to b, or c to d. One way to calculate the lower and upper bounds for the expres-
sion  is shown in Table 4–1. A “+” entry means that the bound at the top of
the column is greater than or equal to 0, and a “–” entry means that it is less than 0.
The column labeled “minOR (signed)” contains expressions for computing the
lower bound of  and the last column contains expressions for computing the
upper bound of  One way to program this is to construct a value ranging
from 0 to 15 from the sign bits of a, b, c, and d, and use a “switch” statement.
Notice that not all values from 0 to 15 are used, because it is impossible to have

 or 
For signed numbers, the relation

holds, so the algebraic method can be used to extend the results of Table 4–1 to
other logical expressions (except for exclusive or and equivalence). We leave this
and similar extensions to others.

TABLE 4–1.  SIGNED MINOR AND MAXOR FROM UNSIGNED

a b c d minOR (signed) maxOR (signed)

– – – –

– – – +

– – + +

– + – –

– + – +

– + + +

+ + – –

+ + – +

+ + + +

x y | 

x y, | 
x y. | 

a b> c d.>

a x b b¬ x¬ a¬

minOR a b c d, , ,( ) maxOR a b c d, , ,( )

a 1–

minOR a b c d, , ,( ) maxOR a b c d, , ,( )

c 1–

min a c,( ) maxOR 0 b 0 d, , ,( )

minOR a 0xFFFFFFFF c d, , ,( ) maxOR 0 b c d, , ,( )

minOR a b c d, , ,( ) maxOR a b c d, , ,( )

minOR a b c 0xFFFFFFFF, , ,( ) maxOR a b 0 d, , ,( )

minOR a b c d, , ,( ) maxOR a b c d, , ,( )
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Exercises

1. For unsigned integers, what are the bounds on  if

2. Show how the maxOR function (Figure 4–4) can be simplified if either a = 0
or c = 0 on a machine that has the number of leading zeros instruction.

x y–

0 x bu u   and

0 y d?u u
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 CHAPTER  5

COUNTING BITS

5–1  Counting 1-Bits
The IBM Stretch computer (ca. 1960) had a means of counting the number of
1-bits in a word, as well as the number of leading 0’s. It produced these two quan-
tities as a by-product of all logical operations! The former function is sometimes
called population count (e.g., on Stretch and the SPARCv9).

For machines that don’t have this instruction, a good way to count the number
of 1-bits is to first set each 2-bit field equal to the sum of the two single bits that
were originally in the field, and then sum adjacent 2-bit fields, putting the results
in each 4-bit field, and so on. A more complete discussion of this trick is in
[RND]. The method is illustrated in Figure 5–1, in which the first row shows a
computer word whose 1-bits are to be summed, and the last row shows the result
(23 decimal).

This is an example of the “divide and conquer” strategy, in which the original
problem (summing 32 bits) is divided into two problems (summing 16 bits), which
are solved separately, and the results are combined (added, in this case). The strat-
egy is applied recursively, breaking the 16-bit fields into 8-bit fields, and so on.

In the case at hand, the ultimate small problems (summing adjacent bits) can
all be done in parallel, and combining adjacent sums can also be done in parallel
in a fixed number of steps at each stage. The result is an algorithm that can be exe-
cuted in  steps.

Other examples of divide and conquer are the well-known techniques of
binary search, a sorting method known as quicksort, and a method for reversing
the bits of a word, discussed on page 129.

The method illustrated in Figure 5–1 can be committed to C code as

   x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
   x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
   x = (x & 0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F);
   x = (x & 0x00FF00FF) + ((x >> 8) & 0x00FF00FF);
   x = (x & 0x0000FFFF) + ((x >> 16) & 0x0000FFFF);

The first line uses (x >> 1) & 0x55555555 rather than the perhaps more natu-
ral (x & 0xAAAAAAAA) >> 1, because the code shown avoids generating two
large constants in a register. This would cost an instruction if the machine lacks
the and not instruction. A similar remark applies to the other lines.

Clearly, the last and is unnecessary, and other and’s can be omitted when
there is no danger that a field’s sum will carry over into the adjacent field. Further-
more, there is a way to code the first line that uses one fewer instruction. This leads
to the simplification shown in Figure 5–2, which executes in 21 instructions and is
branch-free.

log2 32( ) 5=
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The first assignment to x is based on the first two terms of the rather surpris-
ing formula

. (1)

In Equation (1), we must have  By treating x as an unsigned integer, Equa-
tion (1) can be implemented with a sequence of 31 shift right immediate’s of 1,
and 31 subtract’s. The procedure of Figure 5–2 uses the first two terms of this on
each 2-bit field, in parallel.

FIGURE 5–1.  Counting 1-bits, “divide and conquer” strategy.

int pop(unsigned x) {
   x = x - ((x >> 1) & 0x55555555);
   x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
   x = (x + (x >> 4)) & 0x0F0F0F0F;
   x = x + (x >> 8);
   x = x + (x >> 16);
   return x & 0x0000003F;
}

FIGURE 5–2.  Counting 1-bits in a word.

1  0  1  1  1  1  0  0  0  1  1  0  0  0  1  1 0  1  1  1  1  1  1  0  1  1  1  1  1  1  1  1

 0  1  1  0  1  0  0  0  0  1  0  1  0  0  1  0  0  1  1  0  1  0  0  1  1  0  1  0  1  0  1  0

 0  0  1  1  0  0  1  0  0  0  1  0  0  0  1  0  0  0  1  1  0  0  1  1  0  1  0  0  0  1  0  0

 0  0  0  0  0  1  0  1  0  0  0  0  0  1  0  0  0  0  0  0  0  1  1  0  0  0  0  0  1  0  0  0

 0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  1  1  1  0

 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  1  1  1

pop x( ) x x
2
---– x

4
---– …– x

231
-------–=

x 0.
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There is a simple proof of Equation (1), which is shown below for the case of
a four-bit word. Let the word be  where each  = 0 or 1. Then,

Alternatively, Equation (1) can be derived by noting that bit i of the binary
representation of a nonnegative integer x is given by

and summing this for i = 0 to 31. Work it out—the last term is 0 because 
Equation (1) generalizes to other bases. For base ten it is

where the terms are carried out until they are 0. This can be proved by essentially
the same technique used above.

A variation of the above algorithm is to use a base 4 analogue of Equa-
tion (1) as a substitute for the second executable line of Figure 5–2:

   x = x - 3*((x >> 2) & 0x33333333) 

This code, however, uses the same number of instructions as the line it replaces
(six), and requires a fast multiply-by-3 instruction. 

An algorithm in HAKMEM memo [HAK, item 169] counts the number of
1-bits in a word by using the first three terms of (1) to produce a word of 3-bit
fields, each of which contains the number of 1-bits that were in it. It then adds
adjacent 3-bit fields to form 6-bit field sums, and then adds the 6-bit fields by
computing the value of the word modulo 63. Expressed in C, the algorithm is (the
long constants are in octal)

b3b2b1b0, bi

x x
2
---– x

4
---– x

8
---– b3 23 b2 22 b1 21 b0 20+ + +=

b3 22 b2 21 b1 20+ +( )–

b3 21 b2 20+( )–

b3 20( )–

b3 23 22– 21– 20–( ) b2 22 21– 20–( ) b1 21 20–( ) b0 20( )+ + +=

b3 b2 b1 b0.+ + +=

bi
x
2i
---- 2 x

2i 1+
-----------–=

x 232.<

sum_digits x( ) x 9 x
10
------– 9 x

100
---------– …–=
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int pop(unsigned x) {
   unsigned n;

   n = (x >> 1) & 033333333333;       // Count bits in
   x = x - n;              // each 3-bit
   n = (n >> 1) & 033333333333;       // field.
   x = x - n;
   x = (x + (x >> 3)) & 030707070707; // 6-bit sums.
   return x%63;           // Add 6-bit sums.
}

The last line uses the unsigned modulus function. (It could be either signed or
unsigned if the word length were a multiple of 3.) That the modulus function sums
the 6-bit fields becomes clear by regarding the word x as an integer written in
base 64. The remainder upon dividing a base b integer by  is, for  con-
gruent mod  to the sum of the digits and, of course, is less than .
Because the sum of the digits in this case must be less than or equal to 32,

 must be equal to the sum of the digits of x, which is to say equal to the
number of 1-bits in the original x.

This algorithm requires only ten instructions on the DEC PDP-10, because
that machine has an instruction for computing the remainder with its second oper-
and directly referencing a fullword in memory. On a basic RISC, it requires about
13 instructions, assuming the machine has unsigned modulus as one instruction
(but not directly referencing a fullword immediate or memory operand). It is prob-
ably not very fast, because division is almost always a slow operation. Also, it
doesn’t apply to 64-bit word lengths by simply extending the constants, although it
does work for word lengths up to 62.

The return statement in the code above can be replaced with the following,
which runs faster on most machines, but is perhaps less elegant (octal notation
again).

   return ((x * 0404040404) >> 26) +  // Add 6-bit sums.
           (x >> 30);

A variation on the HAKMEM algorithm is to use Equation (1) to count the
number of 1’s in each 4-bit field, working on all eight 4-bit fields in parallel
[Hay1]. Then, the 4-bit sums can be converted to 8-bit sums in a straightforward
way, and the four bytes can be added with a multiplication by 0x01010101.
This gives

int pop(unsigned x) {
   unsigned n;

   n = (x >> 1) & 0x77777777;       // Count bits in
   x = x - n;             // each 4-bit
   n = (n >> 1) & 0x77777777;        // field.

b 1– b 3,
b 1– b 1–

mod x 63,( )

continues
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   x = x - n;
   n = (n >> 1) & 0x77777777;
   x = x - n;
   x = (x + (x >> 4)) & 0x0F0F0F0F;  // Get byte sums.
   x = x*0x01010101;         // Add the bytes.
   return x >> 24;
}

This is 19 instructions on the basic RISC. It works well if the machine is two-
address, because the first six lines can be done with only one move register
instruction. Also, the repeated use of the mask 0x77777777 permits loading it
into a register and referencing it with register-to-register instructions. Further-
more, most of the shifts are of only one position.

A quite different bit-counting method, illustrated in Figure 5–3, is to turn off
the rightmost 1-bit repeatedly [Weg, RND], until the result is 0. It is very fast if
the number of 1-bits is small, taking  instructions.

This has a dual algorithm that is applicable if the number of 1-bits is expected
to be large. The dual algorithm keeps turning on the rightmost 0-bit with x = x |
(x + 1), until the result is all 1’s (–1). Then, it returns  (Alternatively, the
original number x can be complemented, or n can be initialized to 32 and counted
down.)

A rather amazing algorithm is to rotate x left one position, 31 times, adding
the 32 terms [MM]. The sum is the negative of pop(x)! That is,

(2)

where the additions are done modulo the word size, and the final sum is inter-
preted as a two’s-complement integer. This is just a novelty; it would not be useful
on most machines, because the loop is executed 31 times and thus it requires 63
instructions, plus the loop-control overhead.

To see why Equation (2) works, consider what happens to a single 1-bit of x.
It gets rotated to all positions, and when these 32 numbers are added, a word of all

int pop(unsigned x) {
   int n;

   n = 0;
   while (x != 0) {
      n = n + 1;
      x = x & (x - 1);
   }
   return n;
}

FIGURE 5–3.  Counting 1-bits in a sparsely populated word.

2 5pop x( )+

32 n.–

pop x( ) x i<<
rot( ),

i 0=

31
–=
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1-bits results. This is –1. To illustrate, consider a 6-bit word size and 
(binary):

Of course, rotate-right would work just as well. 
The method of Equation (1) is very similar to this “rotate and sum” method,

which becomes clear by rewriting (1) as

This gives a slightly better algorithm than Equation (2) provides. It is better
because it uses shift right, which is more commonly available than rotate, and
because the loop can be terminated when the shifted quantity becomes 0. This
reduces the loop-control code and may save a few iterations. The two algorithms
are contrasted in Figure 5–4.

A less interesting algorithm that may be competitive with all the algorithms
for pop(x) in this section is to have a table that contains pop(x) for, say, x in the
range 0 to 255. The table can be accessed four times, adding the four numbers
obtained. A branch-free version of the algorithm looks like this:

int pop(unsigned x) {         // Table lookup.
   static char table[256] = {
      0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
      ...
      4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8};
   return table[x         & 0xFF] +
          table[(x >>  8) & 0xFF] +
          table[(x >> 16) & 0xFF] +
          table[(x >> 24)];
}

Item 167 in [HAK] contains a short algorithm for counting the number of
1-bits in a 9-bit quantity that is right-adjusted and isolated in a register. It works
only on machines with registers of 36 or more bits. Below is a version of that
algorithm that works on 32-bit machines, but only for 8-bit quantities.

x 001001=

0 0 1 0 0 1 x

0 1 0 0 1 0 x 1<<
rot

1 0 0 1 0 0 x 2<<
rot

0 0 1 0 0 1 x 3<<
rot

0 1 0 0 1 0 x 4<<
rot

1 0 0 1 0 0 x 5<<
rot

pop x( ) x x i>>
u( ).

i 1=

31
–=



ptg8736757

5–1 COUNTING 1-BITS 87

   x = x * 0x08040201;  // Make 4 copies.
   x = x >> 3;   // So next step hits proper bits.
   x = x & 0x11111111;  // Every 4th bit.
   x = x * 0x11111111;  // Sum the digits (each 0 or 1).
   x = x >> 28;     // Position the result.

A version for 7-bit quantities is

   x = x * 0x02040810;  // Make 4 copies, left-adjusted.
   x = x & 0x11111111;  // Every 4th bit.
   x = x * 0x11111111;  // Sum the digits (each 0 or 1).
   x = x >> 28;     // Position the result.

In these, the last two steps can be replaced with steps to compute the remain-
der of x modulo 15.

These are not particularly good; most programmers would probably prefer to
use table lookup. The latter algorithm above, however, has a version that uses
64-bit arithmetic, which might be useful for a 64-bit machine that has fast multi-
plication. Its argument is a 15-bit quantity. (I don’t believe there is a similar algo-
rithm that deals with 16-bit quantities, unless it is known that not all 16 bits are
1.) The data type long long is a C extension found in many C compilers, old
and new, for 64-bit integers. It is made official in the C99 standard. The suffix
ULL makes unsigned long long constants.

int pop(unsigned x) {
   unsigned long long y;
   y = x * 0x0002000400080010ULL;
   y = y & 0x1111111111111111ULL;
   y = y * 0x1111111111111111ULL;
   y = y >> 60;
   return y;
}

int pop(unsigned x) {
   int i, sum;

// Rotate and sum method    // Shift right & subtract

   sum = x;             // sum = x;
   for (i = 1; i <= 31; i++) {  // while (x != 0) {
      x = rotatel(x, 1);      //    x = x >> 1;
      sum = sum + x;       //    sum = sum - x;
   }               // }
   return -sum;          // return sum;
}

FIGURE 5–4.  Two similar bit-counting algorithms.
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Sum and Difference of Population Counts of Two Words
To compute  (if your computer does not have the population count
instruction), some time can be saved by using the first two lines of Figure 5–2 on x
and y separately, adding x and y, and then executing the last three stages of the algo-
rithm on the sum. After the first two lines of Figure 5–2 are executed, x and y consist
of eight 4-bit fields, each containing a maximum value of 4. Thus, x and y can safely
be added, because the maximum value in any 4-bit field of the sum would be 8, so no
overflow occurs. The third executable line must be changed to x = (x &
0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F); and the 3F in the last line
must be changed to 7F.

This idea also applies to subtraction. To compute  use

Then, use the technique just described to compute  The code is
shown in Figure 5–5. It uses 32 instructions, versus 43 for two applications of the
code in Figure 5–2 followed by a subtraction.

Comparing the Population Counts of Two Words
Sometimes one wants to know which of two words has the larger population count
without regard to the actual counts. Can this be determined without doing a popu-
lation count of the two words? Computing the difference of two population counts
as in Figure 5–5, and comparing the result to 0 is one way, but there is another way
that is preferable if either the population counts are expected to be low or if there
is a strong correlation between the particular bits that are set in the two words.

The idea is to clear a single bit in each word until one of the words is all zero;
the other word then has the larger (or same) population count. The process runs
faster in its worst and average cases if the bits that are 1 at the same positions in
each word are first cleared. The code is shown in Figure 5–6. The procedure
returns a negative integer if pop(x) < pop(y), 0 if pop(x) = pop(y), and a positive
integer (1) if pop(x) > pop(y).

int popDiff(unsigned x, unsigned y) {
   x = x - ((x >> 1) & 0x55555555);
   x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
   y = ~y;
   y = y - ((y >> 1) & 0x55555555);
   y = (y & 0x33333333) + ((y >> 2) & 0x33333333);
   x = x + y;
   x = (x & 0x0F0F0F0F) + ((x >> 4) & 0x0F0F0F0F);
   x = x + (x >> 8);
   x = x + (x >> 16);
   return (x & 0x0000007F) - 32;
}

FIGURE 5–5. Computing pop(x) – pop(y).

pop x( ) pop y( )+

pop x( ) pop y( ),–

pop x( ) pop y( )– pop x( ) 32 pop y( )–( )–=

pop x( ) pop y( ) 32.–+=

pop x( ) pop y( ).+
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After clearing the common 1-bits in each 32-bit word, the maximum possible
number of 1-bits in both words together is 32. Therefore, the word with the smaller
number of 1-bits can have at most 16. Thus, the loop in Figure 5–6 is executed a
maximum of 16 times, which gives a worst case of 119 instructions executed on
the basic RISC  A simulation using uniformly distributed random 32-
bit integers showed that the average population count of the word with the smaller
population count is approximately 6.186, after clearing the common 1-bits. This
gives an average execution time of about 50 instructions executed for random 32-
bit inputs, not as good as using Figure 5–5. For this procedure to beat that of
Figure 5–5, the number of 1-bits in either x or y, after clearing the common 1-bits,
would have to be three or less.

Counting the 1-bits in an Array
The simplest way to count the number of 1-bits in an array (vector) of fullwords, in
the absence of the population count instruction, is to use a procedure such as that of
Figure 5–2 on page 82 on each word of the array and simply add the results. We
call this the “naive” method. Ignoring loop control, the generation of constants,
and loads from the array, it takes 16 instructions per word: 15 for the code of
Figure 5–2, plus one for the addition. We assume the procedure is expanded in line,
the masks are loaded outside the loop, and the machine has a sufficient number of
registers to hold all the quantities used in the calculation.

Another way is to use the first two executable lines of Figure 5–2 on groups of
three words in the array, adding the three partial results. Because each partial result
has a maximum value of 4 in each four-bit field, the sum of the three has a maxi-
mum value of 12 in each four-bit field, so no overflow occurs. This idea can be
applied to the 8- and 16-bit fields. Coding and compiling this method indicates that
it gives about a 20% reduction over the naive method in total number of instruc-
tions executed on the basic RISC. Much of the savings are cancelled by the addi-
tional housekeeping instructions required. We will not dwell on this method
because there is a much better way to do it.

int popCmpr(unsigned xp, unsigned yp) {
   unsigned x, y;
   x = xp & ~yp;         // Clear bits where
   y = yp & ~xp;          // both are 1.
   while (1) {
      if (x == 0) return y | -y;
      if (y == 0) return 1;
      x = x & (x - 1);         // Clear one bit
      y = y & (y - 1);          // from each.
   }
}

FIGURE 5–6. Comparing pop(x) with pop(y).

16 7 7+( ).
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The better way seems to have been invented by Robert Harley and David Seal
in about 1996 [Seal1]. It is based on a circuit called a carry-save adder (CSA), or
3:2 compressor. A CSA is simply a sequence of independent full adders1 [H&P],
and it is often used in binary multiplier circuits.

In Boolean algebra notation, the logic for each full adder is

where a, b, and c are the 1-bit inputs, l is the low-bit output (sum) and h is the high-
bit output (carry). Changing  on the first line to  is justified because
when a and b are both 1, the term ab makes the value of the whole expression 1. By
first assigning  to a temporary, the full adder logic can be evaluated in five
logical instructions, each operating on 32 bits in parallel (on a 32-bit machine). We
will refer to these five instructions as CSA(h, l, a, b, c). This is a “macro,” with h
and l being outputs.

One way to use the CSA operation is to process elements of the array A in
groups of three, reducing each group of three words to two, and applying the pop-
ulation count operation to these two words. In the loop, these two population
counts are summed. After executing the loop, the total population count of the
array is twice the accumulated population count of the CSA’s high-bit outputs, plus
the accumulated population count of the low-bit outputs.

Let  be the number of instructions required for the CSA steps and  be the
number of instructions required to do the population count of one word. On a typ-
ical RISC machine  and  Ignoring loads from the array and loop
control (the code for which may vary quite a bit from one machine to another), the
loop discussed above takes  instructions per word of the
array (the “+ 2” is for the two additions in the loop). This is in contrast to the 16
instructions per word required by the naive method.

There is another way to use the CSA operation that results in a program that’s
more efficient and slightly more compact. This is shown in Figure 5–7. It takes

 instructions per word (ignoring loop control and loads).
In this code, the CSA operation expands into

   u = ones ^ A[i];
   v = A[i+1];
   twos = (ones & A[i]) | (u & v);
   ones = u ^ v;

The code relies on the compiler to common the loads.

1. A full adder is a circuit with three 1-bit inputs (the bits to be added) and two 1-bit outputs
(the sum and carry).

h ab ac bc+ + ab a b+( )c+= ab a b( )c,+=
l a b( ) c.

a b+ a b

a b

nc np

nc 5= np 15.=

nc 2np 2+ +( ) 3⁄ 12.33

nc np 1+ +( ) 2⁄ 10.5=
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There are ways to use the CSA operation to further reduce the number of
instructions required to compute the population count of an array. They are most
easily understood by means of a circuit diagram. For example, Figure 5–8 illus-
trates a way to code a loop that takes array elements eight at a time and compresses
them into four quantities, labeled eights, fours, twos, and ones. The fours, twos,
and ones are fed back into the CSAs on the next loop iteration, and the 1-bits in
eights are counted by an execution of the word-level population count function,
and this count is accumulated. When all of the array has been processed, the total
population count is

The code is shown in Figure 5–9, which uses the CSA macro defined in
Figure 5–7. The numbering of the CSA blocks in Figure 5–8 corresponds to the
order of the CSA macro calls in Figure 5–9. The execution time of the loop, exclu-
sive of array loads and loop control, is  instructions per
word of the array.

The CSAs can be connected in many arrangements other than that shown in
Figure 5–8. For example, increased parallelism might result from feeding the
first three array elements into one CSA, and the next three into a second CSA,
which allows the instructions of these two CSAs to execute in parallel. One
might also be able to permute the three input operands of the CSA macros for

#define CSA(h,l, a,b,c) \
   {unsigned u = a ^ b; unsigned v = c; \
      h = (a & b) | (u & v); l = u ^ v;}

int popArray(unsigned A[], int n) {

   int tot, i;
   unsigned ones, twos;

   tot = 0;             // Initialize.
   ones = 0;
   for (i = 0; i <= n - 2; i = i + 2) {
      CSA(twos, ones, ones, A[i], A[i+1])
      tot = tot + pop(twos);
   }
   tot = 2*tot + pop(ones);

   if (n & 1)        // If there's a last one,
      tot = tot + pop(A[i]);    // add it in.

   return tot;
}

FIGURE 5–7. Array population count, processing elements in groups of two.

8pop eights( ) 4pop fours( ) 2pop twos( ) pop ones( ).+ + +

7nc np 1+ +( ) 8⁄ 6.375=
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increased parallelism. With the plan shown in Figure 5–8, one can easily see how
to use only the first three CSAs to construct a program that processes array ele-
ments in groups of four, and also how to expand it to construct programs that pro-
cess array elements in groups of 16 or more. The plan shown also spreads out the
loads somewhat, which would be advantageous for a machine that has a rela-
tively low limit on the number of loads that can be outstanding at any one time.

The plan of Figure 5–8 can be generalized so that very few word population
counts are done. To sketch how this program might be constructed, it needs an
array of m×2 words to hold two of each of the variables we have called ones, twos,
fours, and so forth. For an array of size n, choosing  is suf-
ficient (  is sufficient for any size array that can be held in a machine with
a 32-bit byte-addressed space). A byte array of size m is also needed to keep track
of how many (0, 1, or 2) values are currently in each row of the m×2 array. The pro-
gram processes array elements in groups of two. For each group, the CSA is
invoked to compress those two array elements with a saved value of ones, which is
most conveniently kept in the [0,0] position of the m×2 array. In an inner loop, the
resulting twos is saved in the array, by scanning down (usually not far at all) to find
a row with fewer than two items. If the twos row is full, its two values are com-
bined with twos (using the CSA). The twos output is put in the array, resetting its

FIGURE 5–8. A circuit for the array population count.

fours twos ones  ai   ai+1
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row count to 1. The scan continues with the fours output to find a place to put it,
and so forth.

After completing the pass over the input array, the program next makes a pass
over the (much shorter) m×2 array, compressing all full rows, so that all rows con-
tain only one significant value. Lastly, the program invokes the word-level popula-
tion count operation on the first element of each row until a row with a zero count
is encountered, computing the total array population count as

The value suggested above for m ensures that the last row will have a zero count,
which can be used to terminate the scans.

The resulting program executes exactly  word population
counts. Unfortunately it is not practical, because the housekeeping steps for load-
ing from and storing into the intermediate result arrays outweigh the computational
instructions that are saved. An experimental program (without trying too hard to
optimize it) ran in about 29 instructions per array word (counting all instructions in
the loop). This is significantly worse than the naive method.

Table 5–1 summarizes the number of instructions executed by this plan for
various group sizes. The values in the middle two columns ignore loads and loop

int popArray(unsigned A[], int n) {

   int tot, i;
   unsigned ones, twos, twosA, twosB,
      fours, foursA, foursB, eights;

   tot = 0;             // Initialize.
   fours = twos = ones = 0;

   for (i = 0; i <= n - 8; i = i + 8) {
      CSA(twosA, ones, ones, A[i], A[i+1])
      CSA(twosB, ones, ones, A[i+2], A[i+3])
      CSA(foursA, twos, twos, twosA, twosB)
      CSA(twosA, ones, ones, A[i+4], A[i+5])
      CSA(twosB, ones, ones, A[i+6], A[i+7])
      CSA(foursB, twos, twos, twosA, twosB)
      CSA(eights, fours, fours, foursA, foursB)
      tot = tot + pop(eights);
   }
   tot = 8*tot + 4*pop(fours) + 2*pop(twos) + pop(ones);

   for (i = i; i < n; i++)    // Simply add in the last
      tot = tot + pop(A[i]);    // 0 to 7 elements.
   return tot;
}

FIGURE 5–9. Array population count, processing elements in groups of eight.

pop row 0( ) 2pop row 1( ) 4pop row 2( ) ….+ + +

log2 n 3+( )
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control. The fourth column gives the total loop instruction execution count, per
word of the input array, produced by a compiler for the basic RISC machine (which
does not have indexed loads).

For small arrays, there are better plans than that of Figure 5–8. For example,
for an array of seven words, the plan of Figure 5–10 is quite efficient [Seal1]. It

TABLE 5–1. INSTRUCTIONS PER WORD FOR THE ARRAY POPULATION COUNT

Program

Instructions Exclusive of Loads and Loop 
Control

All Instructions 
in Loop 

(compiler
output)Formula For nc = 5, np = 15

Naive method 16 21

Groups of 2 10.5 14

Groups of 4 7.75 10

Groups of 8 6.38 8

Groups of 16 5.69 7

Groups of 32 5.34 6.5

Groups of 2n –

FIGURE 5–10. A circuit for the total population count of seven words.
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executes in  instructions, or 9.86 instructions per word. Simi-
lar plans exist that apply to arrays of size  words for any positive integer k.
The plan for 15 words executes in  instructions, or 8.07
instructions per word.

Applications
An application of the population count function is in computing the “Hamming
distance” between two bit vectors, a concept from the theory of error-correcting
codes. The Hamming distance is simply the number of places where the vectors
differ; that is,

See, for example, the chapter on error-correcting codes in [Dewd].
Another application is to allow reasonably fast direct-indexed access to a

moderately sparse array A that is represented in a certain compact way. In the
compact representation, only the defined, or nonzero, elements of the array are
stored. There is an auxiliary bit string array bits of 32-bit words, which has a 1-bit
for each index i for which A[i] is defined. As a speedup device, there is also an
array of words bitsum such that bitsum[j] is the total number of 1-bits in all the
words of bits that precede entry j. This is illustrated below for an array in which
elements 0, 2, 32, 47, 48, and 95 are defined.

Given an index i,  the corresponding index sparse_i into the data
array is given by the number of 1-bits in array bits that precede the bit correspond-
ing to i. This can be calculated as follows:

   j = i >> 5;            // j = i/32.
   k = i & 31;          // k = rem(i, 32);
   mask = 1 << k;        // A "1" at position k.
   if ((bits[j] & mask) == 0) goto no_such_element;
   mask = mask - 1;        // 1’s to right of k.
   sparse_i = bitsum[j] + pop(bits[j] & mask);

The cost of this representation is two bits per element of the full array.

4nc 3np 4+ + 69=
2k 1–

11nc 4np 6+ + 121=

dist x y,( ) pop x y( ).=

bits
0x00000005
0x00018001
0x80000000

bitsum
0
2
5

data
A 0[ ]
A 2[ ]
A 32[ ]
A 47[ ]
A 48[ ]
A 95[ ]

0 i 95,
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The population function can be used to generate binomially distributed ran-
dom integers. To generate an integer drawn from a population given by
BINOMIAL(t, p) where t is the number of trials and  generate t random
bits and count the number of 1’s in the t bits. This can be generalized to probabili-
ties p other than 1/2; see for example [Knu2, sec. 3.4.1, prob. 27].

Still another application of the population function is in computing the num-
ber of trailing 0’s in a word (see “Counting Trailing 0’s” on page 107).

According to computer folklore, the population count function is important to the
National Security Agency. No one (outside of NSA) seems to know just what they use
it for, but it may be in cryptography work or in searching huge amounts of material.

5–2  Parity
The “parity” of a string refers to whether it contains an odd or an even number of
1-bits. The string has “odd parity” if it contains an odd number of 1-bits; other-
wise, it has “even parity.”

Computing the Parity of a Word
Here we mean to produce a 1 if a word x has odd parity, and a 0 if it has even par-
ity. This is the sum, modulo 2, of the bits of x—that is, the exclusive or of all the
bits of x.

One way to compute this is to compute pop(x); the parity is the rightmost bit
of the result. This is fine if you have the population count instruction, but if not,
there are better ways than using the code for pop(x).

A rather direct method is to compute

,

where n is the word size, and then the parity of x is given by the rightmost bit
of y. (Here  denotes exclusive or, but for this formula ordinary addition could
be used.)

The parity can be computed much more quickly, for moderately large n, as
follows (illustrated for n = 32; the shifts can be signed or unsigned):

(3)

This executes in ten instructions, as compared to 62 for the first method, even if
the implied loop is completely unrolled. Again, the parity bit is the rightmost bit

p 1 2⁄ ,=

y
n 1–

x i>>
u

( )
i 0=

   y = x ^ (x >> 1);

   y = y ^ (y >> 2);

   y = y ^ (y >> 4);

   y = y ^ (y >> 8);

   y = y ^ (y >>16);
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of y. In fact, with either of these, if the shifts are unsigned, then bit i of y gives the
parity of the bits of x at and to the left of i. Furthermore, because exclusive or is its
own inverse,  is the parity of bits  through j of x, for 

This is an example of the “parallel prefix,” or “scan” operation, which has
applications in parallel computing [KRS; HS]. Given a sufficient number of pro-
cessors, it can convert certain seemingly serial processes from  to 
time. For example, if you have an array of words and you wish to compute the
exclusive or scan operation on the entire array of bits, you can first use (3) on the
entire array, and then continue with shifts of 32 bits, 64 bits, and so on, doing
exclusive or’s on the words of the array. This takes more elementary (word length)
exclusive or operations than a simple left-to-right process, and hence it is not a
good idea for a uniprocessor. But on a parallel computer with a sufficient number
of processors, it can do the job in  rather than  time (where n is the
number of words in the array).

A direct application of (3) is the conversion of a Gray coded integer to binary
(see page 312).

If the code (3) is changed to use left shifts, the parity of the whole word x
winds up in the leftmost bit position, and bit i of y gives the parity of the bits of x
at and to the right of position i. This is called the “parallel suffix” operation,
because each bit is a function of itself and the bits that follow it.

If rotate shift’s are used, the result is a word of all 1’s if the parity of x is odd,
and of all 0’s if even.

The five assignments in (3) can be done in any order (provided variable x is
used in the first one). If they are done in reverse order, and if you are interested
only in getting the parity in the low-order bit of y, then the last two lines:

   y = y ^ (y >> 2);
   y = y ^ (y >> 1);

can be replaced with [Huef]

   y = 0x6996 >> (y & 0xF);

This is an “in-register table lookup” operation. On the basic RISC it saves one
instruction, or two if the load of the constant is not counted. The low-order bit of y
has the original word’s parity, but the other bits of y do not contain anything useful.

The following method executes in nine instructions and computes the parity
of x as the integer 0 or 1 (the shifts are unsigned).

   x = x ^ (x >> 1);
   x = (x ^ (x >> 2)) & 0x11111111;
   x = x*0x11111111;
   p = (x >> 28) & 1;

After the second statement above, each hex digit of x is 0 or 1, according to the
parity of the bits in that hex digit. The multiply adds these digits, putting the sum

yi yj i 1– i j.

O n( ) O log2n( )

O log2n( ) O n( )
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in the high-order hex digit. There can be no carry out of any hex column during
the add part of the multiply, because the maximum sum of a column is 8.

The multiply and shift could be replaced by an instruction to compute the
remainder after dividing x by 15, giving a (slow) solution in eight instructions, if
the machine has remainder immediate.

On a 64-bit machine, the above code employing multiplication gives the cor-
rect result after making the obvious changes (expand the hex constants to 16 nib-
bles, each with value 1, and change the final shift amount from 28 to 60). In this
case, the maximum sum in any 4-bit column of the partial products, other than the
most significant column, is 15, so again no overflow occurs that affects the result in
the most significant column. On the other hand, the variation that computes the
remainder upon division by 15 does not work on a 64-bit machine, because the
remainder  is the sum of the nibbles modulo 15, and the sum may be as high as 16.

Adding a Parity Bit to a 7-Bit Quantity
Item 167 in [HAK] contains a novel expression for putting even parity on a 7-bit
quantity that is right-adjusted and isolated in a register. By this we mean to set the
bit to the left of the seven bits, to make an 8-bit quantity with even parity. Their
code is for a 36-bit machine, but it works on a 32-bit machine as well.

Here,  denotes the remainder of a upon division by b, with the argu-
ments and result interpreted as unsigned integers, “*” denotes multiplication mod-
ulo  and the constant 1920 is  Actually, this computes the sum of the
bits of x, and places the sum just to the left of the seven bits comprising x. For
example, the expression maps 0x0000007F to 0x000003FF, and 0x00000055 to
0x00000255.

Another ingenious formula from [HAK] is the following, which puts odd par-
ity on a 7-bit integer:

where 1152 =  To understand this, it helps to know that the powers of 8 are
±1 modulo 9. If the 0x3DB6DB00 is changed to 0xBDB6DB00, this formula
applies even parity.

These methods are not practical on today’s machines, because memory is
cheap but division is still slow. Most programmers would compute these functions
with a simple table lookup.

Applications
The parity operation is widely used to calculate a check bit to append to data. It is
also useful in multiplying bit matrices in GF(2) (in which the add operation is
exclusive or).

modu a b,( )

232, 15 27.

modu x 0x00204081*( ) 0x3DB6DB00 | 1152,( ),

9 27.
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5–3  Counting Leading 0’s
There are several simple ways to count leading 0’s with a binary search technique.
Below is a model that has several variations. It executes in 20 to 29 instructions on
the basic RISC. The comparisons are “logical” (unsigned integers).

   if (x == 0) return(32);
   n = 0;
   if (x <= 0x0000FFFF) {n = n +16; x = x <<16;}
   if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;}
   if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;}
   if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;}
   if (x <= 0x7FFFFFFF) {n = n + 1;}
   return n;

One variation is to replace the comparisons with and’s:

   if ((x & 0xFFFF0000) == 0) {n = n +16; x = x <<16;}
   if ((x & 0xFF000000) == 0) {n = n + 8; x = x << 8}
   ...

Another variation, which avoids large immediate values, is to use shift right
instructions.

The last if statement is simply adding 1 to n if the high-order bit of x is 0, so
an alternative, which saves a branch instruction, is:

   n = n + 1 - (x >> 31);

The “+ 1” in this assignment can be omitted if n is initialized to 1 rather than to 0.
These observations lead to the algorithm (12 to 20 instructions on the basic RISC)
shown in Figure 5–11. A further improvement is possible for the case in which x
begins with a 1-bit: change the first line to

   if ((int)x <= 0) return (~x >> 26) & 32;

int nlz(unsigned x) {
   int n;

   if (x == 0) return(32);
   n = 1;
   if ((x >> 16) == 0) {n = n +16; x = x <<16;}
   if ((x >> 24) == 0) {n = n + 8; x = x << 8;}
   if ((x >> 28) == 0) {n = n + 4; x = x << 4;}
   if ((x >> 30) == 0) {n = n + 2; x = x << 2;}
   n = n - (x >> 31);
   return n;
}

FIGURE 5–11.  Number of leading zeros, binary search.
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Figure 5–12 illustrates a sort of reversal of the above. It requires fewer opera-
tions the more leading 0’s there are, and avoids large immediate values and large
shift amounts. It executes in 12 to 20 instructions on the basic RISC.

This algorithm is amenable to a “table assist”: the last four executable lines
can be replaced by

   static char table[256] = {0,1,2,2,3,3,3,3,4,4,...,8};
   return n - table[x];

Many algorithms can be aided by table lookup, but this will not often be men-
tioned here.

For compactness, this and the preceding algorithms in this section can be
coded as loops. For example, the algorithm of Figure 5–12 becomes the algorithm
shown in Figure 5–13. This executes in 23 to 33 basic RISC instructions, ten of
which are conditional branches.

int nlz(unsigned x) {
   unsigned y;
   int n;

   n = 32;
   y = x >>16;  if (y != 0) {n = n -16;  x = y;}
   y = x >> 8;  if (y != 0) {n = n - 8;  x = y;}
   y = x >> 4;  if (y != 0) {n = n - 4;  x = y;}
   y = x >> 2;  if (y != 0) {n = n - 2;  x = y;}
   y = x >> 1;  if (y != 0) return n - 2;
   return n - x;
}

FIGURE 5–12.  Number of leading zeros, binary search, counting down.

int nlz(unsigned x) {
   unsigned y;
   int n, c;

   n = 32;
   c = 16;
   do {
      y = x >> c;  if (y != 0) {n = n - c;  x = y;}
      c = c >> 1;
   } while (c != 0);
   return n - x;
}

FIGURE 5–13.  Number of leading zeros, binary search, coded as a loop.
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One can, of course, simply shift left one place at a time, counting, until the sign
bit is on; or shift right one place at a time until the word is all 0. These algorithms
are compact and work well if the number of leading 0’s is expected to be small or
large, respectively. One can combine the methods, as shown in Figure 5–14. We
mention this because the technique of merging two algorithms and choosing the
result of whichever one stops first is more generally applicable. It leads to code
that runs fast on superscalar machines, because of the proximity of independent
instructions. (These machines can execute two or more instructions simultane-
ously, provided they are independent.)

On the basic RISC, this executes in min(  )
instructions, or 99 worst case. One can imagine a superscalar machine executing
the entire loop body in one cycle if the comparison results are obtained as a by-
product of the shifts, or in two cycles otherwise, plus the branch overhead.

It is straightforward to convert either of the algorithms of Figure 5–11 or
Figure 5–12 to a branch-free counterpart. Figure 5–15 shows a version that does
the job in 28 basic RISC instructions.

If your machine has the population count instruction, a good way to compute
the number of leading zeros function is given in Figure 5–16. The five assignments
to x can be reversed, or, in fact, done in any order. This is branch-free and takes 12
instructions. Even if population count is not available, this algorithm may be use-
ful. Using the 21-instruction code for counting 1-bits given in Figure 5–2 on
page 82, it executes in 32 branch-free basic RISC instructions.

Robert Harley [Harley] devised an algorithm for nlz(x) that is very similar to
Seal’s algorithm for ntz(x) (see Figure 5–25 on page 111). Harley’s method propa-
gates the most significant 1-bit to the right using shift’s and or’s, and multiplies
modulo  by a special constant, producing a product whose high-order six bits
uniquely identify the number of leading 0’s in x. It then does a shift right and a
table lookup (indexed load) to translate the six-bit identifier to the actual number
of leading 0’s. As shown in Figure 5–17, it consists of 14 instructions, including a
multiply, plus an indexed load. Table entries shown as u are unused.   

int nlz(int x) {
   int y, n;

   n = 0;
   y = x;
L: if (x < 0) return n;
   if (y == 0) return 32 - n;
   n = n + 1;
   x = x << 1;
   y = y >> 1;
   goto L;
}

FIGURE 5–14.  Number of leading zeros, working both ends at the same time.

3 6nlz x( ),+ 6 6 32 nlz x( )–( )+

232
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int nlz(unsigned x) {
   int y, m, n;

   y = -(x >> 16);   // If left half of x is 0,
   m = (y >> 16) & 16;  // set n = 16. If left half
   n = 16 - m;    // is nonzero, set n = 0 and
   x = x >> m;      // shift x right 16.

     // Now x is of the form 0000xxxx.
   y = x - 0x100;   // If positions 8-15 are 0,
   m = (y >> 16) & 8;   // add 8 to n and shift x left 8.
   n = n + m;
   x = x << m;

   y = x - 0x1000;   // If positions 12-15 are 0,
   m = (y >> 16) & 4;   // add 4 to n and shift x left 4.
   n = n + m;
   x = x << m;

   y = x - 0x4000;   // If positions 14-15 are 0,
   m = (y >> 16) & 2;   // add 2 to n and shift x left 2.
   n = n + m;
   x = x << m;

   y = x >> 14;   // Set y = 0, 1, 2, or 3.
   m = y & ~(y >> 1);   // Set m = 0, 1, 2, or 2 resp.
   return n + 2 - m;
}

FIGURE 5–15. Number of leading zeros, branch-free binary search.

int nlz(unsigned x) {
   int pop(unsigned x);

   x = x | (x >> 1);
   x = x | (x >> 2);
   x = x | (x >> 4);
   x = x | (x >> 8);
   x = x | (x >>16);
   return pop(~x);
}

FIGURE 5–16. Number of leading zeros, right-propagate and count 1-bits.
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The multiplier is  so the multiplication can be done as shown below.
In this form, the function consists of 19 elementary instructions, plus an indexed
load.

   x = (x << 3) - x;    // Multiply by 7.
   x = (x << 8) - x;    // Multiply by 255.
   x = (x << 8) - x;    // Again.
   x = (x << 8) - x;    // Again.

There are many multipliers that have the desired uniqueness property and
whose factors are all of the form  The smallest is 0x045BCED1 =

 There are no such multipliers consisting of three factors if the
table size is 64 or 128 entries. If the table size is 256 entries, however, there are a
number of such multipliers. The smallest is 0x01033CBF =  (using
this would save two instructions at the expense of a larger table).

Julius Goryavsky [Gor] has found several variations of Harley’s algorithm
that reduce the table size at the expense of a few instructions, or have improved
parallelism, or have other desirable properties. One, shown in Figure 5–18, is a
clear winner if the multiplication is done with shifts and adds. The code changes
only the table and the lines that contain the shift right of 16 and the following mul-
tiply in Figure 5–17. If the machine has and not, this saves two instructions
because the multiplier can be factored as  (mod ), which can
be done in six elementary instructions rather than eight. If the machine does not
have and not, it saves one instruction.

int nlz(unsigned x) {

   static char table[64] =
     {32,31, u,16, u,30, 3, u,  15, u, u, u,29,10, 2, u,
       u, u,12,14,21, u,19, u,   u,28, u,25, u, 9, 1, u,
      17, u, 4, u, u, u,11, u,  13,22,20, u,26, u, u,18,
       5, u, u,23, u,27, u, 6,   u,24, 7, u, 8, u, 0, u};

   x = x | (x >> 1);    // Propagate leftmost
   x = x | (x >> 2);   // 1-bit to the right.
   x = x | (x >> 4);
   x = x | (x >> 8);
   x = x | (x >>16);
   x = x*0x06EB14F9;  // Multiplier is 7*255**3.
   return table[x >> 26];
}

FIGURE 5–17. Number of leading zeros, Harley’s algorithm.

7 2553,

2k 1.±
17 65 129 513.

65 255 1025

511 2047 16383 232
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Floating-Point Methods
The floating-point post-normalization facilities can be used to count leading zeros.
It works out quite well with IEEE-format floating-point numbers. The idea is to
convert the given unsigned integer to double-precision floating-point, extract the
exponent, and subtract it from a constant. Figure 5–19 illustrates a complete pro-
cedure for this.

The code uses the C++ “anonymous union” to overlay an integer with a double-
precision floating-point quantity. Variable LE must be 1 for execution on a little-
endian machine, and 0 for big-endian. The addition of 0.5, or some other small
number, is necessary for the method to work when k = 0.

We will not attempt to assess the execution time of this code, because
machines differ so much in their floating-point capabilities. For example, many
machines have their floating-point registers separate from the integer registers,
and on such machines data transfers through memory may be required to convert
an integer to floating-point and then move the result to an integer register.

The code of Figure 5–19 is not valid C or C++ according to the ANSI stan-
dard, because it refers to the same memory locations as two different types. Thus,
one cannot be sure it will work on a particular machine and compiler. It does work
with IBM’s XLC compiler on AIX, and with the GCC compiler on AIX and on

   ...
   static char table[64] =
     {32,20,19, u, u,18, u, 7,  10,17, u, u,14, u, 6, u,
       u, 9, u,16, u, u, 1,26,   u,13, u, u,24, 5, u, u,
       u,21, u, 8,11, u,15, u,   u, u, u, 2,27, 0,25, u,
      22, u,12, u, u, 3,28, u,  23, u, 4,29, u, u,30,31};
   ...
   x = x & ~(x >> 16);
   x = x*0xFD7049FF;
   ...

FIGURE 5–18. Number of leading zeros, Goryavsky’s variation of Harley’s algorithm.

int nlz(unsigned k) {
   union {
      unsigned asInt[2];
      double asDouble;
   };
   int n;

   asDouble = (double)k + 0.5;
   n = 1054 - (asInt[LE] >> 20);
   return n;
}

FIGURE 5–19. Number of leading zeros, using IEEE floating-point.
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Windows 2000 and XP, at all optimization levels (as of this writing, anyway). If
the code is altered to do the overlay defining with something like

   xx = (double)k + 0.5;
   n = 1054 - (*((unsigned *)&xx + LE) >> 20);

it does not work on these systems with optimization turned on. This code, inciden-
tally, violates a second ANSI standard, namely, that pointer arithmetic can be per-
formed only on pointers to array elements [Cohen]. The failure, however, is due to
the first violation, involving overlay defining.

In spite of the flakiness of this code,2 three variations are given below.

   asDouble = (double)k;
   n = 1054 - (asInt[LE] >> 20);
   n = (n & 31) + (n >> 9);

   k = k & ~(k >> 1);
   asFloat = (float)k + 0.5f;
   n = 158 - (asInt >> 23);

   k = k & ~(k >> 1);
   asFloat = (float)k;
   n = 158 - (asInt >> 23);
   n = (n & 31) + (n >> 6);

In the first variation, the problem with k = 0 is fixed not by a floating-point
addition of 0.5, but by integer arithmetic on the result n (which would be 1054, or
0x41E, if the correction were not done).

The next two variations use single-precision floating-point, with the “anony-
mous union” changed in an obvious way. Here there is a new problem: Rounding
can throw off the result when the rounding mode is either round to nearest (almost
universally used) or round toward + . For round to nearest mode, the rounding
problem occurs for k in the ranges hexadecimal FFFF FF80 to FFFF FFFF,
7FFFFFC0 to 7FFFFFFF, 3FFFFFE0 to 3FFFFFFF, and so on. In rounding, an
add of 1 carries all the way to the left, changing the position of the most signifi-
cant 1-bit. The correction steps used above clear the bit to the right of the most
significant 1-bit, blocking the carry. If k is a 64-bit quantity, this correction is also
needed for the code of Figure 5–19 and for the first of the three variations given
above.

The GNU C/C++ compiler has a unique feature that allows coding any of
these schemes as a macro, giving in-line code for the function references [Stall].
This feature allows statements, including declarations, to be inserted in code
where an expression is called for. The sequence of statements would usually end

2. The flakiness is due to the way C is used. The methods illustrated would be perfectly accept-
able if coded in machine language, or generated by a compiler, for a particular machine.
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with an expression, which is taken to be the value of the construction. Such a
macro definition is shown below, for the first single-precision variation. (In C, it is
customary to use uppercase for macro names.)

#define NLZ(kp) \
   ({union {unsigned _asInt; float _asFloat;}; \
     unsigned _k = (kp), _kk = _k & ~(_k >> 1); \
     _asFloat = (float)_kk + 0.5f; \
     158 - (_asInt >> 23);})

The underscores are used to avoid name conflicts with parameter kp; presumably,
user-defined names do not begin with underscores.

Comparing the Number of Leading Zeros of Two Words
There is a simple way to determine which of two words x and y has the larger num-
ber of leading zeros [Knu5] without actually computing nlz(x) or nlz(y). The meth-
ods are shown in the equivalences below. The three relations not shown are, of
course, obtained by complementing the sense of the comparison on the right.

Relation to the Log Function
The “nlz” function is, essentially, the “integer log base 2” function. For unsigned

See also Section 11–4, “Integer Logarithm,” on page 291.
Another closely related function is bitsize, the number of bits required to rep-

resent its argument as a signed quantity in two’s-complement form. We take its
definition to be

nlz x( ) = nlz y( )    if and only if    x y⊕( ) x y&( )≤
u 

nlz x( ) nlz y( )<     if and only if    x y¬&( ) y>u

nlz x( ) nlz y( )≤     if and only if    y x¬&( ) x≤
u 

x 0,≠

log2 x( ) 31 nlz x( ),  and–=

log2 x( ) 32 nlz x 1–( ).–=

bitsize x( )

1, x 1 or 0,–=
2, x 2 or 1,–=
3, 4– x 3–≤ ≤  or 2 x 3,≤ ≤
4, 8– x 5–≤ ≤  or 4 x 7,≤ ≤
… …

32, 231– x 230– 1–≤ ≤  or 230 x 231 1.–≤ ≤⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=
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From this definition, bitsize(x) =  But  so an
algorithm for bitsize is (where the shift is signed)

   x = x ^ (x >> 31);    // If (x < 0) x = -x - 1;
   return 33 - nlz(x);

An alternative, which is the same function as bitsize(x) except it gives the
result 0 for x = 0, is

   32 - nlz(x ^ (x << 1))

Applications
Two important applications of the number of leading zeros function are in simulat-
ing floating-point arithmetic operations and in various division algorithms (see
Figure 9–1 on page 185 and Figure 9–3 on page 196). The instruction seems to
have a miscellany of other uses.

It can be used to get the “x = y” predicate in only three instructions (see
“Comparison Predicates” on page 23), and as an aid in computing certain elemen-
tary functions (see pages 281, 284, 290, and 294).

A novel application is to generate exponentially distributed random integers
by generating uniformly distributed random integers and taking nlz of the result
[GLS1]. The result is 0 with probability 1/2, 1 with probability 1/4, 2 with proba-
bility 1/8, and so on. Another application is as an aid in searching a word for a
consecutive string of 1-bits (or 0-bits) of a certain length, a process that is used in
some disk block allocation algorithms. For these last two applications, the number
of trailing zeros function could also be used.

5–4  Counting Trailing 0’s
If the number of leading zeros instruction is available, then the best way to count
trailing 0’s is, most likely, to convert it to a count leading 0’s problem:

If population count is available, a slightly better method is to form a mask
that identifies the trailing 0’s, and count the 1-bits in it [Hay2], such as

Variations exist using other expressions for forming a mask that identifies
the trailing zeros of x, such as those given in Section 2–1, “Manipulating Right-
most Bits,” on page 11. These methods are also reasonable even if the machine
has none of the bit-counting instructions. Using the algorithm for pop(x) given in
Figure 5–2 on page 82, the first expression above executes in about 3 + 21 = 24
instructions (branch-free).

bitsize x– 1–( ). x– 1– x,¬=

32 nlz x¬ x 1–( )&( )– .

pop x¬ x 1–( )&( ),  and

32 pop x x– | ( ).–
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Figure 5–20 shows an algorithm that does it directly, in 12 to 20 basic RISC
instructions (for ).

The n + 16 can be simplified to 17 if that helps, and if the compiler is not
smart enough to do that for you (this does not affect the number of instructions as
we are counting them).

Figure 5–21 shows a variation that uses smaller immediate values and sim-
pler operations. It executes in 12 to 21 basic RISC instructions. Unlike the above
procedure, when the number of trailing 0’s is small, the procedure of Figure 5–21
executes a larger number of instructions, but also a larger number of “fall-
through” branches.

The line just above the return statement can alternatively be coded

   n = n - ((x << 1) >> 31);

which saves a branch, but not an instruction.

int ntz(unsigned x) {
   int n;

   if (x == 0) return(32);
   n = 1;
   if ((x & 0x0000FFFF) == 0) {n = n +16; x = x >>16;}
   if ((x & 0x000000FF) == 0) {n = n + 8; x = x >> 8;}
   if ((x & 0x0000000F) == 0) {n = n + 4; x = x >> 4;}
   if ((x & 0x00000003) == 0) {n = n + 2; x = x >> 2;}
   return n - (x & 1);
}

FIGURE 5–20. Number of trailing zeros, binary search.

int ntz(unsigned x) {
   unsigned y;
   int n;

   if (x == 0) return 32;
   n = 31;
   y = x <<16;  if (y != 0) {n = n -16;  x = y;}
   y = x << 8;  if (y != 0) {n = n - 8;  x = y;}
   y = x << 4;  if (y != 0) {n = n - 4;  x = y;}
   y = x << 2;  if (y != 0) {n = n - 2;  x = y;}
   y = x << 1;  if (y != 0) {n = n - 1;}
   return n;
}

FIGURE 5–21. Number of trailing zeros, smaller immediate values.

x 0
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In terms of number of instructions executed, it is hard to beat the “search
tree” [Aus2]. Figure 5–22 illustrates this procedure for an 8-bit argument. This
procedure executes in seven instructions for all paths except the last two (return 7
or 8), which require nine. A 32-bit version would execute in 11 to 13 instructions.
Unfortunately, for large word sizes, the program is quite large. The 8-bit version
above is 12 lines of executable source code and would compile into about 41
instructions. A 32-bit version would be 48 lines and about 164 instructions, and a
64-bit version would be twice that.

If the number of trailing 0’s is expected to be small or large, then the simple
loops shown in Figure 5–23 are quite fast. The algorithm on the left executes in

 and that on the right in  basic RISC instructions.

int ntz(char x) {
   if (x & 15) {
      if (x & 3) {
         if (x & 1) return 0;
         else return 1;
      }
      else if (x & 4) return 2;
      else return 3;
   }
   else if (x & 0x30) {
      if (x & 0x10) return 4;
      else return 5;
   }
   else if (x & 0x40) return 6;
   else if (x) return 7;
   else return 8;
}

FIGURE 5–22. Number of trailing zeros, binary search tree.

int ntz(unsigned x) {
   int n;

   x = ~x & (x - 1);
   n = 0;             // n = 32;
   while (x != 0) {        // while (x != 0) {
      n = n + 1;         //    n = n - 1;
      x = x >> 1;         //    x = x + x;
   }               // }
   return n;           // return n;
}

FIGURE 5–23. Number of trailing zeros, simple counting loops.

5 3ntz x( ),+ 3 3 32 ntz x( )–( )+
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Dean Gaudet [Gaud] devised an algorithm that is interesting because with the
right instructions it is branch-free, load-free (does not use table lookup), and has
lots of parallelism. It is shown in Figure 5–24.

As shown, the code uses the C “conditional expression” in six places. This
construct has the form a?b:c. Its value is b if a is true (nonzero), and c if a is
false (zero). Although a conditional expression must, in general, be compiled into
compares and branches, for the simple cases in Figure 5–24 branching can be
avoided if the machine has a compare for equality to zero instruction that sets a tar-
get register to 1 if the operand is 0, and to 0 if the operand is nonzero. Branching
can also be avoided by using conditional move instructions. Using compare, the
assignment to b3 can be compiled into five instructions on the basic RISC: two to
generate the hex constant, an and, the compare, and a shift left of 3. (The first, sec-
ond, and last conditional expressions require one, three, and four instructions,
respectively.)

The code can be compiled into a total of 30 instructions. All six lines with the
conditional expressions can run in parallel. On a machine with a sufficient degree of
parallelism, it executes in ten cycles. Present machines don’t have that much paral-
lelism, so as a practical matter it might help to change the first two uses of y in the
program to x. This permits the first three executable statements to run in parallel.

David Seal [Seal2] devised an algorithm for computing ntz(x) that is based on
the idea of compressing the  possible values of x to a small dense set of integers
and doing a table lookup. He uses the expression  to reduce the number of
possible values to a small number. The value of this expression is a word that con-
tains a single 1-bit at the position of the least significant 1-bit in x, or is 0 if 
Thus,  has only 33 possible values. But they are not dense; they range from
0 to 

To produce a dense set of 33 integers that uniquely identify the 33 values of
 Seal found a certain constant which, when multiplied by  pro-

duces the identifying value in the high-order six bits of the low-order half of the
product of the constant and  Since  is an integral power of 2 or is 0,

int ntz(unsigned x) {
   unsigned y, bz, b4, b3, b2, b1, b0;

   y = x & -x;       // Isolate rightmost 1-bit.
   bz = y ? 0 : 1;           // 1 if y = 0.
   b4 = (y & 0x0000FFFF) ? 0 : 16;
   b3 = (y & 0x00FF00FF) ? 0 : 8;
   b2 = (y & 0x0F0F0F0F) ? 0 : 4;
   b1 = (y & 0x33333333) ? 0 : 2;
   b0 = (y & 0x55555555) ? 0 : 1;
   return bz + b4 + b3 + b2 + b1 + b0;
}

FIGURE 5–24. Number of trailing zeros, Gaudet’s algorithm.

232

x x–&

x 0.=
x x–&

231.

x x,–& x x,–&

x x.–& x x–&
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the multiplication amounts to a left shift of the constant, or it is a multiplication by
0. Using only the high-order five bits is not sufficient, because 33 distinct values
are needed.

The code is shown in Figure 5–25, where table entries shown as u are unused.
As an example, if x is an odd multiple of 16, then x & -x = 16, so the multi-

plication is simply a left shift of four positions. The high-order six bits of the low-
order half of the product are then binary 010001, or 17 decimal. The table trans-
lates 17 to 4, which is the correct number of trailing 0’s for an odd multiple of 16.

There are thousands of constants that have the necessary uniqueness property.
The smallest is 0x0431472F, and the largest is 0xFDE75C6D. Seal chose a constant
for which the multiplication can be done with a small number of shifts and adds.
Since 0x0450FBAF =  the multiplication can be done as follows:

   x = (x << 4) + x;    // x = x*17.
   x = (x << 6) + x;    // x = x*65.
   x = (x << 16) - x;   // x = x*65535. 

With this substitution, the code of Figure 5–25 consists of nine elementary instruc-
tions, plus an indexed load. Seal was interested in the ARM instruction set, which
can do a shift and add in one instruction. On that architecture, the code is six
instructions, including the indexed load.

To make the multiplication even easier to do with shifts and adds, one might
hope to find a constant of the form  that has the necessary
uniqueness property. For a table size of 64, there are no such integers, and there is
only one other suitable integer that is a product of three such factors:
0x08A1FBAF =  Using a table size of 128 or 256 does not help.
However, for a table size of 512 there are four suitable integers of the form

 the smallest is 0x0080FF7F =  We leave it to the
reader to determine the table associated with this constant.

There is a variation of Seal’s method that is based on de Bruijn cycles [LPR].
These are cyclic sequences over a given alphabet that contain as a subsequence
every sequence of the letters of the alphabet of a given length exactly once. For
example, a cycle that contains as a subsequence every sequence of {a, b, c} of

int ntz(unsigned x) {

   static char table[64] =
     {32, 0, 1,12, 2, 6, u,13,   3, u, 7, u, u, u, u,14,
      10, 4, u, u, 8, u, u,25,   u, u, u, u, u,21,27,15,
      31,11, 5, u, u, u, u, u,   9, u, u,24, u, u,20,26,
      30, u, u, u, u,23, u,19,  29, u,22,18,28,17,16, u};

   x = (x & -x)*0x0450FBAF;
   return table[x >> 26];
}

FIGURE 5–25. Number of trailing zeros, Seal’s algorithm.

17 65 65535,

2k1 1±( ) 2k2 1±( )

17 65 131071.

2k1 1±( ) 2k2 1±( ); 129 65535.
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length 2 is aabacbbcc. Notice that the sequence ca wraps around from the end to
the beginning. If the alphabet size is k and the length is n, there are  sequences.
For a cycle to contain all of these, it must be of length at least  which would be
its length if a different sequence started at each position. It can be shown that there
is always a cycle of this minimum possible length that contains all  sequences.

For our purposes, the alphabet is {0, 1}, and for dealing with 32-bit words, we
are interested in a cycle that contains all 32 sequences 00000, 00001, 00010, …,
11111. Given such a cycle that begins with at least four 0’s, we can compute ntz(x)
by first reducing x to a word that contains a single bit at the position of the least
significant bit of x, as in Seal’s algorithm. Then, by multiplication, we can select a
5-bit field of the de Bruijn cycle, which will be a unique value for each multiplier.
This can be mapped to give the number of trailing 0’s by a table lookup. The algo-
rithm follows. The de Bruijn cycle used is

0000 0100 1101 0111 0110 0101 0001 1111.

It is in effect a cycle, because in use it has trailing 0’s beyond the 32 bits shown
above, which is effectively the same as wrapping to the beginning.

There are 33 possible values of ntz(x) and only 32 five-bit subsequences in the
de Bruijn cycle. Therefore, two words with different values of ntz(x) must map to
the same number by the table lookup. The words that conflict are zero and words
that end with a 1-bit. To resolve this, the code has a test for 0 and returns 32 in that
case. A branch-free way to resolve it, useful if your computer has predicate com-
parison instructions, is to change the last statement to

   return table[x >> 27] + 32*(x == 0);

To compare the two algorithms, Seal’s does not require the test for zero and
it allows the alternative of doing the multiplication with six elementary instruc-
tions. The de Bruijn algorithm uses a smaller table. The de Bruijn cycle used in
Figure 5–26, discovered by Danny Dubé [Dubé], is a good one because multipli-
cation by it can be done with eight elementary instructions. The constant is
0x04D7651F =  from which one can see the shifts,
adds, and subtracts that do the job.

int ntz(unsigned x) {

   static char table[32] =
     { 0, 1, 2,24, 3,19, 6,25,  22, 4,20,10,16, 7,12,26,
      31,23,18, 5,21, 9,15,11,  30,17, 8,14,29,13,28,27};

   if (x == 0) return 32;
   x = (x & -x)*0x04D7651F;
   return table[x >> 27];
}

FIGURE 5–26. Number of trailing zeros using a de Bruijn cycle.

kn

kn,

kn

2047 5 256 1+( ) 31,
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John Reiser [Reiser] observed that there is another way to map the 33 values
of the factor x & -x in Seal’s algorithm to a dense set of unique integers: divide
and use the remainder. The smallest divisor that has the necessary uniqueness
property is 37. The resulting code is shown in Figure 5–27, where table entries
shown as u are unused.

It is interesting to note that if the numbers x are uniformly distributed, then
the average number of trailing 0’s is, very nearly, 1.0. To see this, sum the prod-
ucts , where  is the probability that there are exactly  trailing 0’s. That is,

To evaluate this sum, consider the following array:

The sum of each column is a term of the series for S. Hence S is the sum of all the
numbers in the array. The sums of the rows are

int ntz(unsigned x) {

   static char table[37] = {32,  0,  1, 26,  2, 23, 27,
                 u,  3, 16, 24, 30, 28, 11,  u, 13,  4,
                 7, 17,  u, 25, 22, 31, 15, 29, 10, 12,
                 6,  u, 21, 14,  9,  5, 20,  8, 19, 18};

   x = (x & -x)%37;
   return table[x];
}

FIGURE 5–27. Number of trailing zeros, Reiser’s algorithm.
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4--- 1⋅ 1
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∞
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 1 8⁄ 1 16⁄ 1 32⁄ 1 64⁄ …
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     …

1 4⁄ 1 8⁄ 1 16⁄ 1 32⁄ …+ + + + 1 2⁄=
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1 16⁄ 1 32⁄ 1 64⁄ 1 128⁄ …+ + + + 1 8⁄=
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and the sum of these is The absolute convergence of
the original series justifies the rearrangement.

Sometimes, a function similar to ntz(x) is wanted, but a 0 argument is a spe-
cial case, perhaps an error, that should be identified with a value of the function
that’s easily distinguished from the “normal” values of the function. For example,
let us define “the number of factors of 2 in x” to be

This can be calculated from

Applications
[GLS1] points out some interesting applications of the number of trailing zeros
function. It has been called the “ruler function” because it gives the height of a
tick mark on a ruler that’s divided into halves, quarters, eighths, and so on.

It has an application in R. W. Gosper’s loop-detection algorithm, which will
now be described in some detail, because it is quite elegant and it does more than
might at first seem possible.

Suppose a sequence is defined by If the
range of f is finite, the sequence is necessarily periodic. That is, it consists of a
leader  followed by a cycle  that repeats
without limit (  and so on, where  is the period
of the cycle). Given the function f, the loop-detection problem is to find the index

 of the first element that repeats, and the period . Loop detection has applica-
tions in testing random number generators and detecting a cycle in a linked list.

One could save all the values of the sequence as they are produced and com-
pare each new element with all the preceding ones. This would immediately show
where the second cycle starts. But algorithms exist that are much more efficient in
space and time.

Perhaps the simplest is due to R. W. Floyd [Knu2, sec. 3.1, prob. 6]. This
algorithm iterates the process

with x and y initialized to  After the nth step,  and  These
are compared, and if equal, it is known that  and  are separated by an inte-
gral multiple of the period —that is,  is a multiple of . Then  can
be determined by regenerating the sequence from the beginning, comparing 
to  then  to  and so on. Equality occurs when  is compared to

1 2⁄ 1 4⁄ 1 8⁄ …+ + + 1.=

nfact2 x( ) ntz x( ),    x 0,
1– ,    x 0.=

=

31 nlz x x–&( ).–

X0 X1 X2 …, , , Xn 1+ f Xn( ).=

X0 X1 … X 1–, , , X Xu 1+ …, X 1–+, ,
X X + ,= X 1+ X 1+ + ,=

x f x( )=
y f f y( )( )=

X0. x Xn= y X2n.=
Xn X2n

2n n– n=
X0

Xn, X1 Xn 1+ , X
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Finally, λ can be determined by regenerating more elements, comparing
 to   This algorithm requires only a small and bounded

amount of space, but it evaluates f many times.
Gosper’s algorithm [HAK, item 132; Knu2, Answers to Exercises for Section

3.1, exercise 7] finds the period λ, but not the starting point μ of the first cycle. Its
main feature is that it never backs up to reevaluate f, and it is quite economical in
space and time. It is not bounded in space; it  requires a table of size

 where Λ is the largest possible period. This is not a lot of space;
for example, if it is known a priori that  then 33 words suffice.

Gosper’s algorithm, coded in C, is shown in Figure 5–28. This C function
is given the function f being analyzed and a starting value  It returns lower
and upper bounds on μ, and the period λ. (Although Gosper’s algorithm
cannot compute μ, it can compute lower and upper bounds  and  such that

) The algorithm works by comparing  for
 to a subset of size  of the elements of the sequence

that precede  The elements of the subset are the closest preceding  such
that  ends in a 1-bit (that is, i is the even number preceding n), the closest
preceding  such that  ends in exactly one 0-bit, the closest preceding 
such that  ends in exactly two 0-bits, and so on. 

void ld_Gosper(int (*f)(int), int X0, int *mu_l,
                              int *mu_u, int *lambda) {
   int Xn, k, m, kmax, n, lgl;
   int T[33];

   T[0] = X0;
   Xn = X0;
   for (n = 1; ; n++) {
      Xn = f(Xn);
      kmax = 31 - nlz(n);           // Floor(log2 n).
      for (k = 0; k <= kmax; k++) {
         if (Xn == T[k]) goto L;
      }
      T[ntz(n+1)] = Xn;             // No match.
   }
L:
   // Compute m = max{i | i < n and ntz(i+1) = k}.

   m = ((((n >> k) - 1) | 1) << k) - 1;
   *lambda = n - m;
   lgl = 31 - nlz(*lambda - 1); // Ceil(log2 lambda) - 1.
   *mu_u = m;                       // Upper bound on mu.
   *mu_l = m - max(1, 1 << lgl) + 1;// Lower bound on mu.
}

FIGURE 5–28.  Gosper’s loop-detection algorithm.

Xn μ+ .
Xμ Xμ 1+ , Xμ 2+ , ….
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Λ 232,≤

X0.

μl μu
μu μl– 1+ max λ 1– 1,( ).≤ Xn,
n 1 2 …,, ,= log2n 1+

Xn. Xi
i 1+

Xi i 1+ Xi
i 1+



ptg8736757

116 COUNTING BITS

Thus, the comparisons proceed as follows:

It can be shown that the algorithm always terminates with n somewhere in the sec-
ond cycle—that is, with  See [Knu2] for further details.

The ruler function reveals how to solve the Tower of Hanoi puzzle. Number
the n disks from 0 to  At each move k, as k goes from 1 to  move
disk ntz(k) the minimum permitted distance to the right, in a circular manner.

The ruler function can be used to generate a reflected binary Gray code (see
Section 13–1 on page 311). Start with an arbitrary n-bit word, and at each step k,
as k goes from 1 to  flip bit ntz(k).

Exercises

1. Code Dubé’s algorithm for the ntz function, expanding the multiplication.

2. Code the “right justify” function,   in three basic RISC
instructions.

3. Are the parallel prefix and suffix (with XOR) operations invertible? If so, how
would you compute the inverse functions?

X1 : X0

X2 : X0 X1,

X3 : X2 X1,

X4 : X2 X1 X3, ,

X5 : X4 X1 X3, ,

X6 : X4 X5 X3, ,

X7 : X6 X5 X3, ,

X8 : X6 X5 X3 X7, , ,

X9 : X8 X5 X3 X7, , ,

X10 : X8 X9 X3 X7, , ,

X11 : X10 X9 X3 X7, , ,

X12 : X10 X9 X11 X7, , ,

X13 : X12 X9 X11 X7, , ,

X14 : X12 X13 X11 X7, , ,

X15 : X14 X13 X11 X7, , ,

X16 : X14 X13 X11 X7 X15, , , ,

X17 : X16 X13 X11 X7 X15, , , ,

X18 : X16 X17 X11 X7 X15, , , ,

n 2 .+<

n 1.– 2n 1,–

2n 1,–

x ntz x( ),>>
u x 0,
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 CHAPTER  6

SEARCHING WORDS

6–1  Find First 0-Byte
The need for this function stems mainly from the way character strings are repre-
sented in the C language. They have no explicit length stored with them; instead,
the end of the string is denoted by an all-0 byte. To find the length of a string, a C
program uses the “strlen” (string length) function. This function searches the
string, from left to right, for the 0-byte, and returns the number of bytes scanned,
not counting the 0-byte.

A fast implementation of “strlen” might load and test single bytes until a
word boundary is reached, and then load a word at a time into a register, and test
the register for the presence of a 0-byte. On big-endian machines, we want a func-
tion that returns the index of the first 0-byte from the left. A convenient encoding
is values from 0 to 3 denoting bytes 0 to 3, and a value of 4 denoting that there is
no 0-byte in the word. This is the value to add to the string length, as successive
words are searched, if the string length is initialized to 0. On little-endian
machines, one wants the index of the first 0-byte from the right end of the register,
because little-endian machines reverse the four bytes when a word is loaded into a
register. Specifically, we are interested in the following functions, where “00”
denotes a 0-byte, “nn” denotes a nonzero byte, and “xx” denotes a byte that may
be 0 or nonzero.

Our first procedure for the find leftmost 0-byte function, shown in Figure 6–1,
simply tests each byte, in left-to-right order, and returns the result when the first
0-byte is found.

int zbytel(unsigned x) {
   if             ((x >> 24) == 0) return 0;
   else if ((x & 0x00FF0000) == 0) return 1;
   else if ((x & 0x0000FF00) == 0) return 2;
   else if ((x & 0x000000FF) == 0) return 3;
   else return 4;
}

FIGURE 6–1. Find leftmost 0-byte, simple sequence of tests.

zbytel x( )

0, x 00xxxxxx,=
1, x nn00xxxx,=
2, x nnnn00xx,=
3, x nnnnnn00,=
4, x nnnnnnnn.=

= zbyter x( )

0, x xxxxxx00,=
1, x xxxx00nn,=
2, x xx00nnnn,=
3, x 00nnnnnn,=
4, x nnnnnnnn.=

=
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This executes in two to 11 basic RISC instructions, 11 in the case that the
word has no 0-bytes (which is the important case for the “strlen” function). A very
similar program will handle the problem of finding the rightmost 0-byte.

Figure 6–2 shows a branch-free procedure for this function. The idea is to con-
vert each 0-byte to 0x80, and each nonzero byte to 0x00, and then use number of
leading zeros. This procedure executes in eight instructions, if the machine has the
number of leading zeros and nor instructions. Some similar tricks are described
in [Lamp].

The position of the rightmost 0-byte is given by the number of trailing 0’s in
the final value of y computed above, divided by 8 (with fraction discarded). Using
the expression for computing the number of trailing 0’s by means of the number of
leading zeros instruction (see Section 5–4, “Counting Trailing 0’s,” on page 107),
this can be computed by replacing the assignment to n in the procedure above with:

   n = (32 - nlz(~y & (y - 1))) >> 3;

This is a 12-instruction solution, if the machine has nor and and not.
In most situations on PowerPC, incidentally, a procedure to find the rightmost

0-byte would not be needed. Instead, the words can be loaded with the load word
byte-reverse instruction (lwbrx).

The procedure of Figure 6–2 is more valuable on a 64-bit machine than on a
32-bit one, because on a 64-bit machine the procedure (with obvious modifica-
tions) requires about the same number of instructions (seven or ten, depending
upon how the constant is generated), whereas the technique of Figure 6–1 requires
23 instructions worst case.

If only a test for the presence of a 0-byte is wanted, then a branch on zero (or
nonzero) can be inserted just after the second assignment to y.

A method similar to that of Figure 6–2, but for finding the rightmost 0-byte in
a word x (zbyter(x)), is [Mycro]:

   y = (x - 0x01010101) & ~x & 0x80808080;
   n = ntz(y) >> 3;

int zbytel(unsigned x) {
   unsigned y;
   int n;

      // Original byte: 00 80 other
   y = (x & 0x7F7F7F7F) + 0x7F7F7F7F;   // 7F 7F 1xxxxxxx
   y = ~(y | x | 0x7F7F7F7F);         // 80 00 00000000
   n = nlz(y) >> 3;      // n = 0 ... 4, 4 if x
   return n;          // has no 0-byte.
}

FIGURE 6–2. Find leftmost 0-byte, branch-free code.
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This executes in only five instructions exclusive of loading the constants if the
machine has the and not and number of trailing zeros instructions. It cannot be
used to compute zbytel(x), because of a problem with borrows. It would be most
useful for finding the first 0-byte in a character string on a little-endian machine, or
to simply test for a 0-byte (using only the assignment to y) on a machine of either
endianness.

If the nlz instruction is not available, there does not seem to be any really
good way to compute the find first 0-byte function. Figure 6–3 shows a possibility
(only the executable part of the code is shown).

This executes in ten to 13 basic RISC instructions, ten in the all-nonzero
case. Thus, it is probably not as good as the code of Figure 6–1, although it does
have fewer branch instructions. It does not scale very well to 64-bit machines,
unfortunately.

There are other possibilities for avoiding the nlz function. The value of y
computed by the code of Figure 6–3 consists of four bytes, each of which is either
0x00 or 0x80. The remainder after dividing such a number by 0x7F is the original
value with the up-to-four 1-bits moved and compressed to the four rightmost posi-
tions. Thus, the remainder ranges from 0 to 15 and uniquely identifies the original
number. For example,

This value can be used to index a table, 16 bytes in size, to get the desired result.
Thus, the code beginning if (y == 0) can be replaced with

   static char table[16] = {4, 3, 2, 2, 1, 1, 1, 1,
        0, 0, 0, 0, 0, 0, 0, 0};

   return table[y%127];

where y is unsigned. The number 31 can be used in place of 127, but with a differ-
ent table.

      // Original byte: 00 80 other
   y = (x & 0x7F7F7F7F) + 0x7F7F7F7F; // 7F 7F 1xxxxxxx
   y = ~(y | x | 0x7F7F7F7F);        // 80 00 00000000

               // These steps map:
   if (y == 0) return 4;         // 00000000 ==> 4,
   else if (y > 0x0000FFFF)        // 80xxxxxx ==> 0,
      return (y >> 31) ^ 1;          // 0080xxxx ==> 1,
   else              // 000080xx ==> 2,
      return (y >> 15) ^ 3;          // 00000080 ==> 3.

FIGURE 6–3. Find leftmost 0-byte, not using nlz.

remu 0x80808080 127,( ) 15,=
remu 0x80000000 127,( ) 8,=
remu 0x00008080 127,( ) 3, etc.=
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These methods involving dividing by 127 or 31 are really just curiosities,
because the remainder function is apt to require 20 cycles or more, even if directly
implemented in hardware. However, below are two more efficient replacements
for the code in Figure 6–3 beginning with if (y == 0):

   return table[hopu(y, 0x02040810) & 15];
   return table[y*0x00204081 >> 28];

Here, hopu(a, b) denotes the high-order 32 bits of the unsigned product of a
and b. In the second line, we assume the usual HLL convention that the value of
the multiplication is the low-order 32 bits of the complete product. This might be
a practical method, if either the machine has a fast multiply or the multiplication
by 0x204081 is done by shift-and-add’s. It can be done in four such instructions,
as suggested by

.

Using this 4-cycle way to do the multiplication, the total time for the procedure
comes to 13 cycles (7 to compute y, plus 4 for the shift-and-add’s, plus 2 for the
shift right of 28 and the table index), and of course it is branch-free.

These scale reasonably well to a 64-bit machine. For the “modulus”
method, use

   return table[y%511];

where table is of size 256, with values 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
… (i.e., table[i] = number of trailing 0’s in i).

For the multiplicative methods, use either

   return table[hopu(y, 0x0204081020408100) & 255];  or
   return table[(y*0x0002040810204081) >> 56];

where table is of size 256, with values 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, …. 
The multiplication by 0x2040810204081 can be done with

which gives a 13-cycle solution.
All these variations using the table can, of course, implement the find right-

most 0-byte function by simply changing the data in the table.

y 1 27 214 221+ + +( ) y 1 27+( ) 1 214+( )=

t1 y 1 27+( )

t2 t1 1 214+( )

t3 t2 1 228+( )
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If the machine does not have the nor instruction, the not in the second assign-
ment to y in Figure 6–3 can be omitted, in the case of a 32-bit machine, by using
one of the three return statements given above, with table[i] = 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 4. This scheme does not quite work on a 64-bit machine.

Here is an interesting variation on the procedure of Figure 6–2, again aimed
at machines that do not have number of leading zeros. Let a, b, c, and d be 1-bit
variables for the predicates “the first byte of x is nonzero,” “the second byte of x is
nonzero,” and so on. Then,

The multiplications can be done with and’s, leading to the procedure shown in
Figure 6–4 (only the executable code is shown). This comes to 15 instructions on
the basic RISC, which is not particularly fast, but there is a certain amount of par-
allelism. On a superscalar machine that can execute up to three arithmetic instruc-
tions in parallel, provided they are independent, it comes to only ten cycles.

A simple variation of this does the find rightmost 0-byte function, based on

(This requires one more and than the code of Figure 6–4.)

Some Simple Generalizations
Functions zbytel and zbyter can be used to search for a byte equal to any particular
value, by first exclusive or’ing the argument x with a word consisting of the
desired value replicated in each byte position. For example, to search x for an
ASCII blank (0x20), search  for a 0-byte.

Similarly, to search for a byte position in which two words x and y are equal,
search  for a 0-byte.

There is nothing special about byte boundaries in the code of Figure 6–2 and
its variants. For example, to search a word for a 0-value in any of the first four
bits, the next 12, or the last 16, use the code of Figure 6–2 with the mask replaced
by 0x77FF7FFF [PHO]. (If a field length is 1, use a 0 in the mask at that position.)

   y = (x & 0x7F7F7F7F) + 0x7F7F7F7F;
   y = y | x;    // Leading 1 on nonzero bytes.

   t1 =  y >> 31;               // t1 = a.
   t2 = (y >> 23) & t1;         // t2 = ab.
   t3 = (y >> 15) & t2;        // t3 = abc.
   t4 = (y >>  7) & t3;         // t4 = abcd.
   return t1 + t2 + t3 + t4;

FIGURE 6–4. Find leftmost 0-byte by evaluating a polynomial.

zbytel x( ) a ab abc abcd.+ + +=

zbyter x( ) abcd bcd cd d.+ + +=

x 0x20202020

x y
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Searching for a Value in a Given Range
The code of Figure 6–2 can easily be modified to search for a byte in the range 0
to any specified value less than 128. To illustrate, the following code finds the
index of the leftmost byte having value from 0 to 9:

   y = (x & 0x7F7F7F7F) + 0x76767676;
   y = y | x;
   y = y | 0x7F7F7F7F;      // Bytes > 9 are 0xFF.
   y = ~y;          // Bytes > 9 are 0x00,

// bytes <= 9 are 0x80.
   n = nlz(y) >> 3;

More generally, suppose you want to find the leftmost byte in a word that is in
the range a to b, where the difference between a and b is less than 128. For exam-
ple, the uppercase letters encoded in ASCII range from 0x41 to 0x5A. To find the
first uppercase letter in a word, subtract 0x41414141 in such a way that the bor-
row does not propagate across byte boundaries, and then use the above code to
identify bytes having value from 0 to 0x19 (0x5A – 0x41). Using the formulas for
subtraction given in Section 2–18, “Multibyte Add, Subtract, Absolute Value,” on
page 40, with obvious simplifications possible with y = 0x41414141, gives

   d = (x | 0x80808080) - 0x41414141;
   d = ~((x | 0x7F7F7F7F) ^ d);
   y = (d & 0x7F7F7F7F) + 0x66666666;
   y = y | d;
   y = y | 0x7F7F7F7F;  // Bytes not from 41-5A are FF.
   y = ~y;      // Bytes not from 41-5A are 00,

       // bytes from 41-5A are 80.
   n = nlz(y) >> 3;

For some ranges of values, simpler code exists. For example, to find the first
byte whose value is 0x30 to 0x39 (a decimal digit encoded in ASCII), simply
exclusive or the input word with 0x30303030 and then use the code given above
to search for a value in the range 0 to 9. (This simplification is applicable when
the upper and lower limits have n high-order bits in common, and the lower limit
ends with  0’s.) 

These techniques can be adapted to handle ranges of 128 or larger with no
additional instructions. For example, to find the index of the leftmost byte whose
value is in the range 0 to 137 (0x89), simply change the line y = y | x to y =
y & x in the code above for searching for a value from 0 to 9.

Similarly, changing the line y = y | d to y = y & d in the code for finding the
leftmost byte whose value is in the range 0x41 to 0x5A causes it to find the left-
most byte whose value is in the range 0x41 to 0xDA.

8 n–
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6–2  Find First String of 1-Bits of a Given Length
The problem here is to search a word in a register for the first string of 1-bits of a
given length n or longer, and to return its position, with some special indication if
no such string exists. Variants are to return only the yes/no indication and to locate
the first string of exactly n 1-bits. This problem has application in disk-allocation
programs, particularly for disk compaction (rearranging data on a disk so that all
blocks used to store a file are contiguous). The problem was suggested to me by
Albert Chang, who pointed out that it is one of the uses for the number of leading
zeros instruction.

We assume here that the number of leading zeros instruction, or a suitable
subroutine for that function, is available.

An algorithm that immediately comes to mind is to first count the number of
leading 0’s and skip over them by shifting left by the number obtained. Then
count the leading 1’s by inverting and counting leading 0’s. If this is of sufficient
length, we are done. Otherwise, shift left by the number obtained and repeat from
the beginning. This algorithm might be coded as shown below. If n consecutive
1-bits are found, it returns a number from 0 to 31, giving the position of the left-
most 1-bit in the leftmost such sequence. Otherwise, it returns 32 as a “not found”
indication.

int ffstr1(unsigned x, int n) {
   int k, p;

   p = 0;     // Initialize position to return.
   while (x != 0) {
      k = nlz(x);   // Skip over initial 0’s
      x = x << k;       // (if any).
      p = p + k;
      k = nlz(~x);  // Count first/next group of 1’s.
      if (k >= n)       // If enough,
         return p;      // return.
      x = x << k;    // Not enough 1’s, skip over
      p = p + k;        // them.
   }
   return 32;
}

This algorithm is reasonable if it is expected that the loop will not be exe-
cuted very many times—for example, if it is expected that x will have long
sequences of 1’s and of 0’s. This might very well be the expectation in the disk-
allocation application. Its worst-case execution time, however, is not very good;
for example, about 178 full RISC instructions executed for x = 0x55555555 and

An algorithm that is better in worst-case execution time is based on a sequence
of shift left and and instructions. To see how this works, consider searching for a

n 2.
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string of eight or more consecutive 1-bits in a 32-bit word x. This might be done
as follows:

After the first assignment, the 1’s in x indicate the starting positions of strings
of length 2. After the second assignment, the 1’s in x indicate the starting positions
of strings of length 4 (a string of length 2 followed by another string of length 2).
After the third assignment, the 1’s in x indicate the starting positions of strings of
length 8. Executing number of leading zeros on this word gives the position of the
first string of length 8 (or more), or 32 if none exists.

To develop an algorithm that works for any length n from 1 to 32, we will
look at this a little differently. First, observe that the above three assignments can
be done in any order. Reverse order will be more convenient. To illustrate the gen-
eral method, consider the case 

The first statement shifts by  After executing it, the problem is reduced to
finding a string of five consecutive 1-bits in  This can be done by shifting left
by and’ing, and searching the result for a string of length 3 
The last two statements identify where the strings of length 3 are in  The sum of
the shift amounts is always  The algorithm is shown in Figure 6–5. The exe-
cution time ranges from 3 to 36 full RISC instructions, as n ranges from 1 to 32.

If n is often moderately large, it is not unreasonable to unroll this loop by
repeating the loop body five times and omitting the test n > 1. (Five is always suf-
ficient for a 32-bit machine.) This gives a branch-free algorithm that runs in a con-
stant time of 20 instructions executed (the last assignment to n can be omitted).
Although for small values of n, the three assignments are executed more than nec-
essary, the result is unchanged by the extra steps, because variable n sticks at the
value 1, and for this value the three steps have no effect on x or n. The unrolled
version is faster than the looping version for n  5, in terms of number of instruc-
tions executed.

A string of exactly n 1-bits can be found in six more instructions (four if and
not is available). The quantity x computed by the algorithm of Figure 6–5 has

x x x 1<<( )&

x x x 2<<( )&

x x x 4<<( )&

n 10:=

x1 x x 5<<( )&

x2 x1 x1 2<<( )&

x3 x2 x2 1<<( )&

x4 x3 x3 1<<( )&

n 2.⁄
x1.

5 2⁄ 2,= 5 2–( ).
x2.

n 1.–



ptg8736757

6–3 FIND LONGEST STRING OF 1-BITS 125

1-bits wherever a string of length n or more 1-bits begins. Hence, using the final
value of x computed by that algorithm, the expression

contains a 1-bit wherever the final x contains an isolated 1-bit, which is to say
wherever the original x began a string of exactly n 1-bits.

The algorithm is also easily adapted to finding strings of length n that begin at
certain locations. For example, to find strings that begin at byte boundaries, sim-
ply and the final x with 0x80808080.

It can be used to find strings of 0-bits either by complementing x at the start, or
by changing the and’s to or’s and complementing x just before invoking nlz. For
example, below is an algorithm for finding the first (leftmost) 0-byte (see Section
6–1, “Find First 0-Byte,” on page 117, for a precise definition of this problem).

This executes in 12 instructions on the full RISC (not as good as the algorithm of
Figure 6–2 on page 118, which executes in eight instructions).

6–3  Find Longest String of 1-Bits
The nicely concise function shown in Figure 6–6 returns the length of the longest
string of 1-bits in x [Hsieh].

It executes in  instructions on the basic RISC, where n is the length of
the longest string of 1’s, or 131 instructions in the worst case.

int ffstr1(unsigned x, int n) {
   int s;

   while (n > 1) {
      s = n >> 1;
      x = x & (x << s);
      n = n - s;
   }
   return nlz(x);
}

FIGURE 6–5.  Find first string of n 1’s, shift-and-and sequence.

x x 1>>
u( )¬ x 1<<( )¬& &

x x x 4<<( ) | 

x x x 2<<( ) | 

x x x 1<<( ) | 

x 0x7F7F7F7F x | 

p nlz x¬( ) 3>>
u

4n 3+
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To reduce the worst-case execution time, a “logarithmic” version is possible.
It works by propagating 0’s one, two, four, eight, and 16 positions to the left, stop-
ping at the last nonzero word, and then backtracking to find the length of the lon-
gest contiguous string of 1’s.

For example, suppose

         x = 0011 1111 1111 0011 1111 0011 1111 1000
Then
        x2 = 0011 1111 1110 0011 1110 0011 1111 0000
        x4 = 0011 1111 1000 0011 1000 0011 1100 0000
        x8 = 0011 1000 0000 0000 0000 0000 0000 0000
       x16 = all 0's

In this case, the last nonzero word is x8. Observe that each 1-bit in x8 indi-
cates the leftmost position of a string of eight 1’s. Thus, the longest string of 1’s
begins at the leftmost position of a 1-bit in x8, bit position 29 in the example. To
test for a string of length 12, one can test the bit at position 21 (29 – 8) in x4. Since
that is 0, there is no string of length 12. To test for a string of length 10, one can test
the bit at position 21 in x2. Since that is 1, position 29 is the start of a string of
length 10 (or more). Last, to test for a string of length 11, one can test the bit at
position 19 (21 – 2) in x. Because that is 0, the longest string is of length 10, and it
starts at position 29.

This scheme is coded in Figure 6–7, except the code uses only two variables,
x and y, instead of the five variables x, x2, x4, x8, and x16. This code finds both
the length and position of the longest string of 1’s, with the position being mea-
sured from the left end of the string. The scheme does not work if x is 0 or all 1’s.
These are special-cased, with the latter possibility being handled in a place that is
not executed frequently.

The worst-case execution time on the basic RISC is 39 instructions, plus those
required for the nlz function. If only the length of the longest string of 1’s is
wanted, there is no significant savings in execution time, except for omitting the
use of the nlz function.

6–4  Find Shortest String of 1-Bits
It is more difficult to find the shortest string of 1-bits in a word. One way to do it
is to mark the beginnings of all strings of 1’s in a word b and the ends of all such

int maxstr1(unsigned x) {
   int k;
   for (k = 0; x != 0; k++) x = x & 2*x;
   return k;
}

FIGURE 6–6. Find length of longest string of 1’s.
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strings in a word e. Then, if b & e is nonzero, the shortest string is of length 1.
Otherwise, shift e left one position and test again. For example, if

        x = 0011 1111 1111 0011 1111 0011 1111 1000
then
        b = 0010 0000 0000 0010 0000 0010 0000 0000
        e = 0000 0000 0001 0000 0001 0000 0000 1000

After shifting e left five places, b & e is nonzero. This means that the shortest
string of 1-bits is of length 6.

This idea is embodied in the code shown in Figure 6–8. As in the preceding
material, the position of the string is measured from the left, and if there are two or
more minimal length strings of equal length, this function finds the leftmost one.
For example, if x = 0x00FF0FF0 it returns length 8, position 8.

 The function executes in  instructions on the basic RISC (without
andc), plus the time for the nlz function, for  where n is the length of the
shortest contiguous string of 1’s in x.

Perhaps the ultimate problem in this class is to find the length and position of
the shortest string of 1’s in x that is at least as long as a given integer  In

int fmaxstr1(unsigned x, int *apos) {
   unsigned  y;
   int s;

   if (x == 0) {*apos = 32; return 0;}
   y = x & (x << 1);
   if (y == 0) {s = 1; goto L1;}
   x = y & (y << 2);
   if (x == 0) {s = 2; x = y; goto L2;}
   y = x & (x << 4);
   if (y == 0) {s = 4; goto L4;}
   x = y & (y << 8);
   if (x == 0) {s = 8; x = y; goto L8;}
   if (x == 0xFFFF8000) {*apos = 0; return 32;}
   s = 16;

L16: y = x & (x << 8);
     if (y != 0) {s = s + 8; x = y;}
L8:  y = x & (x << 4);
     if (y != 0) {s = s + 4; x = y;}
L4:  y = x & (x << 2);
     if (y != 0) {s = s + 2; x = y;}
L2:  y = x & (x << 1);
     if (y != 0) {s = s + 1; x = y;}
L1:  *apos = nlz(x);
   return s;
}

FIGURE 6–7. Find length and position of longest string of 1’s.

8 4n+
n 2,

n 0.>
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terms of the storage allocation problem, this is a “best fit” algorithm. This can be
done by first left-propagating the 0’s in x by  positions and then finding the
shortest string of 1’s in the revised x. See the exercises.

Exercises

1. Code an elaboration of Hsieh’s algorithm that will find both the length and
position of the longest string of 1’s in a word x. You may use the nlz function.

2. Code a function for finding the length and position of the shortest string of 1’s
in a word x that is at least as long as a given integer n.

3. Another way to find the shortest string of 1’s in a word x is to successively turn
off the rightmost string of 1’s in x and observe the change in population count
at each step. Code a function for the full RISC that uses this idea and also finds
the position of a shortest string of 1’s.

4. For “completely random” 32-bit words x (each bit independently 0 or 1 with
probability 0.5), what is the average number of strings of 1’s in x? The answer
determines the average execution time of the function of exercise 3, for such
input data.

5. Again, for “completely random” 32-bit words x, what is the average length of
the shortest contiguous string of 1’s in x? The answer determines the average
execution time of function fminstr1 in Figure 6–8 for such input data.
Compute this with a Monte Carlo or exhaustive enumeration program.

6. Of the  binary words of length n, for how many is their shortest contained
string of 1’s of length 1? That is, how many n-bit words begin with 10, or end
with 01, or contain the sequence 010? Find a closed-form solution or a recur-
sion, not an exhaustive enumeration program.

7. Similarly, of the  binary words of length n, for how many is their shortest
contained string of 1’s of length 2?

int fminstr1(unsigned x, int *apos) {
   int k;
   unsigned b, e;     // Beginnings, ends.

   if (x == 0) {*apos = 32; return 0;}
   b = ~(x >> 1) & x;   // 0-1 transitions.
   e = x & ~(x << 1);   // 1-0 transitions.
   for (k = 1; (b & e) == 0; k++)
      e = e << 1;
   *apos = nlz(b & e);
   return k;
}

FIGURE 6–8. Find length and position of shortest string of 1’s.

n 1–

2n

2n
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 CHAPTER  7

REARRANGING BITS AND 
BYTES

7–1  Reversing Bits and Bytes
By “reversing bits” we mean to reflect the contents of a register about the middle
so that, for example,

By “reversing bytes” we mean a similar reflection of the four bytes of a register. Byte
reversal is a necessary operation to convert data between the “little-endian” format used
by DEC and Intel, and the “big-endian” format used by most other manufacturers.

Bit reversal can be done quite efficiently by interchanging adjacent single
bits, then interchanging adjacent 2-bit fields, and so on, as shown below [Aus1].
These five assignment statements can be executed in any order. This is the same
algorithm as the first population count algorithm of Section 5–1, but with addition
replaced with swapping.

   x = (x & 0x55555555) << 1 | (x & 0xAAAAAAAA) >>  1;
   x = (x & 0x33333333) << 2 | (x & 0xCCCCCCCC) >>  2;
   x = (x & 0x0F0F0F0F) << 4 | (x & 0xF0F0F0F0) >>  4;
   x = (x & 0x00FF00FF) << 8 | (x & 0xFF00FF00) >>  8;
   x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16;

A small improvement may result on some machines by using fewer distinct
large constants and doing the last two assignments in a more straightforward way,
as  shown in Figure 7–1 (30 basic RISC instructions, branch-free).

The last assignment to x in this code does byte reversal in nine basic RISC
instructions. If the machine has rotate shifts, however, this can be done in seven
instructions with

unsigned rev(unsigned x) {
   x = (x & 0x55555555) <<  1 | (x >>  1) & 0x55555555;
   x = (x & 0x33333333) <<  2 | (x >>  2) & 0x33333333;
   x = (x & 0x0F0F0F0F) <<  4 | (x >>  4) & 0x0F0F0F0F;
   x = (x << 24) | ((x & 0xFF00) << 8) |
       ((x >> 8) & 0xFF00) | (x >> 24);
   return x;
}

FIGURE 7–1.  Reversing bits.

rev 0x01234567( ) 0xE6A2C480.=

x x 0x00FF00FF&( ) 8>>
rot( ) x 8<<

rot( ) 0x00FF00FF&( ). | 
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PowerPC can do the byte-reversal operation in only three instructions [Hay1]: a
rotate left of 8, which positions two of the bytes, followed by two “rlwimi” (rotate
left word immediate then mask insert) instructions.

The next algorithm, by Christopher Strachey [Strach 1961], is old by com-
puter standards, but it is instructive. It reverses the rightmost 16 bits of a word,
assuming the leftmost 16 bits are clear at the start, and places the reversed halfword
in the left half of the register.

Its operation is based on the number of bit positions that each bit must move.
The 16 bits, taken from left to right, must move 1, 3, 5, …, 31 positions. The bits
that must move 16 or more positions are moved first, then those that must move
eight or more positions, and so forth. The operation is illustrated below, where
each letter denotes a single bit, and a period denotes a “don’t care” bit.

   0000 0000 0000 0000 abcd efgh ijkl mnop  Given
   0000 0000 ijkl mnop abcd efgh .... ....  After shl 16
   0000 mnop ijkl efgh abcd .... .... ....  After shl 8
   00op mnkl ijgh efcd ab.. .... .... ....  After shl 4
   0pon mlkj ihgf edcb a... .... .... ....  After shl 2
   ponm lkji hgfe dcba .... .... .... ....  After shl 1

Straightforward code consists of 16 basic RISC instructions, plus 12 to load
the constants:

   x = x | ((x & 0x000000FF) << 16);
   x = (x & 0xF0F0F0F0) | ((x & 0x0F0F0F0F) << 8);
   x = (x & 0xCCCCCCCC) | ((x & 0x33333333) << 4);
   x = (x & 0xAAAAAAAA) | ((x & 0x55555555) << 2);
   x = x << 1;

Complementation can be used to reduce the number of distinct masks. By
using more irregular masks, the rightmost 16 bits can be preserved.

If rotate shifts are available, Strachey’s idea can be used to reverse a 32-bit
word. The idea is to consider how many bit positions each bit must move rotation-
ally to the left to get to its final position. Taking the bits from left to right, the shift
amounts are 1, 3, 5, …, 31, 1, 3, 5, …, 31 (no bit moves an even number of posi-
tions). The algorithm first rotate-moves those bits that must move 16 or more posi-
tions, then those that must move eight or more positions, and so forth, and finally
those that must move one position (which is all of the bits, because all move
amounts are odd). This scheme is shown below, for reversing a 32-bit word x.
Function shlr(x, y) rotates x left y positions.

   x = shlr(x & 0x00FF00FF, 16) | x & ~0x00FF00FF;
   x = shlr(x & 0x0F0F0F0F,  8) | x & ~0x0F0F0F0F;
   x = shlr(x & 0x33333333,  4) | x & ~0x33333333;
   x = shlr(x & 0x55555555,  2) | x & ~0x55555555;
   x = shlr(x, 1);
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The code uses and with complement to avoid loading some masks. If your
machine does not have that instruction, it can be avoided by rewriting the first line
of code as

   x = shlr(x, 16) & 0x00FF00FF | x & ~0x00FF00FF;

which is a MUX operation, and using the identity

to obtain

   x = ((shlr(x, 16) ^ x) & 0x00FF00FF) ^ x;

and similarly for the other lines that have and with complement.
A slightly better way for many machines, in that it has a little instruction-level

parallelism, is to use the identity [Karv]

and common the and expression. This gives the function shown in Figure 7–2 (17
instructions, plus eight to load constants, or 25 in all).

It is perhaps worth noting that the constants 0x00FF00FF, 0x0F0F0F0F, and
so on can be generated one from another as shown below. This is not useful for 32-
bit machines (it may even be harmful by reducing parallelism), because 32-bit
RISC machines generally can load the constants in two instructions. But it might
be useful for a 64-bit machine, for which it is illustrated.

unsigned rev(unsigned x) {
   unsigned t;
   t = x & 0x00FF00FF; x = shlr(t, 16) | t ^ x;
   t = x & 0x0F0F0F0F; x = shlr(t,  8) | t ^ x;
   t = x & 0x33333333; x = shlr(t,  4) | t ^ x;
   t = x & 0x55555555; x = shlr(t,  2) | t ^ x;
   x = shlr(x, 1);
   return x;
}

FIGURE 7–2. Reversing bits with rotate shifts.

x m& y m¬& | x y( ) m&( ) y=

x m¬& x m&( ) x,=

C0 0x00000000 FFFFFFFF

C1 C0 C0 16<<( )

C2 C1 C1 8<<( )

…
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Another way to reverse bits is to break the word up into three groups of bits,
and swap the leftmost and rightmost groups, leaving the center group in place
[Baum]. For a 27-bit word, this works as illustrated below.

   012345678 9abcdefgh ijklmnopq   The given 27-bit word
   ijklmnopq 9abcdefgh 012345678   First ternary swap
   opqlmnijk fghcde9ab 678345012   Second ternary swap
   qponmlkji hgfedcba9 876543210   Third ternary swap

Straightforward code for this follows. If run on a 32-bit machine, it reverses
bits 0 to 26, placing the result in bit positions 0 to 26, and clearing bits 27 to 31.

   x = (x & 0x000001FF) << 18 | (x & 0x0003FE00) |
       (x >> 18) & 0x000001FF;
   x = (x & 0x001C0E07) <<  6 | (x & 0x00E07038) |
       (x >> 6) & 0x001C0E07;
   x = (x & 0x01249249) <<  2 | (x & 0x02492492) |
       (x >> 2) & 0x01249249;

This amounts to 21 basic RISC instructions, plus 10 to load the constants, or 31 in all.
In comparison, the code of Figure 7–1 is 24 basic RISC instructions, plus six to load
constants, plus a shift right of 5 to right-justify the result, or 31 in all. Thus, the ter-
nary method is equal or superior when there are 27 or fewer bits to be reversed.

The next function, by Donald E. Knuth [Knu8], is interesting because it
reverses a 32-bit word with only four stages, and the shifting and masking steps are
unexpectedly irregular. It uses one rotate shift and three ternary swaps. It works as
follows:

   01234567 89abcdef ghijklmn opqrstuv   Given
   fghijklm nopqrstu v0123456 789abcde   Rotate left 15
   pqrstuvm nofghijk labcde56 78901234   10-swap
   tuvspqrm nojklifg hebcda96 78541230   4-swap
   vutsrqpo mnlkjihg fedcba98 76543210   2-swap

Straightforward code is shown below.

   x = shlr(x, 15);         // Rotate left 15.
   x = (x & 0x003F801F) << 10 | (x & 0x01C003E0) |
       (x >> 10) & 0x003F801F;
   x = (x & 0x0E038421) <<  4 | (x & 0x11C439CE) |
       (x >>  4) & 0x0E038421;
   x = (x & 0x22488842) <<  2 | (x & 0x549556B5) |
       (x >>  2) & 0x22488842;



ptg8736757

7–1 REVERSING BITS AND BYTES 133

An improvement in operation count, at the expense of parallelism, results
from rewriting

   x = (x & M1) << s | (x & M2) | (x >> s) & M1;

where M2 is ~(M1 | (M1 << s)), as:

   t = (x ^ (x >> s)) & M1; x = (t | (t << s)) ^ x;

This results in the code in Figure 7–3 (19 full RISC instructions, plus six to load
constants, or 25 in all).

Although Knuth’s algorithm does not beat the algorithm shown in Figure 7–2
for reversing a 32-bit quantity with rotate shifts allowed (17 instructions, plus
eight to load constants), Knuth’s code uses only one rotate shift instruction. If it
is coded as

   x = (x << 15) | (x >> 17);   // Rotate left 15.

then Knuth’s algorithm is 21 instructions, plus six to load constants, which is the
best found by these measures for rotating a 32-bit word using only basic RISC
instructions. This makes one wonder if there is a simple way to predict the number
of shifts and logical operations required to reverse a word of a given length.

Can Knuth’s algorithm be extended to reversing 64 bits on a 64-bit machine?
Yes, there is a simple way and a way that is more difficult to work out. The simple
way is to first swap the two halves of the 64-bit register, and then apply the 32-bit
version of Knuth’s algorithm to both halves, in parallel. The resulting code is
shown in Figure 7–4. It is 24 operations, if the swap (rotate 32) counts as one.

The other way is to find shift amounts and masks analogous to those used in
Knuth’s 32-bit reversal algorithm. This is shown below. It is 25 operations, if the
rotate left shift of 31 positions counts as one operation.

unsigned rev(unsigned x) {
   unsigned t;

   x = shlr(x, 15);         // Rotate left 15.
   t = (x ^ (x>>10)) & 0x003F801F; x = (t | (t<<10)) ^ x;
   t = (x ^ (x>> 4)) & 0x0E038421; x = (t | (t<< 4)) ^ x;
   t = (x ^ (x>> 2)) & 0x22488842; x = (t | (t<< 2)) ^ x;
   return x;
}

FIGURE 7–3. Reversing bits, Knuth’s algorithm.
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unsigned long long rev(unsigned long long x) {
   unsigned long long t;

   x = (x << 31) | (x >> 33);   // I.e., shlr(x, 31).
   t = (x ^ (x >> 20)) & 0x00000FFF800007FFLL;
   x = (t | (t << 20)) ^ x;
   t = (x ^ (x >> 8)) & 0x00F8000F80700807LL;
   x = (t | (t << 8)) ^ x;
   t = (x ^ (x >> 4)) & 0x0808708080807008LL;
   x = (t | (t << 4)) ^ x;
   t = (x ^ (x >> 2)) & 0x1111111111111111LL;
   x = (t | (t << 2)) ^ x;
   return x;
}

Bit reversal can be aided by table lookup. The code that follows reverses a
byte at a time, using a 256-byte table, and accumulates in reverse order the four
bytes selected from the table. If the loop is strung out, this amounts to 13 basic
RISC instructions, plus four loads, so it could be a winner on some machines.

unsigned rev(unsigned x) {
   static unsigned char table[256] = {0x00, 0x80, 0x40,
   0xC0, 0x20, 0xA0, 0x60, 0xE0, ..., 0xBF, 0x7F, 0xFF};
   int i;
   unsigned r;

   r = 0;
   for (i = 3; i >= 0; i--) {
      r = (r << 8) + table[x & 0xFF];
      x = x >> 8;
   }
   return r;
}

unsigned long long rev(unsigned long long x) {
   unsigned long long t;

   x = (x << 32) | (x >> 32);   // Swap register halves.
   x = (x & 0x0001FFFF0001FFFFLL) << 15 | // Rotate left
       (x & 0xFFFE0000FFFE0000LL) >> 17;  // 15.
   t = (x ^ (x >> 10)) & 0x003F801F003F801FLL;
   x = (t | (t << 10)) ^ x;
   t = (x ^ (x >> 4)) & 0x0E0384210E038421LL;
   x = (t | (t << 4)) ^ x;
   t = (x ^ (x >> 2)) & 0x2248884222488842LL;
   x = (t | (t << 2)) ^ x;
   return x;
}

FIGURE 7–4. Knuth’s algorithm applied to 64 bits.
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Generalized Bit Reversal
[GLS1] suggests that the following sort of generalization of bit reversal, which he
calls “flip,” is a good candidate to consider for a computer’s instruction set:

 if (k &  1) x = (x & 0x55555555) <<  1 | (x & 0xAAAAAAAA) >>  1;
 if (k &  2) x = (x & 0x33333333) <<  2 | (x & 0xCCCCCCCC) >>  2;
 if (k &  4) x = (x & 0x0F0F0F0F) <<  4 | (x & 0xF0F0F0F0) >>  4;
 if (k &  8) x = (x & 0x00FF00FF) <<  8 | (x & 0xFF00FF00) >>  8;
 if (k & 16) x = (x & 0x0000FFFF) << 16 | (x & 0xFFFF0000) >> 16;

(The last two and operations can be omitted.) For k = 31, this operation reverses
the bits in a word. For k = 24, it reverses the bytes in a word. For k = 7, it reverses
the bits in each byte, without changing the positions of the bytes. For k = 16, it
swaps the left and right halfwords of a word, and so on. In general, it moves the
bit at position m to position  It can be implemented in hardware very simi-
larly to the way a rotate shifter is usually implemented (five stages of MUX’s,
with each stage controlled by a bit of the shift amount k).

Bit-Reversing Novelties
Item 167 in [HAK] contains rather esoteric expressions for reversing 6-, 7-, and
8-bit integers. Although these expressions are designed for a 36-bit machine, the
one for reversing a 6-bit integer works on a 32-bit machine, and those for 7- and
8-bit integers work on a 64-bit machine. These expressions are as follows:

The result of all these is a “clean” integer—right-adjusted with no unused high-
order bits set.

In all these cases the remu function can instead be rem or mod, because its
arguments are positive. The remainder function is simply summing the digits of a
base-256 or base-1024 number, much like casting out nines. Hence, it can be
replaced with a multiply and a shift right. For example, the 6-bit formula has the
following alternative on a 32-bit machine (the multiplication must be modulo ):

These formulas are limited in their utility, because they involve a remainder-
ing operation (20 cycles or more) and/or some multiplications, as well as loading

m k.

6-bit:

7-bit:

8-bit:

remu x 0x00082082*( ) 0x01122408& 255,( )

remu x 0x40100401*( ) 0x4 42211008& 255,( )

remu x 0x2 02020202*( ) 0x108 84422010& 1023,( )

232

t x 0x00082082*( ) 0x01122408&

t 0x01010101*( ) 24>>
u
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of large constants. The formula immediately above requires ten basic RISC
instructions, two of which are multiply’s, which amounts to about 20 cycles on a
present-day RISC. On the other hand, an adaptation of the code of Figure 7–1 to
reverse 6-bit integers requires about 15 instructions, and probably about 9 to 15
cycles, depending on the amount of instruction-level parallelism in the machine.
These techniques, however, do give compact code. Below are a few more tech-
niques that might possibly be useful, all for a 32-bit machine. They involve a sort
of double application of the idea from [HAK], to extend the technique to 8- and
9-bit integers on a 32-bit machine.

The following is a formula for reversing an 8-bit integer:

Here the remu cannot be changed to a multiply and shift. (You have to work these
out, and look at the bit patterns, to see why.)

Here is a similar formula for reversing an 8-bit integer, which is interesting
because it can be simplified quite a bit:

The simplifications are that the second product is just a shift left of the first
product, the last mask can be generated from the second with just one instruction
(shift), and the remainder can be replaced by a multiply and shift. It simplifies to
14 basic RISC instructions, two of which are multiply’s:

The following is a formula for reversing a 9-bit integer:

s x 0x02020202*( ) 0x84422010&

t x 8*( ) 0x00000420&

remu s t 1023,+( )

s x 0x00020202*( ) 0x01044010&

t x 0x00080808*( ) 0x02088020&

remu s t 4095,+( )

u x 0x00020202*
m 0x01044010
s u m&

t u 2<<( ) m 1<<( )&

0x01001001 s t+( )*( ) 24>>
u

s x 0x01001001*( ) 0x84108010&

t x 0x00040040*( ) 0x00841080&

remu s t 1023,+( )
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The second multiplication can be avoided, because the product is equal to the
first product shifted right six positions. The last mask is equal to the second mask
shifted right eight positions. With these simplifications, this requires 12 basic
RISC instructions, including one multiply and one remainder. The remainder
operation must be unsigned, and it cannot be changed to a multiply and shift.

The reader who studies these marvels will be able to devise similar code for
other bit-permuting operations. As a simple (and artificial) example, suppose it is
desired to extract every other bit from an 8-bit quantity and compress the four bits
to the right. That is, the desired transformation is

        0000 0000 0000 0000 0000 0000 abcd efgh ==>
        0000 0000 0000 0000 0000 0000 0000 bdfh

This can be computed as follows:

On most machines, the most practical way to do all these operations is by
indexing into a table of 1-byte (or 9-bit) integers. 

Incrementing a Reversed Integer
The Fast Fourier Transform (FFT) algorithm employs an integer i and its bit rever-
sal rev(i) in a loop in which i is incremented by 1 [PuBr]. Straightforward coding
would increment i and then compute rev(i) on each loop iteration. For small inte-
gers, computing rev(i) by table lookup is fast and practical. For large integers,
however, table lookup is not practical and, as we have seen, computing rev(i)
requires some 29 instructions.

If table lookup cannot be used, it is more efficient to maintain i in both nor-
mal and bit-reversed forms, incrementing them both on each loop iteration. This
raises the question of how best to increment an integer that is in a register in
reversed form. To illustrate, on a 4-bit machine we wish to successively step
through the values (in hexadecimal)

0, 8, 4, C, 2, A, 6, E, 1, 9, 5, D, 3, B, 7, F.

In the FFT algorithm, i and its reversal are both some specific number of bits
in length, almost certainly less than 32, and they are both right-justified in the reg-
ister. However, we assume here that i is a 32-bit integer. After adding 1 to the
reversed 32-bit integer, a shift right of the appropriate number of bits will make
the result usable by the FFT algorithm (both i and rev(i) are used to index an array
in memory).

t x 0x01010101*( ) 0x40100401&

t 0x08040201*( ) 27>>
u
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The straightforward way to increment a reversed integer is to scan from the
left for the first 0-bit, set it to 1, and set all bits to the left of it (if any) to 0’s. One
way to code this is

   unsigned x, m;

   m = 0x80000000;
   x = x ^ m;
   if ((int)x >= 0) {
      do {
         m = m >> 1;
         x = x ^ m;
      } while (x < m);
   }

This executes in three basic RISC instructions if x begins with a 0-bit, and
four additional instructions for each loop iteration. Because x begins with a 0-bit
half the time, with 10 (binary) one-fourth of the time, and so on, the average num-
ber of instructions executed is approximately

In the second line we added and subtracted 1, with the first 1 in the form
 This makes the series similar to the one analyzed

on page 113. The number of instructions executed in the worst case, however, is
quite large (131).

If number of leading zeros is available, adding 1 to a reversed integer can be
done as follows:

Either method requires five full RISC instructions and, to properly wrap around
from 0xFFFFFFFF to 0, requires that the shifts be modulo 64. (These formulas
fail in this respect on the Intel x86 machines, because the shifts are modulo 32.)

3 1
2
--- 7 1

4
--- 11 1

8
--- 15 1

16
------ …+ + + +

4 1
2
--- 8 1

4
--- 12 1

8
--- 16 1

16
------ … 1–+ + + +=

4 1
2
--- 2

4
--- 3

8
--- 4

16
------ …+ + + + 1–=

7.=

1 2⁄ 1 4 1 8⁄+⁄ 1 16⁄ .…+ + +

First execute: s nlz x¬( )

and then either: x x 0x80000000 s>>
s( )

or: x x s<<( ) 0x80000000+( ) s>>
u
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The rather puzzling one-liner below [Möbi] increments a reversed integer in
six basic RISC instructions. It is free of branches and loads but includes an integer
division operation. It works for integers of length up to that of the word size of the
machine, less 1.

To use this, both the non-reversed integer i and its reversal revi must be available.
The variable m is the modulus; if we are dealing with n-bit integers, then m = 
Applying the formula gives the next value of the reversed integer. The non-
reversed integer i would be incremented separately. The reversed integer is incre-
mented “in place”; that is, it is not shifted to the high-order end of the register, as
in the two preceding methods.

A variation is

(1)

which executes in five instructions if the machine has and not, and if m is a con-
stant so that the calculation of does not count. It works for integers of length
up to that of the word size of the machine. (For full word-size integers, use 0 for
the first occurrence of m in the formula, and for 

7–2  Shuffling Bits
Another important permutation of the bits of a word is the “perfect shuffle” opera-
tion, which has applications in cryptography. There are two varieties, called the
“outer” and “inner” perfect shuffles. They both interleave the bits in the two
halves of a word in a manner similar to a perfect shuffle of a deck of 32 cards, but
they differ in which card is allowed to fall first. In the outer perfect shuffle, the
outer (end) bits remain in the outer positions, and in the inner perfect shuffle, bit
15 moves to the left end of the word (position 31). If the 32-bit word is (where
each letter denotes a single bit)

abcd efgh ijkl mnop ABCD EFGH IJKL MNOP,

then after the outer perfect shuffle it is

aAbB cCdD eEfF gGhH iIjJ kKlL mMnN oOpP,

and after the inner perfect shuffle it is

AaBb CcDd EeFf GgHh IiJj KkLl MmNn OoPp.

revi revi m m
i i 1+( )( ) 1+

---------------------------------------–

2n.

revi revi m m 2⁄
i¬ i 1+( )&

-----------------------------– ,

m 2⁄

2n 1– m 2⁄ .)
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Assume the word size W is a power of 2. Then the outer perfect shuffle oper-
ation can be accomplished with basic RISC instructions in  steps,
where each step swaps the second and third quartiles of successively smaller
pieces [GLS1]. That is, a 32-bit word is transformed as follows:

abcd efgh ijkl mnop ABCD EFGH IJKL MNOP
abcd efgh ABCD EFGH ijkl mnop IJKL MNOP
abcd ABCD efgh EFGH ijkl IJKL mnop MNOP
abAB cdCD efEF ghGH ijIJ klKL mnMN opOP
aAbB cCdD eEfF gGhH iIjJ kKlL mMnN oOpP

Straightforward code for this is

x = (x & 0x0000FF00) << 8 | (x >> 8) & 0x0000FF00 | x & 0xFF0000FF;
x = (x & 0x00F000F0) << 4 | (x >> 4) & 0x00F000F0 | x & 0xF00FF00F;
x = (x & 0x0C0C0C0C) << 2 | (x >> 2) & 0x0C0C0C0C | x & 0xC3C3C3C3;
x = (x & 0x22222222) << 1 | (x >> 1) & 0x22222222 | x & 0x99999999;

which requires 42 basic RISC instructions. This can be reduced to 30 instructions,
although at an increase from 17 to 21 cycles on a machine with unlimited instruc-
tion-level parallelism, by using the exclusive or method of exchanging two fields
of a register (described on page 47). All quantities are unsigned:

t = (x ^ (x >> 8)) & 0x0000FF00;  x = x ^ t ^ (t << 8);
t = (x ^ (x >> 4)) & 0x00F000F0;  x = x ^ t ^ (t << 4);
t = (x ^ (x >> 2)) & 0x0C0C0C0C;  x = x ^ t ^ (t << 2);
t = (x ^ (x >> 1)) & 0x22222222;  x = x ^ t ^ (t << 1);

The inverse operation, the outer unshuffle, is easily accomplished by per-
forming the swaps in reverse order:

t = (x ^ (x >> 1)) & 0x22222222;  x = x ^ t ^ (t << 1);
t = (x ^ (x >> 2)) & 0x0C0C0C0C;  x = x ^ t ^ (t << 2);
t = (x ^ (x >> 4)) & 0x00F000F0;  x = x ^ t ^ (t << 4);
t = (x ^ (x >> 8)) & 0x0000FF00;  x = x ^ t ^ (t << 8);

Using only the last two steps of either of the above two shuffle sequences
shuffles the bits of each byte separately. Using only the last three steps shuffles the
bits of each halfword separately, and so on. Similar remarks apply to unshuffling,
except by using the first two or three steps.

To get the inner perfect shuffle, prepend to these sequences a step to swap the
left and right halves of the register:

   x = (x >> 16) | (x << 16);

(or use a rotate of 16 bit positions). The unshuffle sequence can be similarly mod-
ified by appending this line of code.

log2 W 2⁄( )
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Altering the transformation to swap the first and fourth quartiles of succes-
sively smaller pieces produces the bit reversal of the inner perfect shuffle of 2n

bits for odd n, and the bit reversal of the outer perfect shuffle for even n.
Perhaps worth mentioning is the special case in which the left half of the

word x is all 0. In other words, we want to move the bits in the right half of x to
every other bit position—that is, to transform the 32-bit word

0000 0000 0000 0000 ABCD EFGH IJKL MNOP

to

0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N 0O0P.

The outer perfect shuffle code can be simplified to do this task in 22 basic
RISC instructions. The code below, however, does it in only 19, at no cost in exe-
cution time on a machine with unlimited instruction-level parallelism (12 cycles
with either method). This code does not require that the left half of word x be ini-
tially cleared.

   x = ((x & 0xFF00) << 8) | (x & 0x00FF);
   x = ((x << 4) | x) & 0x0F0F0F0F;
   x = ((x << 2) | x) & 0x33333333;
   x = ((x << 1) | x) & 0x55555555;

Similarly, for the inverse of this “half shuffle” operation (a special case of
compress; see page 150), the outer perfect unshuffle code can be simplified to do
the task in 26 or 29 basic RISC instructions, depending on whether or not an ini-
tial and operation is required to clear the bits in the odd positions. The code below,
however, does it in only 18 or 21 basic RISC instructions, and with less execution
time on a machine with unlimited instruction-level parallelism (12 or 15 cycles).

   x = x & 0x55555555;          // (If required.)
   x = ((x >> 1) | x) & 0x33333333;
   x = ((x >> 2) | x) & 0x0F0F0F0F;
   x = ((x >> 4) | x) & 0x00FF00FF;
   x = ((x >> 8) | x) & 0x0000FFFF;

7–3  Transposing a Bit Matrix
The transpose of a matrix A is a matrix whose columns are the rows of A and
whose rows are the columns of A. Here we consider the problem of computing the
transpose of a bit matrix whose elements are single bits that are packed eight per
byte, with rows and columns beginning on byte boundaries. This seemingly sim-
ple transformation is surprisingly costly in instructions executed.

On most machines it would be very slow to load and store individual bits,
mainly due to the code that would be required to extract and (worse yet) to store
individual bits. A better method is to partition the matrix into 8×8 submatrices,
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load each 8×8 submatrix into registers, compute the transpose of the submatrix in
registers, and then store the 8×8 result in the appropriate place in the target matrix.
Figure 7–5 illustrates the transposition of a bit matrix of size 16×3 bytes. A, B, …,
F are submatrices of size 8×8 bits. AT, BT, … denote the transpose of submatrices
A, B, ….

For the purposes of transposing an 8×8 submatrix, it doesn’t matter whether
the bit matrix is stored in row-major or column-major order; the operations are the
same in either event. Assume for discussion that it’s in row-major order. Then the
first byte of the matrix contains the top row of A, the next byte contains the top
row of B, and so on. If L denotes the address of the first byte (top row) of a subma-
trix, then successive rows of the submatrix are at locations   …,

For this problem we will depart from the usual assumption of a 32-bit machine
and assume the machine has 64-bit general registers. The algorithms are simpler
and more easily understood in this way, and it is not difficult to convert them for
execution on a 32-bit machine. In fact, a compiler that supports 64-bit integer oper-
ations on a 32-bit machine will do the work for you (although probably not as
effectively as you can do by hand).

The overall scheme is to load a submatrix with eight load byte instructions and
pack the bytes left-to-right into a 64-bit register. Then the transpose of the regis-
ter’s contents is computed. Finally, the result is stored in the target area with eight
store byte instructions.

The transposition of an 8×8 bit matrix is illustrated here, where each character
represents a single bit.

0123 4567           08go wEMU
89ab cdef           19hp xFNV
ghij klmn           2aiq yGOW
opqr stuv    ⇒    3bjr zHPX
wxyz ABCD           4cks AIQY
EFGH IJKL           5dlt BJRZ
MNOP QRST           6emu CKS$
UVWX YZ$.           7fnv DLT.

FIGURE 7–5. Transposing a 16×24-bit matrix.
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In terms of doublewords, the transformation to be done is to change the first line to
the second line below.

01234567 89abcdef ghijklmn opqrstuv wxyzABCD EFGHIJKL MNOPQRST UVWXYZ$.
08g0wEMU 19hpxFNV 2aiqyGOW 3bjrzHPX 4cksAIQY 5dltBJRZ 6emuCKS$ 7fnvDLT.

Notice that the bit denoted by 1 moves seven positions to the right, the bit denoted
by 2 moves 14 positions to the right, and the bit denoted by 8 moves seven posi-
tions to the left. Every bit moves 0, 7, 14, 21, 28, 35, 42, or 49 positions to the left
or right. Since there are 56 bits in the doubleword that have to be moved and only
14 different nonzero movement amounts, an average of about four bits can be
moved at once, with appropriate masking and shifting. Straightforward code for
this follows.

   y =  x & 0x8040201008040201LL        |
       (x & 0x0080402010080402LL) <<  7 |
       (x & 0x0000804020100804LL) << 14 |
       (x & 0x0000008040201008LL) << 21 |
       (x & 0x0000000080402010LL) << 28 |
       (x & 0x0000000000804020LL) << 35 |
       (x & 0x0000000000008040LL) << 42 |
       (x & 0x0000000000000080LL) << 49 |
       (x >> 7) & 0x0080402010080402LL |
       (x >> 14) & 0x0000804020100804LL |
       (x >> 21) & 0x0000008040201008LL |
       (x >> 28) & 0x0000000080402010LL |
       (x >> 35) & 0x0000000000804020LL |
       (x >> 42) & 0x0000000000008040LL |
       (x >> 49) & 0x0000000000000080LL;

This executes in 43 instructions on the basic RISC, exclusive of mask genera-
tion (which is not important in the application of transposing a large bit matrix,
because the masks are loop constants). Rotate shifts do not help. Some of the terms
are of the form (x & mask)<< s, and some are of the form (x >> s)& mask.
This reduces the number of masks required; the last seven are repeats of earlier
masks. Notice that each mask after the first can be generated from the first with one
shift right instruction. Because of this, it is a simple matter to write a more compact
version of the code that uses a for-loop that is executed seven times.

Another variation is to employ Steele’s method of using exclusive or to swap
bit fields (described on page 47). That technique does not help much in this appli-
cation. It results in a function that executes in 42 instructions, exclusive of mask
generation. The code starts out

   t = (x ^ (x >> 7)) & 0x0080402010080402LL;
   x = x ^ t ^ (t << 7);

and there are seven such pairs of lines.
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Although there does not seem to be a really great algorithm for this problem,
the method to be described beats the straightforward method and its variations
described above by approximately a factor of 2 on the basic RISC, for the calcula-
tion part (not counting loading and storing the submatrices or generating masks).
The method gets its power from its high level of bit-parallelism. It would not be a
good method if the matrix elements are words. For that, you can’t do better than
loading each word and storing it where it goes.

First, treat the 8×8-bit matrix as 16 2×2-bit matrices and transpose each of the
16 2×2-bit matrices. Then treat the matrix as four 2×2 submatrices whose ele-
ments are 2×2-bit matrices and transpose each of the four 2×2 submatrices.
Finally, treat the matrix as a 2×2 matrix whose elements are 4×4-bit matrices and
transpose the 2×2 matrix. These transformations are illustrated below [Floyd].

0123 4567     082a 4c6e   08go 4cks     08go wEMU
89ab cdef     193b 5d7f   19hp 5dlt     19hp xFNV
ghij klmn     goiq ksmu   2aiq 6emu     2aiq yGOW
opqr stuv     hpjr ltnv   3bjr 7fnv     3bjr zHPX

wxyz ABCD     wEyG AICK   wEMU AIQY     4cks AIQY
EFGH IJKL     xFzH BJDL   xFNV BJRZ     5dlt BJRZ
MNOP QRST     MUOW QYS$   yGOW CKS$     6emu CKS$
UVWX YZ$.     NVPX RZT.   zHPX DLT.     7fnv DLT.

A complete procedure is shown in Figure 7–6. Parameter A is the address of the
first byte of an 8×8 submatrix of the source matrix, and parameter B is the address
of the first byte of an 8×8 submatrix in the target matrix.

The calculation part of this function executes in 21 instructions. Each of the
three major steps is swapping bits, so a version can be written that uses the Steele
exclusive or bit field swapping device. Using it, the first assignment to x in
Figure 7–6 becomes:

   t = (x ^ (x >> 7)) & 0x00AA00AA00AA00AALL;
   x = x ^ t ^ (t << 7);

The calculation part of the revised function executes in only 18 instructions, but it
has little instruction-level parallelism.

The algorithm of Figure 7–6 runs from fine to coarse granularity, based on the
lengths of the groups of bits that are swapped. The method can also be run from
coarse to fine granularity. To do this, first treat the 8×8-bit matrix as a 2×2 matrix
whose elements are 4×4-bit matrices and transpose the 2×2 matrix. Then, treat
each of the four 4×4 submatrices as a 2×2 matrix whose elements are 2×2-bit
matrices, and transpose each of the four 2×2 submatrices, and so forth. The code
for this is the same as that of Figure 7–6 except for the three assignments that do
the bit rearranging being run in reverse order.

As was mentioned, these functions can be modified for execution on a 32-bit
machine by using two registers for each 64-bit quantity. If this is done and any cal-
culations that would result in zero are used to make obvious simplifications, the
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results are that a 32-bit version of the straightforward method described on
page 143 runs in 74 instructions (compared to 43 on a 64-bit machine), and a 32-bit
version of the function of Figure 7–6 runs in 36 instructions (compared to 21 on a
64-bit machine). Using Steele’s bit-swapping technique gives a reduction in
instructions executed at the expense of instruction-level parallelism, as in the case
of a 64-bit machine.

Transposing a 32×32-Bit Matrix
The same recursive technique that was used for the 8×8-bit matrix can be used for
larger matrices. For a 32×32-bit matrix it takes five stages. 

The details are quite different from Figure 7–6, because here we assume that
the entire 32×32-bit matrix does not fit in the general register space, and we seek a
compact procedure that indexes the appropriate words of the bit matrix to do the
bit swaps. The algorithm to be described works best if run from coarse to fine
granularity.

In the first stage, treat the matrix as four 16×16-bit matrices, and transform it
as follows:

void transpose8(unsigned char* A, int m, int n,
                unsigned char* B) {
   unsigned long long x;
   int i;

   for (i = 0; i <= 7; i++)     // Load 8 bytes from the
      x = x << 8 | A[m*i];      // input array and pack
                                // them into x.

   x =  x & 0xAA55AA55AA55AA55LL        |
       (x & 0x00AA00AA00AA00AALL) <<  7 |
       (x >> 7) & 0x00AA00AA00AA00AALL;
   x =  x & 0xCCCC3333CCCC3333LL        |
       (x & 0x0000CCCC0000CCCCLL) << 14 |
       (x >> 14) & 0x0000CCCC0000CCCCLL;
   x =  x & 0xF0F0F0F00F0F0F0FLL        |
       (x & 0x00000000F0F0F0F0LL) << 28 |
       (x >> 28) & 0x00000000F0F0F0F0LL;

   for (i = 7; i >= 0; i--) {   // Store result into
      B[n*i] = x; x = x >> 8;}  // output array B.
}

FIGURE 7–6. Transposing an 8×8-bit matrix.
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A denotes the left half of the first 16 words of the matrix, B denotes the right half
of the first 16 words, and so on. It should be clear that the above transformation
can be accomplished by the following swaps:

                     Right half of word 0 with the left half of word 16,
                     Right half of word 1 with the left half of word 17,

                           …
                     Right half of word 15 with the left half of word 31.

To implement this in code, we will have an index k that ranges from 0 to 15. In a
loop controlled by k, the right half of word k will be swapped with the left half of
word

In the second stage, treat the matrix as 16 8×8-bit matrices, and transform it
as follows:

This transformation can be accomplished by the following swaps:

Bits 0x00FF00FF of word 0 with bits 0xFF00FF00 of word 8,
Bits 0x00FF00FF of word 1 with bits 0xFF00FF00 of word 9, and so on.

This means that bits 0–7 (the least significant eight bits) of word 0 are swapped
with bits 8–15 of word 8, and so on. The indexes of the first word in these swaps
are k = 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23. A way to step k through
these values is

In the loop controlled by k, bits of word k are swapped with bits of word 
Similarly, the third stage does the following swaps:

Bits 0x0F0F0F0F of word 0 with bits 0xF0F0F0F0 of word 4,
Bits 0x0F0F0F0F of word 1 with bits 0xF0F0F0F0 of word 5, and so on.

The indexes of the first word in these swaps are k = 0, 1, 2, 3, 8, 9, 10, 11, 16, 17,
18, 19, 24, 25, 26, 27. A way to step k through these values is

In the loop controlled by k, bits of word k are swapped with bits of word 

k 16.+
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These considerations are coded rather compactly in the C function shown in
Figure 7–7 [GLS1]. The outer loop controls the five stages, with j taking on the
values 16, 8, 4, 2, and 1. It also steps the mask m through the values 0x0000FFFF,
0x00FF00FF, 0x0F0F0F0F, 0x33333333, and 0x55555555. (The code for this,
m = m ^ (m << j), is a nice little trick. It does not have an inverse, which is the
main reason this code works best for coarse to fine transformations.) The inner
loop steps k through the values described above. The inner loop body swaps the
bits of a[k] identified by mask m with the bits of a[k+j] shifted right j and
identified by m, which is equivalent to the bits of a[k+j] identified with the
complement of m. The code for performing these swaps is an adaptation of the
“three exclusive or” technique shown on page 46 column (c).

Based on compiling this function with the GNU C compiler to a machine
very similar to the basic RISC, this compiles into 31 instructions, with 20 in the
inner loop, and 7 in the outer loop but not in the inner loop. Thus, it executes in

 = 1639 instructions. In contrast, if this function were per-
formed using 16 calls on the 8×8 transpose program of Figure 7–6 (modified to
run on a 32-bit machine), then it would take  = 1696 instructions,
assuming the 16 calls are “strung out.” This includes five instructions for each
function call (observed in compiled code). Therefore, the two methods are, on the
surface anyway, very nearly equal in execution time.

On the other hand, for a 64-bit machine the code of Figure 7–7 can easily
be modified to transpose a 64×64-bit matrix, and it would take about

 = 3886 instructions. Doing the job with 64 executions of the
8×8 transpose method would take about  = 5760 instructions.

The algorithm works in place, and thus if it is used to transpose a larger
matrix, additional steps are required to move 32×32-bit submatrices. It can be
made to put the result matrix in an area distinct from the source matrix by separat-
ing out either the first or last execution of the “for j-loop” and having it store the
result in the other area.

void transpose32(unsigned A[32]) {
   int j, k;
   unsigned m, t;

   m = 0x0000FFFF;
   for (j = 16; j != 0; j = j >> 1, m = m ^ (m << j)) {
      for (k = 0; k < 32; k = (k + j + 1) & ~j) {
         t = (A[k] ^ (A[k+j] >> j)) & m;
         A[k] = A[k] ^ t;
         A[k+j] = A[k+j] ^ (t << j);
      }
   }
}

FIGURE 7–7.  Compact code for transposing a 32×32-bit matrix.

4 5 7 16 20+( )+

16 101 5+( )

4 6 7 32 20+( )+
64 85 5+( )
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About half the instructions executed by the function of Figure 7–7 are for loop
control, and the function loads and stores the entire matrix five times. Would it be
reasonable to reduce this overhead by unrolling the loops? It would, if you are look-
ing for the ultimate in speed, if memory space is not a problem, if your machine’s I-
fetching can keep up with a large block of straight-line code, and especially if the
branches or loads are costly in execution time. The bulk of the program will be the
six instructions that do the bit swaps repeated 80 times ( ). In addition, the pro-
gram will need 32 load instructions to load the source matrix and 32 store instruc-
tions to store the result, for a total of at least 544 instructions.

Figure 7–8 outlines a program in which the unrolling is done by hand. This
program is shown as not working in place, but it executes correctly in place, if that

#define swap(a0, a1, j, m) t = (a0 ^ (a1 >> j)) & m; \
          a0 = a0 ^ t; \
         a1 = a1 ^ (t << j);

void transpose32(unsigned A[32], unsigned B[32]) {
   unsigned m, t;
   unsigned a0, a1, a2, a3, a4, a5, a6, a7,
            a8, a9, a10, a11, a12, a13, a14, a15,
            a16, a17, a18, a19, a20, a21, a22, a23,
            a24, a25, a26, a27, a28, a29, a30, a31;

   a0  = A[ 0];  a1  = A[ 1];  a2  = A[ 2];  a3  = A[ 3];
   a4  = A[ 4];  a5  = A[ 5];  a6  = A[ 6];  a7  = A[ 7];
   ...
   a28 = A[28];  a29 = A[29];  a30 = A[30];  a31 = A[31];

   m = 0x0000FFFF;
   swap(a0,  a16, 16, m)
   swap(a1,  a17, 16, m)
   ...
   swap(a15, a31, 16, m)
   m = 0x00FF00FF;
   swap(a0,  a8,   8, m)
   swap(a1,  a9,   8, m)
   ...
   ...
   swap(a28, a29,  1, m)
   swap(a30, a31,  1, m)

   B[ 0] = a0;   B[ 1] = a1;   B[ 2] = a2;   B[ 3] = a3;
   B[ 4] = a4;   B[ 5] = a5;   B[ 6] = a6;   B[ 7] = a7;
   ...
   B[28] = a28;  B[29] = a29;  B[30] = a30;  B[31] = a31;
}

FIGURE 7–8.  Straight-line code for transposing a 32×32-bit matrix.

5 16
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is desired, by invoking it with identical arguments. The number of “swap” lines is
80. Our GNU C compiler for the basic RISC machine compiles this into 576
instructions (branch-free, except for the function return), counting prologs and
epilogs.This machine does not have the store multiple and load multiple instruc-
tions, but it can save and restore registers two at a time with store double and load
double  instructions.

There is a way to squeeze a little more performance out of this if your
machine has a rotate shift instruction (either left or right). The idea is to replace all
the swap operations of Figure 7–8, which take six instructions each, with simpler
swaps that do not involve a shift, which take four instructions each (use the swap
macro given, with the shifts omitted).

First, rotate right words A[16..31] (that is, A[k] for ) by 16 bit
positions. Second, swap the right halves of A[0] with A[16], A[1] with A[17], and
so on, similarly to the code of Figure 7–8. Third, rotate right words A[8..15] and
A[24..31] by eight bit positions, and then swap the bits indicated by a mask of
0x00FF00FF in words A[0] and A[8], A[1] and A[9], and so on, as in the code of
Figure 7–8. After five stages of this, you don’t quite have the transpose. Finally,
you have to rotate left word A[1] by one bit position, A[2] by two bit positions,
and so on (31 instructions). We do not show the code, but the steps are illustrated
below for a 4×4-bit matrix.

abcd     abcd     abij     abij     aeim     aeim
efgh     efgh     efmn     nefm     nbfj     bfjn

==>      ==>      ==>      ==>      ==>
ijkl     klij     klcd     klcd     kocg     cgko
mnop     opmn     opgh     hopg     hlpd     dhlp

The bit-rearranging part of the program of Figure 7–8 requires 480 instruc-
tions (80 swaps at six instructions each). The revised program, using rotate
instructions, requires 80 swaps at four instructions each, plus 80 rotate instructions
( ) for the first five stages, plus a final 31 rotate instructions, for a total of
431 instructions. The prolog and epilog code would be unchanged, so using rotate
instructions in this way saves 49 instructions.

There is another quite different method of transposing a bit matrix: apply three
shearing transformations [GLS1]. If the matrix is n×n, the steps are (1) rotate row i
to the right i bit positions, (2) rotate column j upwards  bit positions,
(3) rotate row i to the right  bit positions, and (4) reflect the matrix
about a horizontal axis through the midpoint. To illustrate, for a 4×4-bit matrix:

abcd     abcd     hlpd     dhlp     aeim
efgh     hefg     kocg     cgko     bfjn

==>      ==>      ==>      ==>
ijkl     klij     nbfj     bfjn     cgko
mnop     nopm     aeim     aeim     dhlp

This method is not quite competitive with the others, because step (2) is
costly. (To do it at reasonable cost, rotate upward all columns that rotate by 

16 k 31≤ ≤
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or more bit positions by  bit positions [these are columns  through
], then rotate certain columns upward  bit positions, and so on.) Steps 1

and 3 require only  instructions each, and step 4 requires no instructions at
all if the results are simply stored to the appropriate locations.

If an 8×8-bit matrix is stored in a 64-bit word in the obvious way (top row in
the most significant eight bits, and so on), then the matrix transpose operation is
equivalent to three outer perfect shuffles or unshuffles [GLS1]. This is a very
good way to do it if your machine has shuffle or unshuffle as a single instruction,
but it is not a good method on a basic RISC machine.

7–4 Compress, or Generalized Extract
The APL language includes an operation called compress, written B/V, where B is
a Boolean vector and V is vector of the same length as B, with arbitrary elements.
The result of the operation is a vector consisting of the elements of V for which
the corresponding bit in B is 1. The length of the result vector is equal to the num-
ber of 1’s in B.

Here we consider a similar operation on the bits of a word. Given a mask m
and a word x, the bits of x for which the corresponding mask bit is 1 are selected
and moved (“compressed”) to the right. For example, if the word to be com-
pressed is (where each letter denotes a single bit)

abcd efgh ijkl mnop qrst uvwx yzAB CDEF,

and the mask is

0000 1111 0011 0011 1010 1010 0101 0101,

then the result is

0000 0000 0000 0000 efgh klop qsuw zBDF.

This operation might also be called generalized extract, by analogy with the
extract instruction found on many computers.

We are interested in code for this operation with minimum worst-case execu-
tion time, and offer the simple loop of Figure 7–9 as a straw man to be improved
upon. This code has no branches in the loop, and it executes in 260 instructions
worst case, including the subroutine prolog and epilog.

It is possible to improve on this by repeatedly using the parallel suffix method
(see page 97) with the exclusive or operation [GLS1]. We will denote the parallel
suffix operation by PS-XOR. The basic idea is to first identify the bits of argument
x that are to be moved right an odd number of bit positions, and move those. (This
operation is simplified if x is first anded with the mask, to clear out irrelevant
bits.) Mask bits are moved in the same way. Next, we identify the bits of x that are
to be moved an odd multiple of 2 positions (2, 6, 10, and so on), and then we move

n 2⁄ n 2⁄ 1–
n 2– n 4⁄

n 1–
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these bits of x and the mask. Next, we identify and move the bits that are to be
moved an odd multiple of 4 positions, then those that move an odd multiple of 8,
and then those that move 16 bit positions.

Because this algorithm, believed to be original with [GLS1], is a bit difficult to
understand, and because it is perhaps surprising that something along these lines can
be done at all, we will describe its operation in some detail. Suppose the inputs are

          x = abcd efgh ijkl mnop qrst uvwx yzAB CDEF,
          m = 1000 1000 1110 0000 0000 1111 0101 0101,
              1    1    111
              9    6    333            4444  3 2  1 0

where each letter in x represents a single bit (with value 0 or 1). The numbers
below each 1-bit in the mask m denote how far the corresponding bit of x must
move to the right. This is the number of 0’s in m to the right of the bit. As men-
tioned above, it is convenient to first clear out the irrelevant bits of x, giving

          x = a000 e000 ijk0 0000 0000 uvwx 0z0B 0D0F.

The plan is to first determine which bits move an odd number of positions (to
the right), and move those one bit position. Recall that the PS-XOR operation
results in a 1-bit at each position where the number of 1’s at and to the right of that
position is odd. We wish to identify those bits for which the number of 0’s strictly
to the right is odd. This can be done by computing mk = ~m << 1 and performing
PS-XOR on the result. This gives

         mk = 1110 1110 0011 1111 1110 0001 0101 0100,
         mp = 1010 0101 1110 1010 1010 0000 1100 1100.

Observe that mk identifies the bits of m that have a 0 immediately to the right, and
mp sums these, modulo 2, from the right. Thus, mp identifies the bits of m that
have an odd number of 0’s to the right.

unsigned compress(unsigned x, unsigned m) {
   unsigned r, s, b;   // Result, shift, mask bit.

   r = 0;
   s = 0;
   do {
      b = m & 1;
      r = r | ((x & b) << s);
      s = s + b;
      x = x >> 1;
      m = m >> 1;
   } while (m != 0);
   return r;
}

FIGURE 7–9.  A simple loop for the compress operation.
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The bits that will be moved one position are those that are in positions that
have an odd number of 0’s strictly to the right (identified by mp) and that have a
1-bit in the original mask. This is simply mv = mp & m:

         mv = 1000 0000 1110 0000 0000 0000 0100 0100.

These bits of m can be moved with the assignment

   m = (m ^ mv) | (mv >> 1);

and the same bits of x can be moved with the two assignments

   t = x & mv;
   x = (x ^ t) | (t >> 1);

(Moving the bits of m is simpler because all the selected bits are 1’s.) Here the
exclusive or is turning off bits known to be 1 in m and x, and the or is turning on
bits known to be 0 in m and x. The operations could also, alternatively, both be
exclusive or, or subtract and add, respectively. The results, after moving the bits
selected by mv right one position, are:

          m = 0100 1000 0111 0000 0000 1111 0011 0011,
          x = 0a00 e000 0ijk 0000 0000 uvwx 00zB 00DF.

Now we must prepare a mask for the second iteration, in which we identify
bits that are to move an odd multiple of 2 positions to the right. Notice that the
quantity mk & ~mp identifies those bits that have a 0 immediately to the right in
the original mask m, and those bits that have an even number of 0’s to the right in the
original mask. These properties apply jointly, although not individually, to the revised
mask m. (That is to say, mk identifies all the positions in the revised mask m that
have a 0 to the immediate right and an even number of 0’s to the right.) This is the
quantity that, if summed from the right with PS-XOR, identifies those bits that
move to the right an odd multiple of 2 positions (2, 6, 10, and so on). Therefore,
the procedure is to assign this quantity to mk and perform a second iteration of the
above steps. The revised value of mk is

         mk = 0100 1010 0001 0101 0100 0001 0001 0000.

A complete C function for this operation is shown in Figure 7–10. It does the
job in 127 basic RISC instructions (constant)1, including the subroutine prolog

1. Actually, the first shift left can be omitted, reducing the instruction count to 126. The
quantity mv comes out the same with or without it [Dalton].
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and epilog. Figure 7–11 shows the sequence of values taken on by certain vari-
ables at key points in the computation, with the same inputs that were used in the
discussion above. Observe that a by-product of the algorithm, in the last value
assigned to m, is the original m with all its 1-bits compressed to the right.

We calculate that the algorithm of Figure 7–10 would execute in 169 instruc-
tions on a 64-bit basic RISC, as compared to 516 (worst case) for the algorithm of
Figure 7–9.

The number of instructions required by the algorithm of Figure 7–10 can be
reduced substantially if the mask m is a constant. This can occur in two situations:
(1) a call to “compress(x, m)” occurs in a loop, in which the value of m is not
known, but it is a loop constant, and (2) the value of m is known, and the code for
compress is generated in advance, perhaps by a compiler.

Notice that the value assigned to x in the loop in Figure 7–10 is not used in
the loop for anything other than the assignment to x. And x is dependent only on
itself and variable mv. Therefore, the subroutine can be coded with all references
to x deleted, and the five values computed for mv can be saved in variables mv0,
mv1, …, mv4. Then, in situation (1) the function without references to x can be
placed outside the loop in which “compress(x, m)” occurs, and the following
statements can be placed in the loop:

unsigned compress(unsigned x, unsigned m) {
   unsigned mk, mp, mv, t;
   int i;

   x = x & m;     // Clear irrelevant bits.
   mk = ~m << 1;   // We will count 0's to right.

   for (i = 0; i < 5; i++) {
      mp = mk ^ (mk << 1);           // Parallel suffix.
      mp = mp ^ (mp << 2);
      mp = mp ^ (mp << 4);
      mp = mp ^ (mp << 8);
      mp = mp ^ (mp << 16);
      mv = mp & m;              // Bits to move.
      m = m ^ mv | (mv >> (1 << i));   // Compress m.
      t = x & mv;
      x = x ^ t | (t >> (1 << i));     // Compress x.
      mk = mk & ~mp;
   }
   return x;
}

FIGURE 7–10.  Parallel suffix method for the compress operation.
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   x = x & m;
   t = x & mv0;  x = x ^ t | (t >> 1);
   t = x & mv1;  x = x ^ t | (t >> 2);
   t = x & mv2;  x = x ^ t | (t >> 4);
   t = x & mv3;  x = x ^ t | (t >> 8);
   t = x & mv4;  x = x ^ t | (t >> 16);

This is only 21 instructions in the loop (the loading of the constants can be placed
outside the loop), a considerable improvement over the 127 required by the full
subroutine of Figure 7–10.

           x = abcd efgh ijkl mnop qrst uvwx yzAB CDEF
           m = 1000 1000 1110 0000 0000 1111 0101 0101
           x = a000 e000 ijk0 0000 0000 uvwx 0z0B 0D0F

i = 0,    mk = 1110 1110 0011 1111 1110 0001 0101 0100
After PS, mp = 1010 0101 1110 1010 1010 0000 1100 1100
          mv = 1000 0000 1110 0000 0000 0000 0100 0100
           m = 0100 1000 0111 0000 0000 1111 0011 0011
           x = 0a00 e000 0ijk 0000 0000 uvwx 00zB 00DF

i = 1,    mk = 0100 1010 0001 0101 0100 0001 0001 0000
After PS, mp = 1100 0110 0000 1100 1100 0000 1111 0000
          mv = 0100 0000 0000 0000 0000 0000 0011 0000
           m = 0001 1000 0111 0000 0000 1111 0000 1111
           x = 000a e000 0ijk 0000 0000 uvwx 0000 zBDF

i = 2,    mk = 0000 1000 0001 0001 0000 0001 0000 0000
After PS, mp = 0000 0111 1111 0000 1111 1111 0000 0000
          mv = 0000 0000 0111 0000 0000 1111 0000 0000
           m = 0001 1000 0000 0111 0000 0000 1111 1111
           x = 000a e000 0000 0ijk 0000 0000 uvwx zBDF

i = 3,    mk = 0000 1000 0000 0001 0000 0000 0000 0000
After PS, mp = 0000 0111 1111 1111 0000 0000 0000 0000
          mv = 0000 0000 0000 0111 0000 0000 0000 0000
           m = 0001 1000 0000 0000 0000 0111 1111 1111
           x = 000a e000 0000 0000 0000 0ijk uvwx zBDF

i = 4,    mk = 0000 1000 0000 0000 0000 0000 0000 0000
After PS, mp = 1111 1000 0000 0000 0000 0000 0000 0000
          mv = 0001 1000 0000 0000 0000 0000 0000 0000
           m = 0000 0000 0000 0000 0001 1111 1111 1111
           x = 0000 0000 0000 0000 000a eijk uvwx zBDF

FIGURE 7–11.  Operation of the parallel suffix method for the compress operation.
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In situation (2), in which the value of m is known, the same sort of thing can
be done, and further optimization may be possible. It might happen that one of the
five masks is 0, in which case one of the five lines shown above can be omitted.
For example, mask mv0 is 0 if it happens that no bit moves an odd number of
positions, and mv4 is 0 if no bit moves more than 15 positions, and so on.

As an example, for

           m = 0101 0101 0101 0101 0101 0101 0101 0101,

the calculated masks are

         mv0 = 0100 0100 0100 0100 0100 0100 0100 0100
         mv1 = 0011 0000 0011 0000 0011 0000 0011 0000
         mv2 = 0000 1111 0000 0000 0000 1111 0000 0000
         mv3 = 0000 0000 1111 1111 0000 0000 0000 0000
         mv4 = 0000 0000 0000 0000 0000 0000 0000 0000

Because the last mask is 0, in the compiled code situation this compression opera-
tion is done in 17 instructions (not counting the loading of the masks). This is not
quite as good as the code shown for this operation on page 141 (13 instructions,
not counting the loading of masks), which takes advantage of the fact that alter-
nate bits are being selected.

Using Insert and Extract
If your computer has the insert instruction, preferably with immediate values for
the operands that identify the bit field in the target register, then in the compiled
situation insert can often be used to do the compress operation with fewer instruc-
tions than the methods discussed above. Furthermore, it doesn’t tie up registers
holding the masks.

The target register is initialized to 0, and then, for each contiguous group of 1’s
in the mask m, variable x is shifted right to right-justify the next field, and the insert
instruction is used to insert the bits of x in the appropriate place in the target regis-
ter. This does the operation in  instructions, where n is the number of fields
(groups of consecutive 1’s) in the mask. The worst case is 33 instructions, because
the maximum number of fields is 16 (which occurs for alternating 1’s and 0’s).

An example in which the insert method uses substantially fewer instructions
is m = 0x0010084A. Compressing with this mask requires moving bits 1, 2, 4, 8,
and 16 positions. Thus, it takes the full 21 instructions for the parallel suffix
method, but only 11 instructions for the insert method (there are five fields). A
more extreme case is m = 0x80000000. Here a single bit moves 31 positions,
requiring 21 instructions for the parallel suffix method, but only three instructions
for the insert method and only one instruction (shift right 31) if you are not con-
strained to any particular scheme.

2n 1+
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You can also use the extract instruction in various simple ways to do the com-
press operation with a known mask in  instructions, where n is the number
of fields in the mask.

Clearly, the problem of compiling optimal code for the compress operation
with a known mask is a difficult one.

Compress Left
To compress bits to the left, obviously you can reverse the argument x and the
mask, compress right, and reverse the result. Another way is to compress right and
then shift left by  These might be satisfactory if your computer has an
instruction for bit reversal or population count, but if not, the algorithm of
Figure 7–10 is easily adapted: Just reverse the direction of all the shifts except the
two in the expressions 1 << i (eight to change).

The BESM-6 computer (ca. 1967) had an instruction for the compress left
function (“Pack Bits in A Masked by X”) and its inverse (“Unpack …”), which
operated on the machine’s 48-bit registers. These instructions are not easy to
implement. It is surmised by cryptography experts that their only use was for
breaking US codes [Knu8]. The BESM-6 also had the population count instruc-
tion which, as has been noted, seems to be important to the National Security
Agency.

7–5  Expand, or Generalized Insert
The inverse of the compress right function moves bits from the low-order end of a
register to positions given by a mask, while keeping the bits in order. For example,
expand(0000abcd, 10011010) = a00bc0d0. Thus

compress(expand(x, m), m) = x.

This function has also been called unpack, scatter, and deposit.
It can be obtained by running the code of Figure 7–10 in reverse [Allen]. To

avoid overwriting bits in x, it is necessary to move (to the left) the bits that move
a large distance first, and to move those that move only one position last. This
means that the first five “move” quantities (mv in the code) must be computed,
saved, and used in the reverse of the order in which they were computed. For many
applications this is not a problem, because these applications apply the same mask
m to large amounts of data, and so they would compute the move quantities in
advance and reuse them anyway.

The code is shown in Figure 7–12. It executes approximately 168 basic RISC
instructions (constant), including five stores and five loads. A 64-bit version for a
64-bit machine would execute approximately 200 instructions.

For a machine that does not have the and not instruction, the MUX operation
in the second loop can be coded in one fewer instruction with

   x = ((x ^ t) & mv) ^ x;

3n 2–

pop m( ).
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7–6  Hardware Algorithms for Compress and Expand
This section gives hardware-oriented algorithms for the compress right function
and its inverse [Zadeck]. Like the algorithms of the preceding sections, their exe-
cution times are proportional to the log of the computer’s word size. They are suit-
able for implementation in hardware, but do not yield fast code if implemented in
basic RISC instructions. We simply describe how they work without giving C or
machine code.

Compress
To illustrate the operation of the algorithm, we represent each bit of x with a letter
and consider a specific example mask m, shown below.

   Input x =      abcd efgh ijkl mnop qrst uvwx yzAB CDEF
   Mask m =       0111 1110 0110 1100 1010 1111 0011 0010

unsigned expand(unsigned x, unsigned m) {
   unsigned m0, mk, mp, mv, t;
   unsigned array[5];
   int i;

   m0 = m;       // Save original mask.
   mk = ~m << 1;   // We will count 0's to right.

   for (i = 0; i < 5; i++) {
      mp = mk ^ (mk << 1);            // Parallel suffix.
      mp = mp ^ (mp << 2);
      mp = mp ^ (mp << 4);
      mp = mp ^ (mp << 8);
      mp = mp ^ (mp << 16);
      mv = mp & m;              // Bits to move.
      array[i] = mv;
      m = (m ^ mv) | (mv >> (1 << i));  // Compress m.
      mk = mk & ~mp;
   }

   for (i = 4; i >= 0; i--) {
      mv = array[i];
      t = x << (1 << i);
      x = (x & ~mv) | (t & mv);
   }
   return x & m0;  // Clear out extraneous bits.
}

FIGURE 7–12. Parallel suffix method for the expand operation.
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The algorithm works in  “phases,” where W is the computer’s word
size in bits. Each phase operates in parallel on “pockets” of size  bits, for n rang-
ing from 1 to  At the end of each phase, each pocket of x contains the
original pocket of x with the bits selected by that pocket of m compressed to the
right. Each pocket of m will contain an integer that is the number of 0-bits in that
pocket of the original m. This is equal to the number of bits of x that are not com-
pressed to the right. They are the known leading 0-bits in the pocket of x.

In each phase, the algorithm performs the following steps, in parallel, on each
pocket of x and m, where w is the pocket size in bits.

1. Set L = the left half of the pocket of x, extended with w/2 0-bits on the right.
2. Shift L (all w bits) right by the amount given in the right half of the corre-

sponding pocket of m, inserting 0’s on the left. No 1’s will be shifted out
on the right, because the maximum shift amount is w/2.

3. Set R = w/2 0-bits followed by the right half of the pocket of x.
4. Replace the entire w-bit pocket of x with the or of R and the shifted L.
5. Add the left and right halves of the pocket of m, and replace the entire

pocket with the sum.
To apply these steps to the first phase (w = 2) would require first and’ing x

with m,to clear out irrelevant bits of x, and complementing m so that each bit of m
is the number of 0-bits in each 1-bit half pocket. It is simpler to make an exception
of the first phase, and combine these steps with the first compression operation by
applying the logic shown in the table below to each 2-bit pocket of x and m.

The third line, for example, has m = 10 (binary). This means that the left bit of x is
selected to be part of the result, but the right bit is not. Thus, the left bit (a) is com-
pressed to the right. The other bit of x is cleared, which ensures that in the final
result, all the high-order (not selected) bits will be 0.

Applying this logic to the original x and m gives:

   Bit pairs, x = 0bcd ef0g 0j0k mn00 0q0s uvwx 00AB 000E
              m = 0100 0001 0101 0010 0101 0000 1000 1001

In the second phase, consider for example the second nibble above (ef0g).
The quantities L = ef00 and R = 000g are formed. L is shifted right by one posi-
tion (given by the right half of the nibble of m), giving 0ef0. This is or’ed with R,
giving 0efg as the new value of the nibble. The left and right halves of m are
added, giving 0001 (no change).

Input Output
x m x m

ab
ab
ab
ab

00
01
10
11

00
0b
0a
ab

10
01
01
00

log2 W( )
2n

log2 W( ).
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   Nibbles,   x = 0bcd 0efg 00jk 00mn 00qs uvwx 00AB 000E
              m = 0001 0001 0010 0010 0010 0000 0010 0011

Similarly, for the third, fourth, and fifth phases, each byte, halfword, and word
of x are compressed, and m is updated, as follows:

   Bytes,     x = 00bc defg 0000 jkmn 00qs uvwx 0000 0ABE
              m = 0000 0010 0000 0100 0000 0010 0000 0101

   Halfwords, x = 0000 00bc defg jkmn 0000 000q suvw xABE
              m = 0000 0000 0000 0110 0000 0000 0000 0111

   Words,     x = 0000 0000 0000 0bcd efgj kmnq suvw xABE
              m = 0000 0000 0000 0000 0000 0000 0000 1101

Upon completion, m is an integer that gives the number of known leading 0’s
in x. Subtracting this from the word size gives the number of compressed bits in x,
which equals the number of 1-bits in the original mask m.

The reason this is not a very good algorithm for implementation with basic
RISC instructions is that it is hard to shift the half-pockets right by differing
amounts. On the other hand, it might possibly be useful on an SIMD machine that
has instructions that operate on the pockets of a word in parallel and independently.

Expand
The hardware compression algorithm can be turned into an expansion algorithm
by, essentially, running it first forward and then in reverse. As in the algorithms
based on the parallel suffix method, the five masks of the hardware compression
algorithm are computed, saved, and used in the reverse of the order in which they
were computed. Actually, the last mask is not used (nor is it used in the compres-
sion algorithm), but an additional one is required (m0) that is simply the comple-
ment of the original mask. In the forward pass, only the steps for computing the
masks need be done; those involving the data x can be omitted.

To illustrate, suppose we have

   Input x = abcd efgh ijkl mnop qrst uvwx yzAB CDEF
   Mask  m = 0111 1110 0110 1100 1010 1111 0011 0010

Then the result of the expansion should be

             0nop qrs0 0tu0 vw00 x0y0 zABC 00DE 00F0.

The masks are shown below.

   m0 = 1000 0001 1001 0011 0101 0000 1100 1101
   m1 = 0100 0001 0101 0010 0101 0000 1000 1001
   m2 = 0001 0001 0010 0010 0010 0000 0010 0011
   m3 = 0000 0010 0000 0100 0000 0010 0000 0101
   m4 = 0000 0000 0000 0110 0000 0000 0000 0111
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The integer values of each half of m4 give the number of 0-bits in the corre-
sponding half of the original mask m. In particular, the right half of m has seven 0-
bits. This means that the seven high-order bits of the right half of x do not belong
there—they should be in the left half of x. Thus, bits 9 through 15 of x should be
shifted left just enough to put them in the left half of x, and higher-order bits of x
should be shifted left to accommodate them. This can be accomplished by shifting
left the entire 32-bit word x by seven positions and replacing the left half of x with
the left half of the shifted quantity. This gives

   x = hijk lmno pqrs tuvw qrst uvwx yzAB CDEF.

In general, the algorithm works with pocket sizes from 32 down to 2, in five
phases, using masks m4 down to m0. Each pocket (in parallel) is shifted left, dis-
carding bits that are shifted out on the left, and supplying 0’s to vacated positions
on the right, so that the shifted quantity is the same length as the pocket from which
it came. Then the left half of the pocket is replaced by the left half of the shifted
quantity. This will leave “garbage” bits in both halves of the pocket. They will be
zeroed-out after the last phase by and’ing with the original mask.

Continuing, we treat m3 as two 16-bit pockets. The left pocket has the integer
4 in its right half, so the left pocket of x is shifted left four positions (giving
lmno pqrs tuvw 0000), and the left half of this replaces the left half of the left
pocket in x, making the left pocket of x = lmno pqrs. Performing the same oper-
ation on the right 16-bit pocket of x gives

   x = lmno pqrs pqrs tuvw vwxy zABC yzAB CDEF.

The next phase uses m2, which consists of four 8-bit pockets. Applying it to x
gives

   x = mnop pqrs rstu tuvw vwxy zABC BCDE CDEF.

The next phase uses m1, which consists of eight 4-bit pockets. Applying it to
x gives

   x = mnop qrrs sttu vwvw wxxy zABC BCDE DEEF.

The last phase uses m0, which consists of sixteen 2-bit pockets. Applying it to
x gives

   x = mnop qrss stuu vwww xxyy zABC CCDE EEFF.

The final step is to and this with the original mask to clear irrelevant bits. This
gives

    x = 0nop qrs0 0tu0 vw00 x0y0 zABC 00DE 00F0.
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The half-pockets of each computed mask contain a count of the number of 0-
bits in the corresponding half-pocket of the original mask m. Therefore, as an alter-
native to computing the masks and saving them, the machine could employ circuits
for doing a population count of the 0’s in the half-pockets “on the fly.”

7–7  General Permutations, Sheep and Goats Operation
To do general permutations of the bits in a word, or of anything else, a central
problem is how to represent the permutation. It cannot be represented very com-
pactly. Because there are 32! permutations of the bits in a 32-bit word, at least

 bits, or three words plus 22 bits, are required to designate one
permutation out of the 32!.

One interesting way to represent permutations is closely related to the com-
pression operations discussed in Section 7–4 [GLS1]. Start with the direct method
of simply listing the bit position to which each bit moves. For example, for the
permutation done by a rotate left of four bit positions, the bit at position 0 (the
least significant bit) moves to position 4, 1 moves to 5, …, 31 moves to 3. This
permutation can be represented by the vector of 32 5-bit indexes:

00100
00101
...
11111
00000
00001
00010
00011

Treating that as a bit matrix, the representation we have in mind is its trans-
pose, except reflected about the off diagonal so the top row contains the least sig-
nificant bits and the result uses little-endian bit numbering. This we store as five
32-bit words in array p:

        p[0] = 1010 1010 1010 1010 1010 1010 1010 1010
        p[1] = 1100 1100 1100 1100 1100 1100 1100 1100
        p[2] = 0000 1111 0000 1111 0000 1111 0000 1111
        p[3] = 0000 1111 1111 0000 0000 1111 1111 0000
        p[4] = 0000 1111 1111 1111 1111 0000 0000 0000

Each bit of p[0] is the least significant bit of the position to which the corre-
sponding bit of x moves, each bit of p[1] is the next more significant bit, and so
on. This is similar to the encoding of the masks denoted by mv in the previous sec-
tion, except that mv applies to revised masks in the compress algorithm, not to the
original mask.

log2 32!( ) 118=
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The compression operation we need compresses to the left all bits marked
with 1’s in the mask, and compresses to the right all bits marked with 0’s.2 This is
sometimes called the “sheep and goats” operation (SAG), or “generalized unshuf-
fle.” It can be calculated with

SAG(x, m) = compress_left(x, m) | compress(x, ~m).

With SAG as a fundamental operation, and a permutation p as described
above, the bits of a word x can be permuted by p in the following 15 steps:

x    = SAG(x,    p[0]);
p[1] = SAG(p[1], p[0]);
p[2] = SAG(p[2], p[0]);
p[3] = SAG(p[3], p[0]);
p[4] = SAG(p[4], p[0]);

x    = SAG(x,    p[1]);
p[2] = SAG(p[2], p[1]);
p[3] = SAG(p[3], p[1]);
p[4] = SAG(p[4], p[1]);

x    = SAG(x,    p[2]);
p[3] = SAG(p[3], p[2]);
p[4] = SAG(p[4], p[2]);

x    = SAG(x,    p[3]);
p[4] = SAG(p[4], p[3]);

x    = SAG(x,    p[4]);

In these steps, SAG is used to perform a stable binary radix sort. Array p is
used as 32 5-bit keys to sort the bits of x. In the first step, all bits of x for which
p[0] = 1 are moved to the left half of the resulting word, and all those for which
p[0] = 0 are moved to the right half. Other than this, the order of the bits is not
changed (that is, the sort is “stable”). Then all the keys that will be used for the
next round of sorting are similarly sorted. The sixth line is sorting x based on the
second least significant bit of the key, and so on.

Similar to the situation of compressing, if a certain permutation p is to be
used on a number of words x, then a considerable savings results by precomputing
most of the steps above. The permutation array is revised to

   p[1] = SAG(p[1], p[0]);
   p[2] = SAG(SAG(p[2], p[0]), p[1]);
   p[3] = SAG(SAG(SAG(p[3], p[0]), p[1]), p[2]);
   p[4] = SAG(SAG(SAG(SAG(p[4], p[0]), p[1]), p[2]), p[3]);

2. If big-endian bit numbering is used, compress to the left all bits marked with 0’s, and to the
right all bits marked with 1’s.
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and then each permutation is done with

x = SAG(x, p[0]);
x = SAG(x, p[1]);
x = SAG(x, p[2]);
x = SAG(x, p[3]);
x = SAG(x, p[4]);

A more direct (but perhaps less interesting) way to do general permutations of
the bits in a word is to represent a permutation as a sequence of 32 5-bit indexes.
The kth index is the bit number in the source from which the kth bit of the result
comes. (This is a “comes from” list, whereas the SAG method uses a “goes to”
list.) These could be packed six to a 32-bit word, thus requiring six words to hold
all 32 bit indexes. An instruction can be implemented in hardware such as

bitgather Rt,Rx,Ri,

where register Rt is a target register (and also a source), register Rx contains the
bits to be permuted, and register Ri contains six 5-bit indexes (and two unused
bits). The operation of the instruction is

In words, the contents of the target register are shifted left six bit positions,
and six bits are selected from word x and placed in the vacated six positions of t.
The bits selected are given by the six 5-bit indexes in word i, taken in left-to-right
order. The bit numbering in the indexes could be either little- or big-endian, and
the operation would probably be as described for either type of machine.

To permute a word, use a sequence of six such instructions, all with the same
Rt and Rx, but different index registers. In the first index register of the sequence,
only indexes  and  are significant, as the bits selected by the other four
indexes are shifted out of the left end of Rt.

An implementation of this instruction would most likely allow index values
to be repeated, so the instruction can be used to do more than permute bits. It can
be used to repeat any selected bit any number of times in the target register. The
SAG operation lacks this generality.

It is not unduly difficult to implement this as a fast (e.g., one cycle) instruc-
tion. The bit selection circuit consists of six 32:1 MUX’s. If these are built from
five stages of 2:1 MUX’s in today’s technology (  MUX’s in all), the
instruction would be faster than a 32-bit add instruction [MD].

Some of the Intel machines have instructions that work much like the bit per-
mutation operation described, but that permute bytes, “words” (16 bits), and
“doublewords” (32 bits). These are PSHUFB, PSHUFW, and PSHUFD (Shuffle
Packed Bytes/Words/Doublewords).

t t 6<<( ) xi0
xi1

xi2
xi3

xi4
xi5
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Permuting bits has applications in cryptography, and the closely related oper-
ation of permuting subwords (e.g., permuting the bytes in a word) has applications
in computer graphics. Both of these applications are more likely to deal with
64-bit words, or possibly with 128, than with 32. The SAG and bitgather methods
apply with obvious changes to these larger word sizes.

To encrypt or decrypt a message with the Data Encryption Standard (DES)
algorithm requires a large number of permutation-like mappings. First, key gener-
ation is done, once per session. This involves 17 permutation-like mappings. The
first, called “permuted choice 1,” maps from a 64-bit quantity to a 56-bit quantity
(it selects the 56 non-parity bits from the key and permutes them). This is fol-
lowed by 16 permutation-like mappings from 56 bits to 48 bits, all using the same
mapping, called “permuted choice 2.”

Following key generation, each block of 64 bits in the message is subjected to
34 permutation-like operations. The first and last operations are 64-bit permuta-
tions, one being the inverse of the other. There are 16 permutations with repeti-
tions that map 32-bit quantities to 48 bits, all using the same mapping. Finally,
there are 16 32-bit permutations, all using the same permutation. The total number
of distinct mappings is six. They are all constants and are given in [DES].

DES is obsolete, as it was proved to be insecure in 1998 by the Electronic
Frontier Foundation, using special hardware. The National Institute of Standards
and Technology (NIST) has endorsed a temporary replacement called Triple DES,
which consists of DES run serially three times on each 64-bit block, each time
with a different key (that is, the key length is 192 bits, including 24 parity bits).
Hence, it takes three times as many permutation operations as does DES to
encrypt or decrypt.

The “permanent” replacement for DES and Triple DES, the Advanced
Encryption Standard (previously known as the Rijndael algorithm [AES]),
involves no bit-level permutations. The closest it comes to a permutation is a sim-
ple rotation of 32-bit words by a multiple of 8-bit positions. Other encryption
methods proposed or in use generally involve far fewer bit-level permutations
than DES.

To compare the two permutation methods discussed here, the bitgather
method has the advantages of (1) simpler preparation of the index words from the
raw data describing the permutation, (2) simpler hardware, and (3) more general
mappings. The SAG method has the advantages of (1) doing the permutation in
five rather than six instructions, (2) having only two source registers in its instruc-
tion format (which might fit better in some RISC architectures), (3) scaling better
to permute a doubleword quantity, and (4) permuting subwords more efficiently.

Item (3) is discussed in [LSY]. The SAG instruction allows for doing a gen-
eral permutation of a two-word quantity with two executions of the SAG instruc-
tion, a few basic RISC instructions, and two full permutations of single words.
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The bitgather instruction allows for doing it by executing three full permutations
of single words, plus a few basic RISC instructions. This does not count prepro-
cessing of the permutation to produce new quantities that depend only on the per-
mutation. We leave it to the reader to discover these methods.

Regarding item (4), to permute, for example, the four bytes of a word with
bitgather requires executing six instructions, the same as for a general bit permu-
tation by bitgather. But with SAG it can be done in only two instructions, rather
than the five required for a general bit permutation by SAG. The gain in efficiency
applies even when the subwords are not a power of 2 in size; the number of steps
required is  where n is the number of subwords, not counting a possible
non-participating group of bits that stays at one end or the other.

[LSY] discusses the SAG and bitgather instructions (called “GRP” and
“PPERM,” respectively), other possible permutation instructions based on net-
works, and permuting by table lookup.

There is a neat hack to add 1 to the goats—that is, to compute

without using the SAG function or its inverse [Knu8]. Here we assume SAG(x, m)
puts the goats on the right, and the addition does not overflow into the “sheep”
field. We leave to the reader the pleasure of discovering this trick.

7–8  Rearrangements and Index Transformations
Many simple rearrangements of the bits in a computer word correspond to even
simpler transformations of the coordinates, or indexes, of the bits [GLS1]. These
correspondences apply to rearrangements of the elements of any one-dimensional
array provided the number of array elements is an integral power of 2. For pro-
gramming purposes, they are useful primarily when the array elements are a com-
puter word or larger in size.

As an example, the outer perfect shuffle of the elements of an array A of size
eight, with the result in array B, consists of the following moves:

Each B-index is the corresponding A-index rotated left one position, using a 3-bit
rotator. The outer perfect unshuffle is, of course, accomplished by rotating right
each index. Some similar correspondences are shown in Table 7–1. Here n is the
number of array elements, “lsb” means least significant bit, and the rotations of
indexes are done with a  rotator.

log2n ,

SAG 1– SAG x m,( ) 1 m,+( )

A0 B0; A1 B2; A2 B4; A3 B6;

A4 B1; A5 B3; A6 B5; A7 B7;

log2n-bit
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7–9  An LRU Algorithm
Ever wonder how your computer keeps track of which cache line is the least
recently used? Here we describe one such algorithm, known as the reference
matrix method. It is primarily a hardware algorithm, but it might have application
in software.

We won’t go into a long discussion of the intriguing world of caches, but only
say that we have in mind the high-speed caches that buffer data between a com-
puter’s main memory and the processor. These caches may get a request for a word
every computer cycle, and they should usually respond with the data within a cycle
or two, so there is not much time for a complicated algorithm. 

A cache contains a copy of a subset of the data in main memory, and the prob-
lem we are addressing is: when a cache miss occurs (that is, when a word at a cer-
tain address is requested and the data at that address are not in the cache), how does
the computer decide which block (or line, in cache jargon) to replace with the
requested data? Ideally, it should replace the data in the line that will not be refer-
enced for the longest time in the future. But we cannot know the future, so we have
to guess. The best guess over a wide variety of application programs seems to be
the least recently used (LRU) policy. This policy replaces the line that has not been
referenced for the longest time.

TABLE 7–1.  REARRANGEMENTS AND INDEX TRANSFORMATIONS

Rearrangement
Index Transformation

Array Index, or Big-
endian Bit Numbering

Little-endian Bit 
Numbering

Reversal Complement Complement

Bit flip, or generalized 
reversal (page 135)

Exclusive or with a constant Exclusive or with a constant

Rotate left k positions Subtract k (mod n) Add k (mod n)

Rotate right k positions Add k (mod n) Subtract k (mod n)

Outer perfect shuffle Rotate left one position Rotate right one position

Outer perfect unshuffle Rotate right one position Rotate left one position

Inner perfect shuffle Rotate left one, then com-
plement lsb

Complement lsb, then 
rotate right one

Inner perfect unshuffle Complement lsb, then 
rotate right

Rotate left one, then com-
plement lsb

Transpose of an 8×8-bit
matrix held in a 64-bit 
word

Rotate (left or right) three 
positions

Rotate (left or right) three 
positions

FFT unscramble Reverse bits Reverse bits
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Caches come in three varieties: direct-mapped, fully associative, and set-asso-
ciative. In a direct-mapped cache, certain bits of the address of the load or store
instruction directly address a particular cache line. When a miss occurs, there is no
question as to what line to replace—it must be the addressed line. There is no need
for an LRU or any other guessing policy.

In a fully associative cache, a block from main memory can be placed in any
cache line. When a load or store is executed, the address is looked up to see if it is
in the cache. If not, it is necessary to replace the contents of some line. The
machine has complete flexibility in the choice of line to replace. Several strategies
have been used (FIFO, random, and LRU are the most common) and, as mentioned
above, LRU seems to be the one that most often results in the lowest miss rate.
Unfortunately, LRU is the most expensive to implement when there are many lines
to consider for replacement.

Often the set-associative organization is chosen. It is a compromise between
direct-mapped and fully associative. The designer decides on the degree of asso-
ciativity, which is usually 2, 4, 8, or 16. The cache is divided into a number of
“sets,” each of which contains 2, 4, 8, or 16 lines (typically). The set is directly
addressed, using certain bits of the load or store address, but the line within the set
must be looked up. The lookup in the set is done much the same as in the case of a
fully associative cache. Now, when it is necessary to replace a line, the LRU algo-
rithm need only determine which of the lines within one set is the least recently
used, and replace that.

With this brief background, we can describe the reference matrix method. To
illustrate, assume the cache is four-way set-associative. This means that there are
four lines for which we wish to keep track of the least recently used (referenced).
The cache may be fully associative and consist of only four lines, or it may be set-
associative with four lines per set.

The reference matrix method employs a square bit matrix of dimension equal
to the degree of associativity (in principle; we will modify this statement later).
Each associative set has one such matrix. The essence of the method is that when
line i is referenced, row i of the matrix is set to 1’s, and then column i is set to 0’s.
Figure 7–13 illustrates the changes in the matrix from an initial state to its config-
uration after a reference to lines 3, 1, 0, 2, 0, 3, and 2, in that order.

Each matrix has a row containing three 1’s, two 1’s, one 1, and no 1’s. The
number of the row with no 1’s is the least recently used line. The number of the row

Init 3 1 0 2 0 3 2

0123 0123 0123 0123 0123 0123 0123 0123

L
in

e

0
1
2
3

0111
0011
0001
0000

0110
0010
0000
1110

0010
1011
0000
1010

0111
0011
0000
0010

0101
0001
1101
0000

0111
0001
0101
0000

0110
0000
0100
1110

0100
0000
1101
1100

FIGURE 7–13. Illustration of the reference matrix method.
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with one 1 is the next least recently used line, and so on. When a cache miss occurs,
the machine finds the row with all 0’s and replaces the corresponding line. It then
records it as the most recently used line by setting its row to all 1’s and its column
to all 0’s.

Why does this work? Denoting the matrix by M, the reason it works is that 
indicates whether or not line i is more recently used than line j. If  line i
is more recently used than line j, and if  line i is not more recently used
than line j.

Consider an arbitrary 4×4 matrix for which line 2 is referenced. Then the
matrix changes as shown in Figure 7–14. Setting row i to 1’s (except for the ele-
ment on the main diagonal) is recording that line i is more recently used than line
j, for all  Setting column i to 0’s is recording that line j is not more recently
used than line i, for all j. Relations among cache lines other than i are not changed.
When all the lines have been referenced, all the “more recently used” relations will
be established.

Thus, the reference matrix is antisymmetric and the main diagonal is always
all 0’s. Therefore, only part of the matrix, either the elements above the main diag-
onal or those below the main diagonal, need be stored in the cache. That is what is
done in practice. For an n-way associative set,  memory bits are
required. For  this is six; for  it is 28. Twenty-eight is getting to be
a bit large, so the reference matrix method, and in fact the true LRU policy, is not
often used for degrees of associativity greater than 8. Instead, there are approxi-
mate LRU methods and methods that are not LRU at all.

In software, the LRU policy would probably be implemented with a list of the
line numbers (either a simple vector or a linked list). When line i is referenced, the
list is searched for i, and then i is moved to the top of the list. The least recently
used line number then migrates to the bottom of the list.

That method is relatively slow on references (because of rearranging the list),
but fast in deciding which line to replace. Another method, with the opposite speed
characteristics, is to have a vector of length equal to the degree of associativity, with
position i holding both the address that line i holds and its “age” (actually “newness”)
encoded as an integer. When line i is referenced, a single variable that holds the cur-
rent “age” is incremented, and the resulting value is stored in the vector at position i.
To find the least recently used line, the vector is searched for the line with the small-
est value of “age.” This method fails if the “age” integer overflows.

Init 2

0123 0123

L
in

e

0
1
2
3

abcd
efgh
ijkl
mnop

ab0d
ef0h
110l
mn0p

FIGURE 7–14. One step of the reference matrix method.

Mij
Mij 1,=

Mij 0,=

j i.

n n 1–( ) 2⁄
n 4,= n 8,=
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There might be one “age” integer per associative set, or only one for the whole
cache, or in hardware a cycle counter could be used.

The reference matrix method might be useful in software when the degree of
associativity is small. For example, suppose an application uses eight-way set-
associativity and is to run on a 64-bit machine. Then the reference matrix can be
stored in a single 64-bit register. Let the low-order eight bits of the register hold
row 0 of the matrix, the next eight bits hold row 1, and so forth. Then when line i
is referenced, byte i of the register should be set to 1’s, and bits i,  …, 
should be cleared. Denoting the register by m, this is accomplished as shown here.

This amounts to five or six instructions, plus a few to load constants. To find the
least recently used line, search for an all-zero byte (see Section 6–1). The advan-
tage of this method over the other software methods briefly outlined above is that
all the work is done in a register.

Exercises

1. Explain the workings of the second Möbius formula (Equation (1), page 139).

2. The perfect outer shuffle operation and its inverse employ the following
masks:

What is a formula for the general case, mk? A formula might be useful in situ-
ations in which an upper bound on the length of the integers being shuffled is
not known in advance, such as in “bignum” applications.

3. Code a function similar to the compress function of Figure 7–9 that does the
expand operation.

4. For an n-way set-associative cache, what is the theoretical minimum number
of bits required to implement the LRU policy? Compare that to the number of
bits required for the reference matrix method, for a few small values of n.

i 8,+ i 56+

m m 0xFF 8 i*( )<<( ) | 

m m 0x01010101 01010101 i<<( )¬&

m0 0x22222222,=

m1 0x0C0C0C0C,=

m2 0x00F000F0, and=

m3 0x0000FF00.=
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 CHAPTER  8

MULTIPLICATION

8–1  Multiword Multiplication
This can be done with, basically, the traditional grade-school method. But rather
than develop an array of partial products, it is more efficient to add each new row,
as it is being computed, into a row that will become the product.

If the multiplicand is m words, and the multiplier is n words, then the product
occupies  words (or fewer), whether signed or unsigned.

In applying the grade-school scheme, we would like to treat each 32-bit word as
a single digit. This works out well if an instruction that gives the 64-bit product of
two 32-bit integers is available. Unfortunately, even if the machine has such an
instruction, it is not readily accessible from most high-level languages. In fact, many
modern RISC machines do not have this instruction in part because it isn’t accessi-
ble from high-level languages and thus would not be used often. (Another reason is
that the instruction would be one of a very few that give a two-register result.)

Our procedure is shown in Figure 8–1. It uses halfwords as the “digits.”
Parameter w gets the result, and u and v are the multiplier and multiplicand,
respectively. Each is an array of halfwords, with the first halfword (w[0], u[0],
and v[0]) being the least significant digit. This is “little-endian” order. Parame-
ters m and n are the number of halfwords in u and v, respectively. 

The picture below may help in understanding. There is no relation between m
and n; either may be the larger.

                       um-1um-2 ... ... u1 u0
× vn-1 ... v1 v0

                       ————————————————————
               wm+n-1 wm+n-2 ... ... ... w1 w0

The procedure follows Algorithm M of [Knu2, 4.3.1] but is coded in C and
modified to perform signed multiplication. Observe that the assignment to t in the
upper half of Figure 8–1 cannot overflow, because the maximum value that could
be assigned to t is 

Multiword multiplication is simplest for unsigned operands. In fact, the code
of Figure 8–1 performs unsigned multiplication if the “correction” steps (the lines
between the three-line comment and the “return” statement) are omitted. An
unsigned version can be extended to signed in three ways:

1. Take the absolute value of each input operand, perform unsigned multipli-
cation, and then negate the result if the input operands had different signs.

m n+

216 1–( )2 2 216 1–( )+ 232 1.–=
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2. Perform the multiplication using unsigned elementary multiplication,
except when multiplying one of the high-order halfwords, in which case
use signed × unsigned or signed × signed multiplication.

3. Perform unsigned multiplication and then correct the result somehow.

void mulmns(unsigned short w[], unsigned short u[],
   unsigned short v[], int m, int n) {
   unsigned int k, t, b;
   int i, j;

   for (i = 0; i < m; i++)
      w[i] = 0;

   for (j = 0; j < n; j++) {
      k = 0;
      for (i = 0; i < m; i++) {
         t = u[i]*v[j] + w[i + j] + k;
         w[i + j] = t;         // (I.e., t & 0xFFFF).
         k = t >> 16;
      }
      w[j + m] = k;
   }

   // Now w[] has the unsigned product. Correct by
   // subtracting v*2**16m if u < 0, and
   // subtracting u*2**16n if v < 0.

   if ((short)u[m - 1] < 0) {
      b = 0;           // Initialize borrow.
      for (j = 0; j < n; j++) {
         t = w[j + m] - v[j] - b;
         w[j + m] = t;
         b = t >> 31;
      }
   }
   if ((short)v[n - 1] < 0) {
      b = 0;
      for (i = 0; i < m; i++) {
         t = w[i + n] - u[i] - b;
         w[i + n] = t;
         b = t >> 31;
      }
   }
   return;
}

FIGURE 8–1.  Multiword integer multiplication, signed.
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The first method requires passing over as many as  input halfwords to
compute their absolute value. Or, if one operand is positive and one is negative,
the method requires passing over as many as  halfwords to
complement the negative input operand and the result. Perhaps more serious, the
algorithm would alter its inputs (which we assume are passed by address), which
may be unacceptable in some applications. Alternatively, it could allocate tempo-
rary space for them, or it could alter them and later change them back. All these
alternatives are unappealing.

The second method requires three kinds of elementary multiplication
(unsigned × unsigned, unsigned × signed, and signed × signed) and requires sign
extension of partial products on the left, with 0’s or 1’s, making each partial prod-
uct take longer to compute and add to the running total.

We choose the third method. To see how it works, let u and v denote the val-
ues of the two signed integers being multiplied, and let them be of lengths M and
N bits, respectively. Then the steps in the upper half of Figure 8–1 erroneously
interpret u as an unsigned quantity, having value  where  is the
sign bit of u. That is,  if u is negative, and  otherwise. Simi-
larly, the program interprets v as having value 

The program computes the product of these unsigned numbers—that is, it
computes

To get the desired result (uv), we must subtract from the unsigned product the value
 There is no need to subtract the term 

because we know that the result can be expressed in  bits, so there is no need
to compute any product bits more significant than bit position  These
two subtractions are performed by the steps below the three-line comment in
Figure 8–1. They require passing over a maximum of  halfwords.

It might be tempting to use the program of Figure 8–1 by passing it an array
of fullword integers—that is, by “lying across the interface.” Such a program will
work on a little-endian machine, but not on a big-endian one. If we had stored
the arrays in the reverse order, with u[0] being the most significant halfword
(and the program altered accordingly), the “lying” program would work on a big-
endian machine, but not on a little-endian one.

8–2  High-Order Half of 64-Bit Product
Here we consider the problem of computing the high-order 32 bits of the product
of two 32-bit integers. This is the function of our basic RISC instructions multiply
high signed (mulhs) and multiply high unsigned (mulhu).

For unsigned multiplication, the algorithm in the upper half of Figure 8–1
works well. Rewrite it for the special case  with loops unrolled, obvi-
ous simplifications made, and the parameters changed to 32-bit unsigned integers.

m n+

max m n,( ) m n+ +

u 2MuM 1– ,+ uM 1–
uM 1– 1= uM 1– 0=

v 2NuN 1– .+

u 2MuM 1–+( ) v 2NvN 1–+( ) uv 2MuM 1– v 2NvN 1– u 2M N+ uM 1– vN 1– .+ + +=

2MuM 1– v 2NvN 1– u.+ 2M N+ uM 1– vN 1– ,
M N+

M N 1.–+

m n+

m n 2,= =
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For signed multiplication, it is not necessary to code the “correction steps” in
the lower half of Figure 8–1. These can be omitted if proper attention is paid to
whether the intermediate results are signed or unsigned (declaring them to be
signed causes the right shifts to be sign-propagating shifts). The resulting algo-
rithm is shown in Figure 8–2. For an unsigned version, simply change all the int
declarations to unsigned.

The algorithm requires 16 basic RISC instructions in either the signed or
unsigned version, four of which are multiplications.

8–3  High-Order Product Signed from/to Unsigned
Assume that the machine can readily compute the high-order half of the 64-bit
product of two unsigned 32-bit integers, but we wish to perform the correspond-
ing operation on signed integers. We could use the procedure of Figure 8–2, but
that requires four multiplications; the procedure to be given [BGN] is much more
efficient than that.

The analysis is a special case of that done to convert Knuth’s Algorithm M
from an unsigned to a signed multiplication routine (Figure 8–1). Let x and y
denote the two 32-bit signed integers that we wish to multiply together. The
machine will interpret x as an unsigned integer, having the value  where
x31 is the most significant bit of x (that is, x31 is the integer 1 if x is negative, and 0
otherwise). Similarly, y under unsigned interpretation has the value 

Although the result we want is the high-order 32 bits of xy, the machine
computes

To get the desired result, we must subtract from this the quantity  +
+  Because we know that the result can be expressed in 64 bits,

int mulhs(int u, int v) {
   unsigned u0, v0, w0;
   int u1, v1, w1, w2, t;

   u0 = u & 0xFFFF;  u1 = u >> 16;
   v0 = v & 0xFFFF;  v1 = v >> 16;
   w0 = u0*v0;
   t  = u1*v0 + (w0 >> 16);
   w1 = t & 0xFFFF;
   w2 = t >> 16;
   w1 = u0*v1 + w1;
   return u1*v1 + w2 + (w1 >> 16);
}

FIGURE 8–2. Multiply high signed.

x 232x31,+

y 232y31.+

x 232x31+( ) y 232y31+( ) xy 232 x31y y31x+( ) 264x31y31.+ +=

232 x31y(
y31x) 264x31y31.
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we can perform the arithmetic modulo  This means that we can safely ignore
the last term, and compute the signed high-order product as shown below (seven
basic RISC instructions).

(1)

Unsigned from Signed
The reverse transformation follows easily. The resulting program is the same as
(1), except with the first instruction changed to multiply high signed and the last
operation changed to 

8–4  Multiplication by Constants
It is nearly a triviality that one can multiply by a constant with a sequence of
shift left and add instructions. For example, to multiply x by 13 (binary 1101), one
can code

where r gets the result.
In this section, left shifts are denoted by multiplication by a power of 2, so the

above plan is written  which is intended to show four instruc-
tions on the basic RISC and most machines.

What we want to convey here is that there is more to this subject than meets
the eye. First of all, there are other considerations besides simply the number of
shift’s and add’s required to do a multiplication by a given constant. To illustrate,
below are two plans for multiplying by 45 (binary 101101).

264.

p mulhu x y,( )    // multiply high unsigned instruction.

t1 x 31>>
s( ) y& // t1 x31y.=

t2 y 31>>
s( ) x& // t2 y31x.=

p p t1– t2–       // p desired result.=

p p t1 t2.+ +

t1 x 2<<

t2 x 3<<
r t1 t2 x+ +

r 8x 4x x,+ +

t 4x

r x t+

t 2t

r r t+

t 4t

r r t+

t1 4x

t2 8x

t3 32x

r t1 x+

t3 t3 t2+

r r t3+
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The plan on the left uses a variable t that holds x shifted left by a number of
positions that corresponds to a 1-bit in the multiplier. Each shifted value is
obtained from the one before it. This plan has these advantages:

• It requires only one working register other than the input x and the 
output r.

• Except for the first two, it uses only 2-address instructions.

• The shift amounts are relatively small.

The same properties are retained when the plan is applied to any multiplier.
The scheme on the right does all the shift’s first, with x as the operand. It has

the advantage of increased parallelism. On a machine with sufficient instruction-
level parallelism, the scheme on the right executes in three cycles, whereas the
scheme on the left, running on a machine with unlimited parallelism, requires four.

In addition to these details, it is nontrivial to find the minimum number of
operations to accomplish multiplication by a constant, where by an “operation”
we mean an instruction from a typical computer’s set of add and shift instructions.
In what follows, we assume this set consists of add, subtract, shift left by any con-
stant amount, and negate. We assume the instruction format is three-address.
However, the problem is no easier if one is restricted to only add (adding a num-
ber to itself, and then adding the sum to itself, and so on, accomplishes a shift left
of any amount), or if one augments the set by instructions that combine a left shift
and an add into one instruction (that is, such an instruction computes

). We also assume that only the least-significant 32 bits of the
product are wanted.

The first improvement to the basic binary decomposition scheme suggested
above is to use subtract to shorten the sequence when the multiplier contains a
group of three or more consecutive 1-bits. For example, to multiply by 28 (binary
11100), we can compute  (three instructions) rather than 
(five instructions). On two’s-complement machines, the result is correct (modulo

) even if the intermediate result of 32x overflows.
To multiply by a constant m with the basic binary decomposition scheme

(using only shift’s and add’s) requires

instructions, where  if m ends in a 1-bit (is odd), and  otherwise. If
subtract is also used, it requires

instructions, where g(m) is the number of groups of two or more consecutive
1-bits in m,  is the number of “singleton” 1-bits in m, and  has the same
meaning as before.

z x y n<<( )+

32x 4x– 16x 8x 4x+ +

232

2pop m( ) 1– –

1= 0=

4g m( ) 2s m( ) 1– –+

s m( )
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For a group of size 2, it makes no difference which method is used.
The second improvement is to treat specially groups that are separated by a

single 0-bit. For example, consider m = 55 (binary 110111). The group method cal-
culates this as  which requires six instructions. Calculat-
ing it as , however, requires only four. Similarly, we can multiply by
binary 110111011 as illustrated by the formula  (six
instructions).

The formulas above give an upper bound on the number of operations
required to multiply a variable x by any given number m. Another bound can be
obtained based on the size of m in bits—that is, on 

THEOREM. Multiplication of a variable x by an n-bit constant m, 
can be accomplished with at most n instructions of the type add, subtract,
and shift left by any given amount.

Proof. (Induction on n.) Multiplication by 1 can be done in 0 instructions, so
the theorem holds for  For  if m ends in a 0-bit, then multiplication
by m can be accomplished by multiplying by the number consisting of the left

 bits of m (that is, by m/2), in  instructions, followed by a shift left of
the result by one position. This uses n instructions altogether.

If m ends in binary 01, then mx can be calculated by multiplying x by the
number consisting of the left  bits of m, in  instructions, followed by a
left shift of the result by 2, and an add of x. This requires n instructions altogether.

If m ends in binary 11, then consider the cases in which it ends in 0011, 0111,
1011, and 1111. Let t be the result of multiplying x by the left  bits of m. If m
ends in 0011, then mx =  which requires  = n instruc-
tions. If m ends in 0111, then mx =  which requires n instructions. If
m ends in 1111, then mx =  which requires n instructions. The
remaining case is that m ends in 1011.

It is easy to show that mx can be calculated in n instructions if m ends in
001011, 011011, or 111011. The remaining case is 101011.

This reasoning can be continued, with the “remaining case” always being of
the form 101010…10101011. Eventually, the size of m will be reached, and
the only remaining case is the number 101010…10101011. This n-bit number
contains  1-bits. By a previous observation, it can multiply x with

 = n instructions.
Thus, in particular, multiplication by any 32-bit constant can be done in at

most 32 instructions, by the method described above. By inspection, it is easily
seen that for n even, the n-bit number 101010…101011 requires n instructions, and
for n odd, the n-bit number 1010101…010110 also requires n instructions, so the
bound is tight.

The methodology described so far is not difficult to work out by hand or to
incorporate into an algorithm such as might be used in a compiler; but such an

64x 16x–( ) 8x x–( ),+
64x 8x– x–

512x 64x– 4x– x–

n log2 m 1.+=

m 1,

n 1.= n 1,>

n 1– n 1–

n 2– n 2–

n 4–
16t 2x x,+ + n 4–( ) 4+

16t 8x x,–+
16t 16x x,–+

n 2⁄ 1+
2 n 2⁄ 1+( ) 2–
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algorithm would not always produce the best code, because further improvement
is sometimes possible. This can result from factoring the multiplier m or some
intermediate quantity along the way of computing mx. For example, consider
again m = 45 (binary 101101). The methods described above require six instruc-
tions. Factoring 45 as , however, gives a four-instruction solution:

Factoring can be combined with the binary decomposition methods. For
example, multiplication by 106 (binary 1101010) requires seven instructions by
binary decomposition, but writing it as  leads to a five-instruction solu-
tion. For large constants, the smallest number of instructions that accomplish the
multiplication may be substantially fewer than the number obtained by the simple
binary decomposition methods described. For example, m = 0xAAAAAAAB
requires 32 instructions by binary decomposition, but writing this value as

 gives a ten-instruction solution. (Ten instructions is
probably not typical of large numbers. The factorization reflects the simple bit
pattern of alternate 1’s and 0’s.)

There does not seem to be a simple formula or procedure that determines the
smallest number of shift and add instructions that accomplishes multiplication by
a given constant m. A practical search procedure is given in [Bern], but it does not
always find the minimum. Exhaustive search methods to find the minimum can be
devised, but they are quite expensive in either space or time. (See, for example,
the tree structure of Figure 15 in [Knu2, 4.6.3].)

This should give an idea of the combinatorics involved in this seemingly sim-
ple problem. Knuth [Knu2, 4.6.3] discusses the closely related problem of com-
puting  using a minimum number of multiplications. This is analogous to the
problem of multiplying by m using only addition instructions.

Exercises

1. Show that for a 32×32  64 bit multiplication, the low-order 32 bits of the
product are the same whether the operands are interpreted as signed or
unsigned integers.

2. Show how to modify the mulhs function (Figure 8–2) so that it calculates the
low-order half of the 64-bit product, as well as the high-order half. (Just show
the calculation, not the parameter passing.)

3. Multiplication of complex numbers is defined by

5 9

t 4x x+
r 8t t+

7 15 1+

2 5 17 257 65537 1+

am

a bi+( ) c di+( ) ac bd– ad bc+( )i.+=
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This can be done with only three multiplications.1 Let

Then the product is given by

which the reader can easily verify.
Code a similar method to obtain the 64-bit product of two 32-bit unsigned

integers using only three multiplication instructions. Assume the machine’s multi-
ply instruction produces the 32 low-order bits of the product of two 32-bit integers
(which are the same for signed and unsigned multiplication).

1. Reportedly this was known to Gauss.

p ac,=
q bd,   and=
r a b+( ) c d+( ).=

p q– r p– q–( )i,+
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 CHAPTER  9

INTEGER DIVISION

9–1  Preliminaries
This chapter and the following one give a number of tricks and algorithms involving
“computer division” of integers. In mathematical formulas we use the expression

 to denote ordinary rational division,  to denote signed computer division
of integers (truncating toward 0), and  to denote unsigned computer division of
integers. Within C code, x/y, of course, denotes computer division, unsigned if
either operand is unsigned, and signed if both operands are signed.

Division is a complex process, and the algorithms involving it are often not
very elegant. It is even a matter of judgment as to just how signed integer division
should be defined. Most high-level languages and most computer instruction sets
define the result to be the rational result truncated toward 0. This and two other
possibilities are illustrated below.

  truncating modulus      floor
       7÷3       =    2 rem 1     2 rem 1      2 rem 1
       (-7)÷3    =   -2 rem -1    -3 rem 2     -3 rem 2
       7÷(-3)    =   -2 rem 1   -2 rem 1     -3 rem -2
       (-7)÷(-3) =    2 rem -1  3 rem 2      2 rem -1

The relation  holds for all
three possibilities. We define “modulus” division by requiring that the remainder
be nonnegative.1 We define “floor” division by requiring that the quotient be the
floor of the rational result. For positive divisors, modulus and floor division are
equivalent. A fourth possibility, seldom used, rounds the quotient to the nearest
integer.

One advantage of modulus and floor division is that most of the tricks sim-
plify. For example, division by  can be replaced by a shift right signed of n posi-
tions, and the remainder of dividing x by  is given by the logical and of x and

 I suspect that modulus and floor division more often give the result you
want. For example, suppose you are writing a program to graph an integer-valued
function, and the values range from imin to imax. You want to set up the extremes
of the ordinate to be the smallest multiples of 10 that include imin and imax. Then
the extreme values are simply  and  if

1. I may be taken to task for this nomenclature, because there is no universal agreement that
“modulus” implies “nonnegative.” Knuth’s “mod” operator [Knu1] is the remainder of floor
division, which is negative (or 0) if the divisor is negative. Several programming languages
use “mod” for the remainder of truncating division. However, in mathematics, “modulus” is
sometimes used for the magnitude of a complex number (nonnegative), and in congruence
theory the modulus is generally assumed to be positive.

x y⁄ x y÷
x y÷u

dividend quotient divisor remainder+*=

2n

2n

2n 1.–

imin 10÷( ) 10* imax 9+( ) 10÷( ) 10*
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modulus or floor division is used. If conventional division is used, you must eval-
uate something like:

Besides the quotient being more useful with modulus or floor division than
with truncating division, we speculate that the nonnegative remainder is probably
wanted more often than a remainder that can be negative.

It is hard to choose between modulus and floor division, because they differ
only when the divisor is negative, which is unusual. Appealing to existing high-
level languages does not help, because they almost universally use truncating divi-
sion for x/y when the operands are signed integers. A few give floating-point
numbers, or rational numbers, for the result. Looking at remainders, there is con-
fusion. In Fortran 90, the MOD function gives the remainder of truncating division
and MODULO gives the remainder of floor division (which can be negative). Simi-
larly, in Common Lisp and ADA, REM is the remainder of truncating division,
and MOD is the remainder of floor division. In PL/I, MOD is always nonnegative
(it is the remainder of modulus division). In Pascal, A mod B is defined only for
B > 0, and then it is the nonnegative value (the remainder of either modulus or
floor division).

Anyway, we cannot change the world even if we knew how we wanted to
change it,2 so in what follows we will use the usual definition (truncating) for 

A nice property of truncating division is that it satisfies

Care must be exercised when applying this to transform programs, because if n or d
is the maximum negative number, –n or –d cannot be represented in 32 bits. The
operation  is an overflow (the result cannot be expressed as a signed
quantity in two’s-complement notation), and on most machines the result is unde-
fined or the operation is suppressed.

Signed integer (truncating) division is related to ordinary rational division by

(1)

Unsigned integer division—that is, division in which both n and d are interpreted
as unsigned integers—satisfies the upper portion of (1).

   if (imin >= 0) gmin = (imin/10)*10;
   else   gmin = ((imin - 9)/10)*10;
   if (imax >= 0) gmax = ((imax + 9)/10)*10;
   else     gmax = (imax/10)*10;

2. Some do try. IBM’s PL.8 language uses modulus division, and Knuth’s MMIX machine’s
division instruction uses floor division [Knu7].

x y÷ .

n–( ) d÷ n d–( )÷ n d÷( ),   for d 0.–= =

231–( ) 1–( )÷

n d÷
n d⁄ ,   if d 0 nd 0,,
n d⁄ ,   if d 0 nd 0.<,

=
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In the discussion that follows, we make use of the following elementary prop-
erties of arithmetic, which we don’t prove here. See [Knu1] and [GKP] for inter-
esting discussions of the floor and ceiling functions.

THEOREM D1. For x real, k an integer,

THEOREM D2. For n, d integers, d > 0,

If d < 0:

THEOREM D3. For x real, d an integer > 0:

COROLLARY. For a, b real, b  0, d an integer > 0,

THEOREM D4. For n, d integers, d  0, and x real,

In the theorems below,  denotes the remainder of n divided by d.
For negative d, it is defined by  as in truncating and
modulus division. We do not use  with  Thus, for our use, the
remainder is always nonnegative.

x x––=
x 1– x x<
x x x 1+<

x k x k
x k> x k
x k x k x k 1+<
x k< x k<

x x––=
x x x 1+<
x 1– x< x

x k x k
x k< x k
x k x k x k 1–>
x k> x k>

n
d
--- n d– 1+

d
---------------------=    and n

d
--- n d 1–+

d
--------------------- .=

n
d
--- n d– 1–

d
---------------------=    and n

d
--- n d 1+ +

d
--------------------- .=

x d⁄ x d⁄=    and   x d⁄ x d⁄ .=

a
b
--- d⁄

a
bd
------=    and a

b
--- d⁄

a
bd
------ .=

n
d
--- x+ n

d
---=   if 0 x 1

d
---< ,  and n

d
--- x+ n

d
---=   if 1

d
---– x 0.<

rem n d,( )
rem n d–,( ) rem n d,( ),=
rem n d,( ) n 0.<
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THEOREM D5. For

(whichever value is greater than or equal to 0 and less than |d|).

THEOREM D6. For

Theorems D5 and D6 are easily proved from the basic definition of remain-
der—that is, that for some integer q it satisfies

,

provided  and  (n and d can be non-integers, but we will use these the-
orems only for integers).

9–2  Multiword Division
As in the case of multiword multiplication, multiword division can be done by the
traditional grade-school method. The details, however, are surprisingly compli-
cated. Figure 9–1 is Knuth’s Algorithm D [Knu2, 4.3.1], coded in C. The underly-
ing form of division it uses is   32. (Actually, the quotient of these
underlying division operations is at most 17 bits long.)

The algorithm processes its inputs and outputs a halfword at a time. Of
course, we would prefer to process a fullword at a time, but it seems that such
an algorithm would require an instruction that does  32 division. We
assume here that either the machine does not have that instruction or it is hard to
access from our high-level language. Although we generally assume the machine
has 32 division, for this problem  16 suffices.

Thus, for this implementation of Knuth’s algorithm, the base b is 65536. See
[Knu2] for most of the explanation of this algorithm.

The dividend u and the divisor v are in “little-endian” order—that is, u[0]
and v[0] are the least significant digits. (The code works correctly on both big- and
little-endian machines.) Parameters m and n are the number of halfwords in u and
v, respectively (Knuth defines m to be the length of the quotient). The caller sup-
plies space for the quotient q and, optionally, for the remainder r. The space for
the quotient must be at least m - n + 1 halfwords, and for the remainder, n half-
words. Alternatively, a value of NULL can be given for the address of the remain-
der to signify that the remainder is not wanted.

n 0 d 0,,

rem 2n d,( ) 2rem n d,( )    or
2rem n d,( ) d ,–

=    and rem 2n 1 d,+( ) 2rem n d,( ) 1+     or
2rem n d,( ) d 1+–

=

n 0 d 0,,

rem 2n 2d,( ) 2rem n d,( ).=

n qd rem n d,( )+=    with   0 rem n d,( ) d<

n 0 d 0

32 16÷u

64 32÷u

32 32÷u 32 16÷u
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int divmnu(unsigned short q[], unsigned short r[],
     const unsigned short u[], const unsigned short v[],
     int m, int n) {

   const unsigned b = 65536; // Number base (16 bits).
   unsigned short *un, *vn;  // Normalized form of u, v.
   unsigned qhat;     // Estimated quotient digit.
   unsigned rhat;       // A remainder.
   unsigned p;       // Product of two digits.
   int s, i, j, t, k;

   if (m < n || n <= 0 || v[n-1] == 0)
      return 1;       // Return if invalid param.

   if (n == 1) {              // Take care of
      k = 0;                // the case of a
      for (j = m - 1; j >= 0; j--) {    // single-digit
         q[j] = (k*b + u[j])/v[0];      // divisor here.
         k = (k*b + u[j]) - q[j]*v[0];
      }
      if (r != NULL) r[0] = k;
      return 0;
   }

   // Normalize by shifting v left just enough so that
   // its high-order bit is on, and shift u left the
   // same amount. We may have to append a high-order
   // digit on the dividend; we do that unconditionally.

   s = nlz(v[n-1]) - 16;      // 0 <= s <= 16.
   vn = (unsigned short *)alloca(2*n);
   for (i = n - 1; i > 0; i--)
      vn[i] = (v[i] << s) | (v[i-1] >> 16-s);
   vn[0] = v[0] << s;

   un = (unsigned short *)alloca(2*(m + 1));
   un[m] = u[m-1] >> 16-s;
   for (i = m - 1; i > 0; i--)
      un[i] = (u[i] << s) | (u[i-1] >> 16-s);
   un[0] = u[0] << s;
   for (j = m - n; j >= 0; j--) {       // Main loop.
      // Compute estimate qhat of q[j].
      qhat = (un[j+n]*b + un[j+n-1])/vn[n-1];
      rhat = (un[j+n]*b + un[j+n-1]) - qhat*vn[n-1];
again:

FIGURE 9–1.  Multiword integer division, unsigned. continues
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The algorithm requires that the most significant digit of the divisor, v[n-1],
be nonzero. This simplifies the normalization steps and helps to ensure that the
caller has allocated sufficient space for the quotient. The code checks that v[n-1]
is nonzero, and also the requirements that n ≥ 1 and m ≥ n. If any of these condi-
tions are violated, it returns with an error code (return value 1).

After these checks, the code performs the division for the simple case in
which the divisor is of length 1. This case is not singled out for speed; the rest of
the algorithm requires that the divisor be of length 2 or more.

      if (qhat >= b || qhat*vn[n-2] > b*rhat + un[j+n-2])
      { qhat = qhat - 1;
        rhat = rhat + vn[n-1];
        if (rhat < b) goto again;
      }

      // Multiply and subtract.
      k = 0;
      for (i = 0; i < n; i++) {
         p = qhat*vn[i];
         t = un[i+j] - k - (p & 0xFFFF);
         un[i+j] = t;
         k = (p >> 16) - (t >> 16);
      }
      t = un[j+n] - k;
      un[j+n] = t;

      q[j] = qhat;              // Store quotient digit.
      if (t < 0) {              // If we subtracted too
         q[j] = q[j] - 1;       // much, add back.
         k = 0;
         for (i = 0; i < n; i++) {
            t = un[i+j] + vn[i] + k;
            un[i+j] = t;
            k = t >> 16;
         }
         un[j+n] = un[j+n] + k;
      }
   } // End j.
   // If the caller wants the remainder, unnormalize
   // it and pass it back.
   if (r != NULL) {
      for (i = 0; i < n - 1; i++)
          r[i] = (un[i] >> s) | (un[i+1] << 16-s);
          r[n-1] = un[n-1] >> s;
   }
   return 0;
}   

FIGURE 9–1.  Multiword integer division, unsigned.FIGURE 9–1.  Multiword integer division, unsigned, continued.
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If the divisor is of length 2 or more, the algorithm normalizes the divisor by
shifting it left just enough so that its high-order bit is 1. The dividend is shifted left
the same amount, so the quotient is not changed by these shifts. As explained by
Knuth, these steps are necessary to make it easy to guess each quotient digit with
good accuracy. The number of leading zeros function, nlz(x), is used to determine
the shift amount.

In the normalization steps, new space is allocated for the normalized dividend
and divisor. This is done because it is generally undesirable, from the caller’s
point of view, to alter these input arguments, and because it may be impossible to
alter them—they may be constants in read-only memory. Furthermore, the divi-
dend may need an additional high-order digit. C’s “alloca” function is ideal for
allocating this space. It is usually implemented very efficiently, requiring only two
or three in-line instructions to allocate the space and no instructions at all to free
it. The space is allocated on the program’s stack, in such a way that it is freed
automatically upon subroutine return.

In the main loop, the quotient digits are cranked out one per loop iteration,
and the dividend is reduced until it becomes the remainder. The estimate qhat of
each quotient digit, after being refined by the steps in the loop labeled again, is
always either exact or too high by 1.

The next steps multiply qhat by the divisor and subtract the product from
the current remainder, as in the grade-school method. If the remainder is negative,
it is necessary to decrease the quotient digit by 1 and either re-multiply and sub-
tract or, more simply, adjust the remainder by adding the divisor to it. This need be
done at most once, because the quotient digit was either exact or 1 too high.

Lastly, the remainder is given back to the caller if the address of where to put
it is non-null. The remainder must be shifted right by the normalization shift
amount s.

The “add back” steps are executed only rarely. To see this, observe that the
first calculation of each estimated quotient digit qhat is done by dividing the
most significant two digits of the current remainder by the most significant digit
of the divisor. The steps in the “again” loop amount to refining qhat to be the
result of dividing the most significant three digits of the current remainder by the
most significant two digits of the divisor (proof omitted; convince yourself of this
by trying some examples using b = 10). Note that the divisor is greater than or
equal to b/2 (because of normalization), and the dividend is less than or equal to b
times the divisor (because each remainder is less than the divisor).

How accurate is the quotient estimated by using only three dividend digits
and two divisor digits? Because normalization was done, it can be shown to be
quite accurate. To see this somewhat intuitively (not a formal proof), consider
estimating u/v in this way for base ten arithmetic. It can be shown that the estimate
is always high (or exact). Thus, the worst case occurs if truncation of the divisor to
two digits decreases the divisor by as much as possible in the sense of relative
error, and truncation of the dividend to three digits decreases it by as little as pos-
sible (which is 0), and if the dividend is as large as possible. This occurs for the
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case 49900…0/5099…9, which we estimate by 499/50 = 9.98. The true result is
approximately 499/51  9.7843. The difference of 0.1957 reveals that the esti-
mated quotient digit and the true quotient digit, which are the floor functions of
these ratios, will differ by at most 1, and this will occur about 20% of the time
(assuming the quotient digits are uniformly distributed). This, in turn, means that
the “add back” steps will be executed about 20% of the time.

Carrying out this (non-rigorous) analysis for a general base b yields the result
that the estimated and true quotients differ by at most 2/b. For b = 65536, we again
obtain the result that the difference between the estimated and true quotient digits
is at most 1, and this occurs with probability 2/65536  0.00003. Thus, the “add
back” steps are executed for only about 0.003% of the quotient digits.

An example that requires the add back step is, in decimal, 4500/501. A simi-
lar example for base 65536 is 0x7FFF8000 00000000/0x8000 00000001.

We will not attempt to estimate the running time of this entire program, but
simply note that for large m and n, the execution time is dominated by the multi-
ply/subtract loop. On a good compiler this will compile into about 16 basic RISC
instructions, one of which is multiply. The “for j” loop is executed 
times, and the multiply/subtract loop n times, giving an execution time for this
part of the program of  cycles, where mul is the time to
multiply two 16-bit variables. The program also executes  divide
instructions and one number of leading zeros instruction.

Signed Multiword Division
We do not give an algorithm specifically for signed multiword division, but
merely point out that the unsigned algorithm can be adapted for this purpose as
follows:

1. Negate the dividend if it is negative, and similarly for the divisor.

2. Convert the dividend and divisor to unsigned representation.

3. Use the unsigned multiword division algorithm.

4. Convert the quotient and remainder to signed representation.

5. Negate the quotient if the dividend and divisor had opposite signs.

6. Negate the remainder if the dividend was negative.

These steps sometimes require adding or deleting a most significant digit. For
example, assume for simplicity that the numbers are represented in base 256 (one
byte per digit), and that in the signed representation, the high-order bit of the
sequence of digits is the sign bit. This is much like ordinary two’s-complement
representation. Then, a divisor of 255, which has signed representation 0x00FF,
must be shortened in step 2 to 0xFF. Similarly, if the quotient from step 3 begins
with a 1-bit, it must be provided with a leading 0-byte for correct representation as
a signed quantity.

m n– 1+

15 mul+( )n m n– 1+( )
m n– 1+
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9–3  Unsigned Short Division from Signed Division
By “short division” we mean the division of one single word by another (e.g.,
32÷32 32). It is the form of division provided by the “/” operator, when the
operands are integers, in C and many other high-level languages. C has both
signed and unsigned short division, but some computers provide only signed divi-
sion in their instruction repertoire. How can you implement unsigned division on
such a machine? There does not seem to be any really slick way to do it, but we
offer some possibilities here.

Using Signed Long Division
Even if the machine has signed long division (64÷32  32), unsigned short division
is not as simple as you might think. In the XLC compiler for the IBM RS/6000, it
is implemented as illustrated below for 

The third line is really testing to see if  If d is algebraically less than
or equal to 1 at this point, then because it is not equal to 1 (from the second line),
it must be algebraically less than or equal to 0. We don’t care about the case

 so for the cases of interest, if the test on the third line evaluates to true,
the sign bit of d is on, that is,  Because from the first line it is known that

 and because n cannot exceed  
The notation on the fourth line means to form the double-length integer con-

sisting of 32 0-bits followed by the 32-bit quantity n, and divide it by d. The test
for  (second line) is necessary to ensure that this division does not overflow
(it would overflow if  and then the quotient would be undefined).

By commoning the comparisons on the second and third lines,3 the above can
be implemented in 11 instructions, three of which are branches. If it is necessary
that the divide be executed when  to get the overflow interrupt, then the
third line can be changed to “ ” giving a 12-instruction
solution on the RS/6000.

It is a simple matter to alter the above code so that the probable usual cases
( ) do not go through so many tests (begin with ), but the
code volume increases slightly.

3. One execution of the RS/6000’s compare instruction sets multiple status bits indicating less
than, greater than, or equal.

q n d÷u( ).

if n d<u  then q 0
else if d 1 then q n=
else if d 1 then q 1
else q 0 n||( ) d÷

d 231.u

d 0,=
d 231.u

n d,u 232 1,– n d÷u 1.=

d 1=
n 231,u

d 0,=
else if d 0 then q 1< ,

2 d 231<u
u if d 1 ...
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Using Signed Short Division
This section is written for a 32-bit machine, but it applies to a 64-bit machine (that
is, getting unsigned 64÷64  64 division from the same form of signed division)
by changing all occurrences of 31 to 63. It can be used to get unsigned division in
Java, which lacks unsigned integers.

If signed long division is not available, but signed short division is, then
 can be implemented by somehow reducing the problem to the case

 and using the machine’s divide instruction. If  then  can
only be 0 or 1, so this case is easily dispensed with. Then, we can reduce the divi-
dend by using the fact that the expression  approximates 
with an error of only 0 or 1. This leads to the following method:

The test  on line 1 is really testing to determine if  If 
then the largest the quotient could be is  so the first two lines
compute the correct quotient.

Line 4 represents the code shift right unsigned 1, divide, shift left 1. Clearly,
 and at this point  as well, so these quantities can be used

in the computer’s signed division instruction. (If  overflow will be sig-
naled here.)

The estimate computed at line 4 is

where we have used the corollary of Theorem D3. Line 5 computes the remainder
corresponding to the estimated quotient. It is

Thus,  If , then q is the correct quotient. If  then adding 1
to q gives the correct quotient (the program must use an unsigned comparison
here, because of the possibility that ).

n d÷u

n d, 231< d 231,u n d÷u

n 2÷u( ) d÷( ) 2× n d÷u

1.    if d 0 then if n d<u  then q 0<

2.       else q 1
3.    else do

4. q n 2÷u( ) d÷( ) 2×

5. r n qd–
6.       if r du  then q q 1+

7.    end

d 0< d 231.u d 231,u

232 1–( ) 231÷ 1,=

n 2÷u 231,<u d 231<u
d 0,=

q n 2⁄ d⁄ 2 n 2d( )⁄ 2 n rem n 2d,( )–
d

----------------------------------,= = =

r n n rem n 2d,( )–
d

----------------------------------d– rem n 2d,( ).= =

0 r 2d.< r d< r d,

r 231
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By moving the load immediate of 0 into q ahead of the comparison 
and coding the assignment  in line 2 as a branch to the assignment

 in line 6, this can be coded in 14 instructions on most machines, four
of which are branches. It is straightforward to augment the code to produce the
remainder as well: to line 1 append  to line 2 append  and to the
“then” clause in line 6 append  (Or, at the cost of a multiply, simply
append  to the end of the whole sequence.)

An alternative for lines 1 and 2 is

which can be coded a little more compactly, for a total of 13 instructions, three of
which are branches. But it executes more instructions in what is probably the
usual case (small numbers with ).

Using predicate expressions, the program can be written

which saves two branches if there is a way to evaluate the predicates without
branching. On the basic RISC they can be evaluated in one instruction (CMPGEU);
on MIPS they take two (SLTU, XORI). On most computers, they can be evaluated
in four instructions each (three if equipped with a full set of logic instructions), by
using the expression for  given in “Comparison Predicates” on page 23, and
simplifying because on line 1 of the program above it is known that  and
on line 5 it is known that  The expression simplifies to

We can get branch-free code by forcing the dividend to be 0 when 
Then, the divisor can be used in the machine’s signed divide instruction, because
when it is misinterpreted as a negative number, the result is set to 0, which is
within 1 of being correct. We’ll still handle the case of a large dividend by shifting
it one position to the right before the division, and then shifting the quotient one

n d,<u
q 1

q q 1+

r n, r n d,–
r r d.–

r n qd–

if n d<u  then q 0
else if d 0 then q 1,<

n d>

1.    if d 0 then q n du( )<

2.    else do

3.       q n 2÷u( ) d÷( ) 2×

4.       r n qd–
5.       q q r du( )+

6.    end

x yu

d31 1,=
d31 0.=

n du n n d–( )¬&( ) 31    on line 1, and>>
u=

r du r r d–( )¬ | ( ) 31      on line 5.>>
u=

d 231.u
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position to the left after the division. This gives the following program (ten basic
RISC instructions):

9–4  Unsigned Long Division
By “long division” we mean the division of a doubleword by a single word. For a
32-bit machine, this is   32 division, with the result unspecified in the
overflow cases, including division by 0.

Some 32-bit machines provide an instruction for unsigned long division. Its
full capability, however, gets little use, because only   32 division is
accessible with most high-level languages. Therefore, a computer designer might
elect to provide only  division and would probably want an estimate of the
execution time of a subroutine that implements the missing function. Here we
give two algorithms for providing this missing function.

Hardware Shift-and-Subtract Algorithms
As a first attempt at doing long division, we consider doing what the hardware
does. There are two algorithms commonly used, called restoring and nonrestoring
division [H&P, sec. A-2; EL]. They are both basically “shift-and-subtract” algo-
rithms. In the restoring version, shown below, the restoring step consists of adding
back the divisor when the subtraction gives a negative result. Here x, y, and z are
held in 32-bit registers. Initially, the double-length dividend is  and the divi-
sor is z. We need a single-bit register c to hold the overflow from the subtraction.

Upon completion, the quotient is in register y and the remainder is in register x.
The algorithm does not give a useful result in the overflow cases. For division of

the doubleword quantity  by 0, the quotient obtained is the one’s-complement of
x, and the remainder obtained is y. In particular,  The other
overflow cases are difficult to characterize.

1. t d 31>>
s

2.    n n t¬&

3.    q n 2÷u( ) d÷( ) 2×

4.    r n qd–

5.    q q r du( )+

64 32÷u

32 32÷u

32 32÷u

x y,||

do i 1 to 32
c x y|| || 2 x y||( )            // Shift left one.

c x|| c x||( ) 0b0 z||( )     // Subtract (33 bits).–
y0 c                                               // Set one bit of quotient.¬

   if c then c x|| c x||( ) 0b0 z||( )+      // Restore.
end

x y||
0 0÷u 232 1 rem 0.–
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It might be useful if, for nonzero divisors, the algorithm would give the cor-
rect quotient modulo  and the correct remainder. The only way to do this
seems to be to make the register represented by  above 97 bits long, and
do the loop 64 times. This is doing  64 division. The subtractions
would still be 33-bit operations, but the additional hardware and execution time
make this refinement probably not worthwhile.

This algorithm is difficult to implement exactly in software, because most
machines do not have the 33-bit register that we have represented by 
Figure 9–2, however, illustrates a shift-and-subtract algorithm that reflects the
hardware algorithm to some extent.

The variable t is used for a device to make the comparison come out right.
We want to do a 33-bit comparison after shifting x || y. If the first bit of x is 1
(before the shift), then certainly the 33-bit quantity is greater than the divisor
(32 bits). In this case, x | t is all 1’s, so the comparison gives the correct result
(true). On the other hand, if the first bit of x is 0, then a 32-bit comparison is
sufficient.

The code of the algorithm in Figure 9–2 executes in 321 to 385 basic RISC
instructions, depending upon how often the comparison is true. If the machine has
shift left double, the shifting operation can be done in one instruction, rather than
the four used above. This would reduce the execution time to about 225 to 289
instructions (we are allowing two instructions per iteration for loop control). 

The algorithm in Figure 9–2 can be used to do   32 division by sup-
plying x = 0. The only simplification that results is that the variable t can be
omitted, as its value would always be 0.

On the next page is the nonrestoring hardware division algorithm (unsigned).
The basic idea is that, after subtracting the divisor z from the 33-bit quantity that

unsigned divlu(unsigned x, unsigned y, unsigned z) {
   // Divides (x || y) by z.
   int i;
   unsigned t;

   for (i = 1; i <= 32; i++) {
      t = (int)x >> 31;       // All 1’s if x(31) = 1.
      x = (x << 1) | (y >> 31); // Shift x || y left
      y = y << 1;            // one bit.
      if ((x | t) >= z) {
         x = x - z;
         y = y + 1;
      }
   }
   return y;          // Remainder is x.
}

FIGURE 9–2. Divide long unsigned, shift-and-subtract algorithm.

232,
c x y|| ||

64 32÷u

c x.||

32 32÷u
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we denote by  there is no need to add back z if the result was negative.
Instead, it suffices to add on the next iteration rather than subtract. This is because
adding z (to correct the error of having subtracted z on the previous iteration),
shifting left, and subtracting z is equivalent to adding z ( ).
The advantage to hardware is that there is only one add or subtract operation on
each loop iteration, and the adder is likely to be the slowest circuit in the loop.4 An
adjustment to the remainder is needed at the end if it is negative. (No correspond-
ing adjustment of the quotient is required.) 

The input dividend is the doubleword quantity  and the divisor is z.
Upon completion, the quotient is in register y and the remainder is in register x.

This does not seem to adapt very well to a 32-bit algorithm. 
The 801 minicomputer (an early experimental RISC machine built by IBM)

had a divide step instruction that essentially performed the steps in the body of the
loop above. It used the machine’s carry status bit to hold c and the MQ (a 32-bit
register) to hold y. A 33-bit adder/subtracter is needed for its implementation. The
801’s divide step instruction was a little more complicated than the loop above,
because it performed signed division and it had an overflow check. Using it, a divi-
sion subroutine can be written that consists essentially of 32 consecutive divide
step instructions followed by some adjustments to the quotient and remainder to
make the remainder have the desired sign.

4. Actually, the restoring division algorithm can avoid the restoring step by putting the result of
the subtraction in an additional register and writing that register into x  only if the result of the
subtraction (33 bits) is nonnegative. In some implementations this may require an additional
register and possibly more time.

c x,||

2 u z+( ) z– 2u z+=

x y,||

c 0=
do i 1 to 32
   if c 0 then do=

c x y|| || 2 x y||( )               // Shift left one.

c x|| c x||( ) 0b0 z||( )    // Subtract divisor.–
   end
   else do

c x y|| || 2 x y||( )               // Shift left one.
c x|| c x||( ) 0b0 z||( )    // Add divisor.+

   end
y0 c            // Set one bit of quotient.¬

end
if c 1 then x x z               // Adjust remainder if negative.+=
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Using Short Division
An algorithm for   32 division can be obtained from the multiword divi-
sion algorithm of Figure 9–1 on page 185, by specializing it to the case 

 Several other changes are necessary. The parameters should be fullwords
passed by value, rather than arrays of halfwords. The overflow condition is differ-
ent; it occurs if the quotient cannot be contained in a single fullword. It turns out
that many simplifications to the routine are possible. It can be shown that the
guess qhat is always exact; it is exact if the divisor consists of only two halfword
digits. This means that the “add back” steps can be omitted. If the “main loop” of
Figure 9–1 and the loop within it are unrolled, some minor simplifications become
possible.

The result of these transformations is shown in Figure 9–3. The dividend is in
u1 and u0, with u1 containing the most significant word. The divisor is parame-
ter v. The quotient is the returned value of the function. If the caller provides a
non-null pointer in parameter r, the function will return the remainder in the word
to which r points.

For an overflow indication, the program returns a remainder equal to the
maximum unsigned integer. This is an impossible remainder for a valid division
operation, because the remainder must be less than the divisor. In the overflow
case, the program also returns a quotient equal to the maximum unsigned integer,
which may be an adequate indicator in some cases in which the remainder is not
wanted.

The strange expression (-s >> 31) in the assignment to un32 is supplied
to make the program work for the case s = 0 on machines that have mod 32 shifts
(e.g., Intel x86).

Experimentation with uniformly distributed random numbers suggests that
the bodies of the “again” loops are each executed about 0.38 times for each execu-
tion of the function. This gives an execution time, if the remainder is not wanted,
of about 52 instructions. Of these instructions, one is number of leading zeros, two
are divide, and 6.5 are multiply (not counting the multiplications by b, which are
shift’s). If the remainder is wanted, add six instructions (counting the store of r),
one of which is multiply.

What about a signed version of divlu? It would probably be difficult to
modify the code of Figure 9–3, step by step, to produce a signed variant. That
algorithm, however, can be used for signed division by taking the absolute value
of the arguments, running divlu, and then complementing the result if the signs
of the original arguments differ. There is no problem with extreme values such as
the maximum negative number, because the absolute value of any signed integer
has a correct representation as an unsigned integer. This algorithm is shown in
Figure 9–4.

It is hard to devise really good code to detect overflow in the signed case. The
algorithm shown in Figure 9–4 makes a preliminary determination identical to that
used by the unsigned long division routine, which ensures that  After
that, it is necessary only to ensure that the quotient has the proper sign or is 0.

64 32÷u

m 4,=
n 2.=

u v⁄ 232.<
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unsigned divlu(unsigned u1, unsigned u0, unsigned v,
               unsigned *r)  {
   const unsigned b = 65536; // Number base (16 bits).
   unsigned un1, un0,     // Norm. dividend LSD’s.
            vn1, vn0,       // Norm. divisor digits.
            q1, q0,         // Quotient digits.
            un32, un21, un10,// Dividend digit pairs.
            rhat;          // A remainder.
   int s;        // Shift amount for norm.

   if (u1 >= v) {      // If overflow, set rem.
      if (r != NULL)      // to an impossible value,
         *r = 0xFFFFFFFF;    // and return the largest
      return 0xFFFFFFFF;}    // possible quotient.

   s = nlz(v);               // 0 <= s <= 31.
   v = v << s;         // Normalize divisor.
   vn1 = v >> 16;     // Break divisor up into
   vn0 = v & 0xFFFF;      // two 16-bit digits.

   un32 = (u1 << s) | (u0 >> 32 - s) & (-s >> 31);
   un10 = u0 << s;       // Shift dividend left.

   un1 = un10 >> 16;     // Break right half of
   un0 = un10 & 0xFFFF;   // dividend into two digits.

   q1 = un32/vn1;      // Compute the first
   rhat = un32 - q1*vn1;    // quotient digit, q1.
again1:
   if (q1 >= b || q1*vn0 > b*rhat + un1) {
     q1 = q1 - 1;
     rhat = rhat + vn1;
     if (rhat < b) goto again1;}

   un21 = un32*b + un1 - q1*v;  // Multiply and subtract.

   q0 = un21/vn1;      // Compute the second
   rhat = un21 - q0*vn1;    // quotient digit, q0.
again2:
   if (q0 >= b || q0*vn0 > b*rhat + un0) {
     q0 = q0 - 1;
     rhat = rhat + vn1;
     if (rhat < b) goto again2;}

   if (r != NULL)      // If remainder is wanted,
      *r = (un21*b + un0 - q0*v) >> s;     // return it.
   return q1*b + q0;
}

FIGURE 9–3. Divide long unsigned, using fullword division instruction.
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9–5  Doubleword Division from Long Division
This section considers how to do   64 division from   32 divi-
sion, for both the unsigned and signed cases. The algorithms that follow are most
suited to a machine that has an instruction for long division  at least for
the unsigned case. It is also helpful if the machine has the number of leading zeros
instruction. The machine may have either 32-bit or 64-bit registers, but we will
assume that if it has 32-bit registers, then the compiler implements basic operations
such as adds and shifts on 64-bit operands (the “long long” data type in C).

These functions are known as “_ _udivdi3” and “_ _divdi3” in the GNU C
world, and similar names are used here.

Unsigned Doubleword Division
A procedure for this operation is shown in Figure 9–5.

int divls(int u1, unsigned u0, int v, int *r) {
   int q, uneg, vneg, diff, borrow;

   uneg = u1 >> 31;       // -1 if u < 0.
   if (uneg) {      // Compute the absolute
      u0 = -u0;      // value of the dividend u.
      borrow = (u0 != 0);
      u1 = -u1 - borrow;}

   vneg = v >> 31;        // -1 if v < 0.
   v = (v ^ vneg) - vneg;    // Absolute value of v.

   if ((unsigned)u1 >= (unsigned)v) goto overflow;

   q = divlu(u1, u0, v, (unsigned *)r);

   diff = uneg ^ vneg;     // Negate q if signs of
   q = (q ^ diff) - diff;    // u and v differed.
   if (uneg && r != NULL)
      *r = -*r;

   if ((diff ^ q) < 0 && q != 0) {  // If overflow,
overflow:        // set remainder
      if (r != NULL)      // to an impossible value,
         *r = 0x80000000;    // and return the largest
      q = 0x80000000;}     // possible neg. quotient.
   return q;
}

FIGURE 9–4. Divide long signed, using divide long unsigned.

64 64÷ 64 32÷

64 32÷( ),
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This code distinguishes three cases: (1) the case in which a single execution of
the machine’s unsigned long division instruction (DIVU) can be used, (2) the case
in which (1) does not apply, but the divisor is a 32-bit quantity, and (3) the cases in
which the divisor cannot be represented in 32 bits. It is not too hard to see that the
above code is correct for cases (1) and (2). For case (2), think of the grade-school
method of doing long division.

Case (3), though, deserves proof, because it is very close to not working in
some cases. Notice that in this case only a single execution of DIVU is needed, but
the number of leading zeros and multiply operations are needed.

unsigned long long udivdi3(unsigned long long u,
        unsigned long long v) {

   unsigned long long u0, u1, v1, q0, q1, k, n;

   if (v >> 32 == 0) {        // If v < 2**32:
      if (u >> 32 < v)        // If u/v cannot overflow,
         return DIVU(u, v)      // just do one division.
            & 0xFFFFFFFF;
      else {          // If u/v would overflow:
         u1 = u >> 32;          // Break u up into two
         u0 = u & 0xFFFFFFFF;   // halves.
         q1 = DIVU(u1, v)       // First quotient digit.
            & 0xFFFFFFFF;
         k = u1 - q1*v;        // First remainder, < v.
         q0 = DIVU((k << 32) + u0, v) // 2nd quot. digit.
            & 0xFFFFFFFF;
         return (q1 << 32) + q0;
      }
   }

            // Here v >= 2**32.
   n = nlz64(v);        // 0 <= n <= 31.
   v1 = (v << n) >> 32;       // Normalize the divisor

           // so its MSB is 1.
   u1 = u >> 1;        // To ensure no overflow.
   q1 = DIVU(u1, v1)        // Get quotient from
       & 0xFFFFFFFF;        // divide unsigned insn.
   q0 = (q1 << n) >> 31;      // Undo normalization and

           // division of u by 2.
   if (q0 != 0)         // Make q0 correct or
      q0 = q0 - 1;          // too small by 1.
   if ((u - q0*v) >= v)
      q0 = q0 + 1;         // Now q0 is correct.
   return q0;
}

FIGURE 9–5.  Unsigned doubleword division from long division.
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For the proof, we need these basics (for integer variables):

(2)

(3)

From the first line in the section of the procedure of interest (we assume that
),

In computing  the left shift clearly cannot overflow. Therefore,

In computing   and  are in range for the DIVU instruction and it can-
not overflow. Hence,

In the first computation of  the left shift cannot overflow because 
(because the maximum value of  is  and the minimum value of  is

). Therefore,

Now, for the main part of the proof, we want to show that

which is to say, the first computation of  is the desired result or is that plus 1.
Using Equation (2) twice gives

Using Equation (3) gives

a b⁄ d⁄ a bd( )⁄=

b a b⁄ a rem a b,( )–=

v 0

0 n 31.

v1,

v1 v 232 n–⁄ ,    and=

u1 u 2⁄ .=

q1, u1 v1

q1 u1 v1⁄ .=

q0, q1 232<
u1 263 1– v1

231

q0 q1 231 n–⁄ .=

u v⁄ q0 u v⁄ 1,+

q0

q0
u

232 n– v1
-------------------=

u
232 n– v

232 n–
-------------

---------------------------------- .=

q0
u

v rem v 232 n–,( )–
----------------------------------------- .=



ptg8736757

200 INTEGER DIVISION 9–5

Using algebra to get this in the form 

This is of the form

and we will now show that 
 is largest when  is as large as possible and, given that, when v

is as small as possible. The maximum value of  is 
Because of the way n is defined in terms of v,  Thus, the smallest value
of v having that remainder is

Therefore,

By inspection, for n in its range of 0 to 31,

Since u is at most   Because  and  (and obvi-
ously ),

To correct this result by subtracting 1 when necessary, we would like to code

   if (u < q0*v) q0 = q0 - 1;

(i.e., if the remainder  is negative, subtract 1 from ). However, this
doesn’t quite work, because  can overflow (e.g., for  and

). Instead, we subtract 1 from  so that it is either correct or too
small by 1. Then  will not overflow. We must avoid subtracting 1 if  (if

 it is already the correct quotient).

u v⁄ something:+

q0
u
v
--- u rem v 232 n–,( )

v v rem v 232 n–,( )–( )
-------------------------------------------------+ .=

u
v
--- + ,

1.<
rem v 232 n–,( )

rem v 232 n–,( ) 232 n– 1.–
v 263 n– .

263 n– 232 n– 1.–+

u 232 n– 1–( )
263 n– 232 n– 1–+( )263 n–

--------------------------------------------------------------

u 232 n– 1–( )
263 n–( )2

-------------------------------
·

.<

u
264
-------.<

264 1,– 1.< q0 u v⁄ += 1<
0

u
v
--- q0

u
v
--- 1.+

u q0v– q0
q0v u 264 1–=

v 232 3+= q0,
q0v q0 0=

q0 0,=
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Then the final correction is:

   if ((u - q0*v) >= v) q0 = q0 - 1;

To see that this is a valid computation, we already noted that  does not over-
flow. It is easy to show that

If v is very large  can the subtraction overflow by trying to produce a
result greater than v? No, because  and 

Incidentally, there are alternatives to the lines

   if (q0 != 0)     // Make q0 correct or
      q0 = q0 - 1     // too small by 1.

that may be preferable on some machines. One is to replace them with

   if (q0 == 0) return 0;

Another is to place at the beginning of this section of the procedure, or at the begin-
ning of the whole procedure, the line

   if (u < v) return 0; // Avoid a problem later.

These alternatives are preferable if branches are not costly. The code shown in
Figure 9–5 works well if the machine’s comparison instructions produce a 0/1 inte-
ger result in a general register. Then, the compiler can change it to, in effect, 

   q0 = q0 - (q0 != 0);

(or you can code it that way if your compiler doesn’t do this optimization). This is
just a compare and subtract on such machines.

Signed Doubleword Division
In the signed case, there seems to be no better way to do doubleword division than
to divide the absolute values of the operands, using function udivdi3, and then
negate the sign of the quotient if the operands have different signs. If the machine
has a signed long division instruction, which we designate here as DIVS, then it
may be advantageous to single out the cases in which DIVS can be used rather than
invoking udivdi3. This presumes that these cases are common. Such a function
is shown in Figure 9–6.

The “#define” in the code in Figure 9–6 uses the GCC facility of enclosing
a compound statement in parentheses to construct an expression, a facility that
most C compilers do not have. Some other compilers may have llabs(x) as a
built-in function.

q0v

0 u q0v– 2v.<

263( ),
u 264< q0v 0.
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The test that v is in range is not precise; it misses the case in which 
If it is important to use the DIVS instruction in that case, the test

   if ((v << 32) >> 32 == v) {  // If v is in range and

can be used in place of the third executable line in Figure 9–6 (at a cost of one
instruction). Similarly, the test that  cannot overflow is simplified and a few
“corner cases” will be missed; the code amounts to using  in the signed divi-
sion overflow test scheme shown in “Division” on page 34.

Exercises

1. Show that for real x,

2. Find branch-free code for computing the quotient and remainder of modulus
division on a basic RISC that has division and remainder instructions for trun-
cating division.

3. Similarly, find branch-free code for computing the quotient and remainder of
floor division on a basic RISC that has division and remainder instructions for
truncating division.

4. How would you compute  for unsigned integers n and d,
 and  Assume your machine has an unsigned

divide instruction that computes 

#define llabs(x) \
({unsigned long long t = (x) >> 63; ((x) ^ t) - t;})

long long divdi3(long long u, long long v) {

   unsigned long long au, av;
   long long q, t;

   au = llabs(u);
   av = llabs(v);
   if (av >> 31 == 0) {      // If |v| < 2**31 and
      if (au < av << 31) {      // |u|/|v| cannot
         q = DIVS(u, v);        // overflow, use DIVS.
         return (q << 32) >> 32;
      }
   }
   q = au/av;          // Invoke udivdi3.
   t = (u ^ v) >> 63;      // If u, v have different
   return (q ^ t) - t;       // signs, negate q.
}

FIGURE 9–6. Signed doubleword division from unsigned doubleword division.

v 231.–=

u v⁄
0=

x x– .–=

n d⁄
0 n 232 1– 1 d 232 1?–

n d⁄ .
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5. Theorem D3 states that for x real and d an integer,  Show
that, more generally, if a function f(x) is (a) continuous, (b) monotonically
increasing, and (c) has the property that if f(x) is an integer then x is an integer,
then [GKP].

x d⁄ x d⁄ .=

f x( ) f x( )=
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 CHAPTER  10

INTEGER DIVISION 
BY CONSTANTS

On many computers, division is very time consuming and is to be avoided when
possible. A value of 20 or more elementary add times is not uncommon, and the
execution time is usually the same large value even when the operands are small.
This chapter gives some methods for avoiding the divide instruction when the
divisor is a constant.

10–1  Signed Division by a Known Power of 2
Apparently, many people have made the mistake of assuming that a shift right
signed of k positions divides a number by  using the usual truncating form of
division [GLS2]. It’s a little more complicated than that. The code shown below
computes  for  [Hop].

        shrsi t,n,k-1      Form the integer
        shri  t,t,32-k    2**k - 1 if n < 0, else 0.
        add   t,n,t         Add it to n,
        shrsi q,t,k      and shift right (signed).

It is branch free. It simplifies to three instructions in the common case of division
by 2 ( ). It does, however, rely on the machine’s being able to shift by a
large amount in a short time. The case  does not make too much sense,
because the number  is not representable in the machine. Nevertheless, the
code does produce the correct result in that case (which is  if 
and  for all other n).

To divide by  the above code can be followed by a negate instruction.
There does not seem to be any better way to do it.

The more straightforward code for dividing by  is

        bge   n,label       Branch if n >= 0.
        addi  n,n,2**k-1    Add 2**k - 1 to n,
 label  shrsi n,n,k    and shift right (signed).

This would be preferable on a machine with slow shifts and fast branches.
PowerPC has an unusual device for speeding up division by a power of 2

[GGS]. The shift right signed instructions set the machine’s carry bit if the number
being shifted is negative and one or more 1-bits are shifted out. That machine also
has an instruction for adding the carry bit to a register, denoted addze. This
allows division by any (positive) power of 2 to be done in two instructions:

2k,

q n 2k÷ ,= 1 k 31

k 1=
k 31=

231

q 1–= n 231–=
q 0=

2k,–

2k
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        shrsi q,n,k
        addze q,q

A single shrsi of k positions does a kind of signed division by  that coin-
cides with both modulus and floor division. This suggests that one of these might
be preferable to truncating division for computers and HLL’s to use. That is, mod-
ulus and floor division mesh with shrsi better than does truncating division,
permitting a compiler to translate the expression  to an shrsi. Furthermore,
shrsi followed by neg (negate) does modulus division by  which is a hint
that maybe modulus division is best. (This is mainly an aesthetic issue. It is of lit-
tle practical significance, because division by a negative constant is no doubt
extremely rare.)

10–2  Signed Remainder from Division by a Known Power of 2
If both the quotient and remainder of  are wanted, it is simplest to compute
the remainder r from  This requires only two instructions after
computing the quotient q:

        shli  r,q,k
        sub   r,n,r

To compute only the remainder seems to require about four or five instruc-
tions. One way to compute it is to use the four-instruction sequence above for
signed division by  followed by the two instructions shown immediately above
to obtain the remainder. This results in two consecutive shift instructions that can
be replaced by an and, giving a solution in five instructions (four if ):

        shrsi t,n,k-1      Form the integer
        shri  t,t,32-k    2**k - 1 if n < 0, else 0.
        add   t,n,t         Add it to n,
        andi  t,t,-2**k     clear rightmost k bits, 
        sub   r,n,t      and subtract it from n. 

Another method is based on

To use this, first compute  and then

(five instructions) or, for  since 

2k

n 2⁄
2k,–

n 2k÷
r n q– 2k*=

2k,

k 1=

rem n 2k,( ) n 2k 1–( ), n 0,&

n–( ) 2k 1–( )&( ), n 0.<–
=

t n 31,>>
s

r abs n( ) 2k 1–( )&( ) t( ) t–

k 1,= n–( ) 1& n 1,&=
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(four instructions). This method is not very good for if the machine does not
have absolute value (computing the remainder would then require six instructions).

Still another method is based on

This leads to

(five instructions for  four for ).
The above methods all work for 
Incidentally, if shift right signed is not available, the value that is  for

 and 0 for  can be constructed from

which adds only one instruction.

10–3  Signed Division and Remainder by Non-Powers of 2
The basic trick is to multiply by a sort of reciprocal of the divisor d, approxi-
mately  and then to extract the leftmost 32 bits of the product. The details,
however, are more complicated, particularly for certain divisors such as 7.

Let us first consider a few specific examples. These illustrate the code that
will be generated by the general method. We denote registers as follows:

n - the input integer (numerator)
M - loaded with a “magic number”
t - a temporary register
q - will contain the quotient
r - will contain the remainder

 Division by 3

      li    M,0x55555556  Load magic number, (2**32+2)/3. 
      mulhs q,M,n      q = floor(M*n/2**32). 

r n 1&( ) t( ) t–

k 1>

rem n 2k,( ) n 2k 1–( ), n 0,&

n 2k 1–+( ) 2k 1–( )&( ) 2k 1–( ), n 0.<–
=

t n k 1–>>
s( ) 32 k–>>

u

r n t+( ) 2k 1–( )&( ) t–

k 1,> k 1=
1 k 31.

2k 1–
n 0< n 0

t1 n 31>>
u

r t1 k<<( ) t1,–

232 d,⁄

continues
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      shri  t,n,31       Add 1 to q if 
      add   q,q,t       n is negative. 

      muli  t,q,3      Compute remainder from 
      sub   r,n,t       r = n - q*3. 

Proof. The multiply high signed operation (mulhs) cannot overflow, as the
product of two 32-bit integers can always be represented in 64 bits and mulhs
gives the high-order 32 bits of the 64-bit product. This is equivalent to dividing the
64-bit product by  and taking the floor of the result, and this is true whether
the product is positive or negative. Thus, for  the above code computes

Now,  because  is the largest representable positive number. Hence,
the “error” term  is less than 1/3 (and is nonnegative), so by Theorem
D4 (page 183) we have  which is the desired result (Equation (1) on
page 182).

For  there is an addition of 1 to the quotient. Hence the code computes

where we have used Theorem D2. Hence

For

The error term is nonpositive and greater than  so by Theorem D4
 which is the desired result (Equation (1) on page 182). 

This establishes that the quotient is correct. That the remainder is correct fol-
lows easily from the fact that the remainder must satisfy

the multiplication by 3 cannot overflow (because ), and
the subtract cannot overflow because the result must be in the range –2 to +2.

The multiply immediate can be done with two add’s, or a shift and an add, if
either gives an improvement in execution time.

232

n 0

q 232 2+
3

---------------- n
232
------- n

3
--- 2n

3 232
---------------+ .= =

n 231,< 231 1–
2n 3 232( )⁄

q n 3⁄ ,=

n 0,<

q 232 2+
3

---------------- n
232
------- 1+ 232n 2n 3 232+ +

3 232
--------------------------------------------- 232n 2n 1+ +

3 232
--------------------------------- ,= = =

q n
3
--- 2n 1+

3 232
---------------+ .=

231– n 1,–

1
3
---– 1

3 232
---------------+ 2n 1+

3 232
--------------- 1

3 232
---------------.–

1 3⁄ ,–
q n 3⁄ ,=

n qd r,+=

231 3⁄ q 231 1–( ) 3⁄–
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On many present-day RISC computers, the quotient can be computed as
shown above in nine or ten cycles, whereas the divide instruction might take 20
cycles or so.

Division by 5
For division by 5, we would like to use the same code as for division by 3, except
with a multiplier of  Unfortunately, the error term is then too large;
the result is off by 1 for about 1/5 of the values of  in magnitude. However,
we can use a multiplier of  and add a shift right signed instruction.
The code is

      li    M,0x66666667  Load magic number, (2**33+3)/5.
      mulhs q,M,n      q = floor(M*n/2**32).
      shrsi q,q,1
      shri  t,n,31        Add 1 to q if
      add   q,q,t        n is negative.

      muli  t,q,5      Compute remainder from
      sub   r,n,t         r = n - q*5.

Proof. The mulhs produces the leftmost 32 bits of the 64-bit product, and
then the code shifts this right by one position, signed (or “arithmetically”). This is
equivalent to dividing the product by  and then taking the floor of the result.
Thus, for  the code computes

For  the error term  is nonnegative and less than 1/5, so by
Theorem D4, 

For  the above code computes

The error term is nonpositive and greater than –1/5, so 
That the remainder is correct follows as in the case of division by 3.
The multiply immediate can be done with a shift left of two and an add.

Division by 7
Dividing by 7 creates a new problem. Multipliers of  and 
give error terms that are too large. A multiplier of  would work, but it’s
too large to represent in a 32-bit signed word. We can multiply by this large number
by multiplying by  (a negative number), and then correcting the
product by inserting an add. The code is

232 4+( ) 5⁄ .
n 230

233 3+( ) 5⁄

233

n 0

q 233 3+
5

---------------- n
233
------- n

5
--- 3n

5 233
---------------+ .= =

0 n 231,< 3n 5 233⁄
q n 5⁄ .=

n 0,<

q 233 3+
5

---------------- n
233
------- 1+ n

5
--- 3n 1+

5 233
---------------+ .= =

q n 5⁄ .=

232 3+( ) 7⁄ 233 6+( ) 7⁄
234 5+( ) 7⁄

234 5+( ) 7⁄ 232–
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      li    M,0x92492493  Magic num, (2**34+5)/7 - 2**32.
      mulhs q,M,n       q = floor(M*n/2**32).
      add   q,q,n      q = floor(M*n/2**32) + n.
      shrsi q,q,2       q = floor(q/4).
      shri  t,n,31        Add 1 to q if
      add   q,q,t       n is negative.

      muli  t,q,7      Compute remainder from
      sub   r,n,t       r = n - q*7.

Proof. It is important to note that the instruction “add q,q,n” above cannot
overflow. This is because q and n have opposite signs, due to the multiplication by
a negative number. Therefore, this “computer arithmetic” addition is the same as
real number addition. Hence for  the above code computes

where we have used the corollary of Theorem D3.
For  the error term  is nonnegative and less than 1/7,

so
For  the above code computes

The error term is nonpositive and greater than  so 
The multiply immediate can be done with a shift left of three and a subtract.

10–4  Signed Division by Divisors  2
At this point you may wonder if other divisors present other problems. We see in
this section that they do not; the three examples given illustrate the only cases that
arise (for ).

Some of the proofs are a bit complicated, so to be cautious, the work is done
in terms of a general word size W.

Given a word size  and a divisor d,  we wish to find the
least integer m and integer p such that 

(1a)

n 0

q 234 5+
7

---------------- 232– n
232
------- n+ 4⁄ 234n 5n 7 232n 7 232n+–+

7 232
------------------------------------------------------------------------ 4⁄= =

n
7
--- 5n

7 234
---------------+ ,=

0 n 231,< 5n 7 234⁄
q n 7⁄ .=

n 0,<

q 234 5+
7

---------------- 232– n
232
------- n+ 4⁄ 1+ n

7
--- 5n 1+

7 234
---------------+ .= =

1 7⁄ ,– q n 7⁄ .=

d 2

W 3 2 d 2W 1– ,<

mn
2p
------- n

d
---= for 0 n 2W 1–< ,   and
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(1b)

with  and 
The reason we want the least integer m is that a smaller multiplier may give a

smaller shift amount (possibly zero) or may yield code similar to the “divide by 5”
example, rather than the “divide by 7” example. We must have  so the
code has no more instructions than that of the “divide by 7” example (that is, we
can handle a multiplier in the range  to  by means of the add that was
inserted in the “divide by 7” example, but we would rather not deal with larger
multipliers). We must have  because the generated code extracts the left
half of the product mn, which is equivalent to shifting right W positions. Thus, the
total right shift is W or more positions.

There is a distinction between the multiplier m and the “magic number,”
denoted M. The magic number is the value used in the multiply instruction. It is
given by

Because (1b) must hold for   which implies

(2)

Let nc be the largest (positive) value of n such that  nc
exists because one possibility is  It can be calculated from nc =

 =  nc is one of the highest d admissi-
ble values of n, so 

(3a)

and, clearly

(3b)

Because (1a) must hold for 

or

mn
2p
------- 1+ n

d
---= for 2W 1–– n 1,–

0 m 2W< p W.

m 2W 1–

2W 1– 2W 1–

p W,

M m,             if 0 m 2W 1– ,<

m 2W– ,      if 2W 1– m 2W.<
=

n d,–= md 2p⁄– 1+ 1,–=

md
2p------- 1.>

rem nc d,( ) d 1.–=
nc d 1.–=

2W 1– d⁄ d 1– 2W 1– rem 2W 1– d,( )– 1.–

2W 1– d– nc 2W 1– 1,–

nc d 1.–

n nc,=

mnc

2p---------
nc
d
-----

nc d 1–( )–
d

---------------------------,= =

mnc

2p---------
nc 1+

d
--------------.<
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Combining this with (2) gives

(4)

Because m is to be the least integer satisfying (4), it is the next integer greater
than ; that is,

Combining this with the right half of (4) and simplifying gives

The Algorithm
Thus, the algorithm to find the magic number M and the shift amount s from d is
to first compute nc, and then solve (6) for p by trying successively larger values. If

 set  (the theorem below shows that this value of p also satisfies
(6)). When the smallest  satisfying (6) is found, m is calculated from (5).
This is the smallest possible value of m, because we found the smallest acceptable
p, and from (4) clearly smaller values of p yield smaller values of m. Finally,

 and M is simply a reinterpretation of m as a signed integer (which is
how the mulhs instruction interprets it).

Forcing p to be at least W is justified by the following:

THEOREM DC1. If (6) is true for some value of p, then it is true for all
larger values of p.

Proof. Suppose (6) is true for  Multiplying (6) by 2 gives

From Theorem D5,  Combining gives

Therefore, (6) is true for  and hence for all larger values. 

(5)

(6)

2p

d
----- m 2p

d
-----

nc 1+
nc

--------------.< <

2p d⁄

m 2p d rem 2p d,( )–+
d

---------------------------------------------.=

2p nc d rem 2p d,( )–( ).>

p W,< p W=
p W

s p W–=

p p0.=

2p0 1+ nc 2d 2rem 2p0 d,( )–( ).>

rem 2p0 1+ d,( ) 2rem 2p0 d,( ) d.–

2p0 1+ nc 2d rem 2p0 1+ d,( ) d+( )–( ),   or>

2p0 1+ nc d rem 2p0 1+ d,( )–( ).>

p p0 1,+=
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Thus, one could solve (6) by a binary search, although a simple linear search
(starting with ) is probably preferable, because usually d is small, and
small values of d give small values of p.

Proof That the Algorithm Is Feasible
We must show that (6) always has a solution and that  (It is not neces-
sary to show that  because that is forced.)

We show that (6) always has a solution by getting an upper bound on p. As a
matter of general interest, we also derive a lower bound under the assumption that
p is not forced to be at least W. To get these bounds on p, observe that for any pos-
itive integer x, there is a power of 2 greater than x and less than or equal to 2x.
Hence, from (6),

Because

(7)

From (3a) and (3b),  The lines  = 
and  cross at  Hence 
Because nc is an integer,  Because  (7) becomes

or

(8)

The lower bound  can occur (e.g., for W = 32, d = 3), but in that
case we set 

If p is not forced to equal W, then from (4) and (7),

Using (3b) gives

Because (3a),

p W=

0 m 2W.<
p W,

nc d rem 2p d,( )–( ) 2p< 2nc d rem 2p d,( )–( ).

0 rem 2p d,( ) d 1,–

nc 1+ 2p 2ncd.

nc max 2W 1– d– d 1–,( ). f1 d( ) 2W 1– d–
f2 d( ) d 1–= d 2W 1– 1+( ) 2.⁄= nc 2W 1– 1–( ) 2.⁄

nc 2W 2– . nc d, 2W 1– 1,–

2W 2– 1+ 2p 2 2W 1– 1–( )2,

W 1– p 2W 2.–

p W 1–=
p W.=

nc 1+
d

-------------- m
2ncd

d
-----------

nc 1+
nc

--------------.< <

d 1– 1+
d

--------------------- m 2 nc 1+( ).< <

nc 2W 1– 1–

2 m 2W 1.–
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If p is forced to equal W, then from (4),

Because  and 

Hence in either case m is within limits for the code schema illustrated by the
“divide by 7” example.

Proof That the Product Is Correct
We must show that if p and m are calculated from (6) and (5), then Equations (1a)
and (1b) are satisfied.

Equation (5) and inequality (6) are easily seen to imply (4). (In the case that p
is forced to be equal to W, (6) still holds, as shown by Theorem DC1.) In what fol-
lows, we consider separately the following five ranges of values of n:

From (4), because m is an integer,

Multiplying by  for  this becomes

For   so by Theorem D4,

2W

d
------ m 2W

d
------

nc 1+
nc

--------------.< <

2 d 2W 1– 1– nc 2W 2– ,

2W

2W 1– 1–
---------------------- m 2W

2
------2W 2– 1+

2W 2–
----------------------,   or< <

3 m 2W 1– 1.+

0 n nc,

nc 1+ n nc d 1,–+

nc– n 1,–

nc– d– 1+ n nc– 1,   and–

n nc– d.–=

2p

d
----- m<

2p nc 1+( ) 1–
dnc

----------------------------------.

n 2p⁄ , n 0

n
d
--- mn

2p-------
2pn nc 1+( ) n–

2pdnc
-------------------------------------,   so that

n
d
--- mn

2p------- n
d
--- 2p 1–( )n

2pdnc
----------------------+ .

0 n nc, 0 2p 1–( )n 2pdnc( )⁄ 1 d⁄ ,<
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Hence (1a) is satisfied in this case ( ). 
For n is limited to the range

(9)

because  contradicts the choice of  as the largest value of n such that
 (alternatively, from (3a),  implies ). From

(4), for 

By elementary algebra, this can be written

(10)

From (9),  so

Because  (by (3b)) and  has its maximum when  has its
minimum,

In (10), the term  is an integer. The term  is less
than or equal to 1. Therefore, (10) becomes

For all n in the range (9),  Hence, (1a) is satisfied in this
case ( ). 

For  from (4) we have, because m is an integer,

n
d
--- 2p 1–( )n

2pdnc
----------------------+ n

d
--- .=

0 n nc
n nc,>

nc 1+ n nc d 1,–+

n nc d+ nc
rem nc d,( ) d 1–= n nc d+ n 2W 1–

n 0,

n
d
--- mn

2p------- n
d
---

nc 1+
nc

--------------.< <

n
d
--- mn

2p-------
nc 1+

d
--------------

n nc–( ) nc 1+( )
dnc

--------------------------------------.+< <

1 n nc– d 1,–

0
n nc–( ) nc 1+( )

dnc
--------------------------------------< d 1–

d
------------

nc 1+
nc

--------------.

nc d 1– nc 1+( ) nc⁄ nc

0
n nc–( ) nc 1+( )

dnc
--------------------------------------< d 1–

d
------------d 1– 1+

d 1–
--------------------- 1.=

nc 1+( ) d⁄ n nc–( ) nc 1+( ) dnc⁄

n
d
--- mn

2p-------
nc 1+

d
--------------.

n d⁄ nc 1+( ) d⁄ .=
nc 1+ n nc d 1–+

n 0,<

2p 1+
d

-------------- m 2p

d
-----

nc 1+
nc

--------------.<
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Multiplying by  for  this becomes

or

Using Theorem D2 gives

Because  the right inequality can be weakened, giving

(11)

For

Hence, by Theorem D4,

so that (1b) is satisfied in this case ( ).
For n is limited to the range

(12)

(From (3a),  implies that  which is impossible.) Perform-
ing elementary algebraic manipulation of the left comparand of (11) gives

n 2p⁄ , n 0<

n
d
---

nc 1+
nc

-------------- mn
2p-------< n

d
---2p 1+

2p--------------,

n
d
---

nc 1+
nc

-------------- 1+ mn
2p------- 1+ n

d
---2p 1+

2p-------------- 1.+

n nc 1+( ) dnc– 1+
dnc

---------------------------------------------- 1+ mn
2p------- 1+ n 2p 1+( ) 2pd– 1+

2pd
----------------------------------------------- 1,+

n nc 1+( ) 1+
dnc

-------------------------------- mn
2p------- 1+ n 2p 1+( ) 1+

2pd
-------------------------------- .

n 1+ 0,

n
d
--- n 1+

dnc
------------+ mn

2p------- 1+ n
d
--- .

nc– n 1,–

nc– 1+
dnc

------------------ n 1+
dnc

------------ 0,   or

1
d
---– n 1+

dnc
------------< 0.

n
d
--- n 1+

dnc
------------+ n

d
--- ,=

nc– n 1–
n nc,–<

nc– d– n nc– 1.–

n nc– d–< n 2W 1– ,–<
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(13)

For

The ratio  is a maximum when nc is a minimum; that is, 
Therefore,

From (13), because  is an integer and the quantity added to it is
between 0 and –1,

For n in the range 

Hence, —that is, (1b) is satisfied.
The last case,  can occur only for certain values of d. From

(3a),  so if n takes on this value, we must have  =
 and hence  Therefore,  =  =

 (that is, d divides ).
For this case ( ), (6) has the solution  (the smallest

possible value of p), because for 

Then from (5),

nc– 1–
d

------------------
n nc+( ) nc 1+( ) 1+

dnc
------------------------------------------------+ mn

2p------- 1+ n
d
--- .

nc– d 1+– n nc– 1,–

d– 1+( ) nc 1+( )
dnc

----------------------------------------- 1
dnc
--------+

n nc+( ) nc 1+( ) 1+
dnc

------------------------------------------------
nc 1+( )– 1+

dnc
--------------------------------- 1

d
---.–=

nc 1+( ) nc⁄ nc d 1.–=

d– 1+( ) d 1– 1+( )
d d 1–( )

------------------------------------------------ 1
dnc
--------+

n nc+( ) nc 1+( ) 1+
dnc

------------------------------------------------ 0,   or<

1–
n nc+( ) nc 1+( ) 1+

dnc
------------------------------------------------ 0.< <

nc– 1–( ) d⁄

nc– 1–
d

------------------ mn
2p------- 1+ n

d
--- .

nc– d– 1+ n nc– 1,–

n
d
---

nc– 1–
d

------------------.=

mn 2p⁄ 1+ n d⁄=
n nc– d,–=

nc– d– 2W 1– ,– n nc– d–=
2W 1– ,– nc 2W 1– d.–= rem 2W 1– d,( ) rem nc d+ d,( )

d 1– 2W 1– 1+
n nc– d–= p W 1–=

p W 1,–=

nc d rem 2p d,( )–( ) 2W 1– d–( ) d rem 2W 1– d,( )–( )=

2W 1– d–( ) d d 1–( )–( ) 2W 1– d 2W 1– 2p.=<–==

m 2W 1– d rem 2W 1– d,( )–+
d

------------------------------------------------------------ 2W 1– d d 1–( )–+
d

--------------------------------------------- 2W 1– 1+
d

----------------------.= = =
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Therefore,

so that (1b) is satisfied.
This completes the proof that if m and p are calculated from (5) and (6), then

Equations (1a) and (1b) hold for all admissible values of n.

10–5  Signed Division by Divisors  –2
Because signed integer division satisfies  it is adequate to
generate code for  and follow it with an instruction to negate the quotient.
(This does not give the correct result for  but for this and other nega-
tive powers of 2, you can use the code in Section 10–1, “Signed Division by a
Known Power of 2,” on page 205, followed by a negating instruction.) It will not
do to negate the dividend, because of the possibility that it is the maximum nega-
tive number.

It is possible to avoid the negating instruction. The scheme is to compute

Adding 1 if  is awkward (because one cannot simply use the sign bit of n),
so the code will instead add 1 if  This is equivalent, because the multiplier
m is negative (as will be seen).

The code to be generated is illustrated below for the case 

      li    M,0x6DB6DB6D  Magic num, -(2**34+5)/7 + 2**32.
      mulhs q,M,n       q = floor(M*n/2**32).
      sub   q,q,n      q = floor(M*n/2**32) - n.
      shrsi q,q,2       q = floor(q/4).
      shri  t,q,31        Add 1 to q if
      add   q,q,t    q is negative (n is positive).

      muli  t,q,-7      Compute remainder from
      sub   r,n,t       r = n - q*(-7).

This code is the same as that for division by +7, except that it uses the nega-
tive of the multiplier for +7, and a sub rather than an add after the multiply, and
the shri of 31 must use q rather than n, as discussed above. (The case of d = +7
could also use q here, but there would be less parallelism in the code.) The

mn
2p
------- 1+ 2W 1– 1+

d
---------------------- 2W 1––

2W 1–
---------------- 1+ 2W 1–– 1–

d
-------------------------- 1+= =

2W 1–– d–
d

-------------------------- 1+= 2W 1––
d

---------------- n
d
--- ,= =

n d–( )÷ n d÷( ),–=
n d÷

d 2W 1– ,–=

q mn
2p-------          if n 0,   and=

q mn
2p------- 1   if n 0.>+=

n 0>
q 0.<

W 32, d 7.–= =
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subtract will not overflow, because the operands have the same sign. This scheme,
however, does not always work! Although the code above for 
is correct, the analogous alteration of the “divide by 3” code to produce code to
divide by –3 does not give the correct result for 

Let us look at the situation more closely.
Given a word size  and a divisor d,  we wish to find

the least (in absolute value) integer m and integer p such that

(14a)

(14b)

with  and 
Proceeding similarly to the case of division by a positive divisor, let nc be

the most negative value of n such that  for some integer k. nc
exists, because one possibility is  It can be calculated from nc =

 =  nc is one of the least 
admissible values of n, so

(15a)

and, clearly

(15b)

Because (14b) must hold for  and (14a) must hold for  we
obtain, analogous to (4),

(16)

Because m is to be the greatest integer satisfying (16), it is the next integer less
than —that is,

Combining this with the left half of (16) and simplifying gives

(17)

(18)

W 32, d 7–= =

W 32, n 231.–= =

W 3 2W 1–– d 2,–

mn
2p------- n

d
---          for 2W 1–– n 0,   and=

mn
2p------- 1+ n

d
---    for 1 n 2W 1– ,<=

2W– m 0 p W.

nc kd 1+=
nc d 1.+=

2W 1–– 1–( ) d⁄ d 1+ 2W 1–– rem 2W 1– 1+ d,( ).+ d

2W 1–– nc 2W 1–– d– 1,–

nc d 1.+

n d,–= n nc,=

2p

d
-----

nc 1–
nc

-------------- m 2p

d
-----.< <

2p d⁄

m 2p d– rem 2p d,( )–
d

---------------------------------------------.=

2p nc d rem 2p d,( )+( ).>
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The proof that the algorithm suggested by (17) and (18) is feasible, and that
the product is correct, is similar to that for a positive divisor, and will not be
repeated. A difficulty arises in trying to prove that  To prove this,
consider separately the cases in which d is the negative of a power of 2, or some
other  number.  For   i t  is  easy to  show that  nc  =  

 and  (which is within range). For d not of the
form  it is straightforward to alter the earlier proof.

For Which Divisors Is ?
By m(d) we mean the multiplier corresponding to a divisor d. If  = 
code for division by a negative divisor can be generated by calculating the multi-
plier for  negating it, and then generating code similar to that of the “divide
by –7” case illustrated above.

By comparing (18) with (6) and (17) with (5), it can be seen that if the value
of nc for –d  is the negative of that for d,  then  Hence,

 can occur only when the value of nc calculated for the negative
divisor is the maximum negative number,  Such divisors are the negatives
of the factors of  These numbers are fairly rare, as illustrated by the fac-
torings below (obtained from Scratchpad).

For all these factors,  Proof sketch: For  we have nc = 
Because  (6) is satisfied by  and hence also by

 For  however, we have  and  = 
Hence, (18) is not satisfied for  or for  so 

10–6  Incorporation into a Compiler
For a compiler to change division by a constant into a multiplication, it must com-
pute the magic number M and the shift amount s, given a divisor d. The straight-
forward computation is to evaluate (6) or (18) for  until it is
satisfied. Then, m is calculated from (5) or (17). M is simply a reinterpretation of
m as a signed integer, and 

The scheme described below handles positive and negative d with only a little
extra code, and it avoids doubleword arithmetic.

2W– m 0. 

d 2k,–= 2W 1–– 1,+
p W k 1,–+= m 2W 1–– 1–=

2k,–

m d–  m d –
m d–  m d ,–

d ,

m d–  m d .–=
m d–  m d 

2W 1– .–
2W 1– 1.+

215 1+ 32 11 331 =

231 1+ 3 715,827,883=

263 1+ 33 19 43 5419 77,158,673,929   =

m d–  m d . d 0 2W 1– d.–
rem 2W 1– d( ) d 1,–= p W 1–=

p W.= d 0, nc 2W 1––= rem 2W 1– d( ) d 1.–
p W 1–= p W,= p W.

p W W 1+  =

s p W.–=
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Recall that nc is given by

Hence,  can be computed from

The remainder must be evaluated using unsigned division, because of the magni-
tude of the arguments. We have written  rather than the equivalent

 to emphasize that the program must deal with two positive (and
unsigned) arguments.

From (6) and (18), p can be calculated from

(19)

and then  can be calculated from (c.f. (5) and (17)):

(20)

Direct evaluation of  in (19) requires “long division” (dividing a
2W-bit dividend by a W-bit divisor, giving a W-bit quotient and remainder), and, in
fact, it must be unsigned long division. There is a way to solve (19), and to do all
the calculations, that avoids long division and can easily be implemented in a con-
ventional HLL using only W-bit arithmetic. We do, however, need unsigned divi-
sion and unsigned comparisons.

We can calculate  incrementally, by initializing two variables q
and r to the quotient and remainder of  divided by  with  and
then updating q and r as p increases.

As the search progresses—that is, when p is incremented by 1—q and r are
updated from (see Theorem D5(a))

      q = 2*q;
      r = 2*r;
      if (r >= abs(d)) {
         q = q + 1;
         r = r - abs(d);}

nc
2W 1–  – rem 2W 1– d,( ) 1– ,   if d 0,>

2W 1–– rem 2W 1– 1+ d,( )+ ,   if d 0.<
=

nc

t 2W 1– 0,   if d > 0,
1,   if d < 0,

+=

nc t 1– rem t d,( ).–=

rem t d,( )
rem t d,( ),

2p nc d rem 2p d,( )–( ),>

m

m 2p d rem 2p d,( )–+
d

---------------------------------------------------.=

rem 2p d,( )

rem 2p d,( )
2p d p W 1,–=
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The left half of inequality (4) and the right half of (16), together with the
bounds proved for m, imply that  so q is representable as a
W-bit unsigned integer. Also,  so r is representable as a W-bit signed or
unsigned integer. (Caution: The intermediate result 2r can exceed  so r
should be unsigned and the comparison above should also be unsigned.)

Next, calculate  Both terms of the subtraction are representable
as W-bit unsigned integers, and the result is also , so there is no diffi-
culty here.

To avoid the long multiplication of (19), rewrite it as

The quantity  is representable as a W-bit unsigned integer (similar to
(7), from (19) it can be shown that  and, for 

 and  so that  =  < 
for ). Also, it is easily calculated incrementally (as p increases) in the same
manner as for  The comparison should be unsigned, for the case

 (which can occur, for large d).
To compute m, we need not evaluate (20) directly (which would require long

division). Observe that

The loop closure test  is awkward to evaluate. The quantity
 is available only in the form of a quotient q1 and a remainder r1.

may or may not be an integer (it is an integer only for  and a few
negative values of d). The test  can be coded as

The complete procedure for computing M and s from d is shown in
Figure 10–1, coded in C, for W = 32. There are a few places where overflow can
occur, but the correct result is obtained if overflow is ignored.

To use the results of this program, the compiler should generate the li and
mulhs instructions, generate the add if d > 0 and M < 0, or the sub if d < 0 and
M > 0, and generate the shrsi if s > 0. Then, the shri and final add must be
generated.

For  handling a negative divisor can be avoided by simply returning
a precomputed result for  and  and using  =

 for other negative divisors. However, that program would not be signifi-
cantly shorter, if at all, than the one given in Figure 10–1.

q 2p d⁄ 2W,<=
0 r d ,<

2W 1– 1,–

d r.–=
1 d( )

2p

nc
-------- .>

2p nc⁄
2p 2 nc d d 2W 1– ,–=

nc 2W 1–– 1+= p 2W 2,–= 2p nc⁄ 22W 2– 2W 1– 1–( )⁄ 2W

W 3
rem 2p d,( ).

2p nc⁄ 2W 1–

2p d rem 2p d,( )–+
d

--------------------------------------------------- 2p

d
----- 1+ q 1.+= =

2p nc⁄ >
2p nc⁄ 2p nc⁄

d 2W 2– 1+=
2p nc⁄

q1 < q1 = r1 0=&( ). | 

W 32,=
d 3= d 715,827,883,= m d–( )

m d( )–
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10–7  Miscellaneous Topics

THEOREM DC2. The least multiplier m is odd if p is not forced to equal W.

Proof. Assume that Equations (1a) and (1b) are satisfied with least (not
forced) integer p, and m even. Then clearly m could be divided by 2 and p could

struct ms {int M;      // Magic number
          int s;};       // and shift amount.

struct ms magic(int d) {   // Must have 2 <= d <= 2**31-1
       // or   -2**31 <= d <= -2.

   int p;
   unsigned ad, anc, delta, q1, r1, q2, r2, t;
   const unsigned two31 = 0x80000000;     // 2**31.
   struct ms mag;

   ad = abs(d);
   t = two31 + ((unsigned)d >> 31);
   anc = t - 1 - t%ad;     // Absolute value of nc.
   p = 31;          // Init. p.
   q1 = two31/anc;     // Init. q1 = 2**p/|nc|.
   r1 = two31 - q1*anc;  // Init. r1 = rem(2**p, |nc|).
   q2 = two31/ad;     // Init. q2 = 2**p/|d|.
   r2 = two31 - q2*ad;   // Init. r2 = rem(2**p, |d|).
   do {
      p = p + 1;
      q1 = 2*q1;     // Update q1 = 2**p/|nc|.
      r1 = 2*r1;    // Update r1 = rem(2**p, |nc|).
      if (r1 >= anc) {     // (Must be an unsigned
         q1 = q1 + 1;      // comparison here.)
         r1 = r1 - anc;}
      q2 = 2*q2;      // Update q2 = 2**p/|d|.
      r2 = 2*r2;    // Update r2 = rem(2**p, |d|).
      if (r2 >= ad) {      // (Must be an unsigned
         q2 = q2 + 1;      // comparison here.)
         r2 = r2 - ad;}
      delta = ad - r2;
   } while (q1 < delta || (q1 == delta && r1 == 0));

   mag.M = q2 + 1;
   if (d < 0) mag.M = -mag.M; // Magic number and
   mag.s = p - 32;      // shift amount to return.
   return mag;
}

FIGURE 10–1.  Computing the magic number for signed division.
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be decreased by 1, and (1a) and (1b) would still be satisfied. This contradicts the
assumption that p is minimal.

Uniqueness
The magic number for a given divisor is sometimes unique (e.g., for 

), but often it is not. In fact, experimentation suggests that it is usually not
unique. For example, for  there are four magic numbers:

Nevertheless, there is the following uniqueness property:

THEOREM DC3. For a given divisor d, there is only one multiplier m hav-
ing the minimal value of p, if p is not forced to equal W.

Proof. First consider the case  The difference between the upper and
lower limits of inequality (4) is  We have already proved (7) that if p is
minimal, then  Therefore, there can be at most two values of m satis-
fying (4). Let m be the smaller of these values, given by (5); then  is the
other.

Let  be the least value of p for which  satisfies the right half of (4)
(  is not forced to equal W). Then

This simplifies to

Dividing by 2 gives

Because  (by Theorem D5 on page 184),

contradicting the assumption that  is minimal.
The proof for  is similar and will not be given.

W 32,=
d 7=

W 32, d 6,= =

M      715,827,883   232 2+( ) 6⁄( ),            s 0= =
M   1,431,655,766   232 2+( ) 3⁄( ),            s 1= =
M 1,431,655,765   233 1+( ) 3⁄ 232–( ),   s– 2= =
M 1,431,655,764   233 4+( ) 3⁄ 232–( ),   s– 2.= =

d 0.>
2p dnc.⁄

2p dnc⁄ 2.≤
m 1+

p0 m 1+
p0

2p0 d rem 2p0 d,( )–+
d

------------------------------------------------ 1+ 2p0

d
-------

nc 1+
nc

--------------.<

2p0 nc 2d rem 2p0 d,( )–( ).>

2p0 1– nc d 1
2
---rem 2p0 d,( )–⎝ ⎠

⎛ ⎞ .>

rem 2p0 d,( ) 2rem 2po 1– d,( )≤

2p0 1– nc d rem 2p0 1– d,( )–( ),>

p0
d 0<
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The Divisors with the Best Programs
The program for  is particularly short, because there is no add or
shrsi after the mulhs. What other divisors have this short program?

We consider only positive divisors. We wish to find integers m and p that sat-
isfy Equations (1a) and (1b), and for which  and  Because
any integers m and p that satisfy equations (1a) and (1b) must also satisfy (4), it
suffices to find those divisors d for which (4) has a solution with  and

 All solutions of (4) with  are given by

Combining this with the right half of (4) and simplifying gives

(21)

The weakest restriction on  is with  and nc at its minimal value
of  Hence, we must have

that is, d divides   or 
Now let us see which of these factors actually have optimal programs.
If d divides  then  Then a solution of (6) is

 because the inequality becomes

which is obviously true, because  Then in the calculation of m we have

which is less than  for  (  because d divides ). Hence, all
the factors of  have optimal programs.

Similarly, if d divides  then  Again, a solution of
(6) is  because the inequality becomes

which is obviously true. Then in the calculation of m we have

d 3, W 32= =

p W= 0 m 2W 1– .<

p W=
0 m 2W 1– .< p W=

m 2W kd rem 2W d,( )–+
d

---------------------------------------------------,  k 1 2 3 …., , ,==

rem 2W d,( ) kd 2W

nc
------.–>

rem 2W d,( ) k 1=
2W 2– .

rem 2W d,( ) d 4;–>

2W 1,+ 2W 2,+ 2W 3.+

2W 1,+ rem 2W d,( ) d 1.–=
p W,=

2W nc d d 1–( )–( )> nc,=

nc 2W 1– .<

m 2W d d 1–( )–+
d

--------------------------------------- 2W 1+
d

----------------,= =

2W 1– d 3 d 2 2W 1+
2W 1+

2W 2,+ rem 2W d,( ) d 2.–=
p W,=

2W nc d d 2–( )–( )> 2nc,=

m 2W d d 2–( )–+
d

--------------------------------------- 2W 2+
d

----------------,= =
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which exceeds  for  but which is less than or equal to 
for  (the case  and  does not occur, because 3 is not a
factor of ). Hence all factors of  except for 2 and the cofactor
of 2, have optimal programs. (The cofactor of 2 is  which is not rep-
resentable as a W-bit signed integer).

If d divides  the following argument shows that d does not have an
optimal program. Because  inequality (21) implies that we
must have

for some k = 1, 2, 3, …. The weakest restriction is with  so we must have

From (3a),  or  Hence, it is necessary that

Also, because 2, 3, and 4 do not divide  the smallest possible factor of
 is 5. Therefore, the largest possible factor is  Thus, if d

divides  and d has an optimal program, it is necessary that

Taking reciprocals of this with respect to  shows that the cofactor of d,
 has the limits

For  this implies that the only possible cofactors are 5 and 6. For  it
is easily verified that there are no factors of  Because 6 cannot be a factor
of  the only possibility is 5. Therefore, the only possible factor of 
that might have an optimal program is 

For

For

2W 1– 1– d 2,= 2W 1– 1–
W 3, d 3 W 3= d 3=

23 2+ 10= 2W 2,+
2W 2+( ) 2⁄ ,

2W 3,+
rem 2W d,( ) d 3,–=

nc
2W

kd d– 3+
------------------------<

k 1,=
nc 2W 3.⁄<

nc 2W 1– d,– d 2W 1– nc.–

d 2W 1– 2W

3
------–> 2W

6
------.=

2W 3,+
2W 3+ 2W 3+( ) 5.⁄

2W 3+

2W

6
------ d< 2W 3+

5
----------------.

2W 3+
2W 3+( ) d⁄ ,

5 2W 3+
d

---------------- 2W 3+( ) 6
2W

----------------------------< 6 18
2W
------ .+=

W 5, W 5,<
2W 3.+

2W 3,+ 2W 3+
2W 3+( ) 5.⁄

d 2W 3+( ) 5⁄ ,=

nc
2W 1–

2W 3+( ) 5⁄
---------------------------- 2W 3+

5
---------------- 1.–=

W 4,

2 2W 1–

2W 3+( ) 5⁄
---------------------------- 2.5,< <
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so

This exceeds  so  does not have an optimal program.
Because for  there are no factors of  we conclude that no factors of

 have optimal programs.
In summary, all the factors of  and of  except for 2 and

 have optimal programs, and no other numbers do. Furthermore, the
above proof shows that algorithm magic (Figure 10–1 on page 223) always pro-
duces the optimal program when it exists.

Let us consider the specific cases  and 64. The relevant factor-
izations are shown below.

The result for  is that there are 20 divisors that have optimal pro-
grams. The ones less than 100 are 3, 6, 9, 11, 18, 22, 33, 66, and 99.

For  there are six such divisors: 3, 6, 641, 6,700,417, 715,827,883,
and 1,431,655,766.

For  there are 126 such divisors. The ones less than 100 are 3, 6, 9,
18, 19, 27, 38, 43, 54, 57, and 86.

10–8  Unsigned Division
Unsigned division by a power of 2 is, of course, implemented by a single shift
right logical instruction, and remainder by and immediate.

It might seem that handling other divisors will be simple: Just use the results
for signed division with  omitting the two instructions that add 1 if the quo-
tient is negative. We will see, however, that some of the details are actually more
complicated in the case of unsigned division.

Unsigned Division by 3
For a non-power of 2, let us first consider unsigned division by 3 on a 32-bit
machine. Because the dividend n can now be as large as  the multiplier

 is inadequate, because the error term  (see “divide by 3”

nc 2 2W 3+
5

---------------- 1.–=

2W 3⁄( ), d 2W 3+( ) 5⁄=
W 4< 2W 3,+

2W 3+
2W 1+ 2W 2,+

2W 2+( ) 2⁄ ,

W 16, 32,=

216 1+ 65537 (prime) = 232 1+ 641 6,700,417=
216 2+ 2 32 11 331= 232 2+ 2 3 715,827,883=

264 1+ 274,177 67,280,421,310,721=
           264 2+ 2 33 19 43 5419 77,158,673,929=

W 16=

W 32,=

W 64,=

d 0,>

232 1,–
232 2+( ) 3⁄ 2n 3 232⁄
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example above) can exceed 1/3. However, the multiplier  is adequate.
The code is

      li    M,0xAAAAAAAB  Load magic number, (2**33+1)/3.
      mulhu q,M,n         q = floor(M*n/2**32).
      shri  q,q,1

      muli  t,q,3         Compute remainder from
      sub   r,n,t         r = n - q*3.

An instruction that gives the high-order 32 bits of a 64-bit unsigned product is
required, which we show above as mulhu.

To see that the code is correct, observe that it computes

For   so by Theorem D4, 
In computing the remainder, the multiply immediate can overflow if we

regard the operands as signed integers, but it does not overflow if we regard them
and the result as unsigned. Also, the subtract cannot overflow, because the result
is in the range 0 to 2, so the remainder is correct.

Unsigned Division by 7
For unsigned division by 7 on a 32-bit machine, the multipliers 

 and  are all inadequate, because they give too large an
error term. The multiplier  is acceptable, but it’s too large to represent
in a 32-bit unsigned word. We can multiply by this large number by multiplying by

 and then correcting the product by inserting an add. The code is

      li    M,0x24924925  Magic num, (2**35+3)/7 - 2**32. 
      mulhu q,M,n         q = floor(M*n/2**32). 
      add   q,q,n         Can overflow (sets carry). 
      shrxi q,q,3         Shift right with carry bit.
 
      muli  t,q,7         Compute remainder from 
      sub   r,n,t         r = n - q*7. 

Here we have a problem: The add can overflow. To allow for this, we have
invented the new instruction shift right extended immediate (shrxi), which treats
the carry from the add and the 32 bits of register q as a single 33-bit quantity, and
shifts it right with 0-fill. On the Motorola 68000 family, this can be done with two
instructions: rotate with extend right one position, followed by a logical right shift
of two (roxr actually uses the X bit, but the add sets the X bit the same as the
carry bit). On most machines, it will take more. For example, on PowerPC it takes

233 1+( ) 3⁄

q 233 1+
3---------------- n

233------- n
3---

n
3 233⋅
---------------+ .= =

0 n≤ 232,< 0 n 3 233⋅( )⁄≤ 1 3⁄ ,< q n 3⁄ .=

232 3+( ) 7,⁄
233 6+( ) 7,⁄ 234 5+( ) 7⁄

235 3+( ) 7⁄

235 3+( ) 7⁄ 232–
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three instructions: clear rightmost three bits of q, add carry to q, and rotate right
three positions.

With shrxi implemented somehow, the code above computes

For   so by Theorem D4, 
Granlund and Montgomery [GM] have a clever scheme for avoiding the

shrxi instruction. It requires the same number of instructions as the above three-
instruction sequence for shrxi, but it employs only elementary instructions that
almost any machine would have, and it does not cause overflow at all. It uses the
identity

Applying this to our problem, with  where  the
subtraction will not overflow, because

so that, clearly,  Also, the addition will not overflow, because

and
Using this idea gives the following code for unsigned division by 7:

      li    M,0x24924925  Magic num, (2**35+3)/7 - 2**32.
      mulhu q,M,n      q = floor(M*n/2**32).
      sub   t,n,q         t = n - q.
      shri  t,t,1         t = (n - q)/2.
      add   t,t,q   t = (n - q)/2 + q = (n + q)/2.
      shri  q,t,2     q = (n+Mn/2**32)/8 = floor(n/7).

      muli  t,q,7      Compute remainder from
      sub   r,n,t         r = n - q*7.

For this to work, the shift amount for the hypothetical shrxi instruction
must be greater than 0. It can be shown that if  and the multiplier 
(so that the shrxi instruction is needed), then the shift amount is greater than 0.

q 235 3+
7

---------------- 232– n
232
------- n+ 23⁄ n

7
--- 3n

7 235
---------------+ .= =

0 n 232,< 0 3n 7 235( )⁄ 1 7,⁄< q n 7⁄ .=

q n+
2p------------ n q–

2
------------ q+ 2p 1–⁄ , p 1.=

q Mn 232⁄= 0 M 232,<

0 q Mn
232
-------- n,=

0 n q– 232.<

n q–
2

------------ q+ n q–
2

------------ q+ n q+
2

------------ ,= =

0 n q, 232.<

d 1> m 232
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10–9  Unsigned Division by Divisors  1
Given a word size  and a divisor d,  we wish to find the least
integer m and integer p such that

(22)

with  and 
In the unsigned case, the magic number M is given by

Because (22) must hold for   or

(23)

As in the signed case, let nc be the largest value of n such that  =
 It can be calculated from  =  Then

(24a)

and

(24b)

These imply that 
Because (22) must hold for 

or

Combining this with (23) gives

(25)

Because m is to be the least integer satisfying (25), it is the next integer
greater than or equal to —that is,

W 1 1 d 2W,<

mn
2p------- n

d
---    for  0 n 2W,<=

0 m 2W 1+< p W.

M m,           if  0 m 2W,<

m 2W,  if  2W m 2W 1+ .<–
=

n d,= md 2p⁄ 1,=

md
2p------- 1.

rem nc d,( )
d 1.– nc 2W d⁄ d 1–= 2W rem 2W d,( )– 1.–

2W d– nc 2W 1,–

nc d 1.–

nc 2W 1– .
n nc,=

mnc

2p
---------

nc
d
-----

nc d 1–( )–
d

---------------------------,= =

mnc

2p---------
nc 1+

d
--------------.<

2p

d
----- m 2p

d
-----

nc 1+
nc

--------------.<

2p d⁄
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Combining this with the right half of (25) and simplifying gives

The Algorithm (Unsigned)
Thus, the algorithm is to find by trial and error the least  satisfying (27).
Then, m is calculated from (26). This is the smallest possible value of m satisfying
(22) with  As in the signed case, if (27) is true for some value of p, then it
is true for all larger values of p. The proof is essentially the same as that of
Theorem DC1, except Theorem D5(b) is used instead of Theorem D5(a).

Proof That the Algorithm Is Feasible (Unsigned)
We must show that (27) always has a solution and that 

Because for any nonnegative integer x there is a power of 2 greater than x and
less than or equal to  from (27),

Because

(28)

Because this becomes

or

(29)

Thus, (27) always has a solution.
If p is not forced to equal W, then from (25) and (28),

(26)

(27)

m 2p d 1– rem 2p 1– d,( )–+
d

---------------------------------------------------------------.=

2p nc d 1– rem 2p 1– d,( )–( ).>

p W

p W.

0 m 2W 1+ .<

2x 1,+

nc d 1– rem 2p 1 d,–( )–( ) 2p< 2nc d 1– rem 2p 1 d,–( )–( ) 1.+

0 rem 2p 1– d,( ) d 1,–

1 2p 2nc d 1–( ) 1.+

nc d, 2W 1,–

1 2p 2 2W 1–( ) 2W 2–( ) 1,+

0 p 2W.

1
d
--- m

2nc d 1–( ) 1+
d

-----------------------------------
nc 1+

nc
--------------,<

1 m
2d 2– 1 nc⁄+

d
--------------------------------- nc 1+( ),<

1 m 2 nc 1+( )< 2W 1+ .
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If p is forced to equal W, then from (25),

Because  and 

In either case m is within limits for the code schema illustrated by the “unsigned
divide by 7” example.

Proof That the Product Is Correct (Unsigned)
We must show that if p and m are calculated from (27) and (26), then (22) is
satisfied.

Equation (26) and inequality (27) are easily seen to imply (25). Inequality
(25) is nearly the same as (4), and the remainder of the proof is nearly identical to
that for signed division with 

10–10  Incorporation into a Compiler (Unsigned)
There is a difficulty in implementing an algorithm based on direct evaluation of the
expressions used in this proof. Although  which is proved above, the case

 can occur (e.g., for  with ). When  it is diffi-
cult to calculate m, because the dividend in (26) does not fit in a 2W-bit word.

However, it can be implemented by the “incremental division and remainder”
technique of algorithm magic. The algorithm is given in Figure 10–2 for

 It passes back an indicator a, which tells whether or not to generate an
add instruction. (In the case of signed division, the caller recognizes this by M and
d having opposite signs.)

Some key points in understanding this algorithm are as follows:

• Unsigned overflow can occur at several places and should be ignored.

•
• The quotient and remainder of dividing  by nc cannot be updated in the 

same way as is done in algorithm magic, because here the quantity 2*r1
can overflow. Hence, the algorithm has the test “if (r1 >= nc - r1),”
whereas “if (2*r1 >= nc)” would be more natural. A similar remark 
applies to computing the quotient and remainder of  divided by d.

•  so  is representable as a 32-bit unsigned integer.

2W

d
------ m 2W

d
------

nc 1+
nc

--------------.<

1 d 2W 1– nc 2W 1– ,

2W

2W 1–
--------------- m 2W

1
------ 2W 1– 1+

2W 1–
----------------------,<

2 m 2W 1.+

n 0.

p 2W,
p 2W= d 2W 2–= W 4 p 2W,=

W 32.=

nc 2W rem 2W d,( )– 1– 2W 1–( ) rem 2W d– d,( ).–= =

2p

2p 1–

0 d 1,–
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struct mu {unsigned M;     // Magic number,
          int a;           // “add” indicator,
          int s;};         // and shift amount.

struct mu magicu(unsigned d) {
                           // Must have 1 <= d <= 2**32-1.
   int p, gt = 0
   unsigned nc, delta, q1, r1, q2, r2;
   struct mu magu;

   magu.a = 0;             // Initialize “add” indicator.
   nc = -1 - (-d)%d;       // Unsigned arithmetic here.
   p = 31;                 // Init. p.
   q1 = 0x80000000/nc;     // Init. q1 = 2**p/nc.
   r1 = 0x80000000 - q1*nc;// Init. r1 = rem(2**p, nc).
   q2 = 0x7FFFFFFF/d;      // Init. q2 = (2**p - 1)/d.
   r2 = 0x7FFFFFFF - q2*d; // Init. r2 = rem(2**p - 1, d).
   do {
      p = p + 1;
      if (q1 >= 0x80000000) gt = 1; // Means q1 > delta.
      if (r1 >= nc - r1) {
         q1 = 2*q1 + 1;             // Update q1.
         r1 = 2*r1 - nc;}           // Update r1.
      else {
         q1 = 2*q1;
         r1 = 2*r1;}
      if (r2 + 1 >= d - r2) {
         if (q2 >= 0x7FFFFFFF) magu.a = 1;
         q2 = 2*q2 + 1;             // Update q2.
         r2 = 2*r2 + 1 - d;}        // Update r2.
      else {
         if (q2 >= 0x80000000) magu.a = 1;
         q2 = 2*q2;
         r2 = 2*r2 + 1;}
      delta = d - 1 - r2;
   } while (gt == 0 &&
           (q1 < delta || (q1 == delta && r1 == 0)));

   magu.M = q2 + 1;        // Magic number
   magu.s = p - 32;        // and shift amount to return
   return magu;            // (magu.a was set above).
}

FIGURE 10–2.  Computing the magic number for unsigned division.
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•
• The subtraction of  when the magic number M exceeds  is not 

explicit in the program; it occurs if the computation of q2 overflows.

• The “add” indicator, magu.a, cannot be set by a straightforward compar-
ison of M to  or of q2 to  because of overflow. Instead, the 
program tests q2 before overflow can occur. If q2 ever gets as large as 

 so that M will be greater than or equal to  then magu.a is set 
equal to 1. If q2 stays below  then magu.a is left at its initial 
value of 0.

• Inequality (27) is equivalent to 

• The loop test needs the condition p < 64, because without it, overflow of q1
would cause the program to loop too many times, giving incorrect results.

To use the results of this program, the compiler should generate the li and
mulhu instructions and, if the “add” indicator a = 0, generate the shri of s (if
s > 0), as illustrated by the example of “Unsigned Division by 3,” on page 227. If
a = 1 and the machine has the shrxi instruction, the compiler should generate the
add and shrxi of s as illustrated by the example of “Unsigned Division by 7,” on
page 228. If a = 1 and the machine does not have the shrxi instruction, use the
example on page 229: generate the sub, the shri of 1, the add, and finally the
shri of s – 1 (if s – 1 > 0; s will not be 0 at this point except in the trivial case of
division by 1, which we assume the compiler deletes).

10–11  Miscellaneous Topics (Unsigned)

THEOREM DC2U. The least multiplier m is odd if p is not forced to
equal W.

THEOREM DC3U. For a given divisor d, there is only one multiplier m
having the minimal value of p, if p is not forced to equal W.

The proofs of these theorems follow very closely the corresponding proofs
for signed division. 

The Divisors with the Best Programs (Unsigned)
For unsigned division, to find the divisors (if any) with optimal programs of two
instructions to obtain the quotient (li, mulhu), we can do an analysis similar to
that of the signed case (see “The Divisors with the Best Programs” on page 225).
The result is that such divisors are the factors of  or  except for 
For the common word sizes, this leaves very few nontrivial divisors that have
optimal programs for unsigned division. For  there are none. For

m 2p d 1– rem 2p 1– d,( )–+( ) d⁄ 2p 1–( ) d⁄ 1+ q2 1.+= = =

2W 2W 1–

232, 232 1,–

232 1,– 232,
232 1,–

2p nc⁄ .>

2W 2W 1,+ d 1.=

W 16,=
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 there are only two: 641 and 6,700,417. For  again there are
only two: 274,177 and 67,280,421,310,721.

The case  deserves special mention. In this case, algo-
rithm magicu produces  (forced),  This is the minimal value
of m, but it is not the minimal value of M. Better code results if  is
used, if sufficient simplifications are done. Then,   
and . The generated code involves a multiplication by 0 and can be simpli-
fied to a single shift right k instruction. As a practical matter, divisors that are
a power of 2 would probably be special-cased without using magicu. (This
phenomenon does not occur for signed division, because for signed division m
cannot be a power of 2. Proof: For  inequality (4) combined with (3b)
implies that  Therefore,  cannot be an integer. For 
the result follows similarly from (16) combined with (15b).)

For unsigned division, the code for the case  is considerably worse
than the code for the case  if the machine does not have shrxi. It is of
interest to have some idea of how often the large multipliers arise. For 
among the integers less than or equal to 100, there are 31 “bad” divisors: 1, 7, 14,
19, 21, 27, 28, 31, 35, 37, 38, 39, 42, 45, 53, 54, 55, 56, 57, 62, 63, 70, 73, 74, 76,
78, 84, 90, 91, 95, and 97.

Using Signed in Place of Unsigned Multiply, and the Reverse
If your machine does not have mulhu, but it does have mulhs (or signed long
multiplication), the trick given in “High-Order Product Signed from/to
Unsigned,” on page 174, might make our method of doing unsigned division by a
constant still useful.

That section gives a seven-instruction sequence for getting mulhu from
mulhs. However, for this application it simplifies, because the magic number M
is known. Thus, the compiler can test the most significant bit of the magic num-
ber, and generate code such as the following for the operation “mulhu q,M,n.”
Here t denotes a temporary register.

           M31 = 0           M31 = 1
         mulhs q,M,n       mulhs q,M,n
         shrsi t,n,31      shrsi t,n,31
         and   t,t,M       and   t,t,M
         add   q,q,t       add   t,t,n
                           add   q,q,t

Accounting for the other instructions used with mulhu, this uses a total of six
to eight instructions to obtain the quotient of unsigned division by a constant on a
machine that does not have unsigned multiply.

This trick can be inverted, to get mulhs in terms of mulhu. The code is the
same as that above, except the mulhs is changed to mulhu and the final add in
each column is changed to sub.

W 32,= W 64,=

d 2k, k 1 2 …,, ,= =
p W= m 232 k– .=

p W k+=
m 2W,= M 0,= a 1,=

s k=

d 0,>
d 1– 2p m⁄ d.< < 2p m⁄ d 0,<

m 2W

m 2W<
W 32,=



ptg8736757

236 INTEGER DIVISION BY CONSTANTS 10–11

A Simpler Algorithm (Unsigned)
Dropping the requirement that the magic number be minimal yields a simpler
algorithm. In place of (27) we can use

(30)

and then use (26) to compute m, as before.
It should be clear that this algorithm is formally correct (that is, that the value of

m computed does satisfy Equation (22)), because its only difference from the previ-
ous algorithm is that it computes a value of p that, for some values of d, is unneces-
sarily large. It can be proved that the value of m computed from (30) and (26) is
less than  We omit the proof and simply give the algorithm (Figure 10–3).

struct mu {unsigned M;     // Magic number,
          int a;         // “add” indicator,
          int s;};        // and shift amount.

struct mu magicu2(unsigned d) {
       // Must have 1 <= d <= 2**32-1.

   int p;
   unsigned p32, q, r, delta;
   struct mu magu;
   magu.a = 0;      // Initialize “add” indicator.
   p = 31;          // Initialize p.
   q = 0x7FFFFFFF/d;   // Initialize q = (2**p - 1)/d.
   r = 0x7FFFFFFF - q*d; // Init. r = rem(2**p - 1, d).
   do {
      p = p + 1;
      if (p == 32) p32 = 1;     // Set p32 = 2**(p-32).
      else p32 = 2*p32;
      if (r + 1 >= d - r) {
         if (q >= 0x7FFFFFFF) magu.a = 1;
         q = 2*q + 1;           // Update q.
         r = 2*r + 1 - d;       // Update r.
      }
      else {
         if (q >= 0x80000000) magu.a = 1;
         q = 2*q;
         r = 2*r + 1;
      }
      delta = d - 1 - r;
   } while (p < 64 && p32 < delta);
   magu.M = q + 1;       // Magic number and
   magu.s = p - 32;        // shift amount to return
   return magu;     // (magu.a was set above).
}

FIGURE 10–3.  Simplified algorithm for computing the magic number, unsigned division.

2p 2W d 1– rem 2p 1– d,( )–( ),

2W 1+ .
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Alverson [Alv] gives a much simpler algorithm, discussed in the next section,
but it gives somewhat large values for m. The point of algorithm magicu2 is that it
nearly always gives the minimal value for m when  For  the
smallest divisor for which magicu2 does not give the minimal multiplier is d =
102,807, for which magicu calculates m = 2,737,896,999 and magicu2 calculates
m = 5,475,793,997.

There is an analog of magicu2 for signed division by positive divisors, but it
does not work out very well for signed division by arbitrary divisors.

10–12  Applicability to Modulus and Floor Division
It might seem that turning modulus or floor division by a constant into multiplica-
tion would be simpler, in that the “add 1 if the dividend is negative” step could be
omitted. This is not the case. The methods given above do not apply in any obvi-
ous way to modulus and floor division. Perhaps something could be worked out; it
might involve altering the multiplier m slightly, depending upon the sign of the
dividend.

10–13  Similar Methods
Rather than coding algorithm magic, we can provide a table that gives the magic
numbers and shift amounts for a few small divisors. Divisors equal to the tabu-
lated ones multiplied by a power of 2 are easily handled as follows:

1. Count the number of trailing 0’s in d, and let this be denoted by k.

2. Use as the lookup argument  (shift right k).

3. Use the magic number found in the table. 

4. Use the shift amount found in the table, increased by k.

Thus, if the table contains the divisors 3, 5, 25, and so on, divisors of 6, 10, 100,
and so forth can be handled.

This procedure usually gives the smallest magic number, but not always. The
smallest positive divisor for which it fails in this respect for  is d =
334,972, for which it computes m = 3,361,176,179 and s = 18. However, the min-
imal magic number for d = 334,972 is m = 840,294,045, with s = 16. The proce-
dure also fails to give the minimal magic number for  In both these cases,
output code quality is affected.

Alverson [Alv] is the first known to the author to state that the method
described here works with complete accuracy for all divisors. Using our notation,
his method for unsigned integer division by d is to set the shift amount

 and the multiplier  and then do the division by
 (that is, multiply and shift right). He proves that the multiplier

m is less than  and that the method gets the exact quotient for all n express-
ible in W bits.

d 2W 1– . W 32,=

d 2k⁄

W 32=

d 6.–=

p W log2 d ,+= m 2p d⁄ ,=
n d÷ mn 2p⁄=

2W 1+
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Alverson’s method is a simpler variation of ours in that it doesn’t require trial
and error to determine p, and is therefore more suitable for building in hardware,
which is his primary interest. His multiplier m is always greater than or equal to

 and hence for the software application always gives the code illustrated by
the “unsigned divide by 7” example (that is, always has the add and shrxi, or
the alternative four instructions). Because most small divisors can be handled with
a multiplier less than  it seems worthwhile to look for these cases.

For signed division, Alverson suggests finding the multiplier for  and a
word length of  (then ), multiplying the dividend by it, and
negating the result if the operands have opposite signs. (The multiplier must be
such that it gives the correct result when the dividend is  the absolute value
of the maximum negative number.) It seems possible that this suggestion might
give better code than what has been given here in the case that the multiplier

 Applying it to signed division by 7 gives the following code, where we
have used the relation  to avoid a branch:

      abs   an,n
      li    M,0x92492493  Magic number, (2**34+5)/7.
      mulhu q,M,an      q = floor(M*an/2**32).
      shri  q,q,2
      shrsi t,n,31      These three instructions
      xor   q,q,t       negate q if n is
      sub   q,q,t         negative.

This is not quite as good as the code we gave for signed division by 7 (six
versus seven instructions), but it would be useful on a machine that has abs and
mulhu, but not mulhs.

The next section gives some representative magic numbers.

10–14  Sample Magic Numbers 

TABLE 10–1.  SOME MAGIC NUMBERS FOR W = 32

Signed Unsigned

d M (hex) s M (hex) a s

–5 99999999 1

–3 55555555 1

–2k 7FFFFFFF k–1

1 – – 0 1 0

2k 80000001 k–1 232–k 0 0

3 55555556 0 AAAAAAAB 0 1

2W,

2W,
d

W 1– 2W 1– m 2W<

2W 1– ,

m 2W.
x– x 1+=

continues
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5 66666667 1 CCCCCCCD 0 2

6 2AAAAAAB 0 AAAAAAAB 0 2

7 92492493 2 24924925 1 3

9 38E38E39 1 38E38E39 0 1

10 66666667 2 CCCCCCCD 0 3

11 2E8BA2E9 1 BA2E8BA3 0 3

12 2AAAAAAB 1 AAAAAAAB 0 3

25 51EB851F 3 51EB851F 0 3

125 10624DD3 3 10624DD3 0 3

625 68DB8BAD 8 D1B71759 0 9

TABLE 10–2.  SOME MAGIC NUMBERS FOR W = 64

Signed Unsigned

d M (hex) s M (hex) a s

–5 9999999999999999 1

–3 5555555555555555 1

–2k 7FFFFFFFFFFFFFFF k–1

1 – – 0 1 0

2k 8000000000000001 k–1 264–k 0 0

3 5555555555555556 0 AAAAAAAAAAAAAAAB 0 1

5 6666666666666667 1 CCCCCCCCCCCCCCCD 0 2

6 2AAAAAAAAAAAAAAB 0 AAAAAAAAAAAAAAAB 0 2

7 4924924924924925 1 2492492492492493 1 3

9 1C71C71C71C71C72 0 E38E38E38E38E38F 0 3

10 6666666666666667 2 CCCCCCCCCCCCCCCD 0 3

11 2E8BA2E8BA2E8BA3 1 2E8BA2E8BA2E8BA3 0 1

12 2AAAAAAAAAAAAAAB 1 AAAAAAAAAAAAAAAB 0 3

25 A3D70A3D70A3D70B 4 47AE147AE147AE15 1 5

125 20C49BA5E353F7CF 4 0624DD2F1A9FBE77 1 7

625 346DC5D63886594B 7 346DC5D63886594B 0 7

TABLE 10–1.  SOME MAGIC NUMBERS FOR W = 32, continued

Signed Unsigned

d M (hex) s M (hex) a s
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10–15  Simple Code in Python
Computing a magic number is greatly simplified if one is not limited to doing the
calculations in the same word size as that of the environment in which the magic
number will be used. For the unsigned case, for example, in Python it is straight-
forward to compute  and then evaluate Equations (27) and (26), as described in
Section 10–9. Figure 10–4 shows such a function.

The function is given the maximum value of the dividend nmax and the divi-
sor d. It returns a pair of integers: the magic number m and a shift amount p. To
divide a dividend x by d, one multiplies x by m and then shifts the (full length)
product right p bits.

This program is more general than the others in this chapter in two ways: (1)
one specifies the maximum value of the dividend (nmax), rather than the number
of bits required for the dividend, and (2) the program can be used for arbitrarily
large dividends and divisors (“bignums”). The advantage of specifying the maxi-
mum value of the dividend is that one sometimes gets a smaller magic number than
would be obtained if the next power of two less 1 were used for the maximum
value. For example, suppose the maximum value of the dividend is 90, and the
divisor is 7. Then function magicgu returns (37, 8), meaning that the magic num-
ber is 37 (a 6-bit number) and the shift amount is 8. But if we asked for a magic
number that can handle divisors up to 127, then the result is (147, 10), and 147 is
an 8-bit number.

10–16  Exact Division by Constants
By “exact division,” we mean division in which it is known beforehand, some-
how, that the remainder is 0. Although this situation is not common, it does arise,
for example, when subtracting two pointers in the C language. In C, the result of

 where p and q are pointers, is well defined and portable only if p and q
point to objects in the same array [H&S, sec. 7.6.2]. If the array element size is s,
the object code for the difference  computes 

The material in this section was motivated by [GM, sec. 9].

def magicgu(nmax, d):
   nc = ((nmax + 1)//d*d - 1
   nbits = len(bin(nmax)) - 2
   for p in range(0, 2*nbits + 1):
      if 2**p > nc*(d - 1 - (2**p - 1)%d):
         m = (2**p + d - 1 - (2**p - 1)%d)//d
         return (m, p)
   print "Can't find p, something is wrong."
   sys.exit(1)

FIGURE 10–4. Python code for computing the magic number for unsigned division.

nc

p q,–

p q– p q–( ) s⁄ .
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The method to be given applies to both signed and unsigned exact division,
and is based on the following theorem.

THEOREM MI. If a and m are relatively prime integers, then there exists
an integer  such that

That is,  is a multiplicative inverse of a, modulo m. There are several ways
to prove this theorem; three proofs are given in [NZM, p. 52]. The proof below
requires only a very basic familiarity with congruences.

Proof. We will prove something a little more general than the theorem. If a
and m are relatively prime (therefore nonzero), then as x ranges over all m distinct
values modulo m, ax takes on all m distinct values modulo m. For example, if

 and , then as x ranges from 0 to 7, ax = 0, 3, 6, 9, 12, 15, 18, 21 or,
reduced modulo 8, ax = 0, 3, 6, 1, 4, 7, 2, 5. Observe that all values from 0 to 7 are
present in the last sequence.

To see this in general, assume that it is not true. Then there exist distinct inte-
gers that map to the same value when multiplied by a; that is, there exist x and y,
with  such that

Then there exists an integer k such that

Because a has no factor in common with m, it must be that  is a multiple of
m; that is,

This contradicts the hypothesis.
Now, because ax takes on all m distinct values modulo m, as x ranges over the

m values, it must take on the value 1 for some x.
The proof shows that there is only one value (modulo m) of x such that

—that is, the multiplicative inverse is unique, apart from addi-
tive multiples of m. It also shows that there is a unique (modulo m) integer x such
that where b is any integer.

As an example, consider the case  Then  because 3 11 = 33
 1 (mod 16). We could just as well take  because 3 (–5) = –15  1 (mod

16). Similarly,  because (–3) 5 = –15  1 (mod 16).

a ,   1 a m,<

aa 1  (mod m).

a

a 3= m 8=

x y/  (mod m),

ax ay  (mod m).

ax ay– km,   or=
a x y–( ) km.=

x y–

x y  (mod m).

ax 1  (mod m)

ax b  (mod m),
m 16.= 3 11,=

3 5,–=
3– 5,=
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These observations are important because they show that the concepts apply
to both signed and unsigned numbers. If we are working in the domain of
unsigned integers on a 4-bit machine, we take  In the domain of signed
integers, we take  But 11 and –5 have the same representation in two’s-
complement (because they differ by 16), so the same computer word contents can
serve in both domains as the multiplicative inverse.

The theorem applies directly to the problem of division (signed and unsigned)
by an odd integer d on a W-bit computer. Because any odd integer is relatively
prime to  the theorem says that if d is odd, there exists an integer  (unique in
the range 0 to  or in the range  to ) such that

Hence, for any integer n that is a multiple of d,

In other words,  can be calculated by multiplying n by  and retaining only
the rightmost W bits of the product.

If the divisor d is even, let  where  is odd and  Then,
simply shift n right k positions (shifting out 0’s), and then multiply by  (the
shift could be done after the multiplication as well).

Below is the code for division of n by 7, where n is a multiple of 7. This code
gives the correct result whether it is considered to be signed or unsigned division.

      li    M,0xB6DB6DB7  Mult. inverse, (5*2**32 + 1)/7.
      mul   q,M,n         q = n/7.

Computing the Multiplicative Inverse by the Euclidean Algorithm
How can we compute the multiplicative inverse? The standard method is by
means of the “extended Euclidean algorithm.” This is briefly discussed below as it
applies to our problem, and the interested reader is referred to [NZM, p. 13] and to
[Knu2, 4.5.2] for a more complete discussion.

Given an odd divisor d, we wish to solve for x

,

where, in our application,  and W is the word size of the machine. This
will be accomplished if we can solve for integers x and y (positive, negative, or 0)
the equation

3 11.=
3 5.–=

2W, d
2W 1– 2W 1–– 2W 1– 1–

dd 1  (mod 2W).

n
d
--- n

d
--- dd( ) nd  (mod 2W).

n d⁄ d,

d do 2k,= do k 1.
do

dx 1  (mod m)

m 2W=

dx my+ 1.=



ptg8736757

10–16 EXACT DIVISION BY CONSTANTS 243

Toward this end, first make d positive by adding a sufficient number of multi-
ples of m to it. (d and  have the same multiplicative inverse.) Second, write
the following equations (in which ):

If , we are done, because (ii) shows that  Otherwise, compute

Third, multiply Equation (ii) by q and subtract it from (i). This gives

This equation holds because we have simply multiplied one equation by a con-
stant and subtracted it from another. If  we are done; this last
equation is the solution and 

Repeat this process on the last two equations, obtaining a fourth, and continue
until the right-hand side of the equation is 1. The multiplier of d, reduced modulo
m, is then the desired inverse of d.

Incidentally, if  so that the first quotient is 0, then the third row will
be a copy of the first, so that the second quotient will be nonzero. Furthermore,
most texts start with the first row being

but in our application  is not representable in the machine.
The process is best illustrated by an example: Let  and 

Then the calculation proceeds as follows. To get the third row, note that q =
 = 35.

     7(-1) + 256( 1) = 249
                   7( 1) + 256( 0) = 7
                  7(-36) + 256( 1) = 4
                  7( 37) + 256(-1) = 3
                  7(-73) + 256( 2) = 1

Thus, the multiplicative inverse of 7, modulo 256, is –73 or, expressed in the
range 0 to 255, is 183. Check: 7 183 = 

From the third row on, the integers in the right-hand column are all remainders
of dividing the number above it into the number two rows above it, so they form a
sequence of strictly decreasing nonnegative integers. Therefore, the sequence must
end in 0 (as the above would if carried one more step). Furthermore, the value just
before the 0 must be 1, for the following reason. Suppose the sequence ends in b

d km+
d m 0>,

d 1–( ) m 1( )+ m d     (i)–=
d 1( ) m 0( )+ d.          (ii)=

d 1= x 1.=

q m d–
d

------------- .=

d 1– q–( ) m 1( )+ m d– qd– rem m d– d,( ).= =

rem m d– d,( ) 1,=
x 1– q.–=

m d– d,<

d 0( ) m 1( )+ m,=

m 2W=
m 256= d 7.=

249 7⁄

1281 1 (mod 256).
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followed by 0, with  Then, the integer preceding the b must be a multiple of
b, let’s say  for the next remainder to be 0. The integer preceding  must be
of the form  for the next remainder to be b. Continuing up the sequence,
every number must be a multiple of b, including the first two (in the positions of
the 249 and the 7 in the above example). This is impossible, because the first two
integers are  and d, which are relatively prime.

This constitutes an informal proof that the above process terminates, with a
value of 1 in the right-hand column, and hence it finds the multiplicative
inverse of d.

To carry this out on a computer, first note that if  we should add  to
it. With two’s-complement arithmetic it is not necessary to actually do anything
here; simply interpret d as an unsigned number, regardless of how the application
interprets it.

The computation of q must use unsigned division.
Observe that the calculations can be done modulo m, because this does not

change the right-hand column (these values are in the range 0 to  anyway).
This is important, because it enables the calculations to be done in “single preci-
sion,” using the computer’s modulo-  unsigned arithmetic.

Most of the quantities in the table need not be represented. The column of
multiples of 256 need not be represented, because in solving  we do
not need the value of y. There is no need to represent d in the first column.
Reduced to its bare essentials, then, the calculation of the above example is car-
ried out as follows:

                         255  249
                           1    7

         220    4
                          37    3

         183    1

A C program for performing this computation is shown in Figure 10–5.

unsigned mulinv(unsigned d) {       // d must be odd.
   unsigned x1, v1, x2, v2, x3, v3, q;

   x1 = 0xFFFFFFFF;     v1 = -d;
   x2 = 1;              v2 = d;
   while (v2 > 1) {
      q = v1/v2;
      x3 = x1 - q*x2;   v3 = v1 - q*v2;
      x1 = x2;          v1 = v2;
      x2 = x3;          v2 = v3;
   }
   return x2;
}

FIGURE 10–5.  Multiplicative inverse modulo 232 by the Euclidean algorithm.

b 1.
k1b, k1b
k1k2b b,+

m d–

d 0,< 2W

m 1–
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dx my+ 1,=
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The reason the loop continuation condition is (v2 > 1), rather than the more
natural (v2 != 1), is that if the latter condition were used, the loop would never
terminate if the program were invoked with an even argument. It is best that pro-
grams not loop forever even if misused. (If the argument d is even, v2 never takes
on the value 1, but it does become 0.)

What does the program compute if given an even argument? As written, it
computes a number x such that  which is probably not useful.
However, with the minor modification of changing the loop continuation condition
to (v2 != 0) and returning x1 rather than x2, it computes a number x such that

 where g is the greatest common divisor of d and —that is,
the greatest power of 2 that divides d. The modified program still computes the
multiplicative inverse of d for d odd, but it requires one more iteration than the
unmodified program.

As for the number of iterations (divisions) required by the above program, for
d odd and less than 20, it requires a maximum of 3 and an average of 1.7. For d in
the neighborhood of 1000, it requires a maximum of 11 and an average of about 6.

Computing the Multiplicative Inverse by Newton’s Method
It is well known that, over the real numbers, 1/d, for  can be calculated to
ever-increasing accuracy by iteratively evaluating

(31)

provided the initial estimate x0 is sufficiently close to 1/d. The number of digits of
accuracy approximately doubles with each iteration.

It is not so well known that this same formula can be used to find the multipli-
cative inverse modulo any power of 2!. For example, to find the multiplicative
inverse of 3, modulo 256, start with  (any odd number will do). Then,

The iteration has reached a fixed point modulo 256, so –85, or 171, is the multipli-
cative inverse of 3 (modulo 256). All calculations can be done modulo 256.

Why does this work? Because if  satisfies

and if  is defined by (31), then

dx 0  (mod 232),

dx g  (mod 232), 232

d 0,

xn 1+ xn 2 dxn–( ),=

x0 1=

x1 1 2 3 1–( ) 1,–= =

x2 1 2 3 1–( )–( )– 5,–= =

x3 5 2 3 5–( )–( )– 85,–= =

x4 85 2 3 85–( )–( )– 21845– 85  (mod 256).–= =

xn

dxn 1  (mod m)

xn 1+

dxn 1+ 1  (mod m2).
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To see this, let  Then

In our application, m is a power of 2, say  In this case, if

In a sense, if xn is regarded as a sort of approximation to  then each iteration of
(31) doubles the number of bits of “accuracy” of the approximation.

It happens that modulo 8, the multiplicative inverse of any (odd) number d is
d itself. Thus, taking  is a reasonable and simple initial guess at  Then,
(31) will give values of x1, x2, …, such that

Thus, four iterations suffice to find the multiplicative inverse modulo  (if
 then  for ). This leads to the C program

in Figure 10–6, in which all computations are done modulo 
For about half the values of d, this program takes 4.5 iterations, or nine multi-

plications. For the other half (those for which the initial value of xn is “correct to
4 bits”—that is,  it takes seven or fewer, usually seven, multi-
plications. Thus, it takes about eight multiplications on average.

unsigned mulinv(unsigned d) {     // d must be odd.
   unsigned xn, t;

   xn = d;
loop: t = d*xn;
      if (t == 1) return xn;
      xn = xn*(2 - t);
      goto loop;
}

FIGURE 10–6.  Multiplicative inverse modulo 232 by Newton’s method.

dxn 1 km.+=

dxn 1+ dxn 2 dxn–( )=

1 km+( ) 2 1 km+( )–( )=
1 km+( ) 1 km–( )=

1 k2m2–=
  1 (mod m2).

2N.

dxn 1  (mod 2N),  then

dxn 1+ 1  (mod 22N).

d,

x0 d= d.

dx1 1  (mod 26),

dx2 1  (mod 212),

dx3 1  (mod 224),

dx4 1  (mod 248), and so on.

232

x 1  (mod 248), x 1  (mod 2n) n 48
232.

d2 1  (mod 16)),
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A variation is to simply execute the loop four times, regardless of d, perhaps
“strung out” to eliminate the loop control (eight multiplications). Another varia-
tion is to somehow make the initial estimate x0 “correct to 4 bits” (that is, find x0
that satisfies  Then, only three loop iterations are required.
Some ways to set the initial estimate are

Here, the multiplication by 2 is a left shift, and the computations are done modulo
 (ignoring overflow). Because the second formula uses a multiplication, it

saves only one.
This concern about execution time is, of course, totally unimportant for the

compiler application. For that application, the routine would be so seldom used
that it should be coded for minimum space. But there may be applications in
which it is desirable to compute the multiplicative inverse quickly.

The “Newton method” described here applies only when (1) the modulus is
an integral power of some number a, and (2) the multiplicative inverse of d modulo
a is known. It works particularly well for a = 2, because then the multiplicative
inverse of any (odd) number d modulo 2 is known immediately—it is 1.

Sample Multiplicative Inverses
We conclude this section with a listing of some multiplicative inverses in Table 10–3.

TABLE 10–3.  SAMPLE MULTIPLICATIVE INVERSES

(dec)
mod 16

(dec)
mod 232

(hex)
mod 264

(hex)

–7 –7 49249249 9249249249249249

–5 3 33333333 3333333333333333

–3 5 55555555 5555555555555555

–1 –1 FFFFFFFF FFFFFFFFFFFFFFFF

1 1 1 1

3 11 AAAAAAAB AAAAAAAAAAAAAAAB

5 13 CCCCCCCD CCCCCCCCCCCCCCCD

7 7 B6DB6DB7 6DB6DB6DB6DB6DB7

9 9 38E38E39 8E38E38E38E38E39

11 3 BA2E8BA3 2E8BA2E8BA2E8BA3

13 5 C4EC4EC5 4EC4EC4EC4EC4EC5

15 15 EEEEEEEF EEEEEEEEEEEEEEEF

continues

dx0 1  (mod 16)).

x0 d 2 d 1+( ) 4&( ),   and+

x0 d2 d 1.–+

232

d d
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You may notice that in several cases (d = 3, 5, 9, 11), the multiplicative
inverse of d is the same as the magic number for unsigned division by d (see Sec-
tion 10–14, “Sample Magic Numbers,” on page 238). This is more or less a coin-
cidence. It happens that for these numbers, the magic number M is equal to the
multiplier m, and these are of the form  with  In this case,
notice that

so that 

10–17  Test for Zero Remainder after Division by a Constant
The multiplicative inverse of a divisor d can be used to test for a zero remainder
after division by d [GM].

Unsigned
First, consider unsigned division with the divisor d odd. Denote by  the multipli-
cative inverse of d. Then, because  where W is the machine’s
word size in bits,  is also odd. Thus,  is relatively prime to  and as shown
in the proof of theorem MI in the preceding section, as n ranges over all  dis-
tinct values modulo   takes on all  distinct values modulo 

It was shown in the preceding section that if n is a multiple of d,

That is, for n = 0, d, 2d, …,    0, 1, 2, …, 
(mod ). Therefore, for n not a multiple of d, the value of  reduced modulo

 to the range 0 to  must exceed 
This can be used to test for a zero remainder. For example, to test if an integer

n is a multiple of 25, multiply n by  and compare the rightmost W bits to
 On our basic RISC:

25 C28F5C29 8F5C28F5C28F5C29

125 26E978D5 1CAC083126E978D5

625 3AFB7E91 D288CE703AFB7E91

TABLE 10–3.  SAMPLE MULTIPLICATIVE INVERSES, continued

(dec)
mod 16

(dec)
mod 232

(hex)
mod 264

(hex)

d d

2p 1+( ) d⁄ , p 32.

Md 2p 1+
d

-------------- d 1  (mod 232),=

M d  (mod 232).

d
dd 1(mod 2W),

d d 2W,
2W

2W, nd 2W 2W.

n
d
--- nd  (mod 2W).

2W 1–( ) d⁄ d, nd 2W 1–( ) d⁄
2W nd,

2W 2W 1,– 2W 1–( ) d⁄ .

25
2W 1–( ) 25⁄ .
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      li     M,0xC28F5C29  Load mult. inverse of 25.
      mul    q,M,n      q = right half of M*n.
      li     c,0x0A3D70A3  c = floor((2**32-1)/25).
      cmpleu t,q,c     Compare q and c, and branch
      bt     t,is_mult     if n is a multiple of 25.

To extend this to even divisors, let  where  is odd and 
Then, because an integer is divisible by d if and only if it is divisible by  and by

 and because n and  have the same number of trailing zeros (  is odd),
the test that n is a multiple of d is

where the mod function is understood to reduce  to the interval 
Direct implementation of this requires two tests and conditional branches, but

it can be reduced to one compare-branch quite efficiently if the machine has the
rotate-shift instruction. This follows from the following theorem, in which 
denotes the computer word a rotated right k positions ( ).

THEOREM ZRU.  and x ends in k 0-bits if and only if 

Proof. (Assume a 32-bit machine.) Suppose  and x ends in k 0-bits.
Then, because   But  Therefore,

If x does not end in k 0-bits, then  does not begin with k
0-bits, whereas  does, so  Lastly, if  and x ends in
k 0-bits, then the integer formed from the first  bits of x must exceed that
formed from the first  bits of a, so that 

Using this theorem, the test that n is a multiple of d, where n and  are
unsigned integers and  with  odd, is

Here we used  = 

As an example, the following code tests an unsigned integer n to see if it is a
multiple of 100:

      li     M,0xC28F5C29  Load mult. inverse of 25.
      mul    q,M,n      q = right half of M*n.
      shrri  q,q,2      Rotate right two positions.

d do 2k,= do k 1.
do

2k, ndo do

Set q mod ndo 2W,( );=

q 2W 1–( ) do⁄  and q ends in k or more 0-bits,

ndo 0 2W 1–,[ ].

a k>>
rot

0 k 32

x au x k>>
rot a 2k⁄ .u

x au

x a,u x 2k⁄ a 2k⁄ .u x 2k⁄ x k>>
rot .=

x k>>
rot a 2k⁄ .u x k>>

rot

a 2k⁄ x k>>
rot a 2k⁄ .>u x a>u

32 k–
32 k– x 2k⁄ a 2k⁄ .>u

d 1
d do 2k= do

q mod ndo 2W,( );

q k>>
rot 2W 1–( ) d⁄ .u

2W 1–( ) do⁄ 2k⁄ 2W 1–( ) do 2k( )⁄= 2W 1–( ) d⁄ .

continues



ptg8736757

250 INTEGER DIVISION BY CONSTANTS 10–17

      li     c,0x028F5C28  c = floor((2**32-1)/100).
      cmpleu t,q,c     Compare q and c, and branch
      bt     t,is_mult     if n is a multiple of 100.

Signed, Divisor  2
For signed division, it was shown in the preceding section that if n is a multiple of
d and d is odd, then

Thus, for  we have 
  Furthermore, because
 is relatively prime to  as n ranges over all  distinct values modulo 

 takes on all  distinct values modulo  Therefore, n is a multiple of d if
and only if

where the mod function is  understood to reduce  to the interval

This can be simplified a little by observing that because d is odd and, as we
are assuming, positive and not equal to 1, it does not divide  Therefore,

Thus, for signed numbers, the test that n is a multiple of d, where   and
 is odd, is

On the surface, this would seem to require three tests and branches. However, as
in the unsigned case, it can be reduced to one compare-branch by use of the fol-
lowing theorem:

THEOREM ZRS. If  the following assertions are equivalent:

where  is a with its rightmost k bits set to 0 (that is, ).

n
d
--- nd  (mod 2W).

n 2W 1–– d⁄ d,…, d– ,0 d …, 2W 1– 1–( ) d⁄ d,, ,= nd
2W 1–– d⁄ ,…, 1– ,0 1 …, 2W 1– 1–( ) d⁄   (mod 2W)., ,

d 2W, 2W 2W,
nd 2W 2W.

2W 1–– d⁄ mod nd 2W,( ) 2W 1– 1–( ) d⁄ ,

nd
2W 1–– 2W 1– 1–,[ ].

2W 1– .

2W 1–– d⁄ 2W 1–– 1+( ) d⁄ 2W 1– 1–( ) d⁄  .–= =

d do 2k=
do

Set q mod ndo 2W,( );=
2W 1– 1–( ) do⁄– q 2W 1– 1–( ) do⁄  and q ends in k or more 0-bits.

a 0,

(1) a– x a and x ends in k or more 0-bits,

(2)  abs x( ) k>>
rot a 2k⁄ , andu

(3) x a+ k>>
rot 2a 2k⁄ ,u

a a a 2k–&=
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Proof. (Assume a 32-bit machine). To see that (1) is equivalent to (2), clearly
the assertion  is equivalent to  Then, Theorem ZRU
applies, because both sides of this inequality are nonnegative.

To see that (1) is equivalent to (3), note that assertion (1) is equivalent to itself
with a replaced with  Then, by the theorem on bounds checking on page 68,
this in turn is equivalent to

Because  ends in k 0-bits if and only if x does, Theorem ZRU applies, giv-
ing the result.

Using part (3) of this theorem, the test that n is a multiple of d, where n and
 are signed integers and  with  odd, is

(  can be computed at compile time, because d is a constant.)
As an example, the following code tests a signed integer n to see if it is a mul-

tiple of 100. Notice that the constant  can always be derived from the
constant  by a shift of  bits, saving an instruction or a load from memory
to develop the comparand.

      li     M,0xC28F5C29  Load mult. inverse of 25.
      mul    q,M,n      q = right half of M*n.
      li     c,0x051EB850  c = floor((2**31 - 1)/25) & -4.
      add    q,q,c         Add c.
      shrri  q,q,2      Rotate right two positions.
      shri   c,c,1      Compute const. for comparison.
      cmpleu t,q,c      Compare q and c, and
      bt     t,is_mult    branch if n is a mult. of 100.

10–18  Methods Not Using Multiply High
In this section we consider some methods for dividing by constants that do not use
the multiply high instruction, or a multiplication instruction that gives a double-
word result. We show how to change division by a constant into a sequence of shift
and add instructions, or shift, add, and multiply for more compact code.

Unsigned Division
For these methods, unsigned division is simpler than signed division, so we deal
with unsigned division first. One method is to use the techniques given that use the

a– x a abs x( ) a.

a .

x a+ 2a .u

x a+

d 2 d do 2k= do

q mod ndo 2W,( );

a 2W 1– 1–( ) do⁄ 2k;–&

q a+ k>>
rot 2a( ) 2k⁄ .u

a

2a 2k⁄
a k 1–
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multiply high instruction, but use the code shown in Figure 8–2 on page 174 to do
the multiply high operation. Figure 10–7 shows how this works out for the case of
(unsigned) division by 3. This is a combination of the code on page 228 and
Figure 8–2 with “int” changed to “unsigned.” The code is 15 instructions,
including four multiplications. The multiplications are by large constants and
would take quite a few instructions if converted to shift’s and add’s. Very similar
code can be devised for the signed case. This method is not particularly good and
won’t be discussed further.

Another method [GLS1] is to compute in advance the reciprocal of the divisor,
and multiply the dividend by that with a series of shift right and add instructions.
This gives an approximation to the quotient. It is merely an approximation,
because the reciprocal of the divisor (which we assume is not an exact power of
two) is not expressed exactly in 32 bits, and also because each shift right discards
bits of the dividend. Next, the remainder with respect to the approximate quotient
is computed, and that is divided by the divisor to form a correction, which is added
to the approximate quotient, giving the exact quotient. The remainder is generally
small compared to the divisor (a few multiples thereof), so there is often a simple
way to compute the correction without using a divide instruction.

To illustrate this method, consider dividing by 3, that is, computing 
where  The reciprocal of 3, in binary, is approximately

0.0101 0101 0101 0101 0101 0101 0101 0101.

To compute the approximate product of that and n, we could use

(32)

(29 instructions; the last 1 in the reciprocal is ignored because it would add the
term  which is obviously 0). However, the simple repeating pattern of 1’s

unsigned divu3(unsigned n) {
   unsigned n0, n1, w0, w1, w2, t, q;

   n0 = n & 0xFFFF;
   n1 = n >> 16;
   w0 = n0*0xAAAB;
   t  = n1*0xAAAB + (w0 >> 16);
   w1 = t & 0xFFFF;
   w2 = t >> 16;
   w1 = n0*0xAAAA + w1;
   q = n1*0xAAAA + w2 + (w1 >> 16);
   return q >> 1;
}

FIGURE 10–7.  Unsigned divide by 3 using simulated multiply high unsigned.

n 3⁄
0 n 232.<

q n 2>>
u( ) n 4>>

u( ) n 6>>
u( ) … n 30>>

u( )+ + + +

n 32,>>
u
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and 0’s in the reciprocal permits a method that is both faster (nine instructions) and
more accurate:

(1)

To compare these methods for their accuracy, consider the bits that are shifted
out by each term of (32), if n is all 1-bits. The first term shifts out two 1-bits, the
next four 1-bits, and so on. Each of these contributes an error of almost 1 in the least
significant bit. Since there are 16 terms (counting the term we ignored), the shifts
contribute an error of almost 16. There is an additional error due to the fact that the
reciprocal is truncated to 32 bits; it turns out that the maximum total error is 16. 

For procedure (1), each right shift also contributes an error of almost 1 in the
least significant bit. But there are only five shift operations. They contribute an
error of almost 5, and there is a further error due to the fact that the reciprocal is
truncated to 32 bits; it turns out that the maximum total error is 5.

After computing the estimated quotient q, the remainder r is computed from

The remainder cannot be negative, because q is never larger than the exact quo-
tient. We need to know how large r can be to devise the simplest possible method
for computing  In general, for a divisor d and an estimated quotient q too low
by k, the remainder will range from  to  (The upper limit is con-
servative; it may not actually be attained.) Thus, using (1), for which q is too low
by at most 5, we expect the remainder to be at most 5*3 + 2 = 17. Experimentation
reveals that it is actually at most 15. Thus, for the correction we must compute
(exactly)

Since r is small compared to the largest value that a register can hold, this can
be approximated by multiplying r by some approximation to 1/3 of the form a/b
where b is a power of 2. This is easy to compute, because the division is simply a
shift. The value of a/b must be slightly larger than 1/3, so that after shifting the
result will agree with truncated division. A sequence of such approximations is:

1/2, 2/4, 3/8, 6/16, 11/32, 22/64, 43/128, 86/256, 171/512, 342/1024, ….

q n 2>>u( ) n 4>>
u( )+

q q q 4>>
u( )+

q q q 8>>
u( )+

q q q 16>>
u( )+

r n q 3.*–

r 3.÷u

k d* k d* d 1.–+

r 3÷u ,    for 0 r 15.
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Usually, the smaller fractions in the sequence are easier to compute, so we
choose the smallest one that works; in the case at hand this is 11/32. Therefore, the
final, exact, quotient is given by

The solution involves two multiplications by small numbers (3 and 11); these
can be changed to shift’s and add’s.

Figure 10–8 shows the entire solution in C. As shown, it consists of 14 instruc-
tions, including two multiplications. If the multiplications are changed to shift’s
and add’s, it amounts to 18 elementary instructions. However, if it is desired to
avoid the multiplications, then either alternative return statement shown gives a
solution in 17 elementary instructions. Alternative 2 has just a little instruction-
level parallelism, but in truth this method generally has very little of that.

A more accurate estimate of the quotient can be obtained by changing the first
executable line to

   q = (n >> 1) + (n >> 3);

(which makes q too large by a factor of 2, but it has one more bit of accuracy), and
then inserting just before the assignment to r,

   q = q >> 1;

With this variation, the remainder is at most 9. However, there does not seem to be
any better code for calculating  with r limited to 9 than there is for r limited to
15 (four elementary instructions in either case). Thus, using the idea would cost
one instruction. This possibility is mentioned because it does give a code improve-
ment for most divisors.

unsigned divu3(unsigned n) {
   unsigned q, r;

   q = (n >> 2) + (n >> 4);     // q = n*0.0101 (approx).
   q = q + (q >> 4);        // q = n*0.01010101.
   q = q + (q >> 8);
   q = q + (q >> 16);
   r = n - q*3;         // 0 <= r <= 15.
   return q + (11*r >> 5);      // Returning q + r/3.
// return q + (5*(r + 1) >> 4);         // Alternative 1.
// return q + ((r + 5 + (r << 2)) >> 4);// Alternative 2.
}

FIGURE 10–8. Unsigned divide by 3.

q q 11 r* 5>>
u( ).+

r 3÷u
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Figure 10–9 shows two variations of this method for dividing by 5. The recip-
rocal of 5, in binary, is

0.0011 0011 0011 0011 0011 0011 0011 0011.

As in the case of division by 3, the simple repeating pattern of 1’s and 0’s allows a
fairly efficient and accurate computing of the quotient estimate. The estimate of
the quotient computed by the code on the left can be off by at most 5, and it turns
out that the remainder is at most 25. The code on the right retains two additional
bits of accuracy in computing the quotient estimate, which is off by at most 2. The
remainder in this case is at most 10. The smaller maximum remainder permits
approximating 1/5 by 7/32 rather than 13/64, which gives a slightly more efficient
program if the multiplications are done by shift’s and add’s. The instruction counts
are, for the code on the left: 14 instructions including two multiplications, or 18
elementary instructions; for the code on the right: 15 instructions including two
multiplications, or 17 elementary instructions. The alternative code in the return
statement is useful only if your machine has comparison predicate instructions. It
doesn’t reduce the instruction count, but merely has a little instruction-level
parallelism.

For division by 6, the divide-by-3 code can be used, followed by a shift right
of 1. However, the extra instruction can be saved by doing the computation
directly, using the binary approximation

4/6  0.1010 1010 1010 1010 1010 1010 1010 1010.

The code is shown in Figure 10–10. The version on the left multiplies by an
approximation to 1/6 and then corrects with a multiplication by 11/64. The version
on the right takes advantage of the fact that by multiplying by an approximation to
4/6, the quotient estimate is off by only 1 at most. This permits simpler code for the

unsigned divu5a(unsigned n) {
   unsigned q, r;

   q = (n >> 3) + (n >> 4);
   q = q + (q >> 4);
   q = q + (q >> 8);
   q = q + (q >> 16);
   r = n - q*5;
   return q + (13*r >> 6);
}

unsigned divu5b(unsigned n) {
   unsigned q, r;

   q = (n >> 1) + (n >> 2);
   q = q + (q >> 4);
   q = q + (q >> 8);
   q = q + (q >> 16);
   q = q >> 2;
   r = n - q*5;
   return q + (7*r >> 5);
// return q + (r>4) + (r>9);
}

FIGURE 10–9. Unsigned divide by 5.
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correction; it simply adds 1 to q if r  6. The code in the second return statement
is appropriate if the machine has the comparison predicate instructions. Function
divu6b is 15 instructions, including one multiply, as shown, or 17 elementary
instructions if the multiplication by 6 is changed to shift’s and add’s.

For larger divisors, usually it seems to be best to use an approximation to 1/d
that is shifted left so that its most significant bit is 1. It seems that the quotient is
then off by at most 1 usually (possibly always, this writer does not know), which
permits efficient code for the correction step. Figure 10–11 shows code for divid-
ing by 7 and 9, using the binary approximations

If the multiplications by 7 and 9 are expanded into shift’s and add’s, these functions
take 16 and 15 elementary instructions, respectively.

unsigned divu6a(unsigned n) {
   unsigned q, r;

   q = (n >> 3) + (n >> 5);
   q = q + (q >> 4);
   q = q + (q >> 8);
   q = q + (q >> 16);
   r = n - q*6;
   return q + (11*r >> 6);
}

unsigned divu6b(unsigned n) {
   unsigned q, r;

   q = (n >> 1) + (n >> 3);
   q = q + (q >> 4);
   q = q + (q >> 8);
   q = q + (q >> 16);
   q = q >> 2;
   r = n - q*6;
   return q + ((r + 2) >> 3);
// return q + (r > 5);
}

FIGURE 10–10. Unsigned divide by 6.

unsigned divu7(unsigned n) {
   unsigned q, r;

   q = (n >> 1) + (n >> 4);
   q = q + (q >> 6);
   q = q + (q>>12) + (q>>24);
   q = q >> 2;
   r = n - q*7;
   return q + ((r + 1) >> 3);
// return q + (r > 6);
}

unsigned divu9(unsigned n) {
   unsigned q, r;

   q = n - (n >> 3);
   q = q + (q >> 6);
   q = q + (q>>12) + (q>>24);
   q = q >> 3;
   r = n - q*9;
   return q + ((r + 7) >> 4);
// return q + (r > 8);
}

FIGURE 10–11. Unsigned divide by 7 and 9.

4 7⁄ 0.1001 0010 0100 1001 0010 0100 1001 0010,   and
8 9⁄ 0.1110 0011 1000 1110 0011 1000 1110 0011.
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Figures 10–12 and 10–13 show code for dividing by 10, 11, 12, and 13. These
are based on the binary approximations:

If the multiplications are expanded into shift’s and add’s, these functions take 17,
20, 17, and 20 elementary instructions, respectively.

The case of dividing by 13 is instructive because it shows how you must look
for repeating strings in the binary expansion of the reciprocal of the divisor. The
first assignment sets q equal to n*0.1001. The second assignment to q adds
n*0.00001001 and n*0.000001001. At this point, q is (approximately) equal to
n*0.100111011. The third assignment to q adds in repetitions of this pattern. It

unsigned divu10(unsigned n) {
   unsigned q, r;

   q = (n >> 1) + (n >> 2);
   q = q + (q >> 4);
   q = q + (q >> 8);
   q = q + (q >> 16);
   q = q >> 3;
   r = n - q*10;
   return q + ((r + 6) >> 4);
// return q + (r > 9);
}

unsigned divu11(unsigned n) {
   unsigned q, r;

   q = (n >> 1) + (n >> 2) -
       (n >> 5) + (n >> 7);
   q = q + (q >> 10);
   q = q + (q >> 20);
   q = q >> 3;
   r = n - q*11;
   return q + ((r + 5) >> 4);
// return q + (r > 10);

FIGURE 10–12. Unsigned divide by 10 and 11.

unsigned divu12(unsigned n) {
   unsigned q, r;

   q = (n >> 1) + (n >> 3);
   q = q + (q >> 4);
   q = q + (q >> 8);
   q = q + (q >> 16);
   q = q >> 3;
   r = n - q*12;
   return q + ((r + 4) >> 4);
// return q + (r > 11);
}

unsigned divu13(unsigned n) {
   unsigned q, r;

   q = (n>>1) + (n>>4);
   q = q + (q>>4) + (q>>5);
   q = q + (q>>12) + (q>>24);
   q = q >> 3;
   r = n - q*13;
   return q + ((r + 3) >> 4);
// return q + (r > 12);
}

FIGURE 10–13. Unsigned divide by 12 and 13.

8 10⁄ 0.1100 1100 1100 1100 1100 1100 1100 1100,
8 11⁄ 0.1011 1010 0010 1110 1000 1011 1010 0010,
8 12⁄ 0.1010 1010 1010 1010 1010 1010 1010 1010,    and
8 13⁄ 0.1001 1101 1000 1001 1101 1000 1001 1101.
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sometimes helps to use subtraction, as in the case of divu9 above. However, you
must use care with subtraction, because it may cause the quotient estimate to be too
large, in which case the remainder is negative and the method breaks down. It is
quite complicated to get optimal code, and we don’t have a general cookbook
method that you can put in a compiler to handle any divisor.

The examples above are able to economize on instructions, because the recip-
rocals have simple repeating patterns, and because the multiplication in the com-
putation of the remainder r is by a small constant, which can be done with only a
few shift’s and add’s. One might wonder how successful this method is for larger
divisors. To roughly assess this, Figures 10–14 and 10–15 show code for dividing
by 100 and by 1000 (decimal). The relevant reciprocals are

If the multiplications are expanded into shift’s and add’s, these functions take 25
and 23 elementary instructions, respectively.

unsigned divu100(unsigned n) {
   unsigned q, r;

   q = (n >> 1) + (n >> 3) + (n >> 6) - (n >> 10) +
       (n >> 12) + (n >> 13) - (n >> 16);
   q = q + (q >> 20);
   q = q >> 6;
   r = n - q*100;
   return q + ((r + 28) >> 7);
// return q + (r > 99);
}

FIGURE 10–14. Unsigned divide by 100.

unsigned divu1000(unsigned n) {
   unsigned q, r, t;

   t = (n >> 7) + (n >> 8) + (n >> 12);
   q = (n >> 1) + t + (n >> 15) + (t >> 11) + (t >> 14);
   q = q >> 9;
   r = n - q*1000;
   return q + ((r + 24) >> 10);
// return q + (r > 999);
}

FIGURE 10–15. Unsigned divide by 1000.

64 100⁄ 0.1010 0011 1101 0111 0000 1010 0011 1101    and
512 1000⁄ 0.1000 0011 0001 0010 0110 1110 1001 0111.
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In the case of dividing by 1000, the least significant eight bits of the reciprocal
estimate are nearly ignored. The code of Figure 10–15 replaces the binary
1001 0111 with 0100 0000, and still the quotient estimate is within one of the true
quotient. Thus, it appears that although large divisors might have very little repeti-
tion in the binary representation of the reciprocal estimate, at least some bits can be
ignored, which helps hold down the number of shift’s and add’s required to com-
pute the quotient estimate.

This section has shown, in a somewhat imprecise way, how unsigned division
by a constant can be reduced to a sequence of, typically, about 20 elementary
instructions. It is nontrivial to get an algorithm that generates these code sequences
that is suitable for incorporation into a compiler, because of three difficulties in
getting optimal code.

1. It is necessary to search the reciprocal estimate bit string for repeating pat-
terns.

2. Negative terms (as in divu10 and divu100) can be used sometimes, but
the error analysis required to determine just when they can be used is dif-
ficult.

3. Sometimes some of the least significant bits of the reciprocal estimate can
be ignored (how many?).

Another difficulty for some target machines is that there are many variations on the
code examples given that have more instructions, but that would execute faster on
a machine with multiple shift and add units.

The code of Figures 10–7 through 10–15 has been tested for all  values of
the dividends.

Signed Division
The methods given above can be made to apply to signed division. The right shift
instructions in computing the quotient estimate become signed right shift instruc-
tions, which compute floor division by powers of 2. Thus, the quotient estimate is
too low (algebraically), so the remainder is nonnegative, as in the unsigned case.

The code most naturally computes the floor division result, so we need a cor-
rection to make it compute the conventional truncated-toward-0 result. This can be
done with three computational instructions by adding  to the dividend if the
dividend is negative. For example, if the divisor is 6, the code begins with (the shift
here is a signed shift)

   n = n + (n>>31 & 5);

Other than this, the code is very similar to that of the unsigned case. The num-
ber of elementary operations required is usually three more than in the correspond-
ing unsigned division function. Several examples are given in Figures 10–16
through 10–22. All have been exhaustively tested.

232

d 1–
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int divs3(int n) {
   int q, r;

   n = n + (n>>31 & 2);       // Add 2 if n < 0.
   q = (n >> 2) + (n >> 4);     // q = n*0.0101 (approx).
   q = q + (q >> 4);        // q = n*0.01010101.
   q = q + (q >> 8);
   q = q + (q >> 16);
   r = n - q*3;         // 0 <= r <= 14.
   return q + (11*r >> 5);      // Returning q + r/3.
// return q + (5*(r + 1) >> 4);         // Alternative 1.
// return q + ((r + 5 + (r << 2)) >> 4);// Alternative 2.
}

FIGURE 10–16. Signed divide by 3.

int divs5(int n) {
   int q, r;

   n = n + (n>>31 & 4);
   q = (n >> 1) + (n >> 2);
   q = q + (q >> 4);
   q = q + (q >> 8);
   q = q + (q >> 16);
   q = q >> 2;
   r = n - q*5;
   return q + (7*r >> 5);
// return q + (r>4) + (r>9);
}

int divs6(int n) {
   int q, r;

   n = n + (n>>31 & 5);
   q = (n >> 1) + (n >> 3);
   q = q + (q >> 4);
   q = q + (q >> 8);
   q = q + (q >> 16);
   q = q >> 2;
   r = n - q*6;
   return q + ((r + 2) >> 3);
// return q + (r > 5);
}

FIGURE 10–17. Signed divide by 5 and 6.

int divs7(int n) {
   int q, r;

   n = n + (n>>31 & 6);
   q = (n >> 1) + (n >> 4);
   q = q + (q >> 6);
   q = q + (q>>12) + (q>>24);
   q = q >> 2;
   r = n - q*7;
   return q + ((r + 1) >> 3);
// return q + (r > 6);
}

int divs9(int n) {
   int q, r;

   n = n + (n>>31 & 8);
   q = (n >> 1) + (n >> 2) +
       (n >> 3);
   q = q + (q >> 6);
   q = q + (q>>12) + (q>>24);
   q = q >> 3;
   r = n - q*9;
   return q + ((r + 7) >> 4);
// return q + (r > 8);
}

FIGURE 10–18. Signed divide by 7 and 9.
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int divs10(int n) {
   int q, r;

   n = n + (n>>31 & 9);
   q = (n >> 1) + (n >> 2);
   q = q + (q >> 4);
   q = q + (q >> 8);
   q = q + (q >> 16);
   q = q >> 3;
   r = n - q*10;
   return q + ((r + 6) >> 4);
// return q + (r > 9);
}

int divs11(int n) {
   int q, r;

   n = n + (n>>31 & 10);
   q = (n >> 1) + (n >> 2) -
       (n >> 5) + (n >> 7);
   q = q + (q >> 10);
   q = q + (q >> 20);
   q = q >> 3;
   r = n - q*11;
   return q + ((r + 5) >> 4);
// return q + (r > 10);
}

FIGURE 10–19. Signed divide by 10 and 11.

int divs12(int n) {
   int q, r;

   n = n + (n>>31 & 11);
   q = (n >> 1) + (n >> 3);
   q = q + (q >> 4);
   q = q + (q >> 8);
   q = q + (q >> 16);
   q = q >> 3;
   r = n - q*12;
   return q + ((r + 4) >> 4);
// return q + (r > 11);
}

int divs13(int n) {
   int q, r;

   n = n + (n>>31 & 12);
   q = (n>>1) + (n>>4);
   q = q + (q>>4) + (q>>5);
   q = q + (q>>12) + (q>>24);
   q = q >> 3;
   r = n - q*13;
   return q + ((r + 3) >> 4);
// return q + (r > 12);
}

FIGURE 10–20. Signed divide by 12 and 13.

int divs100(int n) {
   int q, r;

   n = n + (n>>31 & 99);
   q = (n >> 1) + (n >> 3) + (n >> 6) - (n >> 10) +
       (n >> 12) + (n >> 13) - (n >> 16);
   q = q + (q >> 20);
   q = q >> 6;
   r = n - q*100;
   return q + ((r + 28) >> 7);
// return q + (r > 99);
}

FIGURE 10–21. Signed divide by 100.
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10–19  Remainder by Summing Digits
This section addresses the problem of computing the remainder of division by a
constant without computing the quotient. The methods of this section apply only to
divisors of the form  for k an integer greater than or equal to 2, and in most
cases the code resorts to a table lookup (an indexed load instruction) after a fairly
short calculation.

We will make frequent use of the following elementary property of congru-
ences:

THEOREM C. If and  then

The unsigned case is simpler and is dealt with first.

Unsigned Remainder
For a divisor of 3, multiplying the trivial congruence  repeatedly by
the congruence  we conclude by Theorem C that

Therefore, a number n written in binary as  satisfies

which is derived by using Theorem C repeatedly. Thus, we can alternately add and
subtract the bits in the binary representation of the number to obtain a smaller

int divs1000(int n) {
   int q, r, t;

   n = n + (n>>31 & 999);
   t = (n >> 7) + (n >> 8) + (n >> 12);
   q = (n >> 1) + t + (n >> 15) + (t >> 11) + (t >> 14) +
       (n >> 26) + (t >> 21);
   q = q >> 9;
   r = n - q*1000;
   return q + ((r + 24) >> 10);
// return q + (r > 999);
}

FIGURE 10–22. Signed divide by 1000.

2k 1,±

a b mod m( ) c d mod m( ),

a c+ b d+ mod m( )   and
ac bd mod m( ).

1 1 (mod 3)
2 1–  (mod 3),

2k 1 mod 3( ), k even,
1– mod 3( ), k odd.

…b3b2b1b0

n …= b3 23 b2 22 b1 2 b0+ + + + … b3– b2 b1– b0+ + mod 3( ),
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number that has the same remainder upon division by 3. If the sum is negative, you
must add a multiple of 3 to make it nonnegative. The process can then be repeated
until the result is in the range 0 to 2.

The same trick works for finding the remainder after dividing a decimal num-
ber by 11.

Thus, if the machine has the population count instruction, a function that com-
putes the remainder modulo 3 of an unsigned number n might begin with

   n = pop(n & 0x55555555) - pop(n & 0xAAAAAAAA);

This can be simplified by using the following surprising identity discovered by
Paolo Bonzini [Bonz]:

(2)

Proof:

Since the references to 32 (the word size) cancel out, the result holds for any word
size. Another way to prove (2) is to observe that it holds for  and if a 0-bit
in x is changed to a 1 where m is 1, then both sides of (2) decrease by 1, and if a 0-
bit of x is changed to a 1 where m is 0, then both sides of (2) increase by 1.

Applying (2) to the line of C code above gives

   n = pop(n ^ 0xAAAAAAAA) - 16;

We want to apply this transformation again, until n is in the range 0 to 2, if possi-
ble. It is best to avoid producing a negative value of n, because the sign bit would
not be treated properly on the next round. A negative value can be avoided by add-
ing a sufficiently large multiple of 3 to n. Bonzini’s code, shown in Figure 10–23,
increases the constant by 39. This is larger than necessary to make n nonnegative,
but it causes n to range from –3 to 2 (rather than –3 to 3) after the second round of
reduction. This simplifies the code on the return statement, which is adding 3 if
n is negative. The function executes in 11 instructions, counting two to load the
large constant.

Figure 10–24 shows a variation that executes in four instructions, plus a sim-
ple table lookup operation (e.g., an indexed load byte instruction).

pop x m&( ) pop x m&( )– pop x m( ) pop m( ).–=

x 0,=
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To avoid the population count instruction, notice that because 
 A binary number can be viewed as a base 4 number by taking its

bits in pairs and interpreting the bits 00 to 11 as a base 4 digit ranging from 0 to 3.
The pairs of bits can be summed using the code of Figure 5–2 on page 82, omitting
the first executable line (overflow does not occur in the additions). The final sum
ranges from 0 to 48, and a table lookup can be used to reduce this to the range 0 to
2. The resulting function is 16 elementary instructions, plus an indexed load.

There is a similar, but slightly better, way. As a first step, n can be reduced to
a smaller number that is in the same congruence class modulo 3 with

   n = (n >> 16) + (n & 0xFFFF);

This splits the number into two 16-bit portions, which are added together. The con-
tribution modulo 3 of the left 16 bits of n is not altered by shifting them right 16
positions, because the shifted number, multiplied by  is the original number,
and  More generally,  if k is even. This is used
repeatedly (five times) in the code shown in Figure 10–25. This code is 19 instruc-
tions. The instruction count can be reduced by cutting off the digit summing earlier
and using an in-memory table lookup, as illustrated in Figure 10–26 (nine instruc-
tions, plus an indexed load). The instruction count can be reduced to six (plus an
indexed load) by using a table of size 0x2FE = 766 bytes.

To compute the unsigned remainder modulo 5, the code of Figure 10–27 uses
the relations  and  It is 21 elementary instruc-
tions, assuming the multiplication by 3 is expanded into a shift and add.

int remu3(unsigned n) {
   n = pop(n ^ 0xAAAAAAAA) + 23;     // Now 23 <= n <= 55.
   n = pop(n ^ 0x2A) - 3;        // Now -3 <= n <= 2.
   return n + (((int)n >> 31) & 3);  // (Signed shift).
}

FIGURE 10–23. Unsigned remainder modulo 3, using population count.

int remu3(unsigned n) {

   static char table[33] = {2, 0,1,2, 0,1,2, 0,1,2,
          0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
          0,1,2, 0,1};

   n = pop(n ^ 0xAAAAAAAA);
   return table[n];
}

FIGURE 10–24. Unsigned remainder modulo 3, using population count and a table lookup.

4 1 (mod 3),
4k 1 (mod 3).

216,
216 1 (mod 3). 2k 1 (mod 3)

16k 1 (mod 5) 4 1 (mod 5).–
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The instruction count can be reduced by using a table, similar to what is done
in Figure 10–26. In fact, the code is identical, except the table is:

   static char table[62] = {0,1,2,3,4, 0,1,2,3,4,
      0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4,
      0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4,
      0,1,2,3,4, 0,1,2,3,4, 0,1};

For the unsigned remainder modulo 7, the code of Figure 10–28 uses the rela-
tion  (nine elementary instructions, plus an indexed load).

As a final example, the code of Figure 10–29 computes the remainder of
unsigned division by 9. It is based on the relation  As shown, it is
nine elementary instructions, plus an indexed load. The elementary instruction
count can be reduced to six by using a table of size 831 (decimal).

int remu3(unsigned n) {
   n = (n >> 16) + (n & 0xFFFF);        // Max 0x1FFFE.
   n = (n >>  8) + (n & 0x00FF);        // Max 0x2FD.
   n = (n >>  4) + (n & 0x000F);        // Max 0x3D.
   n = (n >>  2) + (n & 0x0003);        // Max 0x11.
   n = (n >>  2) + (n & 0x0003);        // Max 0x6.
   return (0x0924 >> (n << 1)) & 3;
}

FIGURE 10–25. Unsigned remainder modulo 3, digit summing and an in-register lookup.

int remu3(unsigned n) {
   static char table[62] = {0,1,2, 0,1,2, 0,1,2, 0,1,2,
       0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
       0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
       0,1,2, 0,1,2, 0,1};

   n = (n >> 16) + (n & 0xFFFF);        // Max 0x1FFFE.
   n = (n >>  8) + (n & 0x00FF);        // Max 0x2FD.
   n = (n >>  4) + (n & 0x000F);        // Max 0x3D.
   return table[n];
}

FIGURE 10–26. Unsigned remainder modulo 3, digit summing and an in-memory lookup.

int remu5(unsigned n) {
   n = (n >> 16) + (n & 0xFFFF);         // Max 0x1FFFE.
   n = (n >>  8) + (n & 0x00FF);          // Max 0x2FD.
   n = (n >>  4) + (n & 0x000F);          // Max 0x3D.
   n = (n>>4) - ((n>>2) & 3) + (n & 3);   // -3 to 6.
   return (01043210432 >> 3*(n + 3)) & 7; // Octal const.
}

FIGURE 10–27. Unsigned remainder modulo 5, digit summing method.

8k 1 (mod 7)

8 1 (mod 9).–
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Signed Remainder
The digit summing method can be adapted to compute the remainder resulting
from signed division. There seems to be no better way than to add a few steps to
correct the result of the method as applied to unsigned division. Two corrections
are necessary: (1) correct for a different interpretation of the sign bit, and (2) add or
subtract a multiple of the divisor d to get the result in the range 0 to 

For division by 3, the unsigned remainder code interprets the sign bit of the
dividend n as contributing 2 to the remainder (because  For
the remainder of signed division, the sign bit contributes only 1 (because

 Therefore, we can use the code for an unsigned remainder
and correct its result by subtracting 1. Then, the result must be put in the range 0 to

 That is, the result of the unsigned remainder code must be mapped as follows:

int remu7(unsigned n) {

   static char table[75] = {0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4};

   n = (n >> 15) + (n & 0x7FFF);        // Max 0x27FFE.
   n = (n >>  9) + (n & 0x001FF);       // Max 0x33D.
   n = (n >>  6) + (n & 0x0003F);       // Max 0x4A.
   return table[n];
}

FIGURE 10–28. Unsigned remainder modulo 7, digit summing method.

int remu9(unsigned n) {

   int r;
   static char table[75] = {0,1,2,3,4,5,6,7,8,
         0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
         0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
         0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,

0,1,2,3,4,5,6,7,8, 0,1,2};

   r = (n & 0x7FFF) - (n >> 15);     // FFFE0001 to 7FFF.
   r = (r & 0x01FF) - (r >> 9);     // FFFFFFC1 to 2FF.
   r = (r & 0x003F) + (r >>  6);     // 0 to 4A.
   return table[r];
}

FIGURE 10–29. Unsigned remainder modulo 9, digit summing method.

d 1–( ).–

231 mod 3 2).=

231–( ) mod 3 1).=

2.–

0 1 2, ,( ) 1 0 1, ,–( ) 1 0 2–, ,–( ).
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This adjustment can be done fairly efficiently by subtracting 1 from the unsigned
remainder if it is 0 or 1, and subtracting 4 if it is 2 (when the dividend is negative).
The code must not alter the dividend n, because it is needed in this last step.

This procedure can easily be applied to any of the functions given for the
unsigned remainder modulo 3. For example, applying it to Figure 10–26 on
page 265 gives the function shown in Figure 10–30. It is 13 elementary instruc-
tions, plus an indexed load. The instruction count can be reduced by using a larger
table.

Figures 10–31 to 10–33 show similar code for computing the signed remain-
der of division by 5, 7, and 9. All the functions consist of 15 elementary operations,
plus an indexed load. They use signed right shifts, and the final adjustment consists
of subtracting the modulus if the dividend is negative and the remainder is non-
zero. The number of instructions can be reduced by using larger tables.

int rems3(int n) {
   unsigned r;
   static char table[62] = {0,1,2, 0,1,2, 0,1,2, 0,1,2,
       0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
       0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2, 0,1,2,
       0,1,2, 0,1,2, 0,1};

   r = n;
   r = (r >> 16) + (r & 0xFFFF);        // Max 0x1FFFE.
   r = (r >>  8) + (r & 0x00FF);        // Max 0x2FD.
   r = (r >>  4) + (r & 0x000F);        // Max 0x3D.
   r = table[r];
   return r - (((unsigned)n >> 31) << (r & 2));
}

FIGURE 10–30. Signed remainder modulo 3, digit summing method.

int rems5(int n) {
   int r;
   static char table[62] = {2,3,4, 0,1,2,3,4, 0,1,2,3,4,
             0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4,
             0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4, 0,1,2,3,4,

   0,1,2,3,4, 0,1,2,3};

   r = (n >> 16) + (n & 0xFFFF);   // FFFF8000 to 17FFE.
   r = (r >>  8) + (r & 0x00FF);   // FFFFFF80 to 27D.
   r = (r >>  4) + (r & 0x000F);   // -8 to 53 (decimal).
   r = table[r + 8];
   return r - (((int)(n & -r) >> 31) & 5);
}

FIGURE 10–31. Signed remainder modulo 5, digit summing method.
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10–20  Remainder by Multiplication and Shifting Right
The method described in this section applies, in principle, to all integer divisors
greater than 2, but as a practical matter only to fairly small divisors and to divisors
of the form  As in the preceding section, in most cases the code resorts to a
table lookup after a fairly short calculation.

Unsigned Remainder
This section uses the mathematical (not computer algebra) notation 
where a and b are integers and  to denote the integer x,  that satis-
fies

int rems7(int n) {
   int r;
   static char table[75] =   {5,6, 0,1,2,3,4,5,6,
     0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
     0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6,
     0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2,3,4,5,6, 0,1,2};

   r = (n >> 15) + (n & 0x7FFF);   // FFFF0000 to 17FFE.
   r = (r >>  9) + (r & 0x001FF);  // FFFFFF80 to 2BD.
   r = (r >>  6) + (r & 0x0003F);  // -2 to 72 (decimal).
   r = table[r + 2];
   return r - (((int)(n & -r) >> 31) & 7);
}

FIGURE 10–32. Signed remainder modulo 7, digit summing method.

int rems9(int n) {
   int r;
   static char table[75] = {7,8, 0,1,2,3,4,5,6,7,8,

  0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
  0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
  0,1,2,3,4,5,6,7,8, 0,1,2,3,4,5,6,7,8,
   0,1,2,3,4,5,6,7,8, 0};

   r = (n & 0x7FFF) - (n >> 15);   // FFFF7001 to 17FFF.
   r = (r & 0x01FF) - (r >>  9);   // FFFFFF41 to 0x27F.
   r = (r & 0x003F) + (r >>  6);   // -2 to 72 (decimal).
   r = table[r + 2];
   return r - (((int)(n & -r) >> 31) & 9);
}

FIGURE 10–33. Signed remainder modulo 9, digit summing method.

2k 1.–

a mod b,
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To compute  observe that

(3)

Proof: Let  where  and k are integers and  Then

Clearly, the value of the last expression is 0, 1, or 2 for  = 0, 1, or 2 respectively.
This allows changing the problem of computing the remainder modulo 3 to one of
computing the remainder modulo 4, which is of course much easier on a binary
computer.

Relations like (3) do not hold for all moduli, but similar relations do hold if the
modulus is of the form  for k an integer greater than 1. For example, it is
easy to show that

For numbers not of the form  there is no such simple relation, but there
is a certain uniqueness property that can be used to compute the remainder for
other divisors. For example, if the divisor is 10 (decimal), consider the expression

(4)

Let  where  Then

For  = 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, the last expression takes on the values 0, 1, 3,
4, 6, 8, 9, 11, 12, and 14 respectively. The latter numbers are all distinct. Therefore,
if we can find a reasonably easy way to compute (4), we can translate 0 to 0, 1 to
1, 3 to 2, 4 to 3, and so on, to obtain the remainder of division by 10. This will gen-
erally require a translation table of size equal to the next power of 2 greater than the
divisor, so the method is practical only for fairly small divisors (and for divisors of
the form  for which table lookup is not required).

The code to be shown was derived by using a little of the above theory and a
lot of trial and error.

Consider the remainder of unsigned division by 3. Following (3), we wish to
compute the rightmost two bits of the integer part of  This can be done
approximately by multiplying by  and then dividing by  using a shift
right instruction. When the multiplication by  is done (using the multiply

n mod 3,

n mod 3 4
3
---n  mod 4.=

n 3k ,+= 0 2.

4
3
--- 3k +( )  mod 4 4k 4

3
------+  mod 4 4

3
------  mod 4.= =

2k 1,–

n mod 7 8
7
---n  mod 8.=

2k 1,–

16
10
------n  mod 16.

n 10k += 0 9.

16
10
------n  mod 16 16

10
------ 10k +( )  mod 16 16

10
---------  mod 16.= =

2k 1,–

4n 3⁄ .
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instruction that gives the low-order 32 bits of the product), high-order bits will be
lost. But that doesn’t matter, and, in fact, it’s helpful, because we want the result mod-
ulo 4. Therefore, because  = 0x55555555, a possible plan is to compute

Experiment indicates that this works for n in the range 0 to  It almost
works, I should say; if n is nonzero and a multiple of 3, it gives the result 3. There-
fore, it must be followed by a translation step that translates (0, 1, 2, 3) to (0, 1, 2,
0) respectively.

To extend the range of applicability, the multiplication must be done more
accurately. Two more bits of accuracy suffice (that is, multiplying by
0x55555555.4). The following calculation, followed by the translation step, works
for all n representable as an unsigned 32-bit integer:

It is, of course, possible to give a formal proof of this, but the algebra is quite
lengthy and error prone.

The translation step can be done in three or four instructions on most
machines, but there is a way to avoid it at a cost of two instructions. The above
expression for computing r estimates low. If you estimate slightly high, the result
is always 0, 1, or 2. This gives the C function shown in Figure 10–34 (eight instruc-
tions, including a multiply).

The multiplication can be expanded, giving the 13-instruction function shown
in Figure 10–35 that uses only shift’s and add’s.

int remu3(unsigned n) {
   return (0x55555555*n + (n >> 1) - (n >> 3)) >> 30;
}

FIGURE 10–34. Unsigned remainder modulo 3, multiplication method.

int remu3(unsigned n) {
   unsigned r;

   r = n + (n << 2);
   r = r + (r << 4);
   r = r + (r << 8);
   r = r + (r << 16);
   r = r + (n >> 1);
   r = r - (n >> 3);
   return r >> 30;
}

FIGURE 10–35. Unsigned remainder modulo 3, multiplication (expanded) method.
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The remainder of unsigned division by 5 can be computed very similarly to
the remainder of division by 3. Let  with  Then

 =  =  For r = 0, 1, 2, 3, and 4,
this takes on the values 0, 1, 3, 4, and 6 respectively. Since  =
0x33333333, this leads to the function shown in Figure 10–36 (11 instructions,
including a multiply). The last step (code on the return statement) is mapping (0,
1, 3, 4, 6, 7) to (0, 1, 2, 3, 4, 0) respectively, using an in-register method rather than
an indexed load from memory. By also mapping 2 to 2 and 5 to 4, the precision
required in the multiplication by  is reduced to using just the term n >> 3 to
approximate the missing part of the multiplier (hexadecimal 0.333…). If the
“accuracy” term n >> 3 is omitted, the code still works for n ranging from 0 to
0x60000004.

The code for computing the unsigned remainder modulo 7 is similar, but the
mapping step is simpler; it is necessary only to convert 7 to 0. One way to code it
is shown in Figure 10–37 (11 instructions, including a multiply). If the accuracy
term n >> 4 is omitted, the code still works for n up to 0x40000006. With both
accuracy terms omitted, it works for n up to 0x08000006.

Code for computing the unsigned remainder modulo 9 is shown in Figure 10–38.
It is six instructions, including a multiply, plus an indexed load. If the accuracy
term n >> 1 is omitted and the multiplier is changed to 0x1C71C71D, the function
works for n up to 0x1999999E.

Figure 10–39 shows a way to compute the unsigned remainder modulo 10. It
is eight instructions, including a multiply, plus an indexed load instruction. If the

int remu5(unsigned n) {
   n = (0x33333333*n + (n >> 3)) >> 29;
   return (0x04432210 >> (n << 2)) & 7;
}

FIGURE 10–36. Unsigned remainder modulo 5, multiplication method.

int remu7(unsigned n) {
   n = (0x24924924*n + (n >> 1) + (n >> 4)) >> 29;
   return n & ((int)(n - 7) >> 31);
}

FIGURE 10–37. Unsigned remainder modulo 7, multiplication method.

int remu9(unsigned n) {
   static char table[16] = {0, 1, 1, 2, 2, 3, 3, 4,

        5, 5, 6, 6, 7, 7, 8, 8};

   n = (0x1C71C71C*n + (n >> 1)) >> 28;
   return table[n];
}

FIGURE 10–38. Unsigned remainder modulo 9, multiplication method.
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accuracy term n >> 3 is omitted, the code works for n up to 0x40000004. If both
accuracy terms are omitted, it works for n up to 0x0AAAAAAD.

As a final example, consider the computation of the remainder modulo 63. This
function is used by the population count program at the top of page 84. Joe Keane
[Keane] has come up with the rather mysterious code shown in Figure 10–40. It is 12
elementary instructions on the basic RISC.

The “multiply and shift right” method leads to the code shown in Figure 10–41.
This is 11 instructions on the basic RISC, one being a multiply. This would not be
as fast as Keane’s method, unless the machine has a very fast multiply and the load
of the constant 0x04104104 can move out of a loop.

On some machines, an improvement can result from expanding the multipli-
cation into shifts and adds as follows (15 elementary instructions for the whole
function):

   r = (n << 2) + (n << 8);      // r = 0x104*n.
   r = r + (r << 12);        // r = 0x104104*n.
   r = r + (n << 26);       // r = 0x04104104*n.

int remu10(unsigned n) {
   static char table[16] = {0, 1, 2, 2, 3, 3, 4, 5,

       5, 6, 7, 7, 8, 8, 9, 0};

   n = (0x19999999*n + (n >> 1) + (n >> 3)) >> 28;
   return table[n];
}

FIGURE 10–39. Unsigned remainder modulo 10, multiplication method.

int remu63(unsigned n) {
   unsigned t;

   t = (((n >> 12) + n) >> 10) + (n << 2);
   t = ((t >> 6) + t + 3) & 0xFF;
   return (t - (t >> 6)) >> 2;
}

FIGURE 10–40. Unsigned remainder modulo 63, Keane’s method.

int remu63(unsigned n) {
   n = (0x04104104*n + (n >> 4) + (n >> 10)) >> 26;
   return n & ((n - 63) >> 6);   // Change 63 to 0.
}

FIGURE 10–41. Unsigned remainder modulo 63, multiplication method.
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Signed Remainder
As in the case of the digit summing method, the “multiply and shift right” method can
be adapted to compute the remainder resulting from signed division. Again, there
seems to be no better way than to add a few steps to correct the result of the method
as applied to unsigned division. For example, the code shown in Figure 10–42 is
derived from Figure 10–34 on page 270 (12 instructions, including a multiply).

Some plausible ways to compute the remainder of signed division by 5, 7, 9,
and 10 are shown in Figures 10–43 to 10–46. The code for a divisor of 7 uses quite
a few extra instructions (19 in all, including a multiply); it might be preferable to
use a table similar to that shown for the cases in which the divisor is 5, 9, or 10. In
the latter cases, the table used for unsigned division is doubled in size, with the sign
bit of the divisor factored in to index the table. Entries shown as u are unused.

int rems3(int n) {
   unsigned r;

   r = n;
   r = (0x55555555*r + (r >> 1) - (r >> 3)) >> 30;
   return r - (((unsigned)n >> 31) << (r & 2));
}

FIGURE 10–42. Signed remainder modulo 3, multiplication method.

int rems5(int n) {
   unsigned r;
   static signed char table[16] = {0, 1, 2, 2, 3, u, 4, 0,

  u, 0,-4, u,-3,-2,-2,-1};

   r = n;
   r = ((0x33333333*r) + (r >> 3)) >> 29;
   return table[r + (((unsigned)n >> 31) << 3)];
}

FIGURE 10–43. Signed remainder modulo 5, multiplication method.

int rems7(int n) {
   unsigned r;

   r = n - (((unsigned)n >> 31) << 2);  // Fix for sign.
   r = ((0x24924924*r) + (r >> 1) + (r >> 4)) >> 29;
   r = r & ((int)(r - 7) >> 31);        // Change 7 to 0.
   return r - (((int)(n&-r) >> 31) & 7);// Fix n<0 case.
}

FIGURE 10–44. Signed remainder modulo 7, multiplication method.
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10–21  Converting to Exact Division
Since the remainder can be computed without computing the quotient, the possibil-
ity arises of computing the quotient  by first computing the remainder,
subtracting this from the dividend n, and then dividing the difference by the divisor
d. This last division is an exact division, and it can be done by multiplying by the
multiplicative inverse of d (see Section 10–16, “Exact Division by Constants,” on
page 240). This method would be particularly attractive if both the quotient and
remainder are wanted.

Let us try this for the case of unsigned division by 3. Computing the remainder
by the multiplication method (Figure 10–34 on page 270) leads to the function
shown in Figure 10–47.

int rems9(int n) {
   unsigned r;
   static signed char table[32] = {0, 1, 1, 2, u, 3, u, 4,

           5, 5, 6, 6, 7, u, 8, u,
 -4, u,-3, u,-2,-1,-1, 0,

   u,-8, u,-7,-6,-6,-5,-5};

   r = n;
   r = (0x1C71C71C*r + (r >> 1)) >> 28;
   return table[r + (((unsigned)n >> 31) << 4)];
}

FIGURE 10–45. Signed remainder modulo 9, multiplication method.

int rems10(int n) {
   unsigned r;
   static signed char table[32] = {0, 1, u, 2, 3, u, 4, 5,

           5, 6, u, 7, 8, u, 9, u,
 -6,-5, u,-4,-3,-3,-2, u,

            -1, 0, u,-9, u,-8,-7, u};
   r = n;
   r = (0x19999999*r + (r >> 1) + (r >> 3)) >> 28;
   return table[r + (((unsigned)n >> 31) << 4)];
}

FIGURE 10–46. Signed remainder modulo 10, multiplication method.

unsigned divu3(unsigned n) {
   unsigned r;

   r = (0x55555555*n + (n >> 1) - (n >> 3)) >> 30;
   return (n - r)*0xAAAAAAAB;
}

FIGURE 10–47. Unsigned remainder and quotient with divisor = 3, using exact division.
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This is 11 instructions, including two multiplications by large numbers. (The
constant 0x55555555 can be generated by shifting the constant 0xAAAAAAAB right
one position.) In contrast, the more straightforward method of computing the quo-
tient q using (for example) the code of Figure 10–8 on page 254, requires 14 instruc-
tions, including two multiplications by small numbers, or 17 elementary operations if
the multiplications are expanded into shift’s and add’s. If the remainder is also
wanted, and it is computed from r = n - q*3, the more straightforward method
requires 16 instructions, including three multiplications by small numbers, or 20 ele-
mentary instructions if the multiplications are expanded into shift’s and add’s.

The code of Figure 10–47 is not attractive if the multiplications are expanded
into shift’s and add’s; the result is 24 elementary instructions. Thus, the exact divi-
sion method might be a good one on a machine that does not have multiply high but
does have a fast modulo  multiply and slow divide, particularly if it can easily
deal with the large constants.

For signed division by 3, the exact division method might be coded as shown
in Figure 10–48. It is 15 instructions, including two multiplications by large con-
stants.

As a final example, Figure 10–49 shows code for computing the quotient and
remainder for unsigned division by 10. It is 12 instructions, including two multipli-
cations by large constants, plus an indexed load instruction.

int divs3(int n) {
   unsigned r;

   r = n;
   r = (0x55555555*r + (r >> 1) - (r >> 3)) >> 30;
   r = r - (((unsigned)n >> 31) << (r & 2));
   return (n - r)*0xAAAAAAAB;
}

FIGURE 10–48. Signed remainder and quotient with divisor = 3, using exact division.

unsigned divu10(unsigned n) {
   unsigned r;
   static char table[16] = {0, 1, 2, 2, 3, 3, 4, 5,

        5, 6, 7, 7, 8, 8, 9, 0};

   r = (0x19999999*n + (n >> 1) + (n >> 3)) >> 28;
   r = table[r];
   return ((n - r) >> 1)*0xCCCCCCCD;
}

FIGURE 10–49. Signed remainder and quotient with divisor = 10, using exact division.

232
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10–22  A Timing Test
Many machines have a 32×32  64 multiply instruction, so one would expect that
to divide by a constant such as 3, the code shown on page 228 would be fastest. If
that multiply instruction is not present, but the machine has a fast 32×32  32
multiply instruction, then the exact division method might be a good one if the
machine has a slow divide and a fast multiply. To test this conjecture, an assembly
language program was constructed to compare four methods of dividing by 3. The
results are shown in Table 10–4. The machine used was a 667 MHz Pentium III
(ca. 2000), and one would expect similar results on many other machines.

The first row gives the time in cycles for just two instructions: an xorl to clear
the left half of the 64-bit source register, and the divl instruction, which evidently
takes 40 cycles. The second row also gives the time for just two instructions: multiply
and shift right 1 (mull and shrl). The third row gives the time for a sequence of 21
elementary instructions. It is the code of Figure 10–8 on page 254 using alternative 2,
and with the multiplication by 3 done with a single instruction (leal). Several move
instructions are necessary because the machine is (basically) two-address. The last
row gives the time for a sequence of 10 instructions: two multiplications (imull)
and the rest elementary. The two imull instructions use 4-byte immediate fields for
the large constants. (The signed multiply instruction imull is used rather than its
unsigned counterpart mull, because they give the same result in the low-order 32
bits, and imull has more addressing modes available.)

The exact division method would be even more favorable compared to the
second and third methods if both the quotient and remainder were wanted, because
they would require additional code for the computation  (The divl
instruction produces the remainder as well as the quotient.)

10–23  A Circuit for Dividing by 3
There is a simple circuit for dividing by 3 that is about as complex as an adder. It
can be constructed very similarly to the elementary way one constructs an n-bit

TABLE 10–4. UNSIGNED DIVIDE BY 3 ON A PENTIUM III

Division Method Cycles

Using machine’s divide instruction (divl) 41.08

Using 32×32  64 multiply (code on page 228)   4.28

All elementary instructions (Figure 10–8 on page 254) 14.10

Convert to exact division (Figure 10–47 on page 274)   6.68

r n q 3.*–
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adder from n 1-bit “full adder” circuits. However, in the divider signals flow from
most significant to least significant bit.

Consider dividing by 3 the way it is taught in grade school, but in binary. To
produce each bit of the quotient, you divide 3 into the next bit, but the bit is pre-
ceded by a remainder of 0, 1, or 2 from the previous stage. The logic is shown in
Table 10–5. Here the remainder is represented by two bits ri and si, with ri being
the most significant bit. The remainder is never 3, so the last two rows of the table
represent “don’t care” cases.

A circuit for 32-bit division by 3 is shown in Figure 10–50. The quotient is the
word consisting of bits y31 through y0, and the remainder is 

Another way to implement the divide-by-3 operation in hardware is to use the
multiplier to multiply the dividend by the reciprocal of 3 (binary 0.010101…),
with appropriate rounding and scaling. This is the technique shown on pages 207
and 228.

TABLE 10–5. LOGIC FOR DIVIDING BY 3

ri+1 si+1 xi yi ri si

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 – – –
1 1 1 – – –

FIGURE 10–50. Logic circuit for dividing by 3.
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Exercises

1. Show that for unsigned division by an even number, the shrxi instruction (or
equivalent code) can be avoided by first (a) turning off the low-order bit of the
dividend (and operation) [CavWer] or (b) dividing the dividend by 2 (shift
right 1 instruction) and then dividing by half the divisor.

2. Code a function in Python similar to that of Figure 10–4 on page 240, but for
computing the magic number for signed division. Consider only positive
divisors.

3. Show how you would use Newton’s method to calculate the multiplicative
inverse of an integer d modulo 81. Show the calculations for d = 146.

I think that I shall never envision
An op unlovely as division.

An op whose answer must be guessed
And then, through multiply, assessed;

An op for which we dearly pay,
In cycles wasted every day.

Division code is often hairy;
Long division’s downright scary.

The proofs can overtax your brain,
The ceiling and floor may drive you insane.

Good code to divide takes a Knuthian hero,
But even God can’t divide by zero!
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 CHAPTER  11

SOME ELEMENTARY 
FUNCTIONS

11–1  Integer Square Root
By the “integer square root” function, we mean the function  To extend its
range of application and to avoid deciding what to do with a negative argument,
we assume x is unsigned. Thus, 

Newton’s Method
For floating-point numbers, the square root is almost universally computed by
Newton’s method. This method begins by somehow obtaining a starting estimate

 of  Then, a series of more accurate estimates is obtained from

The iteration converges quadratically—that is, if at some point  is accurate to n
bits, then  is accurate to 2n bits. The program must have some means of
knowing when it has iterated enough so it can terminate.

It is a pleasant surprise that Newton’s method works fine in the domain of
integers. To see this, we need the following theorem:

THEOREM. Let  with  integers greater
than 0. Then
(a) if  then  and 
(b) if  then 

That is, if we have an integral guess  to  that is too high, then the
next guess  will be strictly less than the preceding one, but not less than

 Therefore, if we start with a guess that’s too high, the sequence converges
monotonically. If the guess  then the next guess is either equal to 
or is 1 larger. This provides an easy way to determine when the sequence has con-
verged: If we start with  convergence has occurred when 
and then the result is precisely 

The case  must be treated specially, because this procedure would lead
to dividing 0 by 0.
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Proof. (a) Because  is an integer,

Because  and  is an integer,  Define  by  =
 Then  and

(b) Because   so that  
Hence, we have

The difficult part of using Newton’s method to calculate  is getting the
first guess. The procedure of Figure 11–1 sets the first guess  equal to the least
power of 2 that is greater than or equal to  For example, for  
and for  
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Because the first guess  is a power of 2, it is not necessary to do a real divi-
sion to get  instead, a shift right suffices.

Because the first guess is accurate to about one bit, and Newton’s method
converges quadratically (the number of bits of accuracy doubles with each itera-
tion), one would expect the procedure to converge within about five iterations (on
a 32-bit machine), which requires four divisions (because the first iteration substi-
tutes a shift right). An exhaustive experiment reveals that the maximum number
of divisions is five, or four for arguments up to 16,785,407.

If number of leading zeros is available, then getting the first guess is very
simple: Replace the first seven executable lines in the procedure above with

   if (x <= 1) return x;
   s = 16 - nlz(x - 1)/2;

Another alternative, if number of leading zeros is not available, is to compute
s by means of a binary search tree. This method permits getting a slightly better
value of  the least power of 2 that is greater than or equal to  For some
values of x, this gives a smaller value of  but a value large enough so that the
convergence criterion of the theorem still holds. The difference in these schemes
is illustrated in the following table.

int isqrt(unsigned x) {
   unsigned x1;
   int s, g0, g1;

   if (x <= 1) return x;
   s = 1;
   x1 = x - 1;
   if (x1 > 65535) {s = s + 8; x1 = x1 >> 16;}
   if (x1 > 255)   {s = s + 4; x1 = x1 >> 8;}
   if (x1 > 15)    {s = s + 2; x1 = x1 >> 4;}
   if (x1 > 3)     {s = s + 1;}

   g0 = 1 << s;          // g0 = 2**s.
   g1 = (g0 + (x >> s)) >> 1;  // g1 = (g0 + x/g0)/2.

   while (g1 < g0) {       // Do while approximations
      g0 = g1;          // strictly decrease.
      g1 = (g0 + (x/g0)) >> 1;
   }
   return g0;
}

FIGURE 11–1.  Integer square root, Newton’s method.
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This procedure is shown in Figure 11–2. It is convenient there to treat small
values of x  specially, so that no divisions are done for them.

The worst-case execution time of the algorithm of Figure 11–1, on the basic
RISC, is about  cycles, where D is the divide time in cycles and n is

Range of x
for Figure 11–1

Range of x
for Figure 11–2

First Guess
g0

0 0 0

1 1 to 3 1

2 to 4 4 to 8 2

5 to 16 9 to 24 4

17 to 64 25 to 80 8

65 to 256 81 to 288 16

… … …

int isqrt(unsigned x) {
   int s, g0, g1;

   if (x <= 4224)
      if (x <= 24)
         if (x <= 3) return (x + 3) >> 2;
         else if (x <= 8) return 2;
         else return (x >> 4) + 3;
      else if (x <= 288)
         if (x <= 80) s = 3; else s = 4;
      else if (x <= 1088) s = 5; else s = 6;
   else if (x <= 1025*1025 - 1)
      if (x <= 257*257 - 1)
         if (x <= 129*129 - 1) s = 7; else s = 8;
      else if (x <= 513*513 - 1) s = 9; else s = 10;
   else if (x <= 4097*4097 - 1)
      if (x <= 2049*2049 - 1) s = 11; else s = 12;
   else if (x <= 16385*16385 - 1)
      if (x <= 8193*8193 - 1) s = 13; else s = 14;
   else if (x <= 32769*32769 - 1) s = 15; else s = 16;
   g0 = 1 << s;          // g0 = 2**s.

   // Continue as in Figure 11–1.

FIGURE 11–2.  Integer square root, binary search for first guess.

228 1 to 230+ 214 1+( )2 to 215 1+( )2 1– 215

230 1+  to 232 1– 215 1+( )2 to 232 1– 216

0 x 24( )

26 D 6+( )n+
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the number of times the while-loop is executed. The worst-case execution time of
Figure 11–2 is about  cycles, assuming (in both cases) that the
branch instructions take one cycle. The table that follows gives the average num-
ber of times the loop is executed by the two algorithms, for x uniformly distrib-
uted in the indicated range.

If we assume a divide time of 20 cycles and x ranging uniformly from 0 to
9999, then both algorithms execute in about 81 cycles.

Binary Search
Because the algorithms based on Newton’s method start out with a sort of binary
search to obtain the first guess, why not do the whole computation with a binary
search? This method would start out with two bounds, perhaps initialized to 0 and

 It would make a guess at the midpoint of the bounds. If the square of the
midpoint is greater than the argument x, then the upper bound is changed to be
equal to the midpoint. If the square of the midpoint is less than the argument x,
then the lower bound is changed to be equal to the midpoint. The process ends
when the upper and lower bounds differ by 1, and the result is the lower bound.

This avoids division, but requires quite a few multiplications—16 if 0 and
 are used as the initial bounds. (The method gets one more bit of precision

with each iteration.) Figure 11–3 illustrates a variation of this procedure, which
uses initial values for the bounds that are slight improvements over 0 and 
The procedure shown in Figure 11–3 also saves a cycle in the loop, for most RISC
machines, by altering a and b in such a way that the comparison is  rather
than

The predicates that must be maintained at the beginning of each iteration are
 and  The initial value of b should be something that’s

easy to compute and close to  Reasonable initial values are x,
    and so on. Expressions near the

beginning of this list are better initial bounds for small x, and those near the end
are better for larger x. (The value  is acceptable, but probably not useful,
because  is everywhere a better or equal bound.)

x Figure 11–1 Figure 11–2

0 to 9 0.80 0

0 to 99 1.46 0.83

0 to 999 1.58 1.44

0 to 9999 2.13 2.06

0 to 2.97 2.97

27 D 6+( )n+

232 1–

216.

216

216.

b a
b a 1.–

a x 1+ b x .
x . x 4÷ 1,+

x 8÷ 2,+ x 16÷ 4,+ x 32÷ 8,+ x 64÷ 16,+

x 2÷ 1+
x 4÷ 1+
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Seven variations on the procedure shown in Figure 11–3 can be more or less
mechanically generated by substituting  for a, or  for b, or by chang-
ing  to  or some combination of these
substitutions.

The execution time of the procedure shown in Figure 11–3 is about
 where M is the multiplication time in cycles and n is the number

of times the loop is executed. The following table gives the average number of
times the loop is executed, for x uniformly distributed in the indicated range.

If we assume a multiplication time of 5 cycles and x ranging uniformly from
0 to 9999, the algorithm runs in about 94 cycles. The maximum execution time

 is about 206 cycles.
If number of leading zeros is available, the initial bounds can be set from

   b = (1 << (33 - nlz(x))/2) - 1;
   a = (b + 3)/2;

That is,  These are very good bounds for small values of x
(one loop iteration for ), but only a moderate improvement, for large x,

int isqrt(unsigned x) {
   unsigned a, b, m;       // Limits and midpoint.

   a = 1;
   b = (x >> 5) + 8;          // See text.
   if (b > 65535) b = 65535;
   do {
      m = (a + b) >> 1;
      if (m*m > x) b = m - 1;
      else         a = m + 1;
   } while (b >= a);
   return a - 1;
}

FIGURE 11–3.  Integer square root, simple binary search.

x
Average Number 
of Loop Iterations

0 to 9 3.00

0 to 99 3.15

0 to 999 4.68

0 to 9999 7.04
0 to 16.00

a 1+ b 1–
m a b+( ) 2÷= m a b 1+ +( ) 2,÷=

6 M 7.5+( )n,+

232 1–

n 16=( )

b 2 33 nlz x( )–( ) 2÷ 1.–=
u

0 x 15
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over the bounds calculated in Figure 11–3. For x in the range 0 to 9999, the aver-
age number of iterations is about 5.45, which gives an execution time of about 74
cycles, using the same assumptions as above.

A Hardware Algorithm
There is a shift-and-subtract algorithm for computing the square root that is quite
similar to the hardware division algorithm described in Figure 9–2 on page 193.
Embodied in hardware on a 32-bit machine, this algorithm employs a 64-bit regis-
ter that is initialized to 32 0-bits followed by the argument x. On each iteration, the
64-bit register is shifted left two positions, and the current result y (initially 0) is
shifted left one position. Then  is subtracted from the left half of the 64-bit
register. If the result of the subtraction is nonnegative, it replaces the left half of
the 64-bit register, and 1 is added to y (this does not require an adder, because y
ends in 0 at this point). If the result of the subtraction is negative, then the 64-bit
register and y are left unaltered. The iteration is done 16 times.

This algorithm was described in 1945 [JVN].
Perhaps surprisingly, this process runs in about half the time of that of the

 hardware division algorithm cited, because it does half as many
iterations and each iteration is about equally complex in the two algorithms.

To code this algorithm in software, it is probably best to avoid the use of a
doubleword shift register, which requires about four instructions to shift. The
algorithm in Figure 11–4 [GLS1] accomplishes this by shifting y and a mask bit m
to the right. It executes in about 149 basic RISC instructions (average). The two
expressions y | m could also be y + m.

The operation of this algorithm is similar to the grade-school method. It is
illustrated here, for finding  on an 8-bit machine.

    1011 0011  x0   Initially, x = 179 (0xB3).
   - 1         b1
    —————————
    0111 0011  x1   0100 0000  y1
   - 101       b2   0010 0000  y2
    —————————
    0010 0011  x2   0011 0000  y2
   -  11 01    b3   0001 1000  y3
    —————————
    0010 0011  x3   0001 1000  y3   (Can’t subtract).
   -   1 1001  b4   0000 1100  y4
    —————————
    0000 1010  x4   0000 1101  y4

 The result is 13 with a remainder of 10 left in register x.

2y 1+

64 32÷ 32

179
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It is possible to eliminate the if x >= b test by the usual trickery involving
shift right signed 31. It can be proved that the high-order bit of b is always zero
(in fact, ), which simplifies the x >= b predicate (see page 23). The
result is that the if statement group can be replaced with

   t = (int)(x | ~(x - b)) >> 31;   // -1 if x >= b, else 0.
   x = x - (b & t); 
   y = y | (m & t); 

This replaces an average of three cycles with seven, assuming the machine has or
not, but it might be worthwhile if a conditional branch in this context takes more
than five cycles.

Somehow it seems that it should be easier than some hundred cycles to compute
an integer square root in software. Toward this end, we offer the expressions that fol-
low to compute it for very small values of the argument. These can be useful to speed
up some of the algorithms given above, if the argument is expected to be small.

int isqrt(unsigned x) {
   unsigned m, y, b;

   m = 0x40000000;
   y = 0;
   while(m != 0) {         // Do 16 times.
      b = y | m;
      y = y >> 1;
      if (x >= b) {
         x = x - b;
         y = y | m;
      }
      m = m >> 2;
   }
   return y;
}

FIGURE 11–4.  Integer square root, hardware algorithm.

The expression is correct 
in the 
range

and uses this 
many instruc-
tions (full RISC).

x 0 to 1 0

0 to 3 1

0 to 3 2

0 to 3 2

b 5 228

x 0>

x 3+( ) 4÷u

x x 2÷u( )>>
u

continues
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Ah, the elusive square root,
It should be a cinch to compute.
     But the best we can do
     Is use powers of two
And iterate the method of Newt!

11–2  Integer Cube Root
For cube roots, Newton’s method does not work out very well. The iterative for-
mula is a bit complex:

and there is of course the problem of getting a good starting value 
However, there is a hardware algorithm, similar to the hardware algorithm for

square root, that is not too bad for software. It is shown in Figure 11–5.
The three add’s of 1 can be replaced by or’s of 1, because the value being

incremented is even. Even with this change, the algorithm is of questionable value
for implementation in hardware, mainly because of the multiplication .

This multiplication is easily avoided by applying the compiler optimization of
strength reduction to the y-squared term. Introduce another unsigned variable y2
that will have the value of y-squared, by updating y2 appropriately wherever y
receives a new value. Just before y = 0 insert y2 = 0. Just before y = 2*y insert
y2 = 4*y2. Change the assignment to b to b = (3*y2 + 3*y + 1) << s (and
factor out the 3). Just before y = y + 1, insert y2 = y2 + 2*y + 1. The resulting
program has no multiplications except by small constants, which can be changed
to shift’s and add’s. This program has three add’s of 1, which can all be changed to
or’s of 1. It is faster unless your machine’s multiply instruction takes only two or
fewer cycles.

0 to 5 2

1 to 8 2

4 to 15 2

0 to 8 3

0 to 15 5

The expression is correct 
in the 
range

and uses this 
many instruc-
tions (full RISC).

x x 1>( )>>
u

x 12+( ) 8÷u

x 15+( ) 8÷u

x 0>( ) x 3>( )+

x 0>( ) x 3>( ) x 8>( )+ +

xn 1+
1
3
--- 2xn

a
xn

2
-----+ ,=

x0.

y y 1+( )*
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Caution: [GLS1] points out that the code of Figure 11–5, and its strength-
reduced derivative, do not work if adapted in the obvious way to a 64-bit machine.
The assignment to b can then overflow. This problem can be avoided by dropping
the shift left of s from the assignment to b, inserting after the assignment to b the
assignment bs = b << s, and changing the two lines if (x >= b) {x = x - b …
to if (x >= bs && b == (bs >> s)) {x = x - bs ….

11–3  Integer Exponentiation
Computing  by Binary Decomposition of n
A well-known technique for computing  when n is a nonnegative integer,
involves the binary representation of n. The technique applies to the evaluation of
an expression of the form  where · is any associative operation,
such as addition, multiplication including matrix multiplication, and string concat-
enation (as suggested by the notation (‘ab’)3 = ‘ababab’). As an example, suppose
we wish to compute  Because 13 expressed in binary is 1101 (that is, 13
=

.

Thus,  can be computed as follows:

int icbrt(unsigned x) {
   int s;
   unsigned y, b;

   y = 0;
   for (s = 30; s >= 0; s = s - 3) {
      y = 2*y;
      b = (3*y*(y + 1) + 1) << s;
      if (x >= b) {
         x = x - b;
         y = y + 1;
      }
   }
   return y;
}

FIGURE 11–5.  Integer cube root, hardware algorithm.

xn

xn,

x x x … x

y x13.=
8 4 1 ),+ +

x13 x8 4 1+ + x8 x4 x1= =

x13

t1 x2

t2 t1
2

t3 t2
2

y t3 t2 x
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This requires five multiplications, considerably fewer than the 12 that would be
required by repeated multiplication by x.

If the exponent is a variable, known to be a nonnegative integer, the technique
can be employed in a subroutine, as shown in Figure 11–6.

The number of multiplications done by this method is, for exponent 

.

This is not always the minimal number of multiplications. For example, for
 the binary decomposition method computes

which requires seven multiplications. However, the scheme illustrated by

requires only six. The smallest number for which the binary decomposition
method is not optimal is  (Hint: ).

Perhaps surprisingly, there is no known simple method that, for all n, finds an
optimal sequence of multiplications to compute  The only known methods
involve an extensive search. The problem is discussed at some length in [Knu2,
4.6.3].

The binary decomposition method has a variant that scans the binary repre-
sentation of the exponent in left-to-right order [Rib, 32], which is analogous to the
left-to-right method of converting binary to decimal. Initialize the result y to 1,
and scan the exponent from left to right. When a 0 is encountered, square y. When
a 1 is encountered, square y and multiply it by x. This computes  as

int iexp(int x, unsigned n) {
   int p, y;

   y = 1;          // Initialize result
   p = x;                     // and p.
   while(1) {
      if (n & 1) y = p*y;    // If n is odd, mult by p.
      n = n >> 1;        // Position next bit of n.
      if (n == 0) return y;   // If no more bits in n.
      p = p*p;        // Power for next bit of n.
   }
}

FIGURE 11–6.  Computing xn by binary decomposition of n.

n 1,

log2n nbits n( ) 1–+

n 27,=

x16 x8 x2 x1,

x3( )3( )3

n 15= x15 x3( )5=

xn.

x13 x11012=

12 x( )2 x( )2( )2 x.
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It always requires the same number of (nontrivial) multiplications as the right-to-
left method of Figure 11–6.

 in Fortran
The IBM XL Fortran compiler takes the definition of this function to be

It is assumed that n and the result are interpreted as signed integers. The
ANSI/ISO Fortran standard requires that the result be 0 if  The definition
above for  seems reasonable in that it is the correct result modulo  and
it agrees with what repeated multiplication would give.

The standard way to compute  is to put the integer 1 in a register and shift
it left n places. This does not satisfy the Fortran definition, because shift amounts
are usually treated modulo 64 or modulo 32 (on a 32-bit machine), which gives
incorrect results for large or negative shift amounts.

If your machine has number of leading zeros,  can be computed in
four instructions as follows [Shep]:

The shift right operations are “logical” (not sign-propagating), even though n is a
signed quantity.

If the machine does not have the nlz instruction, its use above can be re-
placed with one of the  tests given in “Comparison Predicates” on page 23,
changing the expression  to  A possibly better method is to realize
that the predicate  is equivalent to  and then simplify the
expression for  given in the cited section; it becomes  This
gives a solution in five instructions (four if the machine has and not):

2n

pow2 n( )
2n,   0 n 30,

231– ,   n 31,=
0,   n 0 or n 32.<

=

n 0.<
n 31 232,

2n

pow2 n( )

x nlz n 5>>
u( );

x x 5;>>
u

pow2 x n;<<

// x 32 if 0 n 31, x 32<  otherwise.

// x 1 if 0 n 31, 0 otherwise.

x 0=
x 5>>

u x 31.>>
u

0 x 31 x 32<u ,
x y<u x¬ x 32–( )& .

x n¬ n 32–( );&

x x 31;>>
u

pow2 x n;<<

// x 0 iff 0 n 31.<

// x 1=  if 0 n 31, 0 otherwise.
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11–4  Integer Logarithm
By the “integer logarithm” function we mean the function  where x is a
positive integer and b is an integer greater than or equal to 2. Usually,  or
10, and we denote these functions by “ilog2” and “ilog10,” respectively. We use
“ilog” when the base is unspecified.

It is convenient to extend the definition to  by defining 
[CJS]. There are several reasons for this definition:

• The function ilog2(x) is then related very simply to the number of leading 
zeros function, nlz(x), by the formula shown below, including the case 

 Thus, if one of these functions is implemented in hardware or 
software, the other is easily obtained.

• It is easy to compute  using the formula below. For  this 
formula implies that 

• It makes the following identity hold for  (but it doesn’t hold for 
).

• It makes the result of ilog(x) a small dense set of integers (–1 to 31 for 
ilog2(x) on a 32-bit machine, with x unsigned), making it directly useful 
for indexing a table.

• It falls naturally out of several algorithms for computing ilog2(x) and 
ilog10(x).

Unfortunately, it isn’t the right definition for “number of digits of x,” which is
 for all x except  It seems best to consider that anomalous.

For  ilog(x) is left undefined. To extend its range of utility, we define
the function as mapping unsigned numbers to signed numbers. Thus, a negative
argument cannot occur. 

Integer Log Base 2
Computing ilog2(x) is essentially the same as computing the number of leading
zeros, which is discussed in “Counting Leading 0’s” on page 99. All the algo-
rithms in that section can be easily modified to compute ilog2(x) directly, rather
than by computing nlz(x) and subtracting the result from 31. (For the algorithm of
Figure 5–16 on page 102, change the line return pop(~x) to return
pop(x) - 1.)

logb x ,
b 2=

x 0= ilog 0( ) 1–=

x 0.=

ilog2 x( ) 31 nlz x( )–=

log x( ) x 1,=
ilog 0( ) 1.–=

log x( ) ilog x 1–( ) 1+=

x 1=
x 0=

ilog2 x 2÷( ) ilog2 x( ) 1–=

ilog x( ) 1+ x 0.=
x 0,<
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Integer Log Base 10
This function has application in converting a number to decimal for inclusion into
a line with leading zeros suppressed. The conversion process successively divides
by 10, producing the least significant digit first. It would be useful to know ahead
of time where the least significant digit should be placed, to avoid putting the con-
verted number in a temporary area and then moving it.

To compute ilog10(x), a table search is quite reasonable. This could be a
binary search, but because the table is small and in many applications x is usually
small, a simple linear search is probably best. This rather straightforward program
is shown in Figure 11–7.

On the basic RISC, this program can be implemented to execute in about
 instructions. Thus, it executes in five to 45 instructions, with per-

haps 13 (for ) being typical.
The program in Figure 11–7 can easily be changed into an “in register” ver-

sion (not using a table). The executable part of such a program is shown in
Figure 11–8. This might be useful if the machine has a fast way to multiply by 10.

This program can be implemented to execute in about 
instructions on the basic RISC (counting the multiply as one instruction). This
amounts to 16 instructions for 

A binary search can be used, giving an algorithm that is loop-free and does
not use a table. Such an algorithm might compare x to  then to either  or
to  and so on, until the exponent n is found such that  The
paths execute in ten to 18 instructions, four or five of which are branches (count-
ing the final unconditional branch).

int ilog10(unsigned x) {
   int i;
   static unsigned table[11] = {0, 9, 99, 999, 9999,
      99999, 999999, 9999999, 99999999, 999999999,
      0xFFFFFFFF};

   for (i = -1; ; i++) {
      if (x <= table[i+1]) return i;
   }
}

FIGURE 11–7.  Integer log base 10, simple table search.

   p = 1;
   for (i = -1; i <= 8; i++) {
      if (x < p) return i;
      p = 10*p;
   }
   return i;

FIGURE 11–8.  Integer log base 10, repeated multiplication by 10.

9 4 log10x+
10 x 99

10 6 log10x+

10 x 99.

104, 102

106, 10n x 10n 1+ .<
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The program shown in Figure 11–9 is a modification of the binary search that
has a maximum of four branches on any path and is written in a way that favors
small x. It executes in six basic RISC instructions for  and in 11 to 16
instructions for 

The shift instructions in this program are signed shifts (which is the reason for
the (int) casts). If your machine does not have this instruction, one of the alter-
natives below, which use unsigned shifts, may be preferable. These are illustrated
for the case of the first return statement. Unfortunately, the first two require
subtract from immediate for efficient implementation, which most machines don’t
have. The last involves adding a large constant (two instructions), but this does
not matter for the second and third return statements, which require adding a
large constant anyway. The large constant is  

   return 3 - ((x - 1000) >> 31);
   return 2 + ((999 - x) >> 31);
   return 2 + ((x + 2147482648) >> 31);

An alternative for the fourth return statement is

   return 8 + ((x + 1147483648) | x) >> 31;

where the large constant is  This avoids both the and not and the signed
shift.

Alternatives for the last if-else construction are

   return ((int)(x - 1) >> 31) | ((unsigned)(9 - x) >> 31);
   return (x > 9) + (x > 0) - 1;

either of which saves a branch.

int ilog10(unsigned x) {
   if (x > 99)
      if (x < 1000000)
         if (x < 10000)
            return 3 + ((int)(x - 1000) >> 31);
         else
            return 5 + ((int)(x - 100000) >> 31);
      else
         if (x < 100000000)
            return 7 + ((int)(x - 10000000) >> 31);
         else
            return 9 + ((int)((x-1000000000)&~x) >> 31);
   else
      if (x > 9) return 1;
      else  return ((int)(x - 1) >> 31);
}

FIGURE 11–9.  Integer log base 10, modified binary search.

10 x 99,
x 100.

231 1000.–

231 109.–
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If nlz(x) or ilog2(x) is available as an instruction, there are better and more
interesting ways to compute  For example, the program in Figure 11–10
does it in two table lookups [CJS].

From table1 an approximation to  is obtained. The approxima-
tion is usually the correct value, but it is too high by 1 for  and for x in the
range 8 to 9, 64 to 99, 512 to 999, 8192 to 9999, and so on. The second table gives
the value below which the estimate must be corrected by subtracting 1.

This scheme uses a total of 73 bytes for tables and can be coded in only six
instructions on the IBM System/370 [CJS] (to achieve this, the values in table1
must be four times the values shown). It executes in about ten instructions on a
RISC that has number of leading zeros, but no other uncommon instructions. The
other methods to be discussed are variants of this.

The first variation eliminates the conditional branch that results from the if
statement. Actually, the program in Figure 11–10 can be coded free of branches if
the machine has the set less than unsigned instruction, but the method to be
described can be used on machines that have no unusual instructions (other than
number of leading zeros).

The method is to replace the if statement with a subtraction followed by a
shift right of 31, so that the sign bit can be subtracted from y. A difficulty occurs
for large x  which can be fixed by adding an entry to table2, as
shown in Figure 11–11.

This executes in about 11 instructions on a RISC that has number of leading
zeros but is otherwise quite “basic.” It can be modified to return the value 0,
rather than –1, for  (which is preferable for the decimal conversion prob-
lem) by changing the last entry in table1 to 1 (that is, by changing “0, 0, 0, 0”
to “0, 0, 0, 1”).

The next variation replaces the first table lookup with a subtraction, a multi-
plication, and a shift. This seems likely to be possible because  and 
are related by a multiplicative constant, namely  Thus, it

int ilog10(unsigned x) {
   int y;
   static unsigned char table1[33] = {9, 9, 9, 8, 8, 8,
      7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3,
      2, 2, 2, 1, 1, 1, 0, 0, 0, 0};
   static unsigned table2[10] = {1, 10, 100, 1000, 10000,
      100000, 1000000, 10000000, 100000000, 1000000000};

   y = table1[nlz(x)];
   if (x < table2[y]) y = y - 1;
   return y;
}

FIGURE 11–10.  Integer log base 10 from log base 2, double table lookup.

ilog10 x( ).

ilog10 x( )
x 0=

x 231 109+( ),

x 0=

log10x log2x
log102 0.30103….=
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may be possible to compute ilog10(x) by computing  for some
suitable  and correcting the result by using a table such as table2
in Figure 11–11.

To pursue this, let  where  is a rational approximation
to  that is a convenient multiplier, and  Then, for 

Thus, if we choose c so that  then  approxi-
mates ilog10(x) with an error of 0 or +1. Furthermore, if we take ilog2(0) =
ilog10(0) = –1, then  = ilog10(0) (because ), so we need
not be concerned about this case. (There are other definitions that would work
here, such as ilog2(0) = ilog10(0) = 0.)

Because  we must choose c so that

This is satisfied for  (because )  and 2. For larger x, we must have

int ilog10(unsigned x) {
   int y;
   static unsigned char table1[33] = {10, 9, 9, 8, 8, 8,
      7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3,
      2, 2, 2, 1, 1, 1, 0, 0, 0, 0};
   static unsigned table2[11] = {1, 10, 100, 1000, 10000,
      100000, 1000000, 10000000, 100000000, 1000000000,
      0};

   y = table1[nlz(x)];
   y = y - ((x - table2[y]) >> 31);
   return y;
}

FIGURE 11–11.  Integer log base 10 from log base 2, double table lookup, branch free.

c ilog2 x( )
c 0.30103,

log102 c ,+= c 0>
log102 0.> x 1,

ilog10 x( ) log10x c +( )log2x= =

c log2x ilog10 x( ) c log2x log2x+=

c ilog2 x( ) ilog10 x( ) c ilog2 x( ) 1+( ) log2x+

c ilog2 x( ) c log2x+ +

c ilog2 x( ) c log2x+ 1.+ +

c log2x+ 1,< c ilog2 x( )

c ilog2(0) 0 c< 1

log102 c,–=

c log102 c–( )log2x+ 1< ,  or

c log2x 1–( ) log102( )log2x 1.–>

x 1= c 1<

c
log102( )log2x 1–

log2x 1–
------------------------------------------> .
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The most stringent requirement on c occurs when x is large. For a 32-bit machine,
 so choosing

suffices. Because  (because ), c = 9/32 = 0.28125 is a conve-
nient value. Experimentation reveals that coarser values such as 5/16 and 1/4 are
not adequate.

This leads to the scheme illustrated in Figure 11–12, which estimates low and
then corrects by adding 1. It executes in about 11 instructions on a RISC that has
number of leading zeros, counting the multiply as one instruction.

This can be made into a branch-free version, but again there is a difficulty
with large x  which can be fixed in either of two ways. One way is
to use a different multiplier (19/64) and a slightly expanded table. The program is
shown in Figure 11–13 (about 11 instructions on a RISC that has number of lead-
ing zeros, counting the multiply as one instruction).

The other “fix” is to or x into the result of the subtraction to force the sign bit
to be on for ; that is, change the second executable line of Figure 11–12 to

   y = y + (((table2[y+1] - x) | x) >> 31);

This is the preferable program if multiplication by 19 is substantially more diffi-
cult than multiplication by 9 (as it is for a shift-and-add sequence). 

   static unsigned table2[10] = {0, 9, 99, 999, 9999,
      99999, 999999, 9999999, 99999999, 999999999};

   y = (9*(31 - nlz(x))) >> 5;
   if (x > table2[y+1]) y = y + 1;
   return y;

FIGURE 11–12.  Integer log base 10 from log base 2, one table lookup.

int ilog10(unsigned x) {
   int y;
   static unsigned table2[11] = {0, 9, 99, 999, 9999,
      99999, 999999, 9999999, 99999999, 999999999,
      0xFFFFFFFF};

   y = (19*(31 - nlz(x))) >> 6;
   y = y + ((table2[y+1] - x) >> 31);
   return y;
}

FIGURE 11–13.  Integer log base 10 from log base 2, one table lookup, branch free.

x 232,<

c 0.30103 32 1–
32 1–

---------------------------------------> 0.27848

c 0.30103< 0>

x 231 109+>( ),

x 231
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For a 64-bit machine, choosing

suffices. The value 19/64 = 0.296875 is convenient, and experimentation reveals
that no coarser value is adequate. The program is (branch-free version)

   unsigned table2[20] = {0, 9, 99, 999, 9999, ..., 
      9999999999999999999};
   y = ((19*(63 - nlz(x)) >> 6;
   y = y + ((table2[y+1] - x) >> 63;
   return y;

Exercises

1. Is the correct integer fourth root of an integer x obtained by computing the
integer square root of the integer square root of x? That is, does

2. Code the 64-bit version of the cube root routine that is mentioned at the end of
Section 11–2. Use the “long long” C data type. Do you see an alternative
method for handling the overflow of b that probably results in a faster routine?

3. How many multiplications does it take to compute  (modulo  where W
is the computer’s word size)?

4. Describe in simple terms the functions (a)  and (b)  for x
an integer greater than 0.

c 0.30103 64 1–
64 1–

--------------------------------------> 0.28993

x x4 ?=

x23 2W,

2ilog2 x( ) 2ilog2 x 1–( ) 1+



ptg8736757

This page intentionally left blank 



ptg8736757

299

 CHAPTER  12

UNUSUAL BASES FOR 
NUMBER SYSTEMS 

This section discusses a few unusual positional number systems. They are
just interesting curiosities and are probably not practical for anything. We limit the
discussion to integers, but they can all be extended to include digits after the radix
point—which usually, but not always, denotes non-integers.

12–1  Base –2
By using –2 as the base, both positive and negative integers can be expressed
without an explicit sign or other irregularity, such as having a negative weight for
the most significant bit (Knu3). The digits used are 0 and 1, as in base +2; that is,
the value represented by a string of 1’s and 0’s is understood to be

From this, it can be seen that a procedure for finding the base 2, or “negabi-
nary,” representation of an integer is to successively divide the number by 2,
recording the remainders. The division must be such that it always gives a remain-
der of 0 or 1 (the digits to be used); that is, it must be modulus division. As an
example, the plan below shows how to find the base 2 representation of –3.

Because we have reached a 0 quotient, the process terminates (if continued, the
remaining quotients and remainders would all be 0). Thus, reading the remainders
upward, we see that –3 is written 1101 in base –2.

Table 12–1 shows, on the left, how each bit pattern from 0000 to 1111 is
interpreted in base –2, and on the right, how integers in the range –15 to +15 are
represented.

an…a3a2a1a0( ) an 2–( )n … a3 2–( )3 a2 2–( )2 a1 2–( ) a0.+ + + + +=

3–
2–

------ 2 rem 1=

2
2–

------ 1 rem 0–=

1–
2–

------ 1 rem 1=

1
2–

------ 0 rem 1=
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It is not obvious that the  possible bit patterns in an n-bit word uniquely
represent all integers in a certain range, but this can be shown by induction. The
inductive hypothesis is that an n-bit word represents all integers in the range

(1a)

(1b)

Assume first that n is even. For  the representable integers are 10, 11,
00, and 01 in base –2, or

–2, –1, 0, 1. 

This agrees with (1a), and each integer in the range is represented once and only
once.

A word of  bits can, with a leading bit of 0, represent all the integers
given by (1a). In addition, with a leading bit of 1, it can represent all these integers
biased by  The new range is

TABLE 12–1.  CONVERSIONS BETWEEN DECIMAL AND BASE –2

n n n n –n
(base –2) (decimal) (decimal) (base –2) (base –2)

0 0 0 0 0

1 1 1 1 11

10 –2 2 110 10

11 –1 3 111 1101

100 4 4 100 1100

101 5 5 101 1111

110 2 6 11010 1110

111 3 7 11011 1001

1000 –8 8 11000 1000

1001 –7 9 11001 1011

1010 –10 10 11110 1010

1011 –9 11 11111 110101

1100 –4 12 11100 110100

1101 –3 13 11101 110111

1110 –6 14 10010 110110

1111 –5 15 10011 110001

2n

2n 1+ 2–( ) 3⁄–  to 2n 1–( ) 3⁄  for n even, and

2n 2–( ) 3⁄–( ) to 2n 1+ 1–( ) 3⁄( ) for n odd.

n 2,=

n 1+

2–( )n 2n.=

2n 2n 1+ 2–( ) 3⁄–  to 2n 2n 1–( ) 3⁄ ,+



ptg8736757

12–1 BASE –2 301

or

This is contiguous to the range given by (1a), so for a word size of  bits, all
integers in the range

are represented once and only once. This agrees with (1b), with n replaced
by

The proof that (1a) follows from (1b), for n odd, and that all integers in the
range are uniquely represented, is similar.

To add and subtract, the usual rules, such as 0 + 1 = 1 and 1 – 1 = 0, of course
apply. Because 2 is written 110, and –1 is written 11, and so on, the following
additional rules apply. These, together with the obvious ones, suffice.

When adding or subtracting, there are sometimes two carry bits. The carry
bits are to be added to their column, even when subtracting. It is convenient to
place them both over the next bit to the left and simplify (when possible) using
11 + 1 = 0. If 11 is carried to a column that contains two 0’s, bring down a 1 and
carry a 1. Below are examples.

        Addition              Subtraction
  11 1 11    11               1 11  1     1
     1  0  1  1  1    19            1  0  1  0  1     21
 + 1 1  0  1  0  1 +(-11)   - 1  0  1  1  1  0  -(-38)
  ---------------- ------     ----------------- ----- 
  0  1  1  0  0  0     8   1  0  0  1  1  1  1     59 

 The only carries possible are 0, 1, and 11. Overflow occurs if there is a carry
(either 1 or 11) out of the high-order position. These remarks apply to both addi-
tion and subtraction.

Because there are three possibilities for the carry, a base –2 adder would be
more complex than a two’s-complement adder.

There are two ways to negate an integer. It can be added to itself shifted left
one position (that is, multiply by –1), or it can be subtracted from 0. There is no
rule as simple and convenient as the “complement and add 1” rule of two’s-
complement arithmetic. In two’s-complement, this rule is used to build a sub-
tracter from an adder (to compute  form ).

2n 1–( ) 3⁄ 1+  to 2n 2+ 1–( ) 3.⁄

n 1+

2n 1+ 2–( ) 3⁄–  to 2n 2+ 1–( ) 3⁄

n 1.+

1 1+ 110=
11 1+ 0=

1 1 1+ + 111=
0 1– 11=

11 1– 10=

A B,– A B 1+ +



ptg8736757

302 UNUSUAL BASES FOR NUMBER SYSTEMS 12–1

For base –2, there is no device quite that simple, but a method that is nearly as
simple is to complement the minuend (meaning to invert each bit), add the comple-
mented minuend to the subtrahend, and then complement the sum [Lang]. Here is
an example showing the subtraction of 13 from 6 using this scheme on an eight-bit
machine.

   00011010   6
   00011101   13
   11100101   6 complemented
   --------
   11110110 (6 complemented) + 13
   00001001   Complement of the sum (-7)

This method is using

in base –2 arithmetic, with I a word of all 1’s.
Multiplication of base –2 integers is straightforward. Just use the rule that

 and 0 times either 0 or 1 is 0, and add the columns using base –2
addition.

Division, however, is quite complicated. It is a real challenge to devise a rea-
sonable hardware division algorithm—that is, one based on repeated subtraction
and shifting. Figure 12–1 shows an algorithm that is expressed, for definiteness,
for an 8-bit machine. It does modulus division (nonnegative remainder).

Although this program is written in C and was tested on a binary two’s-
complement machine, that is immaterial—it should be viewed somewhat
abstractly. The input quantities n and d, and all internal variables except for q, are
simply numbers without any particular representation. The output q is a string of
bits to be interpreted in base –2.

This requires a little explanation. If the input quantities were in base –2, the
algorithm would be very awkward to express in an executable form. For example,
the test “if (d > 0)” would have to test that the most significant bit of d is in an
even position. The addition in “c = c + d” would have to be a base  addition.
The code would be very hard to read. The way the algorithm is coded, you should
think of n and d as numbers without any particular representation. The code
shows the arithmetic operations to be performed, whatever encoding is used. If the
numbers are encoded in base –2, as they would be in hardware that implements
this algorithm, the multiplication by  is a left shift of seven positions, and the
divisions by –2 are right shifts of one position.

As examples, the code computes values as follows:

divbm2(6, 2) = 7  (six divided by two is 111–2)
divbm2(– 4, 3) = 2  (minus four divided by three is 10–2)
divbm2(– 4, –3) = 6  (minus four divided by minus 3 is 110–2)

A B– I I A–( ) B+( )–=

1 1× 1=

2–

128–
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The step q = q | (1 << i); represents simply setting bit i of q. The next line—
r = r - dw—represents reducing the remainder by the divisor d shifted left.

The algorithm is difficult to describe in detail, but we will try to give the gen-
eral idea.

Consider determining the value of the first bit of the quotient, bit 7 of q. In
base  8-bit numbers that have their most significant bit “on” range in value
from  to  Therefore, ignoring the possibility of overflow, the first (most
significant) quotient bit will be 1 if (and only if) the quotient will be algebraically
less than or equal to 

Because  and for a positive divisor  for a positive divi-
sor the first quotient bit will be 1 iff  or   For a
negative divisor, the first quotient bit will be 1 iff  (  for modulus
division).

Thus, the first quotient bit is 1 iff

Ignoring the possibility that  this can be written as

where  if  and  if 

int divbm2(int n, int d) {    // q = n/d in base -2.
   int r, dw, c, q, i;

   r = n;             // Init. remainder.
   dw = (-128)*d;           // Position d.
   c = (-43)*d;           // Init. comparand.
   if (d > 0) c = c + d;
   q = 0;             // Init. quotient.
   for (i = 7; i >= 0; i--) {
      if (d > 0 ^ (i&1) == 0 ^ r >= c) {
         q = q | (1 << i);         // Set a quotient bit.
         r = r - dw;           // Subtract d shifted.
      }
      dw = dw/(-2);           // Position d.
      if (d > 0) c = c - 2*d;      // Set comparand for
      else c = c + d;           // next iteration.
      c = c/(-2);
   }
   return q;           // Return quotient in

               // base -2.
              // Remainder is r,

}               // 0 <= r < |d|.

FIGURE 12–1.  Division in base –2.

2,–
170– 43.–

43.–
n qd r+= r d 1,–

n 43d– d 1–( ),+ n 43d– d.+<
n 43d– r 0

d 0> n 43d– d+( )¬&( ) d 0< n 43d–&( ). | 

d 0,=

d 0> n c,

c 43d– d+= d 0,> c 43d–= d 0.<
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This is the logic for determining a quotient bit for an odd-numbered bit posi-
tion. For an even-numbered position, the logic is reversed. Hence, the test includes
the term (i&1) == 0. (The ^ character in the program denotes exclusive or.)

At each iteration, c is set equal to the smallest (closest to zero) integer that
must have a 1-bit at position i after dividing by d. If the current remainder r
exceeds that, then bit i of q is set to 1 and r is adjusted by subtracting the value of
a 1 at that position, multiplied by the divisor d. No real multiplication is required
here; d is simply positioned properly and subtracted.

The algorithm is not elegant. It is awkward to implement because there are
several additions, subtractions, and comparisons, and there is even a multiplica-
tion (by a constant) that must be done at the beginning. One might hope for a “uni-
form” algorithm—one that does not test the signs of the arguments and do
different things depending on the outcome. Such a uniform algorithm, however,
probably does not exist for base –2 (or for two’s-complement arithmetic). The rea-
son for this is that division is inherently a non-uniform process. Consider the sim-
plest algorithm of the shift-and-subtract type. This algorithm would not shift at
all, but for positive arguments would simply subtract the divisor from the dividend
repeatedly, counting the number of subtractions performed until the remainder is
less than the divisor. On the other hand, if the dividend is negative (and the divisor
is positive), the process is to add the divisor repeatedly until the remainder is 0 or
positive, and the quotient is the negative of the count obtained. The process is still
different if the divisor is negative.

In spite of this, division is a uniform process for the signed-magnitude repre-
sentation of numbers. With such a representation, the magnitudes are positive, so
the algorithm can simply subtract magnitudes and count until the remainder is
negative, and then set the sign bit of the quotient to the exclusive or of the argu-
ments, and the sign bit of the remainder equal to the sign of the dividend (this
gives ordinary truncating division).

The algorithm given above could be made more uniform, in a sense, by first
complementing the divisor, if it is negative, and then performing the steps given as
simplified by having  Then a correction would be performed at the end. For
modulus division, the correction is to negate the quotient and leave the remainder
unchanged. This moves some of the tests out of the loop, but the algorithm as a
whole is still not pretty.

It is interesting to contrast the commonly used number representations and
base –2 regarding the question of whether or not the computer hardware treats
numbers uniformly in carrying out the four fundamental arithmetic operations. We
don’t have a precise definition of “uniformly,” but basically it means free of oper-
ations that might or might not be done, depending on the signs of the arguments.
We consider setting the sign bit of the result equal to the exclusive or of the signs
of the arguments to be a uniform operation. Table 12–2 shows which operations
treat their operands uniformly with various number representations.

One’s-complement addition and subtraction are done uniformly by means of
the “end around carry” trick. For addition, all bits, including the sign bit, are

d 0.>
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added in the usual binary way, and the carry out of the leftmost bit (the sign bit) is
added to the least significant position. This process always terminates right away
(that is, the addition of the carry cannot generate another carry out of the sign bit
position).

In the case of two’s-complement multiplication, the entry is “yes” if only the
right half of the doubleword product is desired.

We conclude this discussion of the base –2 number system with some obser-
vations about how to convert between straight binary and base –2.

To convert to binary from base –2, form a word that has only the bits with
positive weight, and subtract a word that has only the bits with negative weight,
using the subtraction rules of binary arithmetic. An alternative method that may
be a little simpler is to extract the bits appearing in the negative weight positions,
shift them one position to the left, and subtract the extracted number from the
original number using the subtraction rules of ordinary binary arithmetic.

To convert to base –2 from binary, extract the bits appearing in the odd posi-
tions (positions weighted by  with n odd), shift them one position to the left, and
add the two numbers using the addition rules of base –2. Here are two examples:

     Binary from base –2       Base –2 from binary
       110111 (-13)             110111 (55)
    - 1 0 1   (binary subtract)    + 1 0 1   (base -2 add)
    ---------             ---------
 ...111110011 (-13)          1001011 (55)

On a computer, with its fixed word size, these conversions work for negative
numbers if the carries out of the high-order position are simply discarded. To illus-
trate, the example on the right above can be regarded as converting 9 to base –2
from binary if the word size is six bits.

The above algorithm for converting to base –2 cannot easily be implemented
in software on a binary computer, because it requires doing addition in base –2.
Schroeppel [HAK, item 128] overcomes this with a much more clever and useful
way to do the conversions in both directions. To convert to binary, his method is

TABLE 12–2.  UNIFORM OPERATIONS IN VARIOUS NUMBER ENCODINGS

Signed-
magnitude

One’s-
complement

Two’s-
complement Base –2

addition no yes yes yes

subtraction no yes yes yes

multiplication yes no no yes

division yes no no no

2n

B N 0b10…1010( ) 0b10…1010.–
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To see why this works, let the base –2 number consist of the four digits abcd.
Then, interpreted (erroneously) in straight binary, this is  After
the exclusive or, interpreted in binary it is  After the
(binary) subtraction of 8 + 2, it is  which is its value inter-
preted in base –2.

Schroeppel’s formula can be readily solved for N in terms of B, so it gives a
three-instruction method for converting in the other direction. Collecting these
results, we have the following formulas for converting to binary for a 32-bit
machine:

and the following, for converting to base –2 from binary:

12–2  Base –1 + i
By using  as the base, where i is  all complex integers (complex num-
bers with integral real and imaginary parts) can be expressed as a single “number”
without an explicit sign or other irregularity. Surprisingly, this can be done using
only 0 and 1 for digits, and all integers are represented uniquely. We will not prove
this or much else about this number system, but will just describe it very briefly.

It is not entirely trivial to discover how to write the integer 2.1 But it can be
determined algorithmically by successively dividing 2 by the base and recording
the remainders. What does a “remainder” mean in this context? We want the
remainder after dividing by  to be 0 or 1, if possible (so that the digits will
be 0 or 1). To see that it is always possible, assume that we are to divide an arbi-
trary complex integer  by   Then, we wish to find q and r such that
q is a complex integer, r = 0 or 1, and

where  and  denote the real and imaginary parts of q, respectively. Equating
real and imaginary parts and solving the two simultaneous equations for q gives

1. The interested reader might warm up to this challenge.

8a 4b 2c d.+ + +
8 1 a–( ) 4b 2 1 c–( ) d.+ + +

8a– 4b 2c– d,+ +

B N 0x55555555&( ) N 0x55555555¬&( ),–

B N N 0xAAAAAAAA&( ) 1<<( ),–
B N 0xAAAAAAAA( ) 0xAAAAAAAA,–

N B 0xAAAAAAAA+( ) 0xAAAAAAAA.

1– i+ 1– ,

1– i+

a bi+ 1– i.+

a bi+ qr qii+( ) 1– i+( ) r,+=

qr qi

qr
b a– r+

2
--------------------= ,  and

qi
a– b– r+

2
-------------------------.=
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Clearly, if a and b are both even or are both odd, then by choosing  q is a
complex integer. Furthermore, if one of a and b is even and the other is odd, then
by choosing  q is a complex integer.

Thus, the integer 2 can be converted to base  by the plan illustrated
below.

Because the real and imaginary parts of the integer 2 are both even, we sim-
ply do the division, knowing that the remainder will be 0:

Because the real and imaginary parts of  are both odd, again we simply
divide, knowing that the remainder is 0:

Because the real and imaginary parts of i are even and odd, respectively, the
remainder will be 1. It is simplest to account for this at the beginning by subtract-
ing 1 from the dividend.

Because the real and imaginary parts of 1 are odd and even, the next remain-
der will be 1. Subtracting this from the dividend gives

Because we have reached a 0 quotient, the process terminates, and the base
 representation for 2 is seen to be 1100 (reading the remainders upward).

Table 12–3 shows how each bit pattern from 0000 to 1111 is interpreted in
base  and how the real integers in the range –15 to +15 are represented.

The addition rules for base  (in addition to the trivial ones involving a
0-bit) are as follows:

r 0,=

r 1,=
1– i+

2
1– i+

--------------- 2 1– i–( )
1– i+( ) 1– i–( )

---------------------------------------- 1– i rem 0.–= =

1– i–

1– i–
1– i+

--------------- 1– i–( ) 1– i–( )
1– i+( ) 1– i–( )

---------------------------------------- i rem 0.= =

i 1–
1– i+

--------------- 1  (remainder is 1).=

1 1–
1– i+

--------------- 0  (remainder is 1).=

1– i+

1– i+
1– i+

1 1+ 1100=
1 1 1+ + 1101=

1 1 1 1+ + + 111010000=
1 1 1 1 1+ + + + 111010001=

1 1 1 1 1 1+ + + + + 111011100=
1 1 1 1 1 1 1+ + + + + + 111011101=

1 1 1 1 1 1 1 1+ + + + + + + 111000000=
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When adding two numbers, the largest number of carries that occurs in one
column is six, so the largest sum of a column is 8 (111000000). This makes for a
rather complicated adder. If one were to build a complex arithmetic machine, it
would no doubt be best to keep the real and imaginary parts separate,2 with each
represented in some sensible way such as two’s-complement.

12–3  Other Bases
The base  has essentially the same properties as the base  discussed
above. If a certain bit pattern represents the number  in one of these bases,
then the same bit pattern represents the number  in the other base.

TABLE 12–3.  CONVERSIONS BETWEEN DECIMAL AND BASE –1 + i

n n n n –n
(base –1 + i) (decimal) (decimal) (base –1 + i) (base –1 + i)

0 0 0 0 0

1 1 1 1 11101

10 –1 + i 2 1100 11100

11 i 3 1101 10001

100 –2i 4 111010000 10000

101 1 – 2i 5 111010001 11001101

110 –1 – i 6 111011100 11001100

111 –i 7 111011101 11000001

1000 2 + 2i 8 111000000 11000000

1001 3 + 2i 9 111000001 11011101

1010 1+ 3i 10 111001100 11011100

1011 2 + 3i 11 111001101 11010001

1100 2 12 100010000 11010000

1101 3 13 100010001 1110100001101

1110 1 + i 14 100011100 1110100001100

1111 2 + i 15 100011101 1110100000001

2. This is the way it was done at Bell Labs back in 1940 on George Stibitz’s Complex Number
Calculator [Irvine].

1– i– 1– i+
a bi+

a bi–
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The bases  and  can also represent all the complex integers, using
only 0 and 1 for digits. These two bases have the same complex-conjugate rela-
tionship to each other, as do the bases   In bases  the representation
of some integers has an infinite string of 1’s on the left, similar to the two’s-
complement representation of negative integers. This arises naturally by using
uniform rules for addition and subtraction, as in the case of two’s-complement.
One such integer is 2, which (in either base) is written …11101100. Thus, these
bases have the rather complex addition rule 1 + 1 = …11101100.

By grouping into pairs the bits in the base –2 representation of an integer, one
obtains a base 4 representation for the positive and negative numbers, using the
digits –2, –1, 0, and 1. For example,

Similarly, by grouping into pairs the bits in the base  representation of
a complex integer, we obtain a base  representation for the complex integers
using the digits 0, 1,  and i. This is a bit too complicated to be interesting.

The “quater-imaginary” system (Knu2) is similar. It represents the complex
integers using 2i as a base, and the digits 0, 1, 2, and 3 (with no sign). To repre-
sent some integers, namely those with an odd imaginary component, it is neces-
sary to use a digit to the right of the radix point. For example, i is written 10.2 in
base 2i.

12–4  What Is the Most Efficient Base?
Suppose you are building a computer and you are trying to decide what base to
use to represent integers. For the registers you have available circuits that are
2-state (binary), 3-state, 4-state, and so on. Which should you use?

Let us assume that the cost of a b-state circuit is proportional to b. Thus, a
3-state circuit costs 50% more than a binary circuit, a 4-state circuit costs twice as
much as a binary circuit, and so on.

Suppose you want the registers to be able to hold integers from 0 to some
maximum M. Encoding integers from 0 to M in base b requires 
digits (e.g., to represent all integers from 0 to 999,999 in decimal requires

 digits).
One would expect the cost of a register to be equal to the product of the num-

ber of digits required times the cost to represent each digit:

where c is the cost of a register and k is a constant of proportionality. For a given
M, we wish to find b that minimizes the cost.

1 i+ 1 i–

1– i.± 1 i,±

14decimal– 110110 2– 1–( ) 1( ) 2–( )4 1– 42 1 41 2 40.–+= = =

1– i+
2i–

1– i,+

logb M 1+( )

log10 1,000,000( ) 6=

c klogb M 1+( ) b,=
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The minimum of this function occurs for that value of b that makes dc/db = 0.
Thus, we have

This is zero when  or 
This is not a very satisfactory result. Because e  2.718, 2 and 3 must be the

most efficient integral bases. Which is more efficient?  The ratio of the cost of a
base 2 register to the cost of a base 3 register is

Thus, base 2 is more costly than base 3, but only by a small amount.
By the same analysis, base 2 is more costly than base e by a factor of

about 1.062.

Exercises

1. Schroeppel’s formula for converting from base –2 to binary has a dual involv-
ing the constant 0x5555555. Can you find it?

2. Show how to add 1 to a base –2 number using the arithmetic and logical oper-
ations of a binary computer. For example, 0b111  0b100.

3. Show how to round a base –2 number down (in the negative direction) to a
multiple of 16 using the arithmetic and logical operations of a binary com-
puter. For example, 0b10  0b110000.

4. Write a program, in a language of your choice, to convert a base  inte-
ger to the form  where a and b are real integers. For example, if you
give the program the integer 33, or 0x21, it should display something like

5. How would you convert a number in base  to its negative? Extract its
real part? Extract its imaginary part? Convert it to its complex conjugate? (The
complex conjugate of  is 

d
db
------ kblogb M 1+( )( ) d

db
------ kb M 1+( )ln

bln
------------------------ k M 1+( ) bln 1–

bln( )2
-----------------.ln= =

bln 1,= b e.=

c 2( )
c 3( )
----------

k 2log2 M 1+( )
k 3log3 M 1+( )
-------------------------------------- 2 M 1+( )ln 2ln( )⁄

3 M 1+( )ln 3ln( )⁄
--------------------------------------------- 2 3ln

3 2ln
----------- 1.056.= = =

1– i+
a bi,+

5 4i.–

1– i+

a bi+ a bi.)–



ptg8736757

311

 CHAPTER  13

GRAY CODE

13–1  Gray Code
Is it possible to cycle through all  combinations of n bits by changing only one
bit at a time? The answer is “yes,” and this is the defining property of Gray codes.
That is, a Gray code is an encoding of the integers such that a Gray-coded integer
and its successor differ in only one bit position. This concept can be generalized to
apply to any base, such as decimal, but here we will discuss only binary Gray
codes.

Although there are many binary Gray codes, we will discuss only one: the
“reflected binary Gray code.” This code is what is usually meant in the literature
by the unqualified term “Gray code.” We will show, usually without proof, how to
do some basic operations in this representation of integers, and we will show a
few surprising properties.

The reflected binary Gray code is constructed as follows. Start with the
strings 0 and 1, representing the integers 0 and 1:

0
1

Reflect this about a horizontal axis at the bottom of the list, and place a 1 to
the left of the new list entries and a 0 to the left of the original list entries:

00
01
11
10

This is the reflected binary Gray code for n = 2. To get the code for n = 3,
reflect this and attach a 0 or 1 as before:

000
001
011
010
110
111
101
100

2n
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From this construction, it is easy to see by induction on n that (1) each of the
 bit combinations appears once and only once in the list, (2) only one bit

changes in going from one list entry to the next, and (3) only one bit changes
when cycling around from the last entry to the first. Gray codes having this last
property are called “cyclic,” and the reflected binary Gray code is necessarily
cyclic.

If  there are non-cyclic codes that take on all  values once and only
once. One such code is 000 001 011 010 110 100 101 111.

Figure 13–1 shows, for n = 4, the integers encoded in ordinary binary and in
Gray code. The formulas show how to convert from one representation to the
other at the bit-by-bit level (as it would be done in hardware).

As for the number of Gray codes on n bits, notice that one still has a cyclic
binary Gray code after rotating the list (starting at any of the  positions and
cycling around) or reordering the columns. Any combination of these operations
results in a distinct code. Therefore, there are at least  cyclic binary Gray
codes on n bits. There are more than this for 

The Gray code and binary representations have the following dual relation-
ships, evident from the formulas given in Figure 13–1:

• Bit i of a Gray-coded integer is the parity of bit i and the bit to the left of i in 
the corresponding binary integer (using 0 if there is no bit to the left of i).

• Bit i of a binary integer is the parity of all the bits at and to the left of posi-
tion i in the corresponding Gray-coded integer.

Converting to Gray from binary can be done in only two instructions:

The conversion to binary from Gray is harder. One method is given by

We have already seen this formula in “Computing the Parity of a Word” on
page 96. As mentioned there, this formula can be evaluated as illustrated below
for

   B = G ^ (G >> 1); 
   B = B ^ (B >> 2); 
   B = B ^ (B >> 4); 
   B = B ^ (B >> 8); 
   B = B ^ (B >> 16); 

Thus, in general it requires  instructions.

2n

n 2,> 2n

2n

2n n!
n 3.

G B B 1>>
u( ).

B
n 1–

G i.>>
u

i 0=

n 32.=

2 log2n
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Because it is so easy to convert from binary to Gray, it is trivial to generate
successive Gray-coded integers:

   for (i = 0; i < n; i++) {
      G = i ^ (i >> 1);
      output G;
   }

13–2  Incrementing a Gray-Coded Integer
The logic for incrementing a 4-bit binary integer abcd can be expressed as fol-
lows, using Boolean algebra notation:

Binary Gray

abcd efgh

0000 0000 Gray from Binary Binary from Gray

0001 0001 e = a a = e

0010 0011 f = a b b = e  f

0011 0010 g = b c c = e  f  g

0100 0110 h = c d d = e  f  g  h

0101 0111

0110 0101

0111 0100

1000 1100

1001 1101

1010 1111

1011 1110

1100 1010

1101 1011

1110 1001

1111 1000

FIGURE 13–1.  4-bit Gray code and conversion formulas.

d d=
c c d=
b b cd=
a a bcd=
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Thus, one way to build a Gray-coded counter in hardware is to build a binary
counter using the above logic and convert the outputs  to Gray by
forming the exclusive or of adjacent bits, as shown under “Gray from Binary” in
Figure 13–1.

A way that might be slightly better is described by the following formulas:

That is, the general case is

Because the parity p alternates between 0 and 1, a counter circuit might maintain p
in a separate 1-bit register and simply invert it on each count.

In software, the best way to find the successor  of a Gray-coded integer G
is probably simply to convert G to binary, increment the binary word, and convert
it back to Gray code. Another way that’s interesting and almost as good is to
determine which bit to flip in G. The pattern goes like this, expressed as a word to
be exclusive or’d to G:

1  2  1  4  1  2  1  8 1  2  1  4  1  2  1  16

The alert reader will recognize this as a mask that identifies the position of
the leftmost bit that changes when incrementing the integer 0, 1, 2, 3, …, corre-
sponding to the positions in the above list. Thus, to increment a Gray-coded inte-
ger G, the bit position to invert is given by the leftmost bit that changes when 1 is
added to the binary integer corresponding to G.

This leads to the algorithms for incrementing a Gray-coded integer G as
shown in Figure 13–2. They both first convert G to binary, which is shown as
index(G).

   B = index(G);         B = index(G);
   B = B + 1;         M = ~B & (B + 1);
   Gp = B ^ (B >> 1);          Gp = G ^ M;

FIGURE 13–2.  Incrementing a Gray-coded integer.

a b c d, , ,

p e f g h=
h h p=
g g hp=

f f ghp=

e e fghp=

Gn Gn Gn 1– Gn 2– …G0p( ), n 2.=

G
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A pencil-and-paper method of incrementing a Gray-coded integer is as
follows:

Starting from the right, find the first place at which the parity of bits at
and to the left of the position is even. Invert the bit at this position.

Or, equivalently:

Let p be the parity of the word G. If p is even, invert the rightmost bit. 
If p is odd, invert the bit to the left of the rightmost 1-bit.

The latter rule is directly expressed in the Boolean equations given above.

13–3  Negabinary Gray Code
If you write the integers in order in base 2 and convert them using the “shift and
exclusive or” that converts to Gray from straight binary, you get a Gray code. The
3-bit Gray code has indexes that range over the 3-bit base 2 numbers, namely –2
to 5. Similarly, the 4-bit Gray code corresponding to 4-bit base 2 numbers has
indexes ranging from 10 to 5. It is not a reflected Gray code, but it almost is. The
4-bit negabinary Gray code can be generated by starting with 0 and 1, reflecting
this about a horizontal axis at the top of the list, and then reflecting it about a hor-
izontal axis at the bottom of the list, and so on. It is cyclic.

To convert back to base 2 from this Gray code, the rules are, of course, the
same as they are for converting to straight binary from ordinary reflected binary
Gray code (because these operations are inverses, no matter what the interpreta-
tion of the bit strings is).

13–4  Brief History and Applications
Gray codes are named after Frank Gray, a physicist at Bell Telephone Laborato-
ries, who in the 1930s invented the method we now use for broadcasting color TV
in a way that’s compatible with the black-and-white transmission and reception
methods then in existence; that is, when the color signal is received by a black-
and-white set, the picture appears in shades of gray.

Martin Gardner [Gard] discusses applications of Gray codes involving the
Chinese ring puzzle, the Tower of Hanoi puzzle, and Hamiltonian paths through
graphs that represent hypercubes. He also shows how to convert from the decimal
representation of an integer to a decimal Gray code representation.

Gray codes are used in position sensors. A strip of material is made with con-
ducting and nonconducting areas, corresponding to the 1’s and 0’s of a Gray-
coded integer. Each column has a conducting wire brush positioned to read it out.
If a brush is positioned on the dividing line between two of the quantized positions
so that its reading is ambiguous, then it doesn’t matter which way the ambiguity is
resolved. There can be only one ambiguous brush, and interpreting it as a 0 or 1
gives a position adjacent to the dividing line.
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The strip can instead be a series of concentric circular tracks, giving a rota-
tional position sensor. For this application, the Gray code must be cyclic. Such a
sensor is shown in Figure 13–3, where the four dots represent the brushes.

It is possible to construct cyclic Gray codes for rotational sensors that require only
one ring of conducting and nonconducting areas, although at some expense in resolu-
tion for a given number of brushes. The brushes are spaced around the ring rather than
on a radial line. These codes are called single track Gray codes, or STGCs.

The idea is to find a code for which, when written out as in Figure 13–1, every
column is a rotation of the first column (and that is cyclic, assuming the code is for
a rotational device). The reflected Gray code for  is trivially an STGC.
STGCs for  through 4 are shown here.

STGCs allow the construction of more compact rotational position sensors. A
rotational STGC device for  is shown in Figure 13–4.

These are all very similar, simple, and rather uninteresting patterns. Following
these patterns, an STGC for the case  would have ten code words, giving a
resolution of 36 degrees. It is possible to do much better. Figure 13–5 shows an
STGC for  with 30 code words, giving a resolution of 12 degrees. It is close
to the optimum of 32 code words.

n = 2 n = 3 n = 4
00 000 0000
01 001 0001
11 011 0011
10 111 0111

110 1111
100 1110

1100
1000

FIGURE 13–3.  Rotational position sensor.

n 2=
n 2=

n 3=

n 5=

n 5=
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All the STGCs in this section above are the best possible, in the sense that for
 through 5, the largest number of code words possible is 4, 6, 8, and 30.

An STGC has been constructed with exactly 360 code words, with  (the
smallest possible value of n, because any code for  has at most 256 code
words) [HilPat].

Exercises

1. Show that if an integer x is even, then G(x) (the reflected binary Gray code of
x) has an even number of 1-bits, and if x is odd, G(x) has an odd number of
1-bits.

2. A balanced Gray code is a cyclic Gray code in which the number of bit
changes is the same in all columns, as one cycles around the code.
(a) Show that an STGC is necessarily balanced.
(b) Can you find a balanced Gray code for  that has eight code words?

3. Devise a cyclic Gray code that encodes the integers from 0 to 9.

4. [Knu6] Given a number in prime decomposed form, show how to list all its
divisors in such a way that each divisor in the list is derived from the previous
divisor by a single multiplication or division by a prime.

FIGURE 13–4.  Single track rotational position sensor.

10000 01000 00100 00010 00001
10100 01010 00101 10010 01001
11100 01110 00111 10011 11001
11110 01111 10111 11011 11101
11010 01101 10110 01011 10101
11000 01100 00110 00011 10001

FIGURE 13–5. An STGC for n 5.=

n 2=
n 9=

n 8=

n 3=
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 CHAPTER  14

CYCLIC REDUNDANCY 
CHECK

14–1  Introduction
The cyclic redundancy check, or CRC, is a technique for detecting errors in digital
data, but not for making corrections when errors are detected. It is used primarily
in data transmission. In the CRC method, a certain number of check bits, often
called a checksum, or a hash code, are appended to the message being transmitted.
The receiver can determine whether or not the check bits agree with the data to
ascertain with a certain degree of probability that an error occurred in transmission.
If an error occurred, the receiver sends a “negative acknowledgment” (NAK) back
to the sender, requesting that the message be retransmitted.

The technique is also sometimes applied to data storage devices, such as a disk
drive. In this situation each block on the disk would have check bits, and the hard-
ware might automatically initiate a reread of the block when an error is detected, or
it might report the error to software.

The material that follows speaks in terms of a “sender” and a “receiver” of a
“message,” but it should be understood that it applies to storage writing and read-
ing as well.

Section 14–2 describes the theory behind the CRC methodology. Section 14–3
shows how the theory is put into practice in hardware, and gives a software imple-
mentation of a popular method known as CRC-32.

Background
There are several techniques for generating check bits that can be added to a mes-
sage. Perhaps the simplest is to append a single bit, called the “parity bit,” which
makes the total number of 1-bits in the code vector (message with parity bit
appended) even (or odd). If a single bit gets altered in transmission, this will
change the parity from even to odd (or the reverse). The sender generates the parity
bit by simply summing the message bits modulo 2—that is, by exclusive or’ing
them together. It then appends the parity bit (or its complement) to the message.
The receiver can check the message by summing all the message bits modulo 2 and
checking that the sum agrees with the parity bit. Equivalently, the receiver can sum
all the bits (message and parity) and check that the result is 0 (if even parity is
being used).

This simple parity technique is often said to detect 1-bit errors. Actually, it
detects errors in any odd number of bits (including the parity bit), but it is a small
comfort to know you are detecting 3-bit errors if you are missing 2-bit errors.

For bit serial sending and receiving, the hardware required to generate and
check a single parity bit is very simple. It consists of a single exclusive or gate
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together with some control circuitry. For bit parallel transmission, an exclusive or
tree may be used, as illustrated in Figure 14–1. Efficient ways to compute the par-
ity bit in software are given in Section 5–2 on page 96.

Other techniques for computing a checksum are to form the exclusive or of all
the bytes in the message, or to compute a sum with end-around carry of all the
bytes. In the latter method, the carry from each 8-bit sum is added into the least sig-
nificant bit of the accumulator. It is believed that this is more likely to detect errors
than the simple exclusive or, or the sum of the bytes with carry discarded.

A technique that is believed to be quite good in terms of error detection, and
which is easy to implement in hardware, is the cyclic redundancy check. This is
another way to compute a checksum, usually eight, 16, or 32 bits in length, that is
appended to the message. We will briefly review the theory, show how the theory
is implemented in hardware, and then give software for a commonly used 32-bit
CRC checksum.

We should mention that there are much more sophisticated ways to compute a
checksum, or hash code, for data. Examples are the hash functions known as MD5
and SHA-1, whose hash codes are 128 and 160 bits in length, respectively. These
methods are used mainly in cryptographic applications and are substantially more
difficult to implement, in hardware and software, than the CRC methodology
described here. However, SHA-1 is used in certain revision control systems (Git
and others) as simply a check on data integrity.

14–2  Theory
The CRC is based on polynomial arithmetic, in particular, on computing the
remainder when dividing one polynomial in GF(2) (Galois field with two ele-
ments) by another. It is a little like treating the message as a very large binary num-
ber, and computing the remainder when dividing it by a fairly large prime such as

 Intuitively, one would expect this to give a reliable checksum.

FIGURE 14–1. Exclusive or tree.

b0b1b2b3b4b5b6b7

++ + +

+ +

+
Parity bit (even)

232 5.–
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A polynomial in GF(2) is a polynomial in a single variable x whose coefficients
are 0 or 1. Addition and subtraction are done modulo 2—that is, they are both the
same as the exclusive or operation. For example, the sum of the polynomials

is  as is their difference. These polynomials are not usually written
with minus signs, but they could be, because a coefficient of –1 is equivalent to a
coefficient of 1.

Multiplication of such polynomials is straightforward. The product of one
coefficient by another is the same as their combination by the logical and operator,
and the partial products are summed using exclusive or. Multiplication is not
needed to compute the CRC checksum.

Division of polynomials over GF(2) can be done in much the same way as
long division of polynomials over the integers. Here is an example.

The reader may verify that the quotient  multiplied by the divisor
 plus the remainder  equals the dividend.

The CRC method treats the message as a polynomial in GF(2). For example,
the message 11001001, where the order of transmission is from left to right
(110…), is treated as a representation of the polynomial 
The sender and receiver agree on a certain fixed polynomial called the generator
polynomial. For example, for a 16-bit CRC the CCITT (Le Comité Consultatif
International Télégraphique et Téléphonique)1 has chosen the polynomial

 which is now widely used for a 16-bit CRC checksum. To com-
pute an r-bit CRC checksum, the generator polynomial must be of degree r. The
sender appends r 0-bits to the m-bit message and divides the resulting polynomial
of degree  by the generator polynomial. This produces a remainder poly-
nomial of degree  (or less). The remainder polynomial has r coefficients,
which are the checksum. The quotient polynomial is discarded. The data transmit-
ted (the code vector) is the original m-bit message followed by the r-bit checksum.

1. Since renamed the ITU-TSS (International Telecommunications Union—Telecommunica-
tions Standards Sector).

x3 x 1   and+ +
x4 x3 x2 x+ + +

x4 x2 1,+ +

x3+x+1) x7 + x6 + x5 + x2 + x
 x4 + x3 + 1

 x7 + x5 + x4

x6 +  x4

x6 +   x4 + x3

x3 + x2 + x
x3 + x + 1

x2 +       1

x4 x3 1+ +
x3 x 1,+ + x2 1,+

x7 x6 x3 1.+ + +

x16 x12 x5 1,+ + +

m r 1–+
r 1–
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There are two ways for the receiver to assess the correctness of the transmis-
sion. It can compute the checksum from the first m bits of the received data and
verify that it agrees with the last r received bits. Alternatively, and following usual
practice, the receiver can divide all the  received bits by the generator poly-
nomial and check that the r-bit remainder is 0. To see that the remainder must be 0,
let M be the polynomial representation of the message, and let R be the polynomial
representation of the remainder that was computed by the sender. Then the trans-
mitted data corresponds to the polynomial  (or, equivalently, ).
By the way R was computed, we know that  where G is the gen-
erator polynomial and Q is the quotient (that was discarded). Therefore the trans-
mitted data,  is equal to QG, which is clearly a multiple of G. If the
receiver is built as nearly as possible just like the sender, the receiver will append
r 0-bits to the received data as it computes the remainder R. The received data with
0-bits appended is still a multiple of G, so the computed remainder is still 0. 

That’s the basic idea, but in reality the process is altered slightly to correct for
certain deficiencies. For example, the method as described is insensitive to the
number of leading and trailing 0-bits in the data transmitted. In particular, if a fail-
ure occurred that caused the received data, including the checksum, to be all-0, it
would be accepted.

Choosing a “good” generator polynomial is something of an art and beyond
the scope of this text. Two simple observations: For an r-bit checksum, G should be
of degree r, because otherwise the first bit of the checksum would always be 0,
which wastes a bit of the checksum. Similarly, the last coefficient should be 1 (that
is, G should not be divisible by x), because otherwise the last bit of the checksum
would always be 0 (because  if G is divisible by x, then R must be
also). The following facts about generator polynomials are proved in [PeBr] and/or
[Tanen]:

• If G contains two or more terms, all single-bit errors are detected.

• If G is not divisible by x (that is, if the last term is 1), and e is the least 
positive integer such that G evenly divides  then all double errors 
that are within a frame of e bits are detected. A particularly good polyno-
mial in this respect is  for which 

• If  is a factor of G, all errors consisting of an odd number of bits are 
detected.

• An r-bit CRC checksum detects all burst errors of length  (A burst 
error of length r is a string of r bits in which the first and last are in error, 
and the intermediate  bits may or may not be in error.)

The generator polynomial  creates a checksum of length 1, which applies
even parity to the message. (Proof hint: For arbitrary  what is the remainder
when dividing  by ?)

m r+

Mxr R– Mxr R+
Mxr QG R,+=

Mxr R,–

Mxr QG R,+=

xe 1,+

x15 x14 1,+ + e 32767.=

x 1+

r.

r 2–

x 1+
k 0,

xk x 1+
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It is interesting to note that if a code of any type can detect all double-bit and
single-bit errors, then it can in principle correct single-bit errors. To see this, sup-
pose data containing a single-bit error is received. Imagine complementing all the
bits, one at a time. In all cases but one, this results in a double-bit error, which is
detected. But when the erroneous bit is complemented, the data is error free, which
is recognized. In spite of this, the CRC method does not seem to be used for single-
bit error correction. Instead, the sender is requested to repeat the whole transmis-
sion if any error is detected.

14–3  Practice
Table 14–1 shows the generator polynomials used by some common CRC stan-
dards. The “Hex” column shows the hexadecimal representation of the generator
polynomial; the most significant bit is omitted, as it is always 1.

The CRC standards differ in ways other than the choice of generating polyno-
mials. Most initialize by assuming that the message has been preceded by certain
nonzero bits, others do no such initialization. Most transmit the bits within a byte
least significant bit first, some most significant bit first. Most append the checksum
least significant byte first, others most significant byte first. Some complement the
checksum.

CRC-12 is used for transmission of 6-bit character streams, and the others are
for 8-bit characters, or 8-bit bytes of arbitrary data. CRC-16 is used in IBM’s
BISYNCH communication standard. The CRC-CCITT polynomial, also known as
ITU-TSS, is used in communication protocols such as XMODEM, X.25, IBM’s
SDLC, and ISO’s HDLC [Tanen]. CRC-32 is also known as AUTODIN-II and
ITU-TSS (ITU-TSS has defined both 16- and a 32-bit polynomials). It is used in
PKZip, Ethernet, AAL5 (ATM Adaptation Layer 5), FDDI (Fiber Distributed Data
Interface), the IEEE-802 LAN/MAN standard, and in some DOD applications. It is
the one for which software algorithms are given here.

The first three polynomials in Table 14–1 have  as a factor. The last
(CRC-32) does not.

TABLE 14–1. GENERATOR POLYNOMIALS OF SOME CRC CODES

Common
Name r

Generator

Polynomial Hex

CRC-12 12 80F

CRC-16 16 8005

CRC-CCITT 16 1021

CRC-32 32 04C1 1DB7

x 1+

x12 x11 x3 x2 x 1+ + + + +

x16 x15 x2 1+ + +

x16 x12 x5 1+ + +

x32 x26 x23 x22 x16 x12

x11 x10 x8 x7 x5 x4 x2 x 1
+ + + + + +
+ + + + + + + +
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To detect the error of erroneous insertion or deletion of leading 0’s, some pro-
tocols prepend one or more nonzero bits to the message. These don’t actually get
transmitted; they are simply used to initialize the key register (described below)
used in the CRC calculation. A value of r 1-bits seems to be universally used. The
receiver initializes its register in the same way.

The problem of trailing 0’s is a little more difficult. There would be no problem
if the receiver operated by comparing the remainder based on just the message bits to
the checksum received. But, it seems to be simpler for the receiver to calculate the
remainder for all bits received (message and checksum), plus r appended 0-bits. The
remainder should be 0. With a 0 remainder, if the message has trailing 0-bits inserted
or deleted, the remainder will still be 0, so this error goes undetected.

The usual solution to this problem is for the sender to complement the check-
sum before appending it. Because this makes the remainder calculated by the
receiver nonzero (usually), the remainder will change if trailing 0’s are inserted or
deleted. How then does the receiver recognize an error-free transmission?

Using the “mod” notation for remainder, we know that

Denoting the “complement” of the polynomial R by  we have

Thus, the checksum calculated by the receiver for an error-free transmission
should be

This is a constant (for a given G). For CRC-32 this polynomial, called the residual
or residue, is

or hex C704DD7B [Black].

Hardware
To develop a hardware circuit for computing the CRC checksum, we reduce the
polynomial division process to its essentials.

The process employs a shift register, which we denote by CRC. This is of length
r (the degree of G) bits, not  as you might expect. When the subtractions

Mxr R+( ) mod G 0.=

R,

Mxr R+( ) mod G Mxr xr 1– xr 2– … 1 R–+ + +( )+( ) mod G=
Mxr R+( ) xr 1– xr 2– … 1+ + + +( ) mod G=

xr 1– xr 2– … 1+ + +( ) mod G.=

xr 1– xr 2– … 1+ + +( ) mod G.

x31 x30 x26 x25 x24 x18 x15 x14 x12

x11 x10 x8 x6 x5 x4 x3 x 1,
+ + + + + + + + +
+ + + + + + + +

r 1+



ptg8736757

14–3 PRACTICE 325

(exclusive or’s) are done, it is not necessary to represent the high-order bit, because
the high-order bits of G and the quantity it is being subtracted from are both 1. The
division process might be described informally as follows:

Initialize the CRC register to all 0-bits.
     Get first/next message bit m.
     If the high-order bit of CRC is 1,
          Shift CRC and m together left 1 position, and XOR the result with the 
          low-order r bits of G.
     Otherwise,
          Just shift CRC and m left 1 position.
     If there are more message bits, go back to get the next one.
It might seem that the subtraction should be done first, and then the shift. It

would be done that way if the CRC register held the entire generator polynomial,
which in bit form is  bits. Instead, the CRC register holds only the low-order
r bits of G, so the shift is done first, to align things properly.

The contents of the CRC register for the generator G =  and the
message M =  are shown below. Expressed in binary, G =
1011 and M = 11100110.

000 Initial CRC contents. High-order bit is 0, so just shift in first message bit.
001 High-order bit is 0, so just shift in second message bit, giving:
011 High-order bit is 0 again, so just shift in third message bit, giving:
111 High-order bit is 1, so shift and then XOR with 011, giving:
101 High-order bit is 1, so shift and then XOR with 011, giving:
001 High-order bit is 0, so just shift in fifth message bit, giving:
011 High-order bit is 0, so just shift in sixth message bit, giving:
111 High-order bit is 1, so shift and then XOR with 011, giving:
101 There are no more message bits, so this is the remainder.

These steps can be implemented with the (simplified) circuit shown in
Figure 14–2, which is known as a feedback shift register. The three boxes in the
figure represent the three bits of the CRC register. When a message bit comes in, if
the high-order bit (x2 box) is 0, simultaneously the message bit is shifted into the x0

box, the bit in x0 is shifted to x1, the bit in x1 is shifted to x2, and the bit in x2 is dis-
carded. If the high-order bit of the CRC register is 1, then a 1 is present at the lower

FIGURE 14–2. Polynomial division circuit for G = 

r 1+

x3 x 1+ +
x7 x6 x5 x2 x+ + + +

+ +x0x1x2 Message
Input

x3 x 1.+ +
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input of each of the two exclusive or gates. When a message bit comes in, the same
shifting takes place, but the three bits that wind up in the CRC register have been
exclusive or’ed with binary 011. When all the message bits have been processed,
the CRC holds M mod G.

If the circuit of Figure 14–2 were used for the CRC calculation, then after pro-
cessing the message, r (in this case 3) 0-bits would have to be fed in. Then the CRC
register would have the desired checksum,  There is a way to avoid
this step with a simple rearrangement of the circuit.

Instead of feeding the message in at the right end, feed it in at the left end, r
steps away, as shown in Figure 14–3. This has the effect of premultiplying the
input message M by xr. But premultiplying and postmultiplying are the same for
polynomials. Therefore, as each message bit comes in, the CRC register contents
are the remainder for the portion of the message processed, as if that portion had r
0-bits appended.

Figure 14–4 shows the circuit for the CRC-32 polynomial.

FIGURE 14–3. CRC circuit for G = 

FIGURE 14–4. CRC circuit for CRC-32.

Mxr mod G.

+ x0x1x2

Message
Input

+

x3 x 1.+ +

31 30 29 28 27 26 + 25 24 23 + 22 + 21 20 19

18 17 16 + 15 14 13 12 + 11 + 10 + 9 8 +

7 + 6 5 + 4 + 3 2 + 1 + 0

+

Message
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Software
Figure 14–5 shows a basic implementation of CRC-32 in software. The CRC-32
protocol initializes the CRC register to all 1’s, transmits each byte least significant
bit first, and complements the checksum. We assume the message consists of an
integral number of bytes.

To follow Figure 14–4 as closely as possible, the program uses left shifts. This
requires reversing each message byte and positioning it at the left end of the 32-bit
register, denoted byte in the program. The word-level reversing program shown
in Figure 7–1 on page 129 can be used (although this is not very efficient, because
we need to reverse only eight bits).

The code of Figure 14–5 is shown for illustration only. It can be improved sub-
stantially while still retaining its one-bit-at-a-time character. First, notice that the
eight bits of the reversed byte are used in the inner loop’s if-statement and then
discarded. Also, the high-order eight bits of crc are not altered in the inner loop
(other than by shifting). Therefore, we can set crc = crc ^ byte ahead of the
inner loop, simplify the if-statement, and omit the left shift of byte at the bottom
of the loop.

The two reversals can be avoided by shifting right instead of left. This requires
reversing the hex constant that represents the CRC-32 polynomial and testing the
least significant bit of crc. Finally, the if-test can be replaced with some simple
logic, to save branches. The result is shown in Figure 14–6.

It is not unreasonable to unroll the inner loop by the full factor of eight. If this
is done, the program of Figure 14–6 executes in about 46 instructions per byte of

unsigned int crc32(unsigned char *message) {
   int i, j;
   unsigned int byte, crc;

   i = 0;
   crc = 0xFFFFFFFF;
   while (message[i] != 0) {
      byte = message[i];          // Get next byte.
      byte = reverse(byte);         // 32-bit reversal.
      for (j = 0; j <= 7; j++) {    // Do eight times.
         if ((int)(crc ^ byte) < 0)

 crc = (crc << 1) ^ 0x04C11DB7;
         else crc = crc << 1;
         byte = byte << 1;         // Ready next msg bit.
      }
      i = i + 1;
   }
   return reverse(~crc);
}

FIGURE 14–5. Basic CRC-32 algorithm.
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input message. This includes a load and a branch. (We rely on the compiler to com-
mon the two loads of message[i] and to transform the while-loop so there is
only one branch, at the bottom of the loop.)

Our next version employs table lookup. This is the usual way that CRC-32 is
calculated. Although the programs above work one bit at a time, the table lookup
method (as usually implemented) works one byte at a time. A table of 256 fullword
constants is used.

The inner loop of Figure 14–6 shifts register crc right eight times, while
doing an exclusive or operation with a constant when the low-order bit of crc is 1.
These steps can be replaced by a single right shift of eight positions, followed by a
single exclusive or with a mask that depends on the pattern of 1-bits in the right-
most eight bits of the crc register.

It turns out that the calculations for setting up the table are the same as those
for computing the CRC of a single byte. The code is shown in Figure 14–7. To
keep the program self-contained, it includes steps to set up the table on first use. In
practice, these steps would probably be put in a separate function to keep the CRC
calculation as simple as possible. Alternatively, the table could be defined by a
long sequence of array initialization data. When compiled with GCC to the basic
RISC, the function executes 13 instructions per byte of input. This includes two
loads and one branch instruction.

Faster versions of these programs can be constructed by standard techniques,
but there is nothing dramatic known to this writer. One can unroll loops and do
careful scheduling of loads that the compiler may not do automatically. One can
load the message string a halfword or a word at a time (with proper attention paid
to alignment), to reduce the number of loads of the message and the number of

unsigned int crc32(unsigned char *message) {
   int i, j;
   unsigned int byte, crc, mask;

   i = 0;
   crc = 0xFFFFFFFF;
   while (message[i] != 0) {
      byte = message[i];          // Get next byte.
      crc = crc ^ byte;
      for (j = 7; j >= 0; j--) {    // Do eight times.
         mask = -(crc & 1);
         crc = (crc >> 1) ^ (0xEDB88320 & mask);
      }
      i = i + 1;
   }
   return ~crc;
}

FIGURE 14–6. Improved bit-at-a-time CRC-32 algorithm.
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exclusive or’s of crc with the message (see exercise 2). The table lookup method
can process message bytes two at a time  using a table of size 65536 words. This
might make the program run faster or slower, depending on the size of the data
cache and the penalty for a miss.

Exercises

1. Show that if a generator G contains two or more terms, all single-bit errors are
detected.

2. Referring to Figure 14-7, show how to code the main loop so that the message
data is loaded one word at a time. For simplicity, assume the message is full-
word aligned and an integral number of words in length, before the zero byte
that marks the end of the message.

unsigned int crc32(unsigned char *message) {
   int i, j;
   unsigned int byte, crc, mask;
   static unsigned int table[256];

   /* Set up the table, if necessary. */

   if (table[1] == 0) {
      for (byte = 0; byte <= 255; byte++) {
         crc = byte;
         for (j = 7; j >= 0; j--) {    // Do eight times.
            mask = -(crc & 1);
            crc = (crc >> 1) ^ (0xEDB88320 & mask);
         }
         table[byte] = crc;
      }
   }

   /* Through with table setup, now calculate the CRC. */

   i = 0;
   crc = 0xFFFFFFFF;
   while ((byte = message[i]) != 0) {
      crc = (crc >> 8) ^ table[(crc ^ byte) & 0xFF];
      i = i + 1;
   }
   return ~crc;
}

FIGURE 14–7. Table lookup CRC algorithm.
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 CHAPTER  15

ERROR-CORRECTING 
CODES

15–1  Introduction
This section is a brief introduction to the theory and practice of error-correcting
codes (ECCs). We limit our attention to binary forward error-correcting (FEC)
block codes. This means that the symbol alphabet consists of just two symbols
(which we denote 0 and 1), that the receiver can correct a transmission error with-
out asking the sender for more information or for a retransmission, and that the
transmissions consist of a sequence of fixed length blocks, called code words.

Section 15–2 describes the code independently discovered by R. W. Hamming
and M. J. E. Golay before 1950 [Ham]. This code is single error-correcting (SEC),
and a simple extension of it, also discovered by Hamming, is single error-correcting
and, simultaneously, double error-detecting (SEC-DED).

Section 15–4 steps back and asks what is possible in the area of forward error
correction. Still sticking to binary FEC block codes, the basic question addressed
is: for a given block length (or code length) and level of error detection and correc-
tion capability, how many different code words can be encoded?

Section 15–2 is for readers who are primarily interested in learning the basics
of how ECC works in computer memories. Section 15–4 is for those who are inter-
ested in the mathematics of the subject, and who might be interested in the chal-
lenge of an unsolved mathematical problem.

The reader is cautioned that over the past 50 years ECC has become a very big
subject. Many books have been published on it and closely related subjects [Hill,
LC, MS, and Roman, to mention a few]. Here we just scratch the surface and intro-
duce the reader to two important topics and to some of the terminology used in this
field. Although much of the subject of error-correcting codes relies very heavily on
the notations and results of linear algebra, and, in fact, is a very nice application of
that abstract theory, we avoid it here for the benefit of those who are not familiar
with that theory.

The following notation is used throughout this chapter. The terms are defined
in subsequent sections.

m Number of “information” or “message” bits
k Number of parity-check bits (“check bits,” for short)
n Code length, n = m + k
u Information bit vector, u0, u1, … um–1
p Parity check bit vector, p0, p1, …, pk–1
s Syndrome vector, s0, s1, …, sk–1



ptg8736757

332 ERROR-CORRECTING CODES 15–2

15–2  The Hamming Code
Hamming’s development [Ham] is a very direct construction of a code that permits
correcting single-bit errors. He assumes that the data to be transmitted consists of
a certain number of information bits u, and he adds to these a number of check bits
p, such that if a block is received that has at most one bit in error, then p identifies
the bit that is in error (which might be one of the check bits). Specifically, in Ham-
ming’s code, p is interpreted as an integer that is 0 if no error occurred, and other-
wise is the 1-origin index of the bit that is in error. Let m be the number of
information bits, and k the number of check bits used. Because the k check bits
must check themselves as well as the information bits, the value of p, interpreted as
an integer, must range from 0 to  which is  distinct values.
Because k bits can distinguish  cases, we must have

(1)

This is known as the Hamming rule. It applies to any single-error correcting (SEC)
binary FEC block code in which all of the transmitted bits must be checked. The
check bits will be interspersed among the information bits in a manner described
below.

Because p indexes the bit (if any) that is in error, the least significant bit of p
must be 1 if the erroneous bit is in an odd position, and 0 if it is in an even position
or if there is no error. A simple way to achieve this is to let the least significant bit
of p, p0, be an even parity check on the odd positions of the block and to put p0 in
an odd position. The receiver then checks the parity of the odd positions (including
that of p0). If the result is 1, an error has occurred in an odd position, and if the
result is 0, either no error occurred or an error occurred in an even position. This
satisfies the condition that p should be the index of the erroneous bit, or be 0 if no
error occurred.

Similarly, let the next-from-least significant bit of p, p1, be an even parity
check of positions 2, 3, 6, 7, 10, 11, … (in binary, 10, 11, 110, 111, 1010, 1011, …),
and put p1 in one of these positions. Those positions have a 1 in their second-from-
least significant binary position number. The receiver checks the parity of these
positions (including the position of p1). If the result is 1, an error occurred in one of
those positions, and if the result is 0, either no error occurred or an error occurred
in some other position.

Continuing, the third-from-least significant check bit, p2, is made an even par-
ity check on those positions that have a 1 in their third-from-least significant posi-
tion number, namely positions 4, 5, 6, 7, 12, 13, 14, 15, 20, …, and p2 is put in one
of those positions.

Putting the check bits in power-of-two positions (1, 2, 4, 8, …) has the advan-
tage that they are independent. That is, the sender can compute p0 independent of
p1, p2, … and, more generally, it can compute each check bit independent of the
others.

m k,+ m k 1+ +
2k

2k m k 1.+ +



ptg8736757

15–2 THE HAMMING CODE 333

As an example, let us develop a single error-correcting code for  Solv-
ing (1) for k gives  with equality holding. This means that all  possible
values of the k check bits are used, so it is particularly efficient. A code with this
property is called a perfect code.1

This code is called the (7,4) Hamming code, which signifies that the code
length is 7 and the number of information bits is 4. The positions of the check bits
pi and the information bits ui are shown here.

Table 15–1 shows the entire code. The 16 rows show all 16 possible informa-
tion bit configurations and the check bits calculated by Hamming’s method.

To illustrate how the receiver corrects a single-bit error, suppose the code
word

1001110
is received. This is row 4 in Table 15–1 with bit 6 flipped. The receiver calculates
the exclusive or of the bits in odd positions and gets 0. It calculates the exclusive or
of bits 2, 3, 6, and 7 and gets 1. Lastly, it calculates the exclusive or of bits 4, 5, 6,

1. A perfect code exists for k an integer—that is, m = 1, 4, 11, 26, 57, 120, ….

TABLE 15–1. THE (7,4) HAMMING CODE

Information
1
p0

2
p1

3
u3

4
p2

5
u2

6
u1

7
u0

0 0 0 0 0 0 0 0
1 1 1 0 1 0 0 1
2 0 1 0 1 0 1 0
3 1 0 0 0 0 1 1

4 1 0 0 1 1 0 0
5 0 1 0 0 1 0 1
6 1 1 0 0 1 1 0
7 0 0 0 1 1 1 1

8 1 1 1 0 0 0 0
9 0 0 1 1 0 0 1

10 1 0 1 1 0 1 0
11 0 1 1 0 0 1 1

12 0 1 1 1 1 0 0
13 1 0 1 0 1 0 1
14 0 0 1 0 1 1 0
15 1 1 1 1 1 1 1

m 4.=
k 3,= 2k

m 2k k– 1,–=

p0 p1 u3 p2 u2 u1 u0
1    2     3    4    5    6    7
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and 7 and gets 1. Thus the error indicator, which is called the syndrome, is binary
110, or 6. The receiver flips the bit at position 6 to correct the block.

A SEC-DED Code
For many applications, a single error-correcting code would be considered unsatis-
factory, because it accepts all blocks received. A SEC-DED code seems safer, and it
is the level of correction and detection most often used in computer memories.

The Hamming code can be converted to a SEC-DED code by adding one
check bit, which is a parity bit (let us assume even parity) on all the bits in the SEC
code word. This code is called an extended Hamming code [Hill, MS]. It is not
obvious that it is SEC-DED. To see that it is, consider Table 15–2. It is assumed a
priori that either 0, 1, or 2 transmission errors occur. As indicated in  Table 15–2,
if there are no errors, the overall parity (the parity of the entire n-bit received code
word) will be even, and the syndrome of the -bit SEC portion of the block
will be 0. If there is one error, then the overall parity of the received block will be
odd. If the error occurred in the overall parity bit, then the syndrome will be 0. If
the error occurred in some other bit, then the syndrome will be nonzero and it will
indicate which bit is in error. If there are two errors, then the overall parity of the
received block will be even. If one of the two errors is in the overall parity bit, then
the other is in the SEC portion of the block. In this case, the syndrome will be non-
zero (and will indicate the bit in the SEC portion that is in error). If the errors are
both in the SEC portion of the block, then the syndrome will also be nonzero,
although the reason is a bit hard to explain.

The reason is that there must be a check bit that checks one of the two bit posi-
tions, but not the other one. The parity of this check bit and the bits it checks will
thus be odd, resulting in a nonzero syndrome. Why must there be a check bit that
checks one of the erroneous bits but not the other one? To see this, first suppose
one of the erroneous bits is in an even position and the other is in an odd position.
Then, because one of the check bits (p0) checks all the odd positions and none of
the even positions, the parity of the bits at the odd positions will be odd, resulting
in a nonzero syndrome. More generally, suppose the erroneous bits are in positions
i and j (with ). Then, because the binary representations of i and j must differ
in some bit position, one of them has a 1 at that position and the other has a 0 at that

TABLE 15–2. ADDING A PARITY BIT TO MAKE A SEC-DED CODE

Possibilities

Receiver ConclusionErrors
Overall
Parity Syndrome

0 even 0 No error.

1 odd
0 Overall parity bit is in error.
0 Syndrome indicates the bit in error.

2 even 0 Double error (not correctable).

n 1–( )

i j
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position. The check bit corresponding to this position in the binary integers checks
the bits at positions in the code word that have a 1 in their position number, but not
the positions that have a 0 in their position number. The bits covered by that check
bit will have odd parity, and thus the syndrome will be nonzero. As an example,
suppose the erroneous bits are in positions 3 and 7. In binary, the position numbers
are 0…0011 and 0…0111. These numbers differ in the third position from the
right, and at that position the number 7 has a 1 and the number 3 has a 0. Therefore,
the bits checked by the third check bit (these are bits 4, 5, 6, 7, 12, 13, 14, 15, …)
will have odd parity.

Thus, referring to Table 15–2, the overall parity and the syndrome together
uniquely identify whether 0, 1, or 2 errors occurred. In the case of one error, the
receiver can correct it. In the case of two errors, the receiver cannot tell whether
just one of the errors is in the SEC portion (in which case it could correct it) or both
errors are in the SEC portion (in which case an attempt to correct it would result in
incorrect information bits).

The overall parity bit could as well be a parity check on only the even posi-
tions, because the overall parity bit is easily calculated from that and the parity of
the odd positions (which is the least significant check bit). More generally, the
overall parity bit could as well be a parity check on the complement set of bits
checked by any one of the SEC parity bits. This observation might save some gates
in hardware.

It should be clear that the Hamming SEC code has minimum redundancy. That
is, for a given number of information bits, it adds a minimum number of check bits
that permit single error correction. This is so because by construction, just enough
check bits are added so that when interpreted as an integer, they can index any bit
in the code, with one state left over to denote “no errors.” In other words, the code
satisfies inequality (1). Hamming shows that the SEC-DED code constructed from
a SEC code by adding one overall parity bit is also of minimum redundancy. His
argument is to assume that a SEC-DED code exists that has fewer check bits, and
he derives from this a contradiction to the fact that the starting SEC code had min-
imum redundancy.

Minimum Number of Check Bits Required
The middle column of Table 15–3 shows minimal solutions of inequality (1) for a
range of values of m. The rightmost column simply shows that one more bit is
required for a SEC-DED code. From this table one can see, for example, that to
provide the SEC-DED level ECC for a memory word containing 64 information
bits, eight check bits are required, giving a total memory word size of 72 bits.

Concluding Remarks
In the more mathematically oriented ECC literature, the term “Hamming code” is
reserved for the perfect codes described above—that is, those with (n, m) = (3, 1),
(7, 4), (15, 11), (31, 26), and so on. Similarly, the extended Hamming codes are the
perfect SEC-DED codes described above. Computer architects and engineers often



ptg8736757

336 ERROR-CORRECTING CODES 15–2

use the term to denote any of the codes that Hamming described, and some varia-
tions. The term “extended” is often understood.

The first IBM computer to use Hamming codes was the IBM Stretch computer
(model 7030), built in 1961 [LC]. It used a (72, 64) SEC-DED code (not a perfect
code). A follow-on machine known as Harvest (model 7950), built in 1962, was
equipped with 22-track tape drives that employed a (22, 16) SEC-DED code. The
ECCs found on modern machines are usually not Hamming codes, but rather are
codes devised for some logical or electrical property, such as minimizing the depth
of the parity check trees, and making them all the same length. Such codes give up
Hamming’s simple method of determining which bit is in error, and instead use a
hardware table lookup.

At the time of this writing (2012), most notebook PCs (personal computers)
have no error checking in their memory systems. Desktop PCs may have none, or
they may have a simple parity check. Server-class computers generally have ECC
at the SEC-DED level.

In the early solid-state computers equipped with ECC memory, the memory
was usually in the form of eight check bits and 64 information bits. A memory
module (group of chips) might be built from, typically, nine 8-bit-wide chips. A
word access (72 bits, including check bits) fetches eight bits from each of these
nine chips. Each chip is laid out in such a way that the eight bits accessed for a sin-
gle word are physically far apart. Thus, a word access references 72 bits that are
physically somewhat separated. With bits interleaved in that way, if a few close-
together bits in the same chip are altered, as, for example, by an alpha particle or
cosmic ray hit, a few words will have single-bit errors, which can be corrected.
Some larger memories incorporate a technology known as Chipkill. This allows
the computer to continue to function even if an entire memory chip fails, for exam-
ple, due to loss of power to the chip.

 The interleaving technique can be used in communication applications to cor-
rect burst errors by interleaving the bits in time.

TABLE 15–3. EXTRA BITS FOR ERROR CORRECTION/DETECTION

Number of 
Information

Bits m
k for
SEC

k for
SEC-DED

1 2 3

2 to 4 3 4

5 to 11 4 5

12 to 26 5 6

27 to 57 6 7

58 to 120 7 8

121 to 247 8 9

248 to 502 9 10
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Today the organization of ECC memories is often more complicated than sim-
ply having eight check bits and 64 information bits. Modern server memories
might have 16 or 32 information bytes (128 or 256 bits) checked as a single ECC
word. Each DRAM chip may store two, three, or four bits in physically adjacent
positions. Correspondingly, ECC is done on alphabets of four, eight, or 16 charac-
ters—a subject not discussed here. Because the DRAM chips usually come in 8- or
16-bit-wide configurations, the memory module often provides more than enough
bits for the ECC function. The extra bits might be used for other functions, such as
one or two parity bits on the memory address. This allows the memory to check
that the address it receives is (probably) the address that the CPU generated.

In modern server-class machines, ECC might be used in different levels of
cache memory, as well as in main memory. It might also be used in non-memory
areas, such as on busses.

15–3  Software for SEC-DED on 32 Information Bits
This section describes a code for which encoding and decoding can be efficiently
implemented in software for a basic RISC. It does single error correction and dou-
ble error detection on 32 information bits. The technique is basically Hamming’s.

We follow Hamming in using check bits in such a way that the receiver can
easily (in software) determine whether zero, one, or two errors occurred, and if one
error occurred it can easily correct it. We also follow Hamming in using a single
overall parity bit to convert a SEC code to SEC-DED, and we assume the check bit
values are chosen to make even parity on the check bit and the bits it checks. A
total of seven check bits are required (Table 15–3).

Consider first just the SEC property, without DED. For SEC, six check bits are
required. For implementation in software, the main difficulty with Hamming’s
method is that it merges the six check bits with the 32 information bits, resulting in
a 38-bit quantity. We are assuming the implementation is done on a 32-bit machine,
and the information bits are in a 32-bit word. It would be very awkward for the
sender to spread out the information bits over a 38-bit quantity and calculate the
check bits into the positions described by Hamming. The receiver would have sim-
ilar difficulties. The check bits could be moved into a separate word or register, with
the 32 information bits kept in another word or register. But this gives an irregular
range of positions that are checked by each check bit. In the scheme to be described,
these ranges retain most of the regularity that they have in Hamming’s scheme
(which ignores word boundaries). The regularity leads to simplified calculations.

The positions checked by each check bit are shown in Table 15–4. In this
table, bits are numbered in the usual little-endian way, with position 0 being the
least significant bit (unlike Hamming’s numbering).

Observe that each of the 32 information word bit positions is checked by at
least two check bits. For example, position 6 is checked by p1 and p2 (and also by
p5). Thus, if two information words differ in one bit position, the code words
(information plus check bits) differ in at least three positions (the information bit
that was corrupted and two or more check bits), so the code words are at a distance
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of at least three from one another (see “Hamming Distance” on page 343). Further-
more, if two information words differ in two bit positions, then at least one of p0–
p5 checks one of the positions, but not the other, so again the code words will be at
least a distance of three apart. Therefore, the above scheme represents a code with
minimum distance three (a SEC code).

Suppose a code word is transmitted to a receiver. Let u denote the information
bits received, p denote the check bits received, and s (for syndrome) denote the
exclusive or of p and the check bits calculated from u by the receiver. Then, exam-
ination of Table 15–4 reveals that s will be set as shown in Table 15–5, for zero or
one errors in the code word.

TABLE 15–4. POSITIONS CHECKED BY THE CHECK BITS

Check Bit Positions Checked

p0 0, 1, 3, 5, 7, 9, 11, …, 29, 31
p1 0, 2–3, 6–7, 10–11, …, 30–31
p2 0, 4–7, 12–15, 20–23, 28–31
p3 0, 8–15, 24–31
p4 0, 16–31
p5 1–31

TABLE 15–5. SYNDROME FOR ZERO OR ONE ERRORS

Error in Bit Resulting Syndrome
s5 … s0

(no errors) 000000
u0 011111
u1 100001
u2 100010
u3 100011
u4 100100
… …

u30 111110
u31 111111
p0 000001
p1 000010
p2 000100
p3 001000
p4 010000
p5 100000
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As an example, suppose information bit u4 is corrupted in transmission.
Table 15–4 shows that u4 is checked by check bits p2 and p5. Therefore, the check
bits calculated by the sender and receiver will differ in p2 and p5. In this scenario
the check bits received are the same as those transmitted, so the syndrome will
have bits 2 and 5 set—that is, it will be 100100.

If one of the check bits is corrupted in transmission (and no errors occur in the
information bits), then the check bits received and those calculated by the receiver
(which equal those calculated by the sender) differ in the check bit that was cor-
rupted, and in no other bits, as shown in the last six rows of Table 15–5.

The syndromes shown in Table 15–5 are distinct for all 39 possibilities of no
error or a single-bit error anywhere in the code word. Therefore, the syndrome
identifies whether or not an error occurred, and if so, which bit position is in error.
Furthermore, if a single-bit error occurred, it is fairly easy to calculate which bit is
in error (without resorting to a table lookup) and to correct it. Here is the logic:

If s = 0, no error occurred.
If s = 011111, u0 is in error.
If s = 1xxxxx, with xxxxx nonzero, the error is in u at position xxxxx.
Otherwise, a single bit in s is set, the error is in a check bit, and the correct
check bits are given by the exclusive or of the syndrome and the received
check bits (or by the calculated check bits).

Under the assumption that an error in the check bits need not be corrected, this
can be expressed as shown here, where b is the bit number to be corrected.

if  then …       // No correction required.
else do
   if  then b 0
   else 
                       // Complement bit b of u.
end

There is a hack that changes the second if-then-else construction shown above
into an assignment statement.

To recognize double-bit errors, an overall parity bit is computed (parity of
u31:0 and p5:0), and put in bit position 6 of p for transmission. Double-bit errors are
distinguished by the overall parity being correct, but with the syndrome (s5:0)
being nonzero. The reason the syndrome is nonzero is the same as in the case of the
extended Hamming code, given on page 334.

Software that implements this code is shown in Figures 15–1 and 15–2. We
assume the simple case of a sender and a receiver, and the receiver has no need to
correct an error that occurs in the check bits or in the overall parity bit.

s s 1–( )&( ) 0=

s 0b011111=
b s 0b011111&

u u 1 b<<( )
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unsigned int checkbits(unsigned int u) {

   /* Computes the six parity check bits for the
   "information" bits given in the 32-bit word u. The
   check bits are p[5:0]. On sending, an overall parity
   bit will be prepended to p (by another process).

   Bit   Checks these bits of u
   p[0]  0, 1, 3, 5, ..., 31 (0 and the odd positions).
   p[1]  0, 2-3, 6-7, ..., 30-31 (0 and positions xxx1x).
   p[2]  0, 4-7, 12-15, 20-23, 28-31 (0 and posns xx1xx).
   p[3]  0, 8-15, 24-31 (0 and positions x1xxx).
   p[4]  0, 16-31 (0 and positions 1xxxx).
   p[5]  1-31 */

   unsigned int p0, p1, p2, p3, p4, p5, p6, p;
   unsigned int t1, t2, t3;

   // First calculate p[5:0] ignoring u[0].
   p0 = u ^ (u >> 2);
   p0 = p0 ^ (p0 >> 4);
   p0 = p0 ^ (p0 >> 8);
   p0 = p0 ^ (p0 >> 16);       // p0 is in posn 1.

   t1 = u ^ (u >> 1);
   p1 = t1 ^ (t1 >> 4);
   p1 = p1 ^ (p1 >> 8);
   p1 = p1 ^ (p1 >> 16);       // p1 is in posn 2.

   t2 = t1 ^ (t1 >> 2);
   p2 = t2 ^ (t2 >> 8);
   p2 = p2 ^ (p2 >> 16);       // p2 is in posn 4.

   t3 = t2 ^ (t2 >> 4);
   p3 = t3 ^ (t3 >> 16);       // p3 is in posn 8.

   p4 = t3 ^ (t3 >> 8);       // p4 is in posn 16.

   p5 = p4 ^ (p4 >> 16);       // p5 is in posn 0.

   p = ((p0>>1) & 1) | ((p1>>1) & 2) | ((p2>>2) & 4) |
       ((p3>>5) & 8) | ((p4>>12) & 16) | ((p5 & 1) << 5);

   p = p ^ (-(u & 1) & 0x3F);   // Now account for u[0].
   return p;
}

FIGURE 15–1. Calculation of check bits.
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int correct(unsigned int pr, unsigned int *ur) {

   /* This function looks at the received seven check
   bits and 32 information bits (pr and ur) and
   determines how many errors occurred (under the
   presumption that it must be 0, 1, or 2). It returns
   with 0, 1, or 2, meaning that no errors, one error, or
   two errors occurred. It corrects the information word
   received (ur) if there was one error in it. */

   unsigned int po, p, syn, b;

   po = parity(pr ^ *ur);      // Compute overall parity
 // of the received data.

   p = checkbits(*ur);       // Calculate check bits
  // for the received info.

   syn = p ^ (pr & 0x3F);      // Syndrome (exclusive of
            // overall parity bit).

   if (po == 0) {
      if (syn == 0) return 0;   // If no errors, return 0.
      else return 2;        // Two errors, return 2.
   }

            // One error occurred.
   if (((syn - 1) & syn) == 0)  // If syn has zero or one
      return 1;         // bits set, then the

 // error is in the check
            // bits or the overall
            // parity bit (no

  // correction required).

   // One error, and syn bits 5:0 tell where it is in ur.

   b = syn - 31 - (syn >> 5); // Map syn to range 0 to 31.
// if (syn == 0x1f) b = 0;  // (These two lines equiv.
// else b = syn & 0x1f;   // to the one line above.)
   *ur = *ur ^ (1 << b);     // Correct the bit.
   return 1;
}

FIGURE 15–2. The receiver’s actions.
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To compute the check bits, function checkbits first ignores information bit
u0 and computes

except omitting line i when computing check bit ki, for  This puts pi in
various positions of word x, as shown in Figure 15–1. For p5, all the above assign-
ments are used. This is where the regularity of the pattern of bits checked by each
check bit pays off; a lot of code commoning can be done. This reduces what would
be 4×5 + 5 = 25 such assignments to 15, as shown in Figure 15–1.

Incidentally, if the computer has an instruction for computing the parity of a
word, or has the population count instruction (which puts the word parity in the
least significant bit of the target register), then the regular pattern is not needed. On
such a machine, the check bits might be computed as

   p0 = pop(u & 0xAAAAAAAB) & 1;
   p1 = pop(u & 0xCCCCCCCD) & 1;

and so forth.
After packing the six check bits into a single quantity p, the checkbits

function accounts for information bit u0 by complementing all six check bits if
u0 = 1. (See Table 15–4; p5 must be complemented because u0 was erroneously
included in the calculation of p5 up to this point.)

15–4  Error Correction Considered More Generally
This section continues to focus on the binary FEC block codes, but a little more
generally than the codes described in Section 15–2. We drop the assumption that
the block consists of a set of “information” bits and a distinct set of “check” bits,
and any implication that the number of code words must be a power of 2. We also
consider levels of error correction and detection capability greater than SEC and
SEC-DED. For example, suppose you want a double error-correcting code for a
binary representation of decimal digits. If the code has 16 code words (with ten
being used to represent the decimal digits and six being unused), the length of the
code words must be at least 11 bits. But if a code with only 10 code words is used,
the code words can be of length 10 bits. (This is shown in Table 15–8 on page 351,
in the column for d = 5, as is explained below.)

0.  x u u 1>> u( )⊕←( )

1.  x x x 2>> u( )⊕←( )

2.  x x x 4>> u( )⊕←( )

3.  x x x 8>> u( )⊕←( )

4.  x x x 16>> u( )⊕←( )

0 i 4.≤ ≤
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A code is simply a set of code words, and for our purposes the code words are
binary strings all of the same length which, as mentioned above, is called the code
length. The number of code words in the set is called the code size. We make no
interpretation of the code words; they might represent alphanumeric characters or
pixel values in a picture, for example.

As a trivial example, a code might consist of the binary integers from 0 to 7,
with each bit repeated three times:

{000000000, 000000111, 000111000, 000111111, 111000000, … 111111111}.

Another example is the two-out-of-five code, in which each code word has
exactly two 1-bits:

{00011, 00101, 00110, 01001, 01010, 01100, 10001, 10010, 10100, 11000}.

The code size is 10, and thus it is suitable for representing decimal digits. Notice
that if code word 00110 is considered to represent decimal 0, then the remaining
values can be decoded into digits 1 through 9 by giving the bits weights of 6, 3, 2,
1, and 0, in left-to-right order.

The code rate is a measure of the efficiency of a code. For a code like Ham-
ming’s, this can be defined as the number of information bits divided by the code
length. For the Hamming code discussed above, it is  More generally,
the code rate is defined as the log base 2 of the code size, divided by the code
length. The simple codes above have rates of  and

 respectively.

Hamming Distance
The central concept in the theory of ECC is that of Hamming distance. The Ham-
ming distance between two words (of equal length) is the number of bit positions
in which they differ. Put another way, it is the population count of the exclusive or
of the two words. It is appropriate to call this a distance function because it satisfies
the definition of a distance function used in linear algebra:

Here  denotes the Hamming distance between code words x and y, which
for brevity we will call simply the distance between x and y.

Suppose a code has a minimum distance of 1. That is, there are two words x
and y in the set that differ in only one bit position. Clearly, if x were transmitted and
the bit that makes it distinct from y were flipped due to a transmission error, then
the receiver could not distinguish between receiving x with a certain bit in error

4 7⁄ 0.57.

log2 8( ) 9⁄ 0.33
log2 10( ) 5⁄ 0.66,

d x y,( ) d y x,( ),=
d x y,( ) 0,
d x y,( ) 0   iff   x y,   and= =
d x y,( ) d y z,( )+ d x z,( )   (triangle inequality).

d x y,( )



ptg8736757

344 ERROR-CORRECTING CODES 15–4

and receiving y with no errors. Hence in such a code it is impossible to detect even
a 1-bit error, in general.

Suppose now that a code has a minimum distance of 2. Then if just one bit is
flipped in transmission, an invalid code word is produced, and thus the receiver can
(in principle) detect the error. If two bits are flipped, a valid code word might be
transformed into another valid code word. Thus, double-bit errors cannot be
detected. Furthermore, single-bit errors cannot be corrected. This is because if a
received word has one bit in error, then there may be two code words that are one
bit-change away from the received word, and the receiver has no basis for deciding
which is the original code word.

The code obtained by appending a single parity bit is in this category. It is
shown below for the case of three information bits (m = 3). The rightmost bit is the
parity bit, chosen to make even parity on all four bits. The reader may verify that
the minimum distance between code words is 2.

0000
0011
0101
0110
1001
1010
1100
1111

Actually, adding a single parity bit permits detecting any odd number of
errors, but when we say that a code permits detecting k-bit errors, we mean all
errors up to k bits.

Now consider the case in which the minimum distance between code words is
3. If any one or two bits is flipped in transmission, an invalid code word results. If
just one bit is flipped, the receiver can (we imagine) try flipping each of the
received bits one at a time, and in only one case will a code word result. Hence in
such a code the receiver can detect and correct a single-bit error. A double-bit error
might appear to be a single-bit error from another code word, and thus the receiver
cannot detect double-bit errors.

Similarly, it is easy to reason that if the minimum distance of a code is 4, the
receiver can correct all single-bit errors and detect all double-bit errors (it is a SEC-
DED code). As mentioned above, this is the level of capability often used in com-
puter memories.

Table 15–6 summarizes the error-correction and -detection capabilities of a
block code based on its minimum distance.

Error-correction capability can be traded for error detection. For example, if
the minimum distance of a code is 3, that redundancy can be used to correct no
errors but to detect single- or double-bit errors. If the minimum distance is 5, the
code can be used to correct single-bit errors and detect 3-bit errors, or to correct no
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errors but to detect 4-bit errors, and so forth. Whatever is subtracted from the “Cor-
rect” column of Table 15–6 can be added to the “Detect” column.

The Main Coding Theory Problem
Up to this point we have asked, “Given a number of information bits m and a
desired minimum distance d, how many check bits are required?” In the interest of
generality, we will now turn this question around and ask, “For a given code length
n and minimum distance d, how many code words are possible?” Thus, the number
of code words need not be an integral power of 2.

Following [Roman] and others, let A(n, d) denote the largest possible code
size for a (binary) code with length n and minimum distance d. The remainder of
this section is devoted to exploring some of what is known about this function.
Determining its values has been called the main coding theory problem [Hill,
Roman]. Throughout this section we assume that 

It is nearly trivial that

(2)

because there are  distinct words of length n.
For minimum distance 2, we know from the single parity bit example that

 But A(n, 2) cannot exceed  for the following reason. Sup-
pose there is a code of length n and minimum distance 2 that has more than 
code words. Delete any one column from the code words. (We envision the code
words as being arranged in a matrix much like that of Table 15–1 on page 333.)
This produces a code of length  and minimum distance at least 1 (deleting a
column can reduce the minimum distance by at most 1), and of size exceeding

 Thus, it has  contradicting Equation (2). Hence,

TABLE 15–6. NUMBER OF BITS CORRECTED/DETECTED

Minimum
Distance Correct Detect

1 0 0

2 0 1

3 1 1

4 1 2

5 2 2

6 2 3

7 3 3

8 3 4

d d 1–( ) 2⁄ d 2⁄

n d 1.

A n 1,( ) 2n,=

2n

A n 2,( ) 2n 1– . 2n 1–

2n 1–

n 1–

2n 1– . A n 1– 1,( ) 2n 1– ,>

A n 2,( ) 2n 1– .=
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That was not difficult. What about  That is an unsolved problem, in
the sense that no formula or reasonably easy means of calculating it is known. Of
course, many specific values of  are known, and some bounds are known,
but the exact value is unknown in most cases.

When equality holds in (1), it represents the solution to this problem for the
case  Letting  (1) can be rewritten

(3)

Here, m is the number of information bits, so  is the maximum number of code
words. Hence, we have

with equality holding when  is an integer (by Hamming’s construc-
tion).

For n = 7, this gives  which we already know from Section 15–2.
For n = 3 it gives  and the limit of 2 can be realized with code words
000 and 111. For n = 4 it gives  and with a little doodling you will
see that it is not possible to get three code words of length 4 with d = 3. Thus, when
equality does not hold in (3), it merely gives an upper bound, quite possibly not
realizable, on the maximum number of code words.

An interesting relation is that for 

(4)

Therefore, adding 1 to the code length at most doubles the number of code words
possible for the same minimum distance d. To see this, suppose you have a code of
length n, distance d, and size A(n, d). Choose an arbitrary column of the code.
Either half or more of the code words have a 0 in the selected column, or half or
more have a 1 in that position. Of these two subsets, choose one that has at least
A(n, d)/2 code words, form a new code consisting of this subset, and delete the
selected column (which is either all 0’s or all 1’s). The resulting set of code words
has n reduced by 1, has the same distance d, and has at least A(n, d)/2 code words.
Thus,  from which inequality (4) follows.

A useful relation is that if d is even, then

(5)

To see this, suppose you have a code C of length n and minimum distance d, with
d odd. Form a new code by appending to each word of C a parity bit, let us say to
make the parity of each word even. The new code has length  and has the
same number of code words as does C. It has minimum distance  For if two

A n 3,( )?

A n 3,( )

d 3.= n m k,+=

2m 2n

n 1+
------------.

2m

A n 3,( ) 2n

n 1+
------------,

2n n 1+( )⁄

A 7 3,( ) 16,=
A 3 3,( ) 2,

A 4 3,( ) 3.2,

n 2,

A n d,( ) 2A n 1– d,( ).

A n 1– d,( ) A n d,( ) 2,⁄

A n d,( ) A n 1– d 1–,( ).=

n 1+
d 1.+
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words of C are a distance x apart, with x odd, then one word must have even parity
and the other must have odd parity. Thus, we append a 0 in the first case and a 1 in
the second case, which increases the distance between the words to  If x is
even, we append a 0 to both words, which does not change the distance between
them. Because d is odd, all pairs of words that are a distance d apart become dis-
tance  apart. The distance between two words more than d apart either does
not change or increases. Therefore the new code has minimum distance 
This shows that if d is odd, then  or, equivalently,

 for even 
Now suppose you have a code of length n and minimum distance  (d can

be odd or even). Form a new code by eliminating any one column. The new code
has length  minimum distance at least  and is the same size as the orig-
inal code (all the code words of the new code are distinct because the new code has
minimum distance at least 1). Therefore  This establishes
Equation (5).

Spheres
Upper and lower bounds on  for any  can be derived by thinking in
terms of n-dimensional spheres. Given a code word, think of it as being at the cen-
ter of a “sphere” of radius r, consisting of all words at a Hamming distance r or less
from it.

How many points (words) are in a sphere of radius r? First, consider how
many points are in the shell at distance exactly r from the central code word. This
is given by the number of ways to choose r different items from n, ignoring the
order of choice. We imagine the r chosen bits as being complemented to form a
word at distance exactly r from the central point. This “choice” function, often
written  can be calculated from2

Thus,     and so forth.

The total number of points in a sphere of radius r is the sum of the points in the
shells from radius 0 to r:

There seems to be no simple formula for this sum [Knu1].

2.  It is also called the “binomial coefficient” because  is the coefficient of the term
 in the expansion of the binomial 
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From this it is easy to obtain bounds on  First, assume you have a code
of length n and minimum distance d, and it consists of M code words. Surround
each code word with a sphere, all of the same maximal radius such that no two
spheres have a point in common. This radius is  if d is odd, and is

 if d is even (see Figure 15–3). Because each point is in at most one
sphere, the total number of points in the M spheres must be less than or equal to the
total number of points in the space. That is,

This holds for any M, hence for  so that

This is known as the sphere-packing bound, or the Hamming bound.
The sphere idea also easily gives a lower bound on  Assume again that

you have a code of length n and minimum distance d, and it has the maximum pos-
sible number of code words—that is, it has  code words. Surround each code
word with a sphere of radius  Then these spheres must cover all  points in
the space (possibly overlapping). For if not, there would be a point that is at a dis-
tance d or more from all code words, and that is impossible because such a point
would be a code word. Thus, we have a weak form of the Gilbert-Varshamov bound:

There is the strong form of the G-V bound, which applies to linear codes. Its
derivation relies on methods of linear algebra which, important as they are to the

FIGURE 15–3. Maximum radius that allows correcting points within a sphere.

A n d,( ).
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d 2–( ) 2⁄

M n
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2n.
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A n d,( ) n
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2n.
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d = 5, r = 2 d = 6, r = 2

Each large dot represents a code word, and each small dot represents a non-code
word a unit distance away from its neighbors.
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subject of linear codes, are not covered in this short introduction to error-correcting
codes. Suffice it to say that a linear code is one in which the sum (exclusive or) of
any two code words is also a code word. The Hamming code of Table 15–1 is a lin-
ear code. Because the G-V bound is a lower bound on linear codes, it is also a
lower bound on the unrestricted codes considered here. For large n, it is the best
known lower bound on both linear and unrestricted codes.

The strong G-V bound states that  where m is the largest integer
such that

That is, it is the value of the right-hand side of this inequality rounded down to the
next strictly smaller integral power of 2. The “strictness” is important for cases
such as (n, d) = (8, 3), (16, 3) and (the degenerate case) (6, 7).

Combining these results:

(6)

where GP2LT denotes the greatest integral power of 2 (strictly) less than its argument.
Table 15–7 gives the values of these bounds for some small values of n and d.

A single number in an entry means the lower and upper bounds given by (6) are
equal.

If d is even, bounds can be computed directly from (6) or, making use of Equa-
tion (5), they can be computed from (6) with d replaced with  and n replaced
with  in the two bounds expressions. It turns out that the latter method always
results in tighter or equal bounds. Therefore, the entries in Table 15–7 were calcu-
lated only for odd d. To access the table for even d, use the values of d shown in the
heading and the values of n shown at the left.

The bounds given by (6) can be seen to be rather loose, especially for large d.
The ratio of the upper bound to the lower bound diverges to infinity with increasing
n. The lower bound is particularly loose. Over a thousand papers have been written
describing methods to improve these bounds, and the results as of this writing are
shown in Table 15–8 [Agrell, Brou; where they differ, Table 15–8. shows the
tighter bounds].

The cases of (n, d) = (7, 3), (15, 3), and (23, 7) are perfect codes, meaning that
they achieve the upper bound given by (6). This definition is a generalization of
that given on page 333. The codes for which n is odd and n = d are also perfect; see
exercise 8.
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We conclude this chapter by pointing out that the idea of minimum distance
over an entire code, which leads to the ideas of p-bit error detection and q-bit error
correction for some p and q, is not the only criterion for the “power” of a binary
FEC block code. For example, work has been done on codes aimed at correcting
burst errors. [Etzion] has demonstrated a (16, 11) code, and others, that can correct
any single-bit error and any error in two consecutive bits, and is perfect, in a sense
not discussed here. It is not capable of general double-bit error detection. The
(16, 11) extended Hamming code is SEC-DED and is perfect. Thus, his code gives
up general double-bit error detection in return for double-bit error correction of
consecutive bits. This is, of course, interesting because in many applications errors
are likely to occur in short bursts.

TABLE 15–7. THE G-V AND HAMMING BOUNDS ON

n d = 4 d = 6 d = 8 d = 10 d = 12 d = 14 d = 16 n

6 4 – 5 2 – – – – – 5

7 8 – 9 2 – – – – – 6

10 32 – 51 4 – 11 2 – 3 2 – – – 9

13 256 – 315 16 – 51 2 – 13 2 – 5 2 – – 12

16 2048 64 – 270 8 – 56 2 – 16 2 – 6 2 – 3 2 15

19 8192 – 
13797 256 – 1524 16 – 265 4 – 64 2 – 20 2 – 8 2 – 4 18

22 65536 – 
95325 1024 – 9039 64 – 1342 8 – 277 4 – 75 2 – 25 2 – 10 21

25 219 – 
671088

4096 – 
55738 256 – 7216 32 – 1295 8 – 302 2 – 88 2 – 31 24

28 222 – 
4793490

32768 – 
354136

1024 – 
40622 128 – 6436 16 – 

1321
4 – 
337

2 – 
104 27

d = 3 d = 5 d = 7 d = 9 d = 11 d = 13 d = 15

A n d,( )
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TABLE 15–8. BEST KNOWN BOUNDS ON

n d = 4 d = 6 d = 8 d = 10 d = 12 d = 14 d = 16 n

6 4 2 – – – – – 5

7 8 2 – – – – – 6

8 16 2 2 – – – – 7

9 20 4 2 – – – – 8

10 40 6 2 2 – – – 9

11 72 12 2 2 – – – 10

12 144 24 4 2 2 – – 11

13 256 32 4 2 2 – – 12

14 512 64 8 2 2 2 – 13

15 1024 128 16 4 2 2 – 14

16 2048 256 32 4 2 2 2 15

17 2720 – 3276 256 – 340 36 6 2 2 2 16

18 5312 – 6552 512 – 673 64 – 72 10 4 2 2 17

19 10496 – 
13104 1024 – 1237 128 – 135 20 4 2 2 18

20 20480 – 
26168 2048 – 2279 256 40 6 2 2 19

21 36864 – 
43688 2560 – 4096 512 42 – 47 8 4 2 20

22 73728 – 
87376 4096 – 6941 1024 64 – 84 12 4 2 21

23 147456 – 
173015

8192 – 
13674 2048 80 – 150 24 4 2 22

24 294912 – 
344308

16384 – 
24106 4096 128 – 268 48 6 4 23

25 219 –
599184

16384 – 
47538 4096 – 5421 192 – 466 52 – 55 8 4 24

26 220 –
1198368

32768 – 
84260 4104 – 9672 384 – 836 64 – 96 14 4 25

27 221 –
2396736

65536 – 
157285

8192 – 
17768 512 – 1585 128 – 

169 28 6 26

28 222 –
4792950

131072 – 
291269

16384 – 
32151 1024 – 3170 178 – 

288 56 8 27

d = 3 d = 5 d = 7 d = 9 d = 11 d = 13 d = 15

A n d,( )
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Exercises

1. Show a Hamming code for m = 3 (make a table similar to Table 15–1).

2. In a certain application of an SEC code, there is no need to correct the check
bits. Hence the k check bits need only check the information bits, but not
themselves. For m information bits, k must be large enough so that the receiver
can distinguish  cases: which of the m bits is in error, or no error
occurred. Thus, the number of check bits required is given by 
This is a weaker restriction on k than is the Hamming rule, so it should be pos-
sible to construct, for some values of m, an SEC code that has fewer check bits
than those required by the Hamming rule. Alternatively, one could have just
one value to signify that an error occurred somewhere in the check bits, with-
out specifying where. This would lead to the rule 

What is wrong with this reasoning?

3. (Brain teaser) Given m, how would you find the least k that satisfies inequality (1)?

4. Show that the Hamming distance function for any binary block code satisfies
the triangle inequality: if x and y are code vectors and  denotes the
Hamming distance between them, then

5. Prove:

6. Prove the “singleton bound”: 

7. Show that the notion of a perfect code as equality in the right-hand portion of
inequality (6) is a generalization of the Hamming rule.

8. What is the value of A(n, d) if n = d? Show that for odd n, these codes are
perfect.

9. Show that if n is a multiple of 3 and  then 

10. Show that if  then 

11. A two-dimensional parity check scheme for 64 information bits arranges the
information bits  into an 8×8 array, and appends a parity bit to each
row and column as shown below.

m 1+
2k m 1.+

2k m 2.+

d x y,( )

d x z,( ) d x y,( ) d y z,( ).+

A 2n 2d,( ) A n d,( ).

A n d,( ) 2n d– 1+ .

d 2n 3⁄ ,= A n d,( ) 4.=

d 2n 3⁄ ,> A n d,( ) 2.=

u0…u63

u0 u1 … u6 u7 r0

u8 u9 … u14 u15 r1

…    
u48 u49 … u54 u55 r6

u56 u57 … u62 u63 r7

c0 c1 … c6 c7 r8
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The  are parity check bits on the rows, and the  are parity check bits on
the columns. The “corner” check bit could be parity check on the row or the
column of check bits (but not both); it is shown as a check on the bottom row
(check bits  through ).

Comment on this scheme. In particular, is it SEC-DED? Is its error-detec-
tion and -correction capability significantly altered if the corner bit  is omit-
ted? Is there any simple relation between the value of the corner bit if it’s a row
sum or a column sum?

ri ci

c0 c7

r8
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355

 CHAPTER  16

HILBERT’S CURVE

In 1890, Giuseppe Peano discovered a planar curve1 with the rather surprising
property that it is “space-filling.” The curve winds around the unit square and hits
every point  at least once.

Peano’s curve is based on dividing each side of the unit square into three
equal parts, which divides the square into nine smaller squares. His curve tra-
verses these nine squares in a certain order. Then, each of the nine small squares is
similarly divided into nine still smaller squares, and the curve is modified to tra-
verse all these squares in a certain order. The curve can be described using frac-
tions expressed in base 3; in fact, that’s the way Peano first described it.

In 1891, David Hilbert [Hil] discovered a variation of Peano’s curve based on
dividing each side of the unit square into two equal parts, which divides the square
into four smaller squares. Then, each of the four small squares is similarly divided
into four still smaller squares, and so on. For each stage of this division, Hilbert
gives a curve that traverses all the squares. Hilbert’s curve, sometimes called the
“Peano-Hilbert curve,” is the limit curve of this division process. It can be de-
scribed using fractions expressed in base 2.

Figure 16–1 shows the first three steps in the sequence that leads to Hilbert’s
space-filling curve, as they were depicted in his 1891 paper.

Here, we do things a little differently. We use the term “Hilbert curve” for any
of the curves on the sequence whose limit is the Hilbert space-filling curve. The
“Hilbert curve of order n” means the nth curve in the sequence. In Figure 16–1,
the curves are of order 1, 2, and 3. We shift the curves down and to the left so that
the corners of the curves coincide with the intersections of the lines in the boxes
above. Finally, we scale the size of the order n curve up by a factor of  so that
the coordinates of the corners of the curves are integers. Thus, our order n Hilbert
curve has corners at integers ranging from 0 to  in both x and y. We take the

1. Recall that a curve is a continuous map from a one-dimensional space to an n-dimensional
space.

FIGURE 16–1.  First three curves in the sequence defining Hilbert’s curve.

x y,( )

2n,

2n 1–
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positive direction along the curve to be from  to 
Figure 16–2 shows the Hilbert curves of orders 1 through 6.

16–1  A Recursive Algorithm for Generating the Hilbert Curve
To see how to generate a Hilbert curve, examine the curves in Figure 16–2. The
order 1 curve goes up, right, and down. The order 2 curve follows this overall pat-
tern. First, it makes a U-shaped curve that goes up, in net effect. Second, it takes a
unit step up. Third, it takes a U-shaped curve, a step, and another U, all to the
right. Finally, it takes a step down, followed by a U that goes down, in net effect.

The order 1 inverted U is converted into the order 2 Y-shaped curve.
We can regard the Hilbert curve of any order as a series of U-shaped curves of

various orientations, each of which, except for the last, is followed by a unit step
in a certain direction. In transforming a Hilbert curve of one order to the next,
each U-shaped curve is transformed into a Y-shaped curve with the same general
orientation, and each unit step is transformed to a unit step in the same direction.

The transformation of the order 1 Hilbert curve (a U curve with a net direc-
tion to the right and a clockwise rotational orientation) to the order 2 Hilbert curve
goes as follows:

1. Draw a U that goes up and has a counterclockwise rotation.

2. Draw a step up.

3. Draw a U that goes to the right and has a clockwise rotation.

4. Draw a step to the right.

5. Draw a U that goes to the right and has a clockwise rotation.

6. Draw a step down.

7. Draw a U that goes down and has a counterclockwise rotation.

We can see by inspection that all U’s that are oriented as the order 1 Hilbert
curve are transformed in the same way. A similar set of rules can be made for
transforming U’s with other orientations. These rules are embodied in the recursive
program shown in Figure 16–3 [Voor]. In this program, the orientation of a U
curve is characterized by two integers that specify the net linear and the rotational
directions, encoded as follows:

dir = 0: right rot = +1: clockwise
dir = 1: up rot = –1: counterclockwise
dir = 2: left
dir = 3: down

Actually, dir can take on other values, but its congruency modulo 4 is what
matters.

x y,( ) 0 0,( )= 2n 1– 0( , ).
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FIGURE 16–2.  Hilbert curves of orders 1–6.
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Figure 16–4 shows a driver program and function step that is used by pro-
gram hilbert. This program is given the order of a Hilbert curve to construct,
and it displays a list of line segments, giving for each the direction of movement,
the length along the curve to the end of the segment, and the coordinates of the
end of the segment. For example, for order 2 it displays

    0   0000   00 00
    0   0001   01 00
    1   0010   01 01
    2   0011   00 01
    1   0100   00 10
    1   0101   00 11
    0   0110   01 11
   -1   0111   01 10
    0   1000   10 10
    1   1001   10 11
    0   1010   11 11
   -1   1011   11 10
   -1   1100   11 01
   -2   1101   10 01
   -1   1110   10 00
    0   1111   11 00

16–2  Coordinates from Distance along the Hilbert Curve
To find the (x, y) coordinates of a point located at a distance s along the order n
Hilbert curve, observe that the most significant two bits of the 2n-bit integer s

void step(int);

void hilbert(int dir, int rot, int order) {

   if (order == 0) return;

   dir = dir + rot;
   hilbert(dir, -rot, order - 1);
   step(dir);
   dir = dir - rot;
   hilbert(dir, rot, order - 1);
   step(dir);
   hilbert(dir, rot, order - 1);
   dir = dir - rot;
   step(dir);
   hilbert(dir, -rot, order - 1);
}

FIGURE 16–3.  Hilbert curve generator.
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#include <stdio.h>
#include <stdlib.h>

int x = -1, y = 0;         // Global variables.
int s = 0;           // Dist. along curve.
int blen;          // Length to print.

void hilbert(int dir, int rot, int order);

void binary(unsigned k, int len, char *s) {
/* Converts the unsigned integer k to binary character
form. Result is string s of length len. */
   int i;

   s[len] = 0;
   for (i = len - 1; i >= 0; i--) {
      if (k & 1) s[i] = ‘1’;
      else       s[i] = ‘0’;
      k = k >> 1;
   }
}
void step(int dir) {
   char ii[33], xx[17], yy[17];

   switch(dir & 3) {
      case 0: x = x + 1; break;
      case 1: y = y + 1; break;
      case 2: x = x - 1; break;
      case 3: y = y - 1; break;
   }
   binary(s, 2*blen, ii);
   binary(x, blen, xx);
   binary(y, blen, yy);
   printf(“%5d   %s %s %s\n”, dir, ii, xx, yy);
   s = s + 1;          // Increment distance.
}
int main(int argc, char *argv[]) {
   int order;

   order = atoi(argv[1]);
   blen = order;
   step(0);          // Print init. point.
   hilbert(0, 1, order);
   return 0;
}

FIGURE 16–4.  Driver program for Hilbert curve generator.
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determine which major quadrant the point is in. This is because the Hilbert curve
of any order follows the overall pattern of the order 1 curve. If the most significant
two bits of s are 00, the point is somewhere in the lower-left quadrant, if 01 it is in
the upper-left quadrant, if 10 it is in the upper-right quadrant, and if 11 it is in the
lower-right quadrant. Thus, the most significant two bits of s determine the most
significant bits of the n-bit integers x and y, as follows:

In any Hilbert curve, only four of the eight possible U-shapes occur. These
are shown in Table 16–1 as graphics and as maps from two bits of s to a single bit
of each of x and y.

Observe from Figure 16–2 that in all cases the U-shape represented by map A
( ) becomes, at the next level of detail, a U-shape represented by maps B, A,
A, or D, depending on whether the length traversed in the first-mentioned map A
is 0, 1, 2, or 3, respectively. Similarly, a U-shape represented by map B ( )
becomes, at the next level of detail, a U-shape represented by maps A, B, B, or C,
depending on whether the length traversed in the first-mentioned map B is 0, 1, 2,
or 3, respectively.

These observations lead to the state transition table shown in Table 16–2, in
which the states correspond to the mappings shown in Table 16–1.

To use the table, start in state A. The integer s should be padded with leading
zeros so that its length is 2n, where n is the order of the Hilbert curve. Scan the
bits of s in pairs from left to right. The first row of Table 16–2 means that if the
current state is A and the currently scanned bits of s are 00, then output (0, 0) and
enter state B. Then, advance to the next two bits of s. Similarly, the second row
means that if the current state is A and the scanned bits are 01, then output (0, 1)
and stay in state A.

Most significant 
two bits of s

Most significant 
bits of (x, y)

00 (0, 0)

01 (0, 1)

10 (1, 1)

11 (1, 0)

TABLE 16–1.  THE FOUR POSSIBLE MAPPINGS

A B C D

00  (0, 0) 00  (0, 0) 00  (1, 1) 00  (1, 1)

01  (0, 1) 01  (1, 0) 01  (1, 0) 01  (0, 1)

10  (1, 1) 10  (1, 1) 10  (0, 0) 10  (0, 0)

11  (1, 0) 11  (0, 1) 11  (0, 1) 11  (1 0)
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The output bits are accumulated in left-to-right order. When the end of s is
reached, the n-bit output quantities x and y are defined.

As an example, suppose  and

s = 110100.

Because the process starts in state A and the initial bits scanned are 11, the process
outputs (1, 0) and enters state D (fourth row). Then, in state D and scanning 01,
the process outputs (0, 1) and stays in state D. Lastly, the process outputs (1, 1)
and enters state C, although the state is now immaterial.

Thus, the output is (101, 011)—that is,  and 
A C program implementing these steps is shown in Figure 16–5. In this pro-

gram, the current state is represented by an integer from 0 to 3 for states A through
D, respectively. In the assignment to variable row, the current state is concatenated
with the next two bits of s, giving an integer from 0 to 15, which is the applicable
row number in Table 16–2. Variable row is used to access integers (expressed in
hexadecimal) that are used as bit strings to represent the rightmost two columns of
Table 16–2; that is, these accesses are in-register table lookups. Left-to-right in the
hexadecimal values corresponds to bottom-to-top in Table 16–2.

TABLE 16–2.  STATE TRANSITION TABLE FOR COMPUTING (X, Y) FROM S

If the current 
state is

and the next (to right) 
two bits of s are

then append 
to (x, y)

and enter 
state

A 00 (0, 0) B

A 01 (0, 1) A

A 10 (1, 1) A

A 11 (1, 0) D

B 00 (0, 0) A

B 01 (1, 0) B

B 10 (1, 1) B

B 11 (0, 1) C

C 00 (1, 1) D

C 01 (1, 0) C

C 10 (0, 0) C

C 11 (0, 1) B

D 00 (1, 1) C

D 01 (0, 1) D

D 10 (0, 0) D

D 11 (1, 0) A

n 3=

x 5= y 3.=
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[L&S] give a quite different algorithm. Unlike the algorithm of Figure 16–5,
it scans the bits of s from right to left. It is based on the observation that one can
map the least significant two bits of s to (x, y) based on the order 1 Hilbert curve,
and then test the next two bits of s to the left. If they are 00, the values of x and y
just computed should be interchanged, which corresponds to reflecting the order 1
Hilbert curve about the line x = y. (Refer to the curves of orders 1 and 2 shown in
Figure 16–1 on page 355.) If these two bits are 01 or 10, the values of x and y are
not changed. If they are 11, the values of x and y are interchanged and comple-
mented. These same rules apply as one progresses leftward along the bits of s.
They are embodied in Table 16–3 and the code of Figure 16–6. It is somewhat
curious that the bits can be prepended to x and y first, and then the swap and com-
plement operations can be done, including these newly prepended bits; the results
are the same.

void hil_xy_from_s(unsigned s, int n, unsigned *xp,
                unsigned *yp) {

   int i;
   unsigned state, x, y, row;

   state = 0;               // Initialize.
   x = y = 0;

   for (i = 2*n - 2; i >= 0; i -= 2) {   // Do n times.
      row = 4*state | (s >> i) & 3;      // Row in table.
      x = (x << 1) | (0x936C >> row) & 1;
      y = (y << 1) | (0x39C6 >> row) & 1;
      state = (0x3E6B94C1 >> 2*row) & 3; // New state.
   }
   *xp = x;                // Pass back
   *yp = y;                 // results.
}

FIGURE 16–5.  Program for computing (x, y) from s.

TABLE 16–3.  LAM AND SHAPIRO METHOD FOR COMPUTING (X, Y) FROM S

If the next (to left) 
two bits of s are then and prepend to 

(x, y)

00 Swap x and y (0, 0)

01 No change (0, 1)

10 No change (1, 1)

11 Swap and complement x and y (1, 0)
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In Figure 16–6, variables x and y are uninitialized, which might cause an
error message from some compilers, but the code functions correctly for whatever
values x and y have initially.

The branch in the loop of Figure 16–6 can be avoided by doing the swap
operation with the “three exclusive or” trick given in Section 2–20 on page 45.
The if block can be replaced by the following code, where swap and cmpl are
unsigned integers:

   swap = (sa ^ sb) - 1; // -1 if should swap, else 0.
   cmpl = -(sa & sb);  // -1 if should compl’t, else 0.
   x = x ^ y;
   y = y ^ (x & swap) ^ cmpl;
   x = x ^ y;

This is nine instructions, versus about two or six for the if block, so the branch
cost would have to be quite high for this to be a good choice.

The “swap and complement” idea of [L&S] suggests a logic circuit for gener-
ating the Hilbert curve. The idea behind the circuit, described below, is that as you
trace along the path of an order n curve, you basically map pairs of bits of s to
(x, y) according to map A of Table 16–1. As the trace enters various regions, the
mapping output gets swapped, complemented, or both. The circuit of Figure 16–7
keeps track of the swap and complement requirements of each stage, uses the

void hil_xy_from_s(unsigned s, int n, unsigned *xp,
                unsigned *yp) {

   int i, sa, sb;
   unsigned x, y, temp;

   for (i = 0; i < 2*n; i += 2) {
      sa = (s >> (i+1)) & 1;      // Get bit i+1 of s.
      sb = (s >> i) & 1;        // Get bit i of s.

      if ((sa ^ sb) == 0) {      // If sa,sb = 00 or 11,
         temp = x;           // swap x and y,
         x = y^(-sa);         // and if sa = 1,
         y = temp^(-sa);          // complement them.
      }
      x = (x >> 1) | (sa << 31);  // Prepend sa to x and
      y = (y >> 1) | ((sa ^ sb) << 31); // (sa^sb) to y.
   }
   *xp = x >> (32 - n);       // Right-adjust x and y
   *yp = y >> (32 - n);       // and return them to
}              // the caller.

FIGURE 16–6.  Lam and Shapiro method for computing (x, y) from s.
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appropriate mapping to map two bits of s to (xi, yi), and generates the swap and
complement signals for the next stage. 

Assume there is a register containing the path length s and circuits for incre-
menting it. Then, to find the next point on the Hilbert curve, first increment s and
then transform it as described in Table 16–4. This is a left-to-right process, which
is a bit of a problem because incrementing s is a right-to-left process. Thus, the
time to generate a new point on an order n Hilbert curve is proportional to 2n (for
incrementing s) plus n (for transforming s to (x, y)).

Figure 16–7 shows this computation as a logic circuit. In this figure, S denotes
the swap signal and C denotes the complement signal.

The logic circuit of Figure 16–7 suggests another way to compute (x, y) from
s. Notice how the swap and complement signals propagate from left to right
through the n stages. This suggests that it might be possible to use the parallel
prefix operation to quickly (in  steps rather than ) propagate the swap
and complement information to each stage, and then do some word-parallel logi-
cal operations to compute x and y, using the equations in Figure 16–7. The values

FIGURE 16–7.  Logic circuit for computing (x, y) from s.

TABLE 16–4.  LOGIC FOR COMPUTING (X, Y) FROM S

If the next (to right) 
two bits of s are then append to (x, y) and set

00 (0, 0)* swap = swap

01 (0, 1)* No change

10 (1, 1)* No change

11 (1, 0)* swap = swap, cmpl = cmpl

* Possibly swapped and/or complemented

0

0

s2n-1 s2n-2

Si+1

Ci+1

s2i+1 s2i

Si

Ci

s1 s0

...

...

...

...

xn-1 yn-1 xi yi x0 y0

xi s2i 1+ s2iSi 1+( )[ ] Ci 1+=

yi s2i s2i 1+ s2iSi 1+( )[ ] Ci 1+=

Si Si 1+ s2i s2i 1+( )=

Ci Ci 1+ s2is2i 1+( )=

log2n n 1–
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of x and y are intermingled in the even and odd bit positions of a word, so they
have to be separated by the unshuffle operation (see page 140). This might seem a
bit complicated, and likely to pay off only for rather large values of n, but let us
see how it goes.

A procedure for this operation is shown in Figure 16–8 [GLS1]. The procedure
operates on fullword quantities, so it first pads the input s on the left with ‘01’ bits.
This bit combination does not affect the swap and complement quantities. Next, a

void hil_xy_from_s(unsigned s, int n, unsigned *xp,
                unsigned *yp) {

   unsigned comp, swap, cs, t, sr;

   s = s | (0x55555555 << 2*n); // Pad s on left with 01
   sr = (s >> 1) & 0x55555555;  // (no change) groups.
   cs = ((s & 0x55555555) + sr) // Compute complement &
        ^ 0x55555555;       // swap info in two-bit

              // groups.
   // Parallel prefix xor op to propagate both complement
   // and swap info together from left to right (there is
   // no step "cs ^= cs >> 1", so in effect it computes
   // two independent parallel prefix operations on two
   // interleaved sets of sixteen bits).

   cs = cs ^ (cs >> 2);
   cs = cs ^ (cs >> 4);
   cs = cs ^ (cs >> 8);
   cs = cs ^ (cs >> 16);
   swap = cs & 0x55555555;    // Separate the swap and
   comp = (cs >> 1) & 0x55555555;  // complement bits.

   t = (s & swap) ^ comp;      // Calculate x and y in
   s = s ^ sr ^ t ^ (t << 1);   // the odd & even bit

             // positions, resp.
   s = s & ((1 << 2*n) - 1);    // Clear out any junk

            // on the left (unpad).

   // Now "unshuffle" to separate the x and y bits.

   t = (s ^ (s >> 1)) & 0x22222222; s = s ^ t ^ (t << 1);
   t = (s ^ (s >> 2)) & 0x0C0C0C0C; s = s ^ t ^ (t << 2);
   t = (s ^ (s >> 4)) & 0x00F000F0; s = s ^ t ^ (t << 4);
   t = (s ^ (s >> 8)) & 0x0000FF00; s = s ^ t ^ (t << 8);

   *xp = s >> 16;       // Assign the two halves
   *yp = s & 0xFFFF;        // of t to x and y.
}

FIGURE 16–8.  Parallel prefix method for computing (x, y) from s.
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quantity cs (complement-swap) is computed. This word is of the form
cscs...cs, where each c (a single bit), if 1, means that the corresponding pair of
bits is to be complemented, and each s means that the corresponding pair of bits is
to be swapped, following Table 16–3. In other words, these two statements map
each pair of bits of s as follows:

This is the quantity to which we want to apply the parallel prefix operation.
PP-XOR is the one to use, going from left to right, because successive 1-bits
meaning to complement or to swap have the same logical properties as exclusive
or: Two successive 1-bits cancel each other.

Both signals (complement and swap) are propagated in the same PP-XOR
operation, each working with every other bit of cs.

The next four assignment statements have the effect of translating each pair
of bits of s into (x, y) values, with x being in the odd (leftmost) bit positions, and
y being in the even bit positions. Although the logic may seem obscure, it is not
difficult to verify that each pair of bits of s is transformed by the logic of the first
two Boolean equations in Figure 16–7. (Suggestion: Consider separately how the
even and odd bit positions are transformed, using the fact that t and sr are 0 in
the odd positions.)

The rest of the procedure is self-explanatory. It executes in 66 basic RISC
instructions (constant, branch-free), versus about  (average) for the code
of Figure 16–6 (based on compiled code; includes prologs and epilogs, which are
essentially nil). Thus, the parallel prefix method is faster for 

16–3  Distance from Coordinates on the Hilbert Curve
Given the coordinates of a point on the Hilbert curve, the distance from the origin
to the point can be calculated by means of a state transition table similar to
Table 16–2. Table 16–5 is such a table.

Its interpretation is similar to that of the previous section. First, x and y should
be padded with leading zeros so that they are of length n bits, where n is the order
of the Hilbert curve. Second, the bits of x and y are scanned from left to right, and
s is built up from left to right.

A C program implementing these steps is shown in Figure 16–9.

cs

     0      0 01

     0      1 00

     1      0 00

     1      1 11

s2i 1+ s2i

19n 10+

n 3.
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[L&S] give an algorithm for computing s from (x, y) that is similar to their
algorithm for going in the other direction (Table 16–3). It is a left-to-right algo-
rithm, shown in Table 16–6 and Figure 16–10.

TABLE 16–5.  STATE TRANSITION TABLE FOR COMPUTING S FROM (X, Y)

If the current 
state is

and the next (to right) 
two bits of (x, y) are

then append 
to s

and enter 
state

A (0, 0) 00 B

A (0, 1) 01 A

A (1, 0) 11 D

A (1, 1) 10 A

B (0, 0) 00 A

B (0, 1) 11 C

B (1, 0) 01 B

B (1, 1) 10 B

C (0, 0) 10 C

C (0, 1) 11 B

C (1, 0) 01 C

C (1, 1) 00 D

D (0, 0) 10 D

D (0, 1) 01 D

D (1, 0) 11 A

D (1, 1) 00 C

unsigned hil_s_from_xy(unsigned x, unsigned y, int n) {

   int i;
   unsigned state, s, row;

   state = 0;               // Initialize.
   s = 0;

   for (i = n - 1; i >= 0; i--) {
      row = 4*state | 2*((x >> i) & 1) | (y >> i) & 1;
      s = (s << 2) | (0x361E9CB4 >> 2*row) & 3;
      state = (0x8FE65831 >> 2*row) & 3;
   }
   return s;
}

FIGURE 16–9.  Program for computing s from (x, y).
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16–4  Incrementing the Coordinates on the Hilbert Curve
Given the (x, y) coordinates of a point on the order n Hilbert curve, how can one
find the coordinates of the next point? One way is to convert (x, y) to s, add 1 to s,
and then convert the new value of s back to (x, y), using algorithms given above.

A slightly (but not dramatically) better way is based on the fact that as one
moves along the Hilbert curve, at each step either x or y, but not both, is either
incremented or decremented (by 1). The algorithm to be described scans the coor-
dinate numbers from left to right to determine the type of U-curve that the right-
most two bits are on. Then, based on the U-curve and the value of the rightmost
two bits, it increments or decrements either x or y.

That’s basically it, but there is a complication when the path is at the end of a
U-curve (which happens once every four steps). At this point, the direction to take
is determined by the previous bits of x and y and by the higher order U-curve with

TABLE 16–6.  LAM AND SHAPIRO METHOD FOR COMPUTING S FROM (X, Y)

If the next (to right) 
two bits of (x, y) are then and append 

to s

(0, 0) Swap x and y 00

(0, 1) No change 01

(1, 0) Swap and complement x and y 11

(1, 1) No change 10

unsigned hil_s_from_xy(unsigned x, unsigned y, int n) {

   int i, xi, yi;
   unsigned s, temp;

   s = 0;             // Initialize.
   for (i = n - 1; i >= 0; i--) {
      xi = (x >> i) & 1;        // Get bit i of x.
      yi = (y >> i) & 1;        // Get bit i of y.

      if (yi == 0) {
         temp = x;          // Swap x and y and,
         x = y^(-xi);          // if xi = 1,
         y = temp^(-xi);         // complement them.
      }
      s = 4*s + 2*xi + (xi^yi);   // Append two bits to s.
   }
   return s;
}

FIGURE 16–10.  Lam and Shapiro method for computing s from (x, y).
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which these bits are associated. If that point is also at the end of its U-curve, then
the previous bits and the U-curve there determine the direction to take, and so on.

Table 16–7 describes this algorithm. In this table, the A, B, C, and D denote
the U-curves as shown in Table 16–1 on page 360. To use the table, first pad x and
y with leading zeros so they are n bits long, where n is the order of the Hilbert
curve. Start in state A and scan the bits of x and y from left to right. The first row
of Table 16–7 means that if the current state is A and the currently scanned bits
are (0, 0), then set a variable to indicate to increment y, and enter state B. The
other rows are interpreted similarly, with a suffix minus sign indicating to decre-
ment the associated coordinate. A dash in the third column means do not alter the
variable that keeps track of the coordinate changes.

After scanning the last (rightmost) bits of x and y, increment or decrement the
appropriate coordinate as indicated by the final value of the variable.

A C program implementing these steps is shown in Figure 16–11. Variable
dx is initialized in such a way that if invoked many times, the algorithm cycles
around, generating the same Hilbert curve over and over again. (However, the step
that connects one cycle to the next is not a unit step.)

TABLE 16–7.  TAKING ONE STEP ON THE HILBERT CURVE

If the 
current state 

is

and the next 
(to right) two bits 

of (x, y) are

then
prepare to 

inc/dec

and
enter
state

A (0, 0) y+ B
A (0, 1) x+ A
A (1, 0) — D
A (1, 1) y– A
B (0, 0) x+ A
B (0, 1) — C
B (1, 0) y+ B
B (1, 1) x– B
C (0, 0) y+ C
C (0, 1) — B
C (1, 0) x– C
C (1, 1) y– D
D (0, 0) x+ D
D (0, 1) y– D
D (1, 0) — A
D (1, 1) x– C
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Table 16–7 can readily be implemented in logic, as shown in Figure 16–12. In
this figure, the variables have the following meanings:

xi: Bit i of input x
yi: Bit i of input y
X, Y: xi and yi swapped and complemented, according to Si+1 and Ci+1
I: If 1, increment; if 0, decrement (by 1)
W: If 1, increment or decrement x; if 0, increment or decrement y
S: If 1, swap xi and yi
C: If 1, complement xi and yi

S and C together identify the “state” of Table 16–7, with (C, S) = (0,0), (0,1),
(1,0), and (1,1) denoting states A, B, C, and D, respectively. The output signals
are I0 and W0, which tell, respectively, whether to increment or decrement, and
which variable to change. (In addition to the logic shown, an incrementer/decre-
menter circuit is required, with MUX’s to route either x or y to the incrementer/
decrementer, and a circuit to route the altered value back to the register that holds
x or y. Alternatively, two incrementer/decrementer circuits could be used.)

void hil_inc_xy(unsigned *xp, unsigned *yp, int n) {

   int i;
   unsigned x, y, state, dx, dy, row, dochange;

   x = *xp;
   y = *yp;
   state = 0;           // Initialize.
   dx = -((1 << n) - 1);       // Init. -(2**n - 1).
   dy = 0;

   for (i = n-1; i >= 0; i--) {         // Do n times.
      row = 4*state | 2*((x >> i) & 1) | (y >> i) & 1;
      dochange = (0xBDDB >> row) & 1;
      if (dochange) {
         dx = ((0x16451659 >> 2*row) & 3) - 1;
         dy = ((0x51166516 >> 2*row) & 3) - 1;
      }
      state = (0x8FE65831 >> 2*row) & 3;
   }
   *xp = *xp + dx;
   *yp = *yp + dy;
}

FIGURE 16–11.  Program for taking one step on the Hilbert curve.



ptg8736757

16–6 OTHER SPACE-FILLING CURVES 371

16–5  Non-Recursive Generating Algorithms
The algorithms of Tables 16–2 and 16–7 provide two non-recursive algorithms for
generating the Hilbert curve of any order. Either algorithm can be implemented in
hardware without great difficulty. Hardware based on Table 16–2 includes a regis-
ter holding s, which it increments for each step, and then converts to (x, y) coordi-
nates. Hardware based on Table 16–7 would not have to include a register for s,
but the algorithm is more complicated.

16–6  Other Space-Filling Curves
As was mentioned, Peano was first, in 1890, to discover a space-filling curve. The
many variations discovered since then are often called “Peano curves.” One inter-
esting variation of Hilbert’s curve was discovered by Eliakim Hastings Moore in
1900. It is “cyclic” in the sense that the end point is one step away from the start-
ing point. The Peano curve of order 3, and the Moore curve of order 4, are shown
in Figure 16–13. Moore’s curve has an irregularity in that the order 1 curve is up-
right-down ( ), but this shape does not appear in the higher-order curves.
Except for this minor exception, the algorithms for dealing with Moore’s curve are
very similar to those for the Hilbert curve.

The Hilbert curve has been generalized to arbitrary rectangles and to three
and higher dimensions. The basic building block for a three-dimensional Hilbert

FIGURE 16–12.  Logic circuit for incrementing (x, y) by one step along the Hilbert curve.
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0
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Ii Ci 1+ X Ci 1+ XY Ii 1+ XY+ +=

Wi Si 1+ XY Si 1+ X Y( ) Wi 1+ XY+ +=

Si Si 1+ Y=

Ci Ci 1+ XY( )=



ptg8736757

372 HILBERT’S CURVE 16–7

curve is shown below. It hits all eight points of a 2×2×2 cube. These and many
other space-filling curves are discussed in [Sagan].

16–7  Applications
Space-filling curves have applications in image processing: compression, halfton-
ing, and textural analysis [L&S]. Another application is to improve computer per-
formance in ray tracing, a graphics-rendering technique. Conventionally, a scene is
scanned by projecting rays across the scene in ordinary raster scan line order (left to
right across the screen, and then top to bottom). When a ray hits an object in the sim-
ulated scene’s database, the color and other properties of the object at that point are
determined, and the results are used to illuminate the pixel through which the ray
was sent. (This is an oversimplification, but it’s adequate for our purposes.) One
problem is that the database is often large and the data on each object must be paged
in and cast out as various objects are hit by the scanning ray. When the ray scans
across a line, it often hits many objects that were hit in the previous scan, requiring
them to be paged in again. Paging operations would be reduced if the scanning had
some kind of locality property. For example, it might be helpful to scan a quadrant
of the screen completely before going on to another quadrant.

The Hilbert curve seems to have the locality property we are seeking. It scans
a quadrant completely before scanning another, recursively, and also does not
make a long jump when going from one quadrant to another.

FIGURE 16–13.  Peano (left) and Moore (right) curves.
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Douglas Voorhies [Voor] has simulated what the paging behavior would
likely be for the conventional uni-directional scan line traversal, the Peano curve,
and the Hilbert curve. His method is to scatter circles of a given size randomly on
the screen. A scan path hitting a circle represents touching a new object, and pag-
ing it in. When a scan leaves a circle, it is presumed that the object’s data remains
in memory until the scan exits a circle of radius twice that of the “object” circle.
Thus, if the scan leaves the object for just a short distance and then returns to it, it
is assumed that no paging operation occurred. He repeats this experiment for
many different sizes of circles, on a simulated 1024×1024 screen.

Assume that entering an object circle and leaving its surrounding circle repre-
sent one paging operation. Then, clearly the normal scan line causes D paging oper-
ations in covering a (not too big) circle of diameter D pixels, because each scan line
that enters it leaves its outer circle. The interesting result of Voorhies’s simulation is
that for the Peano curve, the number of paging operations to scan a circle is about
2.7 and, perhaps surprisingly, is independent of the circle’s diameter. For the Hilbert
curve, the figure is about 1.4, also independent of the circle’s diameter. Thus, the
experiment suggests that the Hilbert curve is superior to the Peano curve, and vastly
superior to the normal scan line path, in reducing paging operations. (The result that
the page count is independent of the circles’ diameters is probably an artifact of the
outer circle’s being proportional in size to the object circle.)

The Hilbert curve has been used to assign jobs to processors when the proces-
sors are interconnected in a rectangular 2D or 3D grid [Cplant]. The processor allo-
cation system software uses a linear list of the processors that follows a Hilbert
curve over the grid. When a job that requires a number of processors is scheduled
to run, the allocator allocates them from the linear list, much as a memory allocator
would do. The allocated processors tend to be close together on the grid, which
leads to good intercommunication properties.

Exercises

1. A simple way to cover an n × n grid in a way that doesn’t make too many big
jumps, and hits every point once and only once, is to have a 2n-bit variable s
that is incremented at each step, and form x from the first and every other bit
of s, and y from the second and every other bit of s. This is equivalent to com-
puting the perfect outer unshuffle of s, and then letting x and y be the left and
right halves of the result. Investigate this curve’s locality property by sketch-
ing the curve for n = 3.

2. A variation of exercise 1 is to first transform s into Gray(s) (see page 312), and
then let x and y be formed from every other bit of the result, as in exercise 1.
Sketch the curve for n = 3. Has this improved the locality property?

3. How would you construct a three-dimensional analog of the curve of exercise 1?
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 CHAPTER  17

FLOATING-POINT

God created the integers,
all else is the work of man.

 Leopold Kronecker

Operating on floating-point numbers with integer arithmetic and logical instruc-
tions is often a messy proposition. This is particularly true for the rules and for-
mats of the IEEE Standard for Floating-Point Arithmetic, IEEE Std. 754-2008,
commonly known as “IEEE arithmetic.” It has the NaN (not a number) and infini-
ties, which are special cases for almost all operations. It has plus and minus zero,
which must compare equal to one another. It has a fourth comparison result,
“unordered.” The most significant bit of the fraction is not explicitly present in
“normal” numbers, but it is in “subnormal” numbers. The fraction is in signed-
true form and the exponent is in biased form, whereas integers are now almost
universally in two’s-complement form. There are, of course, reasons for all this,
but it results in programs that deal with the representation being full of tests and
branches, and that present a challenge to implement efficiently.

We assume the reader has some familiarity with the IEEE standard, and sum-
marize it here only very briefly.

17–1  IEEE Format
The 2008 standard includes three binary and two decimal formats. We will restrict
our attention to the binary “single” and “double” formats (32- and 64-bit). These
are shown below.

The sign bit s is encoded as 0 for plus, 1 for minus. The biased exponent e and
fraction f are magnitudes with their most significant bits on the left. The floating-
point value represented is encoded as shown on the next page.

Single format Double format

s e f s e f

1 8 23 1 11 52
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As an example, consider encoding the number  in single format. In binary
[Knu1],

 11.0010 0100 0011 1111 0110 1010 1000 1000 1000 0101 1010 0011 0000 10….

This is in the range of the “normal” numbers shown in the third row of the
table above. The most significant 1 in  is dropped, as the leading 1 is not stored
in the encoding of normal numbers. The exponent  should be 1, to get the
binary point in the right place, and hence  Thus, the representation is

0 10000000 10010010000111111011011

or, in hexadecimal,

40490FDB,

where we have rounded the fraction to the nearest representable number.
Numbers with  are the “normal numbers.” These are “normal-

ized,” meaning that their most significant bit is 1 and it is not explicitly stored.
Nonzero numbers with  are called “subnormal numbers,” or simply “sub-
normals.” Their most significant bit is explicitly stored. This scheme is sometimes
called “gradual underflow.” Some extreme values in the various ranges of float-
ing-point numbers are shown in Table 17–1. In this table, “Max integer” means
the largest integer such that all integers less than or equal to it, in absolute value,
are representable exactly; the next integer is rounded.

For normal numbers, one unit in the last position (ulp) has a relative value
ranging from  to  (about  to ) for single for-
mat, and from  to  (about  to ) for double
format. The maximum “relative error,” for round to nearest mode, is half of those
figures.

The range of integers that is represented exactly is from  to 
(  to +16,777,216) for single format, and from  to 
(  to +9,007,199,254,740,992) for double format. Of

Single format Double format

e f value e f value

0 0 ±0 0 0 ±0

0  0 ±2–126(0.f) 0  0 ±2–1022(0.f)

1 to 254 – ±2e–127(1.f) 1 to 2046 – ±2e–1023(1.f)

255 0 ± 2047 0 ±

255  0 NaN 2047  0 NaN

e 127–
e 128.=

1 e 254

e 0=

1 224⁄ 1 223⁄ 5.96 10 8–× 1.19 10 7–×
1 253⁄ 1 252⁄ 1.11 10 16–× 2.22 10 16–×

224– +224

16,777,216– 253– +253

9,007,199,254,740,992–
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course, certain integers outside these ranges, such as larger powers of 2, can be
represented exactly; the ranges cited are the maximal ranges for which all integers
are represented exactly.

One might want to change division by a constant to multiplication by the
reciprocal. This can be done with complete (IEEE) accuracy only for numbers
whose reciprocals are represented exactly. These are the powers of 2 from 
to  for single format, and from  to  for double format. The num-
bers  and  are subnormal numbers, which are best avoided on
machines that implement operations on subnormal numbers inefficiently.

17–2  Floating-Point To/From Integer Conversions
Table 17–2 gives some formulas for conversion between IEEE floating-point for-
mat and integers. These methods are concise and fast, but they do not give the cor-
rect result for the full range of input values. The ranges over which they do give the
precisely correct result are given in the table. They all give the correct result for
±0.0 and for subnormals within the stated ranges. Most do not give a reasonable
result for a NaN or infinity. These formulas may be suitable for direct use in some
applications, or in a library routine to get the common cases quickly.

TABLE 17–1.  EXTREME VALUES

Single Precision

Hex Exact Value Approximate Value

Smallest subnormal 0000 0001 2–149 1.401×10–45

Largest subnormal 007F FFFF 2–126(1 – 2–23) 1.175×10–38

Smallest normal 0080 0000 2–126 1.175×10–38

1.0 3F80 0000 1 1

Max integer 4B80 0000 224 1.677×107

Largest normal 7F7F FFFF 2128(1 – 2–24) 3.403×1038

7F80 0000

Double Precision

Smallest subnormal 0…0001 2–1074 4.941×10–324

Largest subnormal 000F…F 2–1022(1 – 2–52) 2.225×10–308

Smallest normal 0010…0 2–1022 2.225×10–308

1.0 3FF0…0 1 1

Max integer 4340…0 253 9.007×1015

Largest normal 7FEF…F 21024(1 – 2–53) 1.798×10308

7FF0…0

2 127–

2127 2 1023– 21023

2 127– 2 1023–
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The Type column denotes the type of conversion desired, including the round-
ing mode: n for round to nearest even, d for round down, u for round up, and z for
round toward zero. The R column denotes the rounding mode that the machine
must be in for the formula to give the correct result. (On some machines, such as
the Intel IA-32, the rounding mode can be specified in the instruction itself, rather
than in a “mode” register.)

A “double” is an IEEE double, which is 64 bits in length. A “float” is an IEEE
single, which is 32 bits in length.

The notation “ulp” means one unit in the last position. For example, 1.0 – ulp
denotes the IEEE-format number that is closest to 1.0 but less than 1.0, something
like 0.99999…. The notation “int64” denotes a signed 64-bit integer (two’s-
complement), and “int32” denotes a signed 32-bit integer. “uint64” and “uint32”
have similar meanings, but for unsigned interpretations.

The function low32(x) extracts the low-order 32 bits of x.
The operators and denote double- and single-precision floating-point addi-

tion, respectively. Similarly, the operators and denote double- and single-preci-
sion subtraction.

TABLE 17–2.  FLOATING-POINT CONVERSIONS

Type R Formula Range Notes

Double to 
int64, n

n 1

Double to 
int64, d

d 1

Double to 
int64, u

u 1

Double to 
int64, z

d
or
z

1

Double to 
uint64, n

n 1

Double to 
uint64, d

d 1

Double to 
uint64, u

u 1

Double to 
int32 or 
uint32, n

n 1

Double to 
int32 or 
uint32, d

d 1

+
d

+
s

–d –s

x c521+
d( ) c521– 251 to – 251 0.5+

x c521+
d( ) c521– 251 0.5–  to – 251 0.5+

x c521+
d( ) c521– 251 to – 251 1+

if x 0.0( )
x c52+

d( ) c52–
else

c52 c52 x–d( )–

252 to – 252

x c52+
d( ) c52– 0.25–  to 252

x c52+
d( ) c52– 0 to 252

x c52+
d( ) c52– 0.5 ulp+  to – 252 1+

low32 x c521+
d( ) 231– 0.5–  to 231 0.5– ulp,–

or 0.5–  to 232 0.5– ulp–

low32 x c521+
d( ) 231–  to 231 ulp, or–

0 to 232 ulp–

continues
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Double to 
int32 or 
uint32, u

u 1

Double to 
int32 or 
uint32, z

d
or
z

1

Float to 
int32, n

n

Float to 
int32, d

d

Float to 
int32, u

u

Float to 
int32, z

d
or
z

Float to 
uint32, n

n

Float to 
uint32, d

d

Float to 
uint32, u

u

Round
double to 
nearest

n 1

Round non-
negative
double to 
nearest

n 1, 3

Round float 
to nearest

n 2

Round non-
negative
float to 
nearest

n 2, 3

Int64 to 
double

– 4

TABLE 17–2.  FLOATING-POINT CONVERSIONS, continued
Type R Formula Range Notes

low32 x c521+
d( ) 231– 1– ulp+  to 231 1– , or

1– ulp+  to 232 1–

if x 0.0( )
   low32 x c521+

d( )
else
   low32 c521 x–d( )–

231 1 ulp to +–– 231 ulp,–
or 1– ulp to + 232 ulp–

x c231+
s( ) c231– 222–  to 222 0.5+

x c231+
s( ) c231– 222– 0.5–  to 222 0.5+

x c231+
s( ) c231– 222–  to 222 1+

if x 0.0( )
x c23+

s( ) c23–
else

c23 c23 x–s( )–

223 to – 223

x c23+
s( ) c23– 0.25–  to 223

x c23+
s( ) c23– 0 to 223

x c23+
s( ) c23– 0.5– ulp+  to 223 1+

x c521+
d( ) c521–d 251 to – 251 0.5+

x c52+
d( ) c52–d 0.25–  to 252

x c231+
s( ) c231–s 222 to – 222 0.5+

x c23+
s( ) c23–s 0.25–  to 223

x c521+( ) c521–d 251–  to 251

continues
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It might seem curious that on most Intel machines the double to integer (of any
size) conversions require that the machine’s precision mode be reduced to 53 bits,
whereas for float to integer conversions, the reduction in precision is not necessary—
the correct result is obtained with the machine running in extended-precision mode
(64 bits of precision). This is because for the double-precision add of the constant,
the fraction might be shifted right as many as 52 bits, which may cause 1-bits to be
shifted beyond the 64-bit limit, and hence lost. Thus, two roundings occur—first to
64 bits and then to 53 bits. On the other hand, for the single-precision add of the con-
stant, the maximum shift is 23 bits. With that small shift amount, no bit can be shifted
beyond the 64-bit boundary, so that only one rounding operation occurs. The conver-
sions from float to integer get the correct result on Intel machines in all three preci-
sion modes.

On Intel machines running in extended-precision mode, the conversions from
double to int64 and uint64 can be done without changing the precision mode by
using different constants and one more floating-point operation. The calculation is

Uint64 to 
double

– 4

Int32 to 
float

–

Uint32 to 
float

–

Constants:

c521 = 0x43380000 00000000 = 
c52   = 0x43300000 00000000 = 
c231 = 0x4B400000 = 
c23   = 0x4B000000 = 

Notes:
1. The floating-point operations must be done in IEEE double-precision (53 bits

of precision) and no more. Most Intel machines do not, by default, operate in
this mode. On those machines it is necessary to set the precision (PC field in
the FPU Control Word) to double-precision.

2. The floating-point operations must be done in IEEE single-precision (24 bits of
precision) and no more. Most Intel machines are not, by default, operated in
this mode. On those machines it is necessary to set the precision (PC field in
the FPU Control Word) to single-precision.

3. “Nonnegative” means –0.0 or greater than or equal to 0.0.
4. To convert a 32-bit signed or unsigned integer to double, sign- or zero-extend

the 32-bit integer to 64 bits and use the appropriate one of these formulas.

TABLE 17–2.  FLOATING-POINT CONVERSIONS, continued
Type R Formula Range Notes

x c52+( ) c52–d 0 to 252 1–

x c231+( ) c231–s 222–  to 222

x c23+( ) c23–s 0 to 223

252 251+
252

223 222+
223

x c1+
e( ) c2–e( ) c3,–
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where and denote extended-precision addition and subtraction, respectively.
(The result of the add must remain in the 80-bit register for use by the extended-
precision subtract operation.)

For double to int64,

c1 = 0x43E00300 00000000 = 
c2 = 0x43E00000 00000000 = 
c3 = 0x43380000 00000000 = .

For double to uint64,

c1 = 0x43E00200 00000000 = 
c2 = 0x43E00000 00000000 = 
c3 = 0x43300000 00000000 = .

Using these constants, similar expressions can be derived for the conversion
and rounding operations shown in Table 17–2 that are flagged by Note 1. The
ranges of applicability are close to those shown in the table.

However, for the round double to nearest operation, if the calculation subtracts
first and then adds, that is,

(using the first set of constants above), then the range for which the correct result
is obtained is  but not a NaN.

17–3  Comparing Floating-Point Numbers Using Integer Operations
One of the features of the IEEE encodings is that non-NaN values are properly
ordered if treated as signed magnitude integers.

To program a floating-point comparison using integer operations, it is neces-
sary that the “unordered” result not be needed. In IEEE 754, the unordered result
occurs when one or both comparands are NaNs. The methods below treat NaNs as
if they were numbers greater in magnitude than infinity.

The comparisons are also much simpler if 0.0 can be treated as strictly less
than +0.0 (which is not in accordance with IEEE 754). Assuming this is accept-
able, the comparisons can be done as shown below, where   and 
denote floating-point comparisons, and the  symbol is used as a reminder that
these formulas do not treat  quite right. These comparisons are the same as
IEEE 754-2008’s “total-ordering” predicate.

+e –e

263 252 251+ +
263

252 251+

263 252+
263

252

x c1–e( ) c2+
e( ) c3+

251– 0.5 to ,–

 ,<
f  ,f

=
f

0.0±

a b=
f a b=( )

a b<
f a 0 a b<&( ) a 0< a b>u&( ) | 

a bf a 0 a b&( ) a 0< a bu&( ) | 
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If 0.0 must be treated as equal to +0.0, there does not seem to be any slick
way to do it, but the following formulas, which follow more or less obviously
from the above, are possibilities.

In some applications, it might be more efficient to first transform the numbers
in some way, and then do a floating-point comparison with a single fixed-point
comparison instruction. For example, in sorting n numbers, the transformation
would be done only once to each number, whereas a comparison must be done at
least  times (in the minimax sense).

Table 17–3 gives four such transformations. For those in the left column, 0.0
compares equal to +0.0, and for those in the right column, 0.0 compares less than
+0.0. In all cases, the sense of the comparison is not altered by the transformation.
Variable n is signed, t is unsigned, and c may be either signed or unsigned.

The last row shows branch-free code that can be implemented on our basic
RISC in four instructions for the left column, and three for the right column (these
four or three instructions must be executed for each comparand).

TABLE 17–3.  PRECONDITIONING FLOATING-POINT NUMBERS FOR INTEGER COMPARISONS

– 0.0 = + 0.0 (IEEE) – 0.0 < + 0.0 (non-IEEE)

if (n >= 0) n = n+0x80000000;
else n = -n;
Use unsigned comparison.

c = 0x7FFFFFFF;
if (n < 0) n = (n ^ c) + 1;
Use signed comparison.

c = 0x80000000;
if (n < 0) n = c - n;
Use signed comparison.

t = n >> 31;
n = (n ^ (t >> 1)) - t;
Use signed comparison.

if (n >= 0) n = n+0x80000000;
else n = ~n;
Use unsigned comparison.

c = 0x7FFFFFFF;
if (n < 0) n = n ^ c;
Use signed comparison.

c = 0x7FFFFFFF;
if (n < 0) n = c - n;
Use signed comparison.

t = (unsigned)(n>>30) >> 1;
n = n ^ t;
Use signed comparison.

a b=
f a = b( ) a–  = a b–  = b&( ) | 

a = b( ) a b | ( ) = 0x80000000( ) | 

a = b( ) a b | ( ) 0x7FFFFFFF&( ) = 0( ) | 

a b<
f a 0 a b<&( ) a 0< a b>u&( ) | ( ) a b | ( ) 0x80000000( )&

a bf a 0 a b&( ) a 0< a bu&( ) a b | ( ) = 0x80000000( ) |  | 

nlog2n



ptg8736757

17–4 AN APPROXIMATE RECIPROCAL SQUARE ROOT ROUTINE 383

17–4  An Approximate Reciprocal Square Root Routine
In the early 2000s, there was some buzz in programming circles about an amazing
routine for computing an approximation to the reciprocal square root of a number
in IEEE single format. The routine is useful in graphics applications, for example,
to normalize a vector by multiplying its components x, y, and z by

 C code for the function is shown in Figure 17–1 [Taro].
The relative error of the result is in the range 0 to –0.00176 for all normal sin-

gle-precision numbers (it errs on the low side). It gives the correct IEEE result
(NaN) if its argument is a NaN. However, it gives an unreasonable result if its argu-
ment is ± , a negative number, or –0. If the argument is +0 or a positive subnor-
mal, the result is not what it should be, but it is a large number (greater than

), which might be acceptable in some applications.
The relative error can be reduced in magnitude, to the range ±0.000892, by

changing the constant 1.5 in the Newton step to 1.5008908.
Another possible refinement is to replace the multiplication by 0.5 with a sub-

tract of 1 from the exponent of x. That is, replace the definition of xhalf with

   union {int ihalf; float xhalf;};
   ihalf = ix - 0x00800000;

However, the function then gives inaccurate results (although greater than
) for x a normal number less than about  and NaN for x a

subnormal number. For x = 0 the result is +  (which is correct).
The Newton step is a standard Newton-Raphson calculation for the reciprocal

square root function (see Appendix B). Simply repeating this step reduces the rel-
ative error to the range 0 to –0.0000047. The optimal constant for this is
0x5F37599E.

On the other hand, deleting the Newton step results in a substantially faster
function with a relative error within ±0.035, using a constant of 0x5F37642F. It
consists of only two integer instructions, plus code to load the constant. (The vari-
able xhalf can be deleted.)

float rsqrt(float x0) {
   union {int ix; float x;};

   x = x0;         // x can be viewed as int.
   float xhalf = 0.5f*x;
   ix = 0x5f375a82 - (ix >> 1); // Initial guess.
   x = x*(1.5f - xhalf*x*x);    // Newton step.
   return x;
}

FIGURE 17–1.  Approximate reciprocal square root.

1 x2 y2 z2+ + .⁄

9 1018×

6 1018× 2.34 10 38–× ,
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To get an inkling of why this works, suppose  where n is the
unbiased exponent and f is the fraction  Then

Ignoring the fraction, this shows that we must change the biased exponent from
 to  If  then  =  =

 Therefore, it appears that a calculation something like shifting x
right one position and subtracting it from 190 in the exponent position, might give
a very rough approximation to  In C, this can be expressed as1

   union {int ix; float x;};  // Make ix and x overlap.
   ...
   0x5F000000 - (ix >> 1);    // Refer to x as integer ix.

To find a better value for the constant 0x5F000000 by analysis is difficult.
Four cases must be analyzed: the cases in which a 0-bit or a 1-bit is shifted from the
exponent field to the fraction field, and the cases in which the subtraction does or
does not generate a borrow that propagates to the exponent field. This analysis is
done in [Lomo]. Here, we make some simple observations.

 Using rep(x) to denote the representation of the floating-point number x in
IEEE single format, we want a formula of the form

for some constant k. (Whether the shift is signed or unsigned makes no difference,
because we exclude negative values of x and –0.0.) We can get an idea of roughly
what k should be from

and trying a few values of x. The results are shown in Table 17–4 (in hexadecimal).
It looks like k is approximately a constant. Notice that the same value is

obtained for x = 1.0 and 4.0. In fact, the same value of k results from any number x
and 4x (provided they are both normal numbers). This is because, in the formula
for k, if x is quadrupled, then the term  decreases by 1 in the exponent
field, and the term  increases by 1 in the exponent field.

More significantly, the relative errors for x and 4x are exactly the same, pro-
vided both quantities are normal numbers. To see this, it can be shown that if the
argument x of the rsqrt function is quadrupled, the result of the function is

1. This is not officially sanctioned C, but with almost all compilers it works.

x 2n 1 f+( ),=
0 f 1<( ).

1
x

------ 2 n 2/– 1 f+( ) 1 2/– .=

127 n+ 127 n 2⁄ .– e 127 n,+= 127 n 2⁄– 127 e 127–( ) 2⁄–
190.5 e 2.⁄–

1 x.⁄

rep 1 x⁄( ) k rep x( ) 1>>
s( )–

k rep 1 x⁄( ) rep x( ) 1>>
s( ),+

rep 1 x⁄( )
rep x( ) 1>>

s
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exactly halved, and this is true no matter how many Newton steps are done. Of
course,  is also halved. Therefore, the relative error is unchanged. 

This is important, because it means that if we find an optimal value (by some
criterion, such as minimizing the maximum absolute value of the error) for values
of x in the range 1.0 to 4.0, then the same value of k is optimal for all normal
numbers.

It is then a straightforward task to write a program that, for a given value of k,
calculates the true value of  (using a known accurate library routine) and the
estimated value for some 10,000 or so values of x from 1.0 to 4.0, and calculates
the maximum error. The optimal value of k can be determined by hand, which is
tedious but sometimes illuminating. It is quite amazing that there is a constant for
which the error is less than ±3.5% in a function that uses only two integer opera-
tions and no table lookup.

17–5  The Distribution of Leading Digits
When IBM introduced the System/360 computer in 1964, numerical analysts were
horrified at the loss of precision of single-precision arithmetic. The previous IBM
computer line, the 704 - 709 - 7090 family, had a 36-bit word. For single-precision
floating-point, the format consisted of a 9-bit sign and exponent field, followed by
a 27-bit fraction in binary. The most significant fraction bit was explicitly
included (in “normal” numbers), so quantities were represented with a precision
of 27 bits.

The S/360 has a 32-bit word. For single-precision, IBM chose to have an 8-bit
sign and exponent field followed by a 24-bit fraction. This drop from 27 to 24 bits
was bad enough, but it gets worse. To keep the exponent range large, a unit in the
7-bit exponent of the S/360 format represents a factor of 16. Thus, the fraction is
in base 16, and this format came to be called “hexadecimal” floating-point. The
leading digit can be any number from 1 to 15 (binary 0001 to 1111). Numbers
with leading digit 1 have only 21 bits of precision (because of the three leading
0’s), but they should constitute only 1/15 (6.7%) of all numbers.

TABLE 17–4.  DETERMINING THE CONSTANT

Trial x rep(x) k

1.0 3F800000 3F800000 5F400000

1.5 3FC00000 3F5105EC 5F3105EC

2.0 40000000 3F3504F3 5F3504F3

2.5 40200000 3F21E89B 5F31E89B

3.0 40400000 3F13CD3A 5F33CD3A

3.5 40600000 3F08D677 5F38D677

4.0 40800000 3F000000 5F400000

rep 1 x⁄( )

1 x⁄

1 x⁄
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No, it’s worse than that! There was a flurry of activity to show, both analyti-
cally and empirically, that leading digits are not uniformly distributed. In hexadec-
imal floating-point, one would expect 25% of the numbers to have leading digit 1,
and hence only 21 bits of precision.

Let us consider the distribution of leading digits in decimal. Suppose you
have a large set of numbers with units, such as length, volume, mass, speed, and
so on, expressed in “scientific” notation (e.g., ). If the leading digit
of a large number of such numbers has a well-defined distribution function, then it
must be independent of the units—whether inches or centimeters, pounds or kilo-
grams, and so on. Thus, if you multiply all the numbers in the set by any constant,
the distribution of leading digits should be unchanged. For example, considering
multiplying by 2, we conclude that the number of numbers with leading digit 1
(those from 1.0 to 1.999… times 10 to some power) must equal the number of
numbers with leading digit 2 or 3 (those from 2.0 to 3.999… times 10 to some
power), because it shouldn’t matter if our unit of length is inches or half inches, or
our unit of mass is kilograms or half kilograms, and so on.

Let  for  be the probability density function for the leading
digits of the set of numbers with units.  has the property that 

is the proportion of numbers that have leading digits ranging from a to b. Refer-
ring to the figure below, for a small increment  in x, f must satisfy

because  is, approximately, the proportion of numbers ranging from 1 to
 (ignoring a multiplier of a power of 10), and  is the approxi-

mate proportion of numbers ranging from x to  Because the latter set is
the first set multiplied by x, their proportions must be equal. Thus, the probability
density function is a simple reciprocal relationship,

6.022 1023×

f x( ), 1 x 10,<
f x( )

f x( ) xd
a

b

x

f 1( ) x f x( ) x x,=

1 10

f(1)

x x+x x

x

f 1( ) x
1 x+ f x( ) x x

x x x.+

f x( ) f 1( ) x⁄ .=
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Because the area under the curve from  to  must be 1 (all num-
bers have leading digits from 1.000… to 9.999…), it is easily shown that

The proportion of numbers with leading digits in the range a to b, with
 is

Thus,  in decimal,  the proport ion of numbers with leading digi t 1 is
 and the proportion of numbers with leading digit 9 is

For base 16, the proportion of numbers with leading digits in the range a to b,
with  is similarly derived to be  Hence, the proportion
of numbers with leading digit 1 is 

17–6  Table of Miscellaneous Values
Table 17–5 shows the IEEE representation of miscellaneous values that may be of
interest. The values that are not exact are rounded to the nearest representable value. 

TABLE 17–5.  MISCELLANEOUS VALUES

Decimal Single Format (Hex) Double Format (Hex)

–∞ FF80 0000 FFF0 0000 0000 0000

– 2.0 C000 0000 C000 0000 0000 0000

– 1.0 BF80 0000 BFF0 0000 0000 0000

– 0.5 BF00 0000 BFE0 0000 0000 0000

– 0.0 8000 0000 8000 0000 0000 0000

+ 0.0 0000 0000 0000 0000 0000 0000

Smallest positive subnormal 0000 0001 0000 0000 0000 0001

Largest subnormal 007F FFFF 000F FFFF FFFF FFFF

Least positive normal 0080 0000 0010 0000 0000 0000

π/180 (0.01745…) 3C8E FA35 3F91 DF46 A252 9D39

0.1 3DCC CCCD 3FB9 9999 9999 999A

log10 2 (0.3010…) 3E9A 209B 3FD3 4413 509F 79FF

1/e (0.3678…) 3EBC 5AB2 3FD7 8B56 362C EF38

1/ln 10 (0.4342…) 3EDE 5BD9 3FDB CB7B 1526 E50E

x 1= x 10=

f 1( ) 1 10ln⁄ .=

1 a b≤ ≤ 10,<

 xd
xln10
--------------

a

b

∫ lnx
ln10
-----------

a

b lnb a⁄
ln10

--------------- log10
b
a
--- .= = =

log10 2 1⁄( ) 0.30103,≈
log10 10 9⁄( ) 0.0458.≈

1 a b≤ ≤ 16,< log16 b a⁄( ).
log16 2 1⁄( ) 1 log216⁄ 0.25.= =

continues
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0.5 3F00 0000 3FE0 0000 0000 0000

ln 2 (0.6931…) 3F31 7218 3FE6 2E42 FEFA 39EF

 (0.7071…) 3F35 04F3 3FE6 A09E 667F 3BCD

1/ln 3 (0.9102…) 3F69 0570 3FED 20AE 03BC C153

1.0 3F80 0000 3FF0 0000 0000 0000

ln 3 (1.0986…) 3F8C 9F54 3FF1 93EA 7AAD 030B

 (1.414…) 3FB5 04F3 3FF6 A09E 667F 3BCD

1/ln 2 (1.442…) 3FB8 AA3B 3FF7 1547 652B 82FE

 (1.732…) 3FDD B3D7 3FFB B67A E858 4CAA

2.0 4000 0000 4000 0000 0000 0000

ln 10 (2.302…) 4013 5D8E 4002 6BB1 BBB5 5516

e (2.718…) 402D F854 4005 BF0A 8B14 5769

3.0 4040 0000 4008 0000 0000 0000

 (3.141…) 4049 0FDB 4009 21FB 5444 2D18

 (3.162…) 404A 62C2 4009 4C58 3ADA 5B53

log2 10 (3.321…) 4054 9A78 400A 934F 0979 A371

4.0 4080 0000 4010 0000 0000 0000

5.0 40A0 0000 4014 0000 0000 0000

6.0 40C0 0000 4018 0000 0000 0000

2  (6.283…) 40C9 0FDB 4019 21FB 5444 2D18

7.0 40E0 0000 401C 0000 0000 0000

8.0 4100 0000 4020 0000 0000 0000

9.0 4110 0000 4022 0000 0000 0000

10.0 4120 0000 4024 0000 0000 0000

11.0 4130 0000 4026 0000 0000 0000

12.0 4140 0000 4028 0000 0000 0000

13.0 4150 0000 402A 0000 0000 0000

14.0 4160 0000 402C 0000 0000 0000

15.0 4170 0000 402E 0000 0000 0000

16.0 4180 0000 4030 0000 0000 0000

180/  (57.295…) 4265 2EE1 404C A5DC 1A63 C1F8

223 – 1 4AFF FFFE 415F FFFF C000 0000

TABLE 17–5.  MISCELLANEOUS VALUES, continued

Decimal Single Format (Hex) Double Format (Hex)

1 2⁄

2

3

10

continues
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IEEE 754 does not specify how the signaling and quiet NaNs are distin-
guished. Table 17–5 uses the convention employed by PowerPC, the AMD 29050,
the Intel x86 and I860, the SPARC, and the ARM family: The most significant
fraction bit is 0 for signaling and 1 for quiet NaN’s. A few machines, mostly older
ones, use the opposite convention (0 = quiet, 1 = signaling).

Exercises

1. What numbers have the same representation, apart from trailing 0’s, in both
single- and double-precision?

2. Is there a program similar to the approximate reciprocal square root routine for
computing the approximate square root?

3. Is there a similar program for the approximate cube root of a nonnegative nor-
mal number?

4. Is there a similar program for the reciprocal square root of a double-precision
floating-point number? Assume it is for a 64-bit machine, or at any rate that
the “long long” (64-bit integer) data type is available.

223 4B00 0000 4160 0000 0000 0000

224 – 1 4B7F FFFF 416F FFFF E000 0000

224 4B80 0000 4170 0000 0000 0000

231 – 1 4F00 0000 41DF FFFF FFC0 0000

231 4F00 0000 41E0 0000 0000 0000

232 – 1 4F80 0000 41EF FFFF FFE0 0000

232 4F80 0000 41F0 0000 0000 0000

252 5980 0000 4330 0000 0000 0000

263 5F00 0000 43E0 0000 0000 0000

264 5F80 0000 43F0 0000 0000 0000

Largest normal 7F7F FFFF 7FEF FFFF FFFF FFFF

7F80 0000 7FF0 0000 0000 0000

“Smallest” SNaN 7F80 0001 7FF0 0000 0000 0001

“Largest” SNaN 7FBF FFFF 7FF7 FFFF FFFF FFFF

“Smallest” QNaN 7FC0 0000 7FF8 0000 0000 0000

“Largest” QNaN 7FFF FFFF 7FFF FFFF FFFF FFFF

TABLE 17–5.  MISCELLANEOUS VALUES, continued

Decimal Single Format (Hex) Double Format (Hex)
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 CHAPTER  18

FORMULAS FOR PRIMES

18–1  Introduction
Like many young students, I once became fascinated with prime numbers and
tried to find a formula for them. I didn’t know exactly what operations would be
considered valid in a “formula,” or exactly what function I was looking for—a
formula for the nth prime in terms of n, or in terms of the previous prime(s), or a
formula that produces primes but not all of them, or something else. Nevertheless,
in spite of these ambiguities, I would like to discuss a little of what is known about
this problem. We will see that (a) there are formulas for primes, and (b) none of
them are very satisfying.

Much of this subject relates to the present work in that it deals with formulas
similar to those of some of our programming tricks, albeit in the domain of real
number arithmetic rather than “computer arithmetic.” Let us first review a few
highlights from the history of this subject.

In 1640, Fermat conjectured that the formula

always produces a prime, and numbers of this form have come to be called
“Fermat numbers.” It is true that  is prime for n ranging from 0 to 4, but Euler
found in 1732 that

(We have seen these factors before in connection with dividing by a constant on a
32-bit machine). Then, F. Landry showed in 1880 that

 is now known to be composite for many larger values of n, such as all n
from 7 to 16 inclusive. For no value of  is it known to be prime [H&W]. So
much for rash conjectures.1

Incidentally, why would Fermat be led to the double exponential? He knew
that if m has an odd factor other than 1, then  is composite. For if 
with b odd and not equal to 1, then

1. However, this is the only conjecture of Fermat known to be wrong [Wells].

Fn 22n 1+=

Fn

F5 225 1+ 641 6,700,417= =

F6 226 1+ 274,177 67,280,421,310,721.= =

Fn
n 4>

2m 1+ m ab=

2ab 1+ 2a 1+( ) 2a b 1–( ) 2a b 2–( )– 2a b 3–( ) …– 1+ +( ).=
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Knowing this, he must have wondered about  with m not containing any
odd factors (other than 1)—that is,  He tried a few values of n and found
that  seemed to be prime. 

Certainly everyone would agree that a polynomial qualifies as a “formula.”
One rather amazing polynomial was discovered by Leonhard Euler in 1772. He
found that

is prime-valued for every n from 0 to 39. His result can be extended. Because

 is prime-valued for every n from 1 to 40; that is,  is prime-valued for
every n from –1 to –40. Therefore,

is prime-valued for every n from 0 to 79. (However, it is lacking in aesthetic
appeal because it is nonmonotonic and it repeats; that is, for n = 0, 1, …, 79,

 = 1601, 1523, 1447, …, 43, 41, 41, 43, …, 1447, 1523, 1601.) 
In spite of this success, it is now known that there is no polynomial  that

produces a prime for every n (aside from constant polynomials such as  = 5).
In fact, any nontrivial “polynomial in exponentials” is composite infinitely often.
More precisely, as stated in [H&W],

THEOREM. If  is a polynomial in its argu-
ments, with integral coefficients, and  when  then 
is composite for an infinity of values of n.

Thus, a formula such as  must produce an infinite number
of composites. On the other hand, the theorem says nothing about formulas con-
taining terms such as   and 

A formula for the nth prime, in terms of n, can be obtained by using the floor
function and a magic number

The number a is, in decimal, the first prime written in the first place after the dec-
imal point, the second prime written in the next two places, the third prime written
in the next three places, and so on. There is always room for the nth prime,
because  We will not prove this, except to point out that it is known that
there is always a prime between n and 2n (for ), and hence certainly at least
one between n and 10n, from which it follows that  The formula for the
nth prime is

2m 1+
m 2n.=

22n 1+

f n( ) n2 n 41+ +=

f n–( ) n2 n– 41+ f n 1–( ),= =

f n–( ) f n( )

f n 40–( ) n 40–( )2 n 40–( ) 41+ + n2 79n– 1601+= =

n2 79n– 1601+
f n( )

f n( )

f n( ) P n 2n 3n … kn, , , ,( )=
f n( ) n , f n( )

n2 2n 2n3 2n 5+ + +

22n, nn, n!.

a 0.203005000700011000013….=

pn 10n.<
n 2

pn 10n.<
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,

where we have used the relation 1 + 2 + 3 + … + n = . For example,

This is a pretty cheap trick, as it requires knowledge of the result to define a.
The formula would be interesting if there were some way to define a independent
of the primes, but no one knows of such a definition. 

Obviously, this technique can be used to obtain a formula for many
sequences, but it begs the question.

18–2  Willans’s Formulas
C. P. Willans gives the following formula for the nth prime [Will]:

The derivation starts from Wilson’s theorem, which states that p is prime or 1 if
and only if . Thus,

is an integer for x prime or  and is fractional for all composite x. Hence,

(1)

Thus, if  denotes2 the number of primes m,

(2)

2. Our apologies for the two uses of  in close proximity, but it’s standard notation and
shouldn’t cause any difficulty.

pn 10
n2 n+

2
--------------

a 10n 10
n2 n–

2
--------------

a–=

n2 n+( ) 2⁄

p3 106a 103 103a–=

203,005= 203,000–
5.=

pn 1 nn x 1–( )! 1+
x

---------------------------
2

cos
x 1=

m
1– n⁄

.
m 1=

2n

+=

p 1–( )! 1 mod p( )–

x 1–( )! 1+
x

---------------------------

x 1=

F x( ) cos2 x 1–( )! 1+
x

--------------------------- 1,   x prime or 1,
0,   x composite.

= =

m( )

m( ) 1– F x( ).
x 1=

m
+=
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Observe that  and furthermore,

Therefore, the number of values of m from 1 to  for which  is 
That is,

(3)

where the summand is a “predicate expression” (0/1-valued).
Because we have a formula for  Equation (3) constitutes a formula for

the nth prime as a function of n. But it has two features that might be considered
unacceptable: an infinite summation and the use of a “predicate expression,”
which is not in standard mathematical usage. 

It has been proved that for  there is at least one prime between n and 2n.
Therefore, the number of primes  is at least n—that is,  Thus, the
predicate  is 0 for  so the upper limit of the summation above can
be replaced with 

Willans has a rather clever substitute for the predicate expression. Let

Then, if , , so  Furthermore, if
 then  so  Applying the floor func-

tion, we have

That is,  is the predicate  (for x and y in the given ranges). 
Substituting, Equation (3) can be written

Further substituting Equation (2) for  in terms of  and Equation (1) for
 gives the formula shown at the beginning of this section.

pn( ) n,=

m( ) n< ,  for m pn< , and

m( ) n,  for m pn.

m( ) n< pn 1.–

pn 1 m( ) n<( ),
m 1=

+=

m( ),

n 1
2n 2n( ) n.

m( ) n< m 2n,
2n.

LT x y,( ) y
1 x+
------------y ,  for x 0 1 2 …; y, , , 1 2 … ., ,= = =

x y< 1 y 1 x+( )⁄ y 1 y 1 x+( )⁄y yy 2.<
x y, 0 y 1 x+( )⁄ 1,< < 0 y 1 x+( )⁄y 1.<

LT x y,( ) 1,  for x y< ,
0,  for x y,

=

LT x y,( ) x y<

pn 1 LT m( ) n,( )
m 1=

2n

+=

1 n
1 m( )+
---------------------n .

m 1=

2n

+=

m( ) F x( ),
F x( ),
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Second Formula
Willans then gives another formula:

Here, F and  are the functions used in his first formula. Thus,  if m
is prime or 1, and 0 otherwise. The third factor in the summand is the predicate

 The summand is 0 except for one term, which is the nth prime. For
example,

Third Formula
Willans goes on to present another formula for the nth prime that does not use any
“nonanalytic”3 functions such as floor and absolute value. He starts by noting that
for  the function

The first part follows from

and x divides  by Wilson’s theorem. Thus, the predicate “x is prime,”
for  is given by

From this it follows that

3. This is my terminology, not Willans’s.

pn mF m( ) 2 m( ) n–– .
m 1=

2n

=

mF m( ) m=

m( ) n.=

p4 1·1·0 + 2·1·0 + 3·1·0 + 4·0·0 + 5·1·0 + 6·0·0 + 7·1·1=

 + 8·0·1 + 9·0·1 + 10·0·1 + 11·1·0 + … + 16·0·0
7.=

x 2 3 …,, ,=

x 1–( )!( )2

x
-------------------------

an integer 1
x
---  when x is prime,+

an integer, when x is composite or 1.
=

x 1–( )!( )2

x
------------------------- x 1–( )! 1+( ) x 1–( )! 1–( )

x
--------------------------------------------------------------------- 1

x
---+=

x 1–( )! 1,+
x 2,

H x( )
sin2 x 1–( )!( )2

x
-------------------------

sin2
x
---

---------------------------------------.=

m( ) H x( ),  for m
x 2=

m
2 3 … ., ,= =
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This cannot be converted to a formula for pn by the methods used in the first
two formulas, because they use the floor function. Instead, Willans suggests the
following formula4 for the predicate  for 

Thus, if   so that  =
 If  the product does not include 0, so  so that

Finally, as in the first of Willans’s formulas,

Written out in full, this is the rather formidable

Fourth Formula
Willans then gives a formula for pn+1 in terms of pn:

where  is the predicate “x is composite,” for  that is,

Alternatively, one could use  to keep the formula free of floor
functions.

4. We have slightly simplified his formula.

x y,< x y 1:,

LT x y,( )
2
--- 2e ,  wheresin=

e x i–( )
i 0=

y 1–
= .

x y,< e x x 1–( )… 0( ) 1–( )… x y 1–( )–( ) 0,= = LT x y,( )
2⁄( )sin 1.= x y, e 1,

LT x y,( ) 2⁄( ) (an even number)( )sin 0.= =

pn 2 LT m( ) n,( ).
m 2=

2n

+=

pn 2
2
--- 2

sin2 x 1–( )!( )2

x
-------------------------

sin2
x
---

---------------------------------------
x 2=

m
i–

i 0=

n 1–

.sin
m 2=

2n

+=

pn 1+ 1 pn f pn j+( ),
j 1=

i

i 1=

2pn
+ +=

f x( ) x 2;

f x( ) cos2 x 1–( )!( )2

x
------------------------- .=

f x( ) 1 H x( ),–=
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As an example of this formula, let  Then,

18–3  Wormell’s Formula
C. P. Wormell [Wor] improves on Willans’s formulas by avoiding both trigono-
metric functions and the floor function. Wormell’s formula can, in principle, be
evaluated by a simple computer program that uses only integer arithmetic. The
derivation does not use Wilson’s theorem. Wormell starts with, for 

Thus, the number of primes  is given by

because the summand is the predicate “x is prime.”
Observe that, for  

Repeating a trick above, the predicate  is

Because

we have, upon factoring constants out of summations,

pn 7.=

pn 1+ 1 7 f 8( ) f 8( )f 9( ) f 8( )f 9( )f 10( )+ + + +=

f 8( )f 9( )f 10( )f 11( ) … f 8( )f 9( )…f 14( )+ + +
1 + 7 + 1 + 1·1 + 1·1·1 + 1·1·1·0 + … + 1·1·1·0·1·0·1=
11.=

x 2,

B x( ) x ab–( )2

b 2=

x

a 2=

x a positive integer, if x is prime,
0, if x is composite.

= =

m

m( ) 1 1–( )2B x( )+
2

----------------------------
x 2=

m
=

n 1, a 0,

1 r– a+( )2

r 1=

n 0, when a n,<
a positive integer, when a n.

=

a n<

a n<( ) 1 1–( )2

1 r– a+( )2

r 1=

n

–
2

-------------------------------------------.=

pn 2 m( ) n<( ),
m 2=

2n

+=



ptg8736757

398 FORMULAS FOR PRIMES 18–4

As promised, Wormell’s formula does not use trigonometric functions. How-
ever, as he points out, if the powers of –1 were expanded using 
they would reappear.

18–4  Formulas for Other Difficult Functions
Let us have a closer look at what Willans and Wormell have done. We postulate
the rules below as defining what we mean by the class of functions that can be
represented by “formulas,” which we will call “formula functions.” Here,  is
shorthand for  for any  The domain of values is the integers
… –2, –1, 0, 1, 2, ….

1. The constants … –1, 0, 1, … are formula functions.

2. The projection functions  for  are formula functions.

3. The expressions   and xy are formula functions, if x and y are.

4. The class of formula functions is closed under composition (substitution).
That is,  is a formula function if f and  are, for

5. Bounded sums and products, written

are formula functions, if a, b, and f are, and 

 Sums and products are required to be bounded to preserve the computational
character of formulas; that is, formulas can be evaluated by plugging in values for
the arguments and carrying out a finite number of calculations. The reason for the
prime on the  and  is explained later in this chapter.

When forming new formula functions using composition, we supply paren-
theses when necessary according to well-established conventions.

Notice that division is not included in the list above; that’s too complicated to
be uncritically accepted as a “formula function.” Even so, the above list is not
minimal. It might be fun to find a minimal starting point, but we won’t dwell on
that here.

This definition of “formula function” is close to the definition of “elementary
function” given in [Cut]. However, the domain of values used in [Cut] is the

pn
3
2
--- 2n 1– 1

2
--- 1–( )2

1 r– m 1–( )
2

------------------ 1
2
--- 1–( )2

x ab–( )2

b 2=

x

a 2=

x

x 2=

m
+ +

2

r 1=

n

m 2=

2n

–+ .=

1–( )n n,cos=

x
x1 x2 … xn, , , n 1.

f x( ) xi,= 1 i n,

x y,+ x y,–

f g1 x( ) g2 x( ) … gm x( ), , ,( ) gi
i 1 … m., ,=

f i x,( )
i a x( )=

b x( )
f i x,( )

i a x( )=

b x( )
,

a x( ) b x( ).
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nonnegative integers (as is usual in recursive function theory). Also, [Cut]
requires the bounds on the iterated sum and product to be 0 and  (where x is
a variable), and allows the range to be vacuous (in which case the sum is defined
as 0 and the product is defined as 1).

In what follows, we show that the class of formula functions is quite extensive,
including most of the functions ordinarily encountered in mathematics. But it
doesn’t include every function that is easy to define and has an elementary character.

Our development is slightly encumbered, compared to similar developments
in recursive function theory, because here variables can take on negative values.
The possibility of a value’s being negative can often be accommodated by simply
squaring some expression that would otherwise appear in the first power. Our
insistence that iterated sums and products not be vacuous is another slight encum-
brance.

Here, a “predicate” is simply a 0/1-valued function, whereas in recursive
function theory a predicate is a true/false-valued function, and every predicate has
an associated “characteristic function” that is 0/1-valued. We associate 1 with true
and 0 with false, as is universally done in programming languages and in comput-
ers (in what their and and or instructions do); in logic and recursive function the-
ory, the association is often the opposite.

The following are formula functions:

1.   and so on.

2. The predicate 

3.

4. The predicate 

We can now explain why we do not use the convention that a vacuous
iterated sum/product has the value 0/1. If we did, we would have such
shams as

x 1–

a2 aa,= a3 aaa,=

a b:=

a b=( ) 1 j–( ).
j 0=

a b–( )2

=

a b( ) 1 a b=( ).–=

a b:

a b( ) a b–( ) i=( )
i 0=

a b–( )2

=

1 j–( ).
j 0=

a b–( ) i–( )2

i 0=

a b–( )2

=

a b=( ) 1
i 0=

a b–( )2–
= and a b( ) 0.

i a=

b 1–
=
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The comparison predicates are key to everything that follows, and we
don’t wish to have them based on anything quite that artificial.

5.

6.

7.

8.

9.

10.

Now we can fix the iterated sums and products so that they give the con-
ventional and useful result when the range is vacuous.

11.

12.

From now on we will use  and  without the prime. All functions thus
defined are total (defined for all values of the arguments).

13.

This gives  for 
In what follows, P and Q denote predicates.

14.

15.

16.

17.

18.

19.

This gives, arbitrarily and perhaps incorrectly for a few cases, the result 0
for   and the result 1 for 

20.

21.

a b>( ) a b 1+( ).=

a b( ) b a( ).=

a b<( ) b a>( ).=

a 2 a 0( ) 1–( )a.=

max a b,( ) a b( ) a b–( ) b.+=

min a b,( ) a b( ) b a–( ) a.+=

f i x,( )
i a x( )=

b x( )
b x( ) a x( )( ) f i x,( ).

i a x( )=

max a x( ) b x( ),( )
=

f i x,( )
i a x( )=

b x( )
1 b x( ) a x( )( ) 1– f i x,( )

i a x( )=

max a x( ) b x( ),( )
+( ).+=

n! i.
i 1=

n
=

n! 1= n 0.

P x( )¬ 1 P x( ).–=

P x( ) Q x( )& P x( )Q x( ).=

P x( ) Q x( ) | 1 1 P x( )–( ) 1 Q x( )–( ).–=

P x( ) Q x( ) P x( ) Q x( )–( )2.=

if P x( ) then f y( ) else g z( ) P x( )f y( ) 1 P x( )–( )g z( ).+=

an if n 0 then a  else 0.
i 1=

n
=

n 0,< 00.

m x n( )P x y,( ) P x y,( ).
x m=

n
=

m x n( )P x y,( ) 1 1 P x y,( )–( ).
x m=

n
–=



ptg8736757

18–4 FORMULAS FOR OTHER DIFFICULT FUNCTIONS 401

 is vacuously true;  is vacuously false.

22.

The value of this expression is the least x in the range m to n such that the
predicate is true, or m if the range is vacuous, or  if the predicate is
false throughout the (nonvacuous) range. The operation is called “bounded
minimalization” and it is a very powerful tool for developing new formula
functions. It is a sort of functional inverse, as illustrated by the next for-
mula. That minimalization can be done by a sum of products is due to
Goodstein [Good]. 

23.

This is the “integer square root” function, which we define to be 0 for
 just to make it a total function. 

24.

This is the “d divides n” predicate, according to which  but 
for

25.

This is the conventional truncating form of integer division. For  it
gives a result of  arbitrarily.

26.

This is the conventional remainder function. If  is nonzero, it
has the sign of the numerator n. If  the remainder is n.

27.

28.

(Number of primes )
29.

30.

This is the exponent of a given prime factor p of n, for 
31. For 

32. The nth digit after the decimal point in the decimal expansion of 

m min x n( )P x y,( ) m 1 P j y,( )–( ).
j m=

i

i m=

n
+=

n 1+

n 0 min k n( ) k 1+( )2 n>( ).=

n 0,<
d|n n– q n( ) n qd=( ).=

0|0 0|n( )¬
n 0.

n d÷ if n 0 then n– min q n( ) 0 r d 1–( ) n qd r+=( )=

else n min q n–( ) d– 1+ r 0( ) n qd r+=( ).
d 0,=

n 1,+
rem n d,( ) n n d÷( )d.–=

rem n d,( )
d 0,=

isprime n( ) n 2 2 d n 1–( )¬ d |n( ).&=

n( ) isprime i( ).
i 1=

n
=

n.
pn 1 min k 2n( ) k( ) n=( ).=

exponent p n,( ) 0 min x n( ) px 1+ |n( ).¬=

n 1.
n 0:

2n 2,
i 1=

n
= 22n 2,

i 1=

2n

= 222n
2, etc.

i 1=

22n

=

2:
rem 2 102n 10,( ).
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Thus, the class of formula functions is quite large. It is limited, though, by the
following theorem (at least):

THEOREM. If f is a formula function, then there is a constant k such that

where there are k 2’s.

This can be proved by showing that each application of one of the rules 1–5
(on page 398) preserves the theorem. For example, if  (rule 1), then for
some h,

where there are h 2’s. Therefore,

because
For  (rule 2),  so the theorem holds with

For rule 3, let

Then, clearly

Similarly, it can be shown that the theorem holds for 
The proofs that rules 4 and 5 preserve the theorem are a bit tedious, but not

difficult, and are omitted.
From the theorem, it follows that the function 

(4)

is not a formula function, because for sufficiently large x, Equation (4) exceeds the
value of the same expression with any fixed number k of 2’s.

f x( ) 22…2
max x1 … xn, ,( )

f x( ) c=

f x( ) 22…2 }h,

f x( ) 22…2
max x1 … xn, ,( )

}h 2,+

max x1 … xn, ,( ) 0.
f x( ) xi= f x( ) max x1 … xn, ,( ),

k 0.=

f x( ) 22…2
max x1 … xn, ,( )

}k1 and g x( ) 22…2
max x1 … xn, ,( )

}k2.

f x( ) g x( )± 2 22…2
max x1 … xn, ,( )

}max k1 k2,( )

22…2
max x1 … xn, ,( )

}max k1 k2,( ) 1.+

f x y,( ) xy.=

f x( ) 22…2x
}x=



ptg8736757

EXERCISES 403

For those interested in recursive function theory, we point out that Equation
(4) is primitive recursive. Furthermore, it is easy to show directly from the defini-
tion of primitive recursion that formula functions are primitive recursive. There-
fore, the class of formula functions is a proper subset of the primitive recursive
functions. The interested reader is referred to [Cut].

In summary, this section shows that not only is there a formula in elementary
functions for the nth prime but also for a good many other functions encountered
in mathematics. Furthermore, our “formula functions” are not based on trigono-
metric functions, the floor function, absolute value, powers of –1, or even divi-
sion. The only sneaky maneuver is to use the fact that the product of a lot of
numbers is 0 if any one of them is 0, which is used in the formula for the predicate

It is true, however, that once you see them, they are not interesting. The quest
for “interesting” formulas for primes should go on. For example, [Rib] cites the
amazing theorem of W. H. Mills (1947) that there exists a  such that the expression

is prime-valued for all  Actually, there are an infinite number of such values
(e.g., 1.3063778838+ and 1.4537508625483+). Furthermore, there is nothing spe-
cial about the “3”; the theorem is true if the 3 is replaced with any real num-
ber  (for different values of ). Better yet, the 3 can be replaced with 2 if
it is true that there is always a prime between  and  which is almost
certainly true, but has never been proved. And furthermore, … well, the interested
reader is referred to [Rib] and to [Dud] for more fascinating formulas of this type.

Exercises

1. Prove that for any non-constant polynomial f(x) with integral coefficients,
 is composite for an infinite number of values of x.

Hint: If  consider  where r is an integer greater than 1.

2. Prove Wilson's theorem: An integer p > 1 is prime if and only if

Hint: To show that if p is prime, then  group the terms
of the factorial in pairs  such that  Use Theorem MI of
Section 10–16 on page 240.

3. Show that if n is a composite integer greater than 4, then

a b.=

3n

n 1.

 2.106
n2 n 1+( )2,

f x( )
f x0( ) k,= f x0 rk+( ),

p 1–( )! 1  (mod p).–

p 1–( )! 1  (mod p),–
a b,( ) ab 1  (mod p).

n 1–( )! 0  (mod n).
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4. Calculate an estimate of the value of  that satisfies Mills’s theorem, and in the
process give an informal proof of the theorem. Assume that for  there
exists a prime between  and  (This depends upon the Riemann
Hypothesis, although it has been proved independent of RH for sufficiently
large n.)

5. Consider the set of numbers of the form  where a and b are inte-
gers. Show that 2 and 3 are primes in this set; that is, they cannot be decom-
posed into factors in the set unless one of the factors is ±1 (a “unit”). Find a
number in the set that has two distinct decompositions into products of primes.
(The “fundamental theorem of arithmetic” states that prime decomposition is
unique except for units and the order of the factors. Uniqueness does not hold
for this set of numbers with multiplication and addition being that of complex
numbers. It is an example of a “ring.”).

n 1>
n3 n 1+( )3.

a b 5– ,+
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ANSWERS TO EXERCISES

Chapter 1: Introduction

1. The following is pretty accurate:
e1;
while (e2) {

statement
e3;}

If e2 is not present in the for loop, the constant 1 is used for it in the above
expansion (which would then be a nonterminating loop, unless something in
statement terminates it).

Expressing a for loop in terms of a do loop is somewhat awkward,
because the body of a do loop is always executed at least once, whereas the
body of a for loop may not be executed at all, depending on e1 and e2. Never-
theless, the for loop can be expressed as follows.

e1;
if (e2) {
do {statement; e3;} while (e2);

}
Again, if e2 is not present in the for loop, then use 1 for it above.

2. If your code is

   for (i = 0; i <= 0xFFFFFFFF; i++) {...}

then you have an infinite loop. A loop that works is

      i = 0xFFFFFFFF;
      do {i = i + 1; ...} while (i < 0xFFFFFFFF);

3. The text mentions multiply, which for 32 × 32 ==> 64-bit multiplication needs
two output registers.

 It also mentions divide. The usual implementation of this instruction pro-
duces a remainder as well as the quotient, and execution time would be saved
in many programs if both results were available.

Actually, the most natural machine division operation takes a doubleword
dividend, a single word divisor, and produces a quotient and remainder. This
uses three source registers and two targets.

Indexed store instructions use three source registers: the register being
stored, the base register, and the index register.

To efficiently deal with bit fields in a register, many machines provide
extract and insert instructions. The general form of extract needs three sources
and one target. The source registers are the register that contains the field
being extracted, a starting bit number, and an ending bit number or length. The
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result is right justified and either zero- or sign-extended and placed in the tar-
get register. Some machines provide this instruction only in the form in which
the field length is an immediate quantity, which is a reasonable compromise
because that is the common case.

The general insert instruction reads four source registers and writes one
target register. As commonly implemented, the sources are a register that con-
tains the source bits to be inserted in the target (these come from the low-order
end of the source register), the starting bit position in the target, and the length.
In addition to reading these three registers, the instruction must read the target
register, combine it with the bits to be inserted, and write the result to the tar-
get register. As in the case of extract, the field length may be an immediate
quantity, in which case the instruction does three register reads and one write.

Some machines provide a family of select instructions:

     SELcc  RT,RA,RB,RC

Register RC is tested, and if it satisfies the condition specified in the opcode
(shown as cc, which may be EQ, GT, GE, etc.), then RA is selected; otherwise,
RB is selected. The selected register is copied to the target.

Although not common, a plausible instruction is bit select, or multiplex:

                  MUX  RT,RA,RB,RC

Here RC contains a mask. Wherever the mask is 1, the corresponding bit of
RA is selected, and wherever it is 0, the corresponding bit of RB is selected.
That is, it performs the operation

 RT <-- RA & RC | RB & ~RC

Shift right/left double: A sometimes useful instruction is

                  SHLD  RT,RA,RB,RC

This concatenates RA and RB, treating them as a double-length register, and
shifts them left (or right) by an amount given by RC. RT gets the part of the
result that has bits from RA and RB. These instructions are useful in “bignum”
arithmetic and in more mundane situations.

In signal processing and other applications, it is helpful to have an
instruction that computes A*B + C. This applies to both integer and floating-
point data.

Of course, there are load multiple and store multiple, which require many
register reads or writes. Although many RISCs have them, they are not usually
considered to be RISC instructions.
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Chapter 2: Basics

1. (Derivation by David de Kloet) Clearly the body of the while-loop is executed
a number of times equal to the number of trailing 0’s in x. The k 1-bits parti-
tion the n-bit word into  segments, each containing 0 or more 0-bits. The
number of 0’s in each word is  If N is the number of words (
but that need not concern us here), then the total number of 0’s in all the words
is  By symmetry, the number of 0’s in any segment, summed over all
N words, is the same, and is therefore equal to  Thus, the
average number of 0’s in any segment is  and this applies to
the last segment, which is the number of trailing 0’s.

As an example, if n = 32 and k = 3, then the while-loop is executed 7.25
times, on average. On many machines the while-loop can be implemented in
as few as three instructions (and, shift right, and conditional branch), which
might take as few as four cycles. With these parameters, the while-loop takes
4·7.25 = 29 cycles on average. This is less than the divide time on most 32-bit
machines, resulting in de Kloet’s algorithm being faster than Gosper’s. For
larger values of k, de Kloet’s is still more favorable.

2. The and with 1 makes the shift amount independent of all bits of x except for
its rightmost bit. Therefore, by looking at only the rightmost bit of the shift
amount, one can ascertain whether the result is x or  Since both x and

 are right-to-left computable, choosing one of these based on a right-
most bit is also. The function  incidentally, is not right-to-left
computable. But  is.

Another example is the function  where we take  to be 1. This is not
right-to-left computable because if x is even, then the rightmost bit of the
result depends upon whether or not  and thus is a function of bits to the
left of the rightmost position. But if it were known a priori that the variable n
is either 0 or 1, then  is right-to-left computable. Similarly,  is right-
to-left computable, for example, by

Notice that  is like the left shift function in that  is right-to-left com-
putable for any particular value of n, or if n is a variable restricted to the val-
ues 0 and 1, but not if n is an unrestricted variable.

3. A somewhat obvious formula for addition is given on page 16, item (g):

Dividing each side by 2 gives Dietz’s formula. The addition in Dietz’s formula
cannot overflow because the average of two representable integers is
representable.

k 1+
n k.– N n

k⎝ ⎠
⎛ ⎞ ,=

N n k–( ).
N n k–( ) k 1+( )⁄ .

n k–( ) k 1+( )⁄ ,

x 1.<<
x 1<<

x x 2&( ),<<
x 2–&( ) x 2&( )<<

xn, x0

n 0,=

xn xn 1&

xn 1& x n 1&( )–&( ) 1 n 1&( )–+
1,    n even,
x,    n odd.⎩

⎨
⎧

= =

xn xn

x y+ x y⊕( ) 2 x y&( ).+=



ptg8736757

408 ANSWERS TO EXERCISES

Notice that if we start with item (i) on page 16, we obtain the formula
given in the text for the ceiling average of two unsigned integers.

4. Compute the floor average of a and b, and also of c and d, using Dietz’s for-
mula. Then compute the floor average of x and y, and apply a correction:

The correction step is really four operations, not the seven that it appears
to be, because the exclusive or terms were calculated earlier. It was arrived at
by the following reasoning: The computed value of x can be lower than the
true (real number) average by 1/2, and this error occurs if a is odd and b is
even, or vice versa. This error amounts to 1/4 after x and y are averaged. If this
were the only truncation error, the first value computed for r would be correct,
because in this case the true average is an integer plus 1/4, and we want the
floor average, so we want to discard the 1/4 anyway. Similarly, the truncation
in computing y can make the computed average lower than the true average by
1/4. The first computed value of r can be lower than the true average of x and
y by 1/2. These errors accumulate. If they sum to an error less than 1, they can
be ignored, because we want to discard the fractional part of the true average
anyway. But if all three errors occur, they sum to  = 1,
which must be corrected by adding 1 to r. The last line does this: if one of a
and b is odd, and one of c and d is odd, and one of x and y is odd, then we want
to add 1, which the last line does.

5. The expression for  to be simplified is

Only bit 31 of x and y is relevant in the logical operations of this expres-
sion. Because  the expression immediately simplifies to

“Multiplying in” the  (distributive law) gives

x y+
2

------------ x y | ( ) x y( ) 1>>u( ).–=

x a b&( ) a b( ) 1>>
u( ),+=

y c d&( ) c d( ) 1>>
u( ),+=

r x y&( ) x y( ) 1>>
u( ),+=

r r a b( ) c d( ) x y( ) 1& & &( ).+=

1 4⁄ 1 4⁄ 1 2⁄+ +

x yu

x¬ y | ( ) x y( ) y x–( )¬ | ( ).&

y31 0,=

x¬ x y x–( )¬ | ( ).&

x¬

x¬ y x–( )¬ ,&
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and applying De Morgan’s law further simplifies it to three elementary
instructions:

(Removing the complementation operator gives a two-instruction solution for
the predicate 

If y is a constant, we can use the identity  to rewrite the
expression obtained from the distributive law as

which is three instructions because the addition of 1 to y can be done before
evaluating the expression. This form is preferable when y is a small constant,
because the add immediate instruction can be used. (Problem suggested by
George Timms.)

6. To get a carry from the second addition, the carry from the first addition must
be 1, and the low-order 32 bits of the first sum must be all 1’s. That is, the first
sum must be at least  But the operands are each at most  so
their sum is at most 

7. For notational simplicity, let us consider a 4-bit machine. Let x and y denote
the integer values of 4-bit quantities under unsigned binary interpretation. Let
f(x, y) denote the integer result of applying ordinary binary addition with end-
around carry, to x and y, with a 4-bit adder and a 4-bit result. Then,

The table at the right shows the one’s-complement
interpretation of 4-bit binary words. Observe that the
one’s-complement interpretation of a word whose straight
binary interpretation is x is given by

We must show that f(x, y), when interpreted as a one’s-
complement integer, is the sum of x and y when they are
interpreted as one’s-complement integers. That is, we must
show that

We are interested only in the non-overflow cases (that is, when the sum can be
expressed as a one’s-complement integer).

x y x–( ) | ( ).¬

x y.)>u

u¬ 1– u–=

x¬ x y 1+( )–( ),&

233 1.– 232 1,–
233 2.–

x ones(x)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 –7
1001 –6
1010 –5
1011 –4
1100 –3
1101 –2
1110 –1
1111 –0

f x y,( ) mod x y x y+
16

-----------+ + 16,( ).=

ones x( )
x,           0 x 7,≤ ≤
x 15,   8 x 15.≤ ≤–⎩

⎨
⎧

=

ones x( ) ones y( )+ ones f x y,( )( ).=
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Case 0,  Then,  and

For no overflow, the one’s-complement result must be in the range 0 to 7, and
from the table it is apparent that we must have  Therefore,
ones(x + y) = x + y.

Case 1,   Overflow cannot occur because
 and  In this case,  If

In this case  must be at least 8, so  On the
other hand, if 

Because  is at most 22 and is at least 16,  so that

Case 2,   This is similar to case 1 above.
Case 3,   Then,  =  

=   and

Because of the limits on x and y,  To avoid overflow, the table
reveals that we must have  For, in terms of one’s-complement
interpretation, we can add –6 and –1, or –6 and –0, but not –6 and –2, without
getting overflow. Therefore,  Hence  so
that

For the carry propagation question, for one’s-complement addition, the
worst case occurs for something like

               111...1111
             + 000...0100
               ----------
               000...0011
             +         1 (end-around carry)
               ----------
               000...0100

for which the carry is propagated n places, where n is the word size. In two’s-
complement addition, the worst case is  places, assuming the carry out of
the high-order position is discarded.

The following comparisons are interesting, using 4-bit quantities for illus-
tration: In straight binary (unsigned) or two’s-complement arithmetic, the sum

0 x y, 7. ones x( ) ones y( )+ x y,+=

f x y,( ) mod x y 0 16,+ +( ) x y.+= =

x y+ 7.

0 x 7, 8 y 15.
ones x( ) 0 ones y( ) 0. ones x( ) ones y( )+ x y 15.–+=
x y+ 16,<

f x y,( ) mod x y 0 16,+ +( ) x y.+= =

x y+ ones x y+( ) x y 15.–+=
x y+ 16,

f x y,( ) mod x y 1 16,+ +( ) x y 1 16–+ + x y 15.–+= = =

x y+ 1 x y 15–+ 7,
ones x y 15–+( ) x y 15.–+=

8 x 15, 0 y 7.
8 x 15, 8 y 15. ones x( ) ones y( )+ x 15– y 15–+

x y 30,–+

f x y,( ) mod x y 1 16,+ +( ) x y 1 16–+ + x y 15.–+= = =

16 x y+ 30.
x y+ 23.

23 x y+ 30. 8 x y 15–+ 15,
ones x y 15–+( ) x y 30.–+=

n 1–
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of two numbers is always (even if overflow occurs) correct modulo 16. In
one’s-complement, the sum is always correct modulo 15. If  denotes bit n of
x, then in two’s-complement notation,  In one’s-
complement notation, 

8.

9.

10. [Arndt] Variable t is 1 if the bits differ (six instructions).

Adding the line  makes it swap bits i and j.

11. As described in the text, any Boolean function  can be decom-
posed into the form  Let cn be the
number of instructions required for the decomposition of an n-variable Bool-
ean function into binary Boolean instructions, for  Then

with  This has the solution

(The least upper bound is much smaller.)

12. (a)

 

which is in the required form.
(b) From part (a),

which is in the required form.

xn
x 8x– 3 4x2 2x1 x0.+ + +=

x 7x– 3 4x2 2x1 x0.+ + +=

x y⊕( ) m&( ) y.⊕

x y⊕ x y | ( ) x y&( ).¬&=

t x i>> u( ) x j>> u( )⊕( ) 1&←

x x t j<<( )⊕←

x x t i<<( )⊕←

f x1 x2 … xn, , ,( )
g x1 x2 … xn 1–, , ,( ) xnh x1 x2 … xn 1–, , ,( ).⊕

n 2.≥

cn 1+ 2cn 2,+=

c2 1.=

cn 3 2n 2– 2.–⋅=

f x y z, ,( ) zf0 x y,( ) zf1 x y,( )+=

zf0 x y,( ) zf1 x y,( )⊕=

zf0 x y,( ) 1 z⊕( )f1 x y,( )⊕=

zf0 x y,( ) f1 x y,( ) zf1 x y,( )⊕ ⊕=

f1 x y,( ) z f0 x y,( ) f1 x y,( )⊕( ),⊕=

f x y z, ,( ) f1 x y,( ) z f0 x y,( ) f1 x y,( )⊕( )⊕=

f1 x y,( ) z f0 x y,( ) f1 x y,( )⊕( )⊕=

f1 x y,( ) z f0 x y,( ) f1 x y,( )⊕( )+( ),⊕=
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13. Using the notation of Table 2–3 on page 54, the missing functions can be
obtained from 0000 =  0011 =  0100 = 
0101 =  1010 =  1011 =  1100 = 
and 1111 = 

14. No. The ten truly binary functions are, in numeric form,

0001   0010   0100   0110   0111
1000   1001   1011   1101   1110

By implementing function 0010 you get 0100 by interchanging the operands,
and, similarly, 1011 yields 1101. That’s all you can accomplish by interchang-
ing the operands, because the other functions are commutative. Equating the
operands, of course, reduces a function to a constant or unary function. There-
fore, you need eight instruction types.

15. The table below shows one set of six instruction types that accomplish the
task. Here, x denotes the contents of the register operand, and k denotes the
contents of the immediate field.

The missing functions can be obtained from 0000 =  0010 =
 0011 =  0100 =  1001 = 1010 =

 1011 =  1100 =  1101 =  and 1111
=

16. This writer does not know of an “analytic” way to do this. But it is not difficult
to write a program that generates all Boolean functions of three variables that
can be implemented with three binary instructions. Such a program is given in C
below. It is written in as simple a way as possible to give a convincing answer to
the question. Some optimizations are possible, which are mentioned below.

The program represents a function by an 8-bit string that is the truth table
of the function, with the values for x, y, and z written in the usual way for a
truth table. Each time a function is generated, it is checked off by setting a byte
in vector found to 1. This vector is 256 bytes long and is initially all zero.

SIX SUFFICIENT R-I BOOLEAN INSTRUCTIONS

Function
Values Formula

Instruction
Mnemonic

0001 and

0111 or

0110 xor

1110 nand

1000 nor

0101 k const

andc x x,( ), and x x,( ), andc y x,( ),
and y y,( ), nand y y,( ), cor y x,( ), nand x x,( ),

cor x x,( ).

xk

x k+

x k

xk

x k+

and x 0,( ),
and x k,( ), or x 0,( ), nor x k,( ), xor x k,( ),
const x k,( ), or x k,( ), nor x 0,( ), nand x k,( ),

nand x 0,( ).
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The truth table that the program works with is shown in the table below.

The six columns of the truth table are stored in a vector fun. The first
three positions of fun contain the truth table columns for x, y, and z. These
columns have the values hexadecimal 0F, 33, and 55, which represent the triv-
ial functions   and  The next three
positions will contain the truth table columns for the functions generated by
one, two, and three binary instructions, respectively, for the current trial.

The program conceptually consists of three nested loops, one for each
instruction currently being tried. The outermost loop iterates over all 16 binary
Boolean operations, operating on all pairs of x, y, and z (16*3*3 = 144 itera-
tions). For each iteration, the result of operating on all eight bits of x, y, and/or
z in parallel is put in fun[3].

The next level of looping similarly iterates over all 16 binary Boolean
operations, operating on all pairs of x, y, z, and the result of the outermost loop
(16*4*4 = 256 iterations). For each iteration, the result is put in fun[4].

The innermost level of looping similarly iterates over all 16 binary Bool-
ean operations, operating on all pairs of x, y, z, and the results of the outer two
loops (16*5*5 = 400 iterations). For each of these calculated functions, the
corresponding byte of found is set to 1.

At the end, the program writes out vector found in 16 rows of 16 vector
elements each. Several positions of vector found are 0, showing that three
binary Boolean instructions do not suffice to implement all 256 Boolean func-
tions of three variables. The first function that was not calculated is number
0x16, or binary 00010110, which represents the function 

There are many symmetries that could be used to reduce the number of
iterations. For example, for a given operation op and operands x and y, it is not
necessary to evaluate both op(x, y) and op(y, x), because if op(x, y) is evalu-
ated, then op(y, x) will result from op'(x, y) where op' is another of the 16
binary operations. Similarly, it is not necessary to evaluate op(x, x), because
that will be equal to op'(x, y) for some other function op'. Thus, the outermost
loops that select combinations of operands to try could be written

TRUTH TABLE FOR THREE VARIABLES

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

f0 x= f1 y= f2 z= f3 f4 f5

f x y z, ,( ) x,= f x y z, ,( ) y,= f x y z, ,( ) z.=

xyz xyz xyz.+ +
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      for (i1 = 0; i1 < 3; i1++) {
      for (i2 = i1 + 1; i2 < 3; i2++) {

and similarly for the other loops.
Another improvement results from observing that it is not necessary to

include all 16 binary Boolean operations in the table. The operations num-
bered 0, 3, 5, 10, 12, and 15 can be omitted, reducing the loops that iterate over
the operations from 16 to ten iterations. The argument in support of this is a lit-
tle lengthy and is not given here.

The program can be easily changed to experiment with smaller instruc-
tion sets, or allow more instructions, or handle more variables. But be fore-
warned: The execution time increases dramatically with the number of
instructions being allowed, because that determines the level of nesting in the
main program. As a practical matter, you can’t go beyond five instructions.

/* Determines which of the 256 Boolean functions of
three variables can be implemented with three binary
Boolean instructions if the instruction set includes
all 16 binary Boolean operations. */

#include <stdio.h>

char found[256];

unsigned char boole(int op, unsigned char x,
          unsigned char y) {

   switch (op) {
      case  0: return 0;
      case  1: return x & y;
      case  2: return x & ~y;
      case  3: return x;
      case  4: return ~x & y;
      case  5: return y;
      case  6: return x ^ y;
      case  7: return x | y;
      case  8: return ~(x | y);
      case  9: return ~(x ^ y);
      case 10: return ~y;
      case 11: return x | ~y;
      case 12: return ~x;
      case 13: return ~x | y;
      case 14: return ~(x & y);
      case 15: return 0xFF;
   }
}

All ternary Boolean functions computable with three instructions, continues.
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Chapter 3: Power-of-2 Boundaries

1. (a)
(b)
(c)

Part (c) can be done in four instructions if the extract instruction is avail-
able; it can do  in one instruction.

Note: Unbiased rounding preserves the average value of a large set of ran-
dom integers.

#define NB 16   // Number of Boolean operations.
int main() {

   int i, j, o1, i1, i2, o2, j1, j2, o3, k1, k2;
   unsigned char fun[6];// Truth table, 3 columns for

     // x, y, and z, and 3 columns
        // for computed functions.

   fun[0] = 0x0F;   // Truth table column for x,
   fun[1] = 0x33;       // y,
   fun[2] = 0x55;       // and z.

   for (o1 = 0; o1 < NB; o1++) {
   for (i1 = 0; i1 < 3; i1++) {
   for (i2 = 0; i2 < 3; i2++) {
      fun[3] = boole(o1, fun[i1], fun[i2]);
      for (o2 = 0; o2 < NB; o2++) {
      for (j1 = 0; j1 < 4; j1++) {
      for (j2 = 0; j2 < 4; j2++) {
         fun[4] = boole(o2, fun[j1], fun[j2]);
         for (o3 = 0; o3 < NB; o3++) {
         for (k1 = 0; k1 < 5; k1++) {
         for (k2 = 0; k2 < 5; k2++) {
            fun[5] = boole(o3, fun[k1], fun[k2]);
            found[fun[5]] = 1;
         }}}
      }}}
   }}}
   printf("  0 1 2 3 4 5 6 7 8 9 A B C D E F\n");
   for (i = 0; i < 16; i++) {
      printf("%X", i);
      for (j = 0; j < 16; j++)
         printf("%2d", found[16*i + j]);
      printf("\n");
   }
   return 0;
}

All ternary Boolean functions computable with three instructions, continued.

x 4+( ) 8.–&
x 3+( ) 8.–&
x 3 x 3>>

u( ) 1&( )+ +( ) 8.–&

x 3>>
u( ) 1&
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2. The standard way to do part (a) is  If the remainder func-
tion is readily available, it can also be done with 
which saves a multiplication at the expense of an addition.

Part (b) is similar, but replace the 5 with 4 in the answer for part (a).
Part (c): Use the fact that an integer is an odd multiple of 10 if and only if

it is a multiple of 10 and an odd multiple of 2.

      r = x % 10;
      y = x - r;
      if (r > 5 || (r == 5 && (y & 2) != 0)
         y = y + 10;

An alternative (must have 

      r = (x + 5)%10;
      y = x + 5 - r;
      if (r == 0 && (y & 2) != 0)
         y = y - 10;

3. A possible implementation in C is shown below.

   int loadUnaligned(int *a) {
      int *alo, *ahi;
      int xlo, xhi, shift;

      alo = (int *)((int)a & -4);
      ahi = (int *)(((int)a + 3) & -4);
      xlo = *alo;
      xhi = *ahi;
      shift = ((int)a & 3) << 3;
      return ((unsigned)xlo >> shift) | (xhi << (32-shift));
   }

Chapter 4: Arithmetic Bounds

1. For  inequalities (5) become

Because the quantities are unsigned,  is equivalent to  and
 is true. Therefore, the inequalities simplify to

x 5+( ) 10÷u( ) 10.*
x 5 remu x 5 10,+( ),–+

x 232 6):–≤

a c 0,= =

0 x y 232 1–≤
u –≤

u    if  d 0<–   and  b 0,≥

d– x y b≤
u –≤

u    otherwise.

d 0<– d 0,≠
b 0≥

0 x y 232 1–≤
u –≤

u    if  d 0,≠

0 x y b≤
u –≤

u    if  d 0.=
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This is simply the observation that if  then  and so, trivi-
ally,  On the other hand, if  then the difference can attain
the value 0 by choosing  and it can attain the maximum unsigned
number by choosing  and 

2. If a = 0, the test if (temp >= a) is always true. Therefore, when the first
position (from the left) is found in which the bits of b and d are 1, the program
sets that bit of b equal to 0 and the following bits equal to 1, and returns that
value or’ed with d. This can be accomplished more simply with the following
replacement for the body of the procedure. The if statement is required only
on machines that have mod 32 shifts, such as the Intel x86 family.

      temp = nlz(b & d);
      if (temp == 0) return 0xFFFFFFFF;
      m = 1 << (32 - temp);
      return b | d | (m - 1);

For example, suppose

Then to find the maximum value of  the procedure is to scan from the left
for the first position in which b and d are both 1. The maximum value is b | d for
bits to the left of that position, and 1’s for bits at and to the right of that posi-
tion. For the example, this is 0b01001000 | 0b00101010 | 0b00001111 =
0b01101111.

Chapter 5: Counting Bits

1. A version from Norbert Juffa:

int ntz (unsigned int n) {
    static unsigned char tab[32] =
    {   0,  1,  2, 24,  3, 19,  6, 25,
       22,  4, 20, 10, 16,  7, 12, 26,
       31, 23, 18,  5, 21,  9, 15, 11,
       30, 17,  8, 14, 29, 13, 28, 27
    };
    unsigned int k;
    n = n & (-n);        /* isolate lsb */
#if defined(SLOW_MUL)
    k = (n << 11) - n;
    k = (k <<  2) + k;
    k = (k <<  8) + n;
    k = (k <<  5) - k;

d 0,= y 0=
0 x y– b.≤ ≤ d 0,≠

x y 0,= =
x 0= y 1.=

0 x 0b01001000,   and≤ ≤
0b00000011 y 0b00101010.≤ ≤

x y, | 

continues
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2.  This is used in the snoob function (page 15).

3. Denote the parallel prefix operation applied to x by PP-XOR(x). Then, if
  To see this, let x be the 4-bit quantity

abcd (where each letter denotes a single bit). Then

For the parallel suffix operation, if  then, as you might
guess,

Chapter 6: Searching Words

1. Length and position of the longest string of 1’s (c.f. Norbert Juffa):

2. As said in the text, this can be done by first left-propagating the 0’s in x by
 positions, and then finding the shortest string of 1’s in the revised x. A

good way to do the left-propagation is to use the code of Figure 6–5 on
page 125, which is logarithmic in its execution time. (But the second part of
the algorithm is linear in the length of the shortest string of 1’s in the revised
x.) The code is shown below. It assumes that  In the “not found”
case, the function returns with apos = 32. In this case, the length should be
regarded as undefined, but it happens to return a length of 

#else
    k = n * 0x4d7651f;
#endif
    return n ? tab[k>>27] : 32;
}

int fmaxstr1(unsigned x, int *apos) {
   int k;
   unsigned oldx;

   oldx = 0;
   for (k = 0; x != 0; k++) {
      oldx = x;
      x &= 2*x;
   }
   *apos = nlz(oldx);
   return k;
}

x x x–&( ).÷u

y PP-XOR x( ),= x y y 1>>
u( ).=

y PP-XOR x( ) a( ) a b( ) a b c( ) a b c d( ),= =

y 1>>
u 0( ) a( ) a b( ) a b c( ),   so that=

y y 1>>
u( ) a( ) b( ) c( ) d( ).=

y PS-XOR x( )=
x y y 1<<( ).=

n 1–

1 n 32.

n 1.–
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3. The code below uses an expression from page 12 for turning off the rightmost
contiguous string of 1’s.

The function executes in  instructions, where n is the number of
strings of 1’s in x, for  (that is, for ) This assumes the if-test goes
either way half the time, and that pop(x) and nlz(x) count as one instruction
each. By making changes to the sense of the “if (k <= kmin)” test, and to
the initialization of kmin, it can be made to find the longest string of 1’s, and
either the leftmost or the rightmost in the case of equally long strings. It is also
easily modified to perform the “best fit” function.

4. The first bit of x will be 1, and hence mark the beginning of a string of 1’s,
with probability 0.5. Any other bit marks the beginning of a string of 1’s with

int bestfit(unsigned x, int n, int *apos) {
   int m, s;

   m = n;
   while (m > 1) {
      s = m >> 1;
      x = x & (x << s);
      m = m - s;
   }
   return fminstr1(x, apos) + n - 1;
}

int fminstr1(unsigned x, int *apos) {
   int k, kmin, y0, y;
   unsigned int x0, xmin;

   kmin = 32;
   y0 = pop(x);
   x0 = x;
   do {
      x = ((x & -x) + x) & x;  // Turn off rightmost
      y = pop(x);          // string.
      k = y0 - y;        // k = length of string
      if (k <= kmin) {         // turned off.
         kmin = k;          // Save shortest length
         xmin = x;        // found, and the string.
      }
      y0 = y;
   } while (x != 0);
   *apos = nlz(x0 ^ xmin);
   return kmin;
}

5 11n+
n 1 x 0.



ptg8736757

420 ANSWERS TO EXERCISES

probability 0.25 (it must be 1, and the bit to its left must be 0). Therefore the
average number of strings of 1’s is 0.5 + 31·0.25 = 8.25.

5. One would expect the vast majority of words, if they are fairly long, to contain
a string of 1’s of length 1. For, if it begins with 10, or ends with 01, or contains
the string 010, then its shortest contained string of 1’s is of length 1. Therefore
the average length is probably just slightly more than 1.

An exhaustive check of all  words shows that the average length of the
shortest string of 1’s is approximately 1.011795.

6. (Solution by John Gunnels) This problem is surprisingly difficult, but the
technique used is a good one to know. The solution is based on a recursion that
counts the number of words in each of four sets, as shown in the table below.
In this table, “singleton” means a string of 1’s of length 1, “nnn” denotes a
string of length 0 that does not contain a singleton, and “sss” means a string
of length 1 that contains a singleton. The ellipsis means 0 or more of the pre-
ceding bit. Every binary word is in one and only one of these four sets. 

At each step, a bit is appended to the right-hand end of the word. As this
is done, a word moves from one set to another as shown below. It moves to the
left alternative if a 0 is appended, and to the right alternative if a 1 is appended.

For example, the word 1101 is in set B. If a 0 is appended, it becomes 11010,
which is in set D. If a 1 is appended, it becomes 11011, which is in set C.

Let  and  denote the sizes of sets A, B, C, and D, respec-
tively, after n steps (when the words are of length n). Then

Set Words of the Form Description

A nnn0… or null Does not have a singleton, but might at the next step

B nnn01 or 1 Has a singleton, but might not at the next step

C nnn011… or 11… Does not have a singleton, and will not at the next step

D sss0 or sss01… Has a singleton, and will at the next step

232

A A or B
B D or C
C A or C
D D or D

an bn cn,, , dn

an 1+ an cn,+=

bn 1+ an,=

cn 1+ bn cn,   and +=

dn 1+ bn 2dn.+=
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This is because set A at step  contains every member of set A at step n,
with a 0 appended, and also every member of set C at step n, with a 0
appended. Set B at step  contains only every member of set A at step n,
with a 1 appended, and so on.

The initial conditions are  and 
It is a simple matter to evaluate these difference equations with a com-

puter program or even by hand. The result, for n = 32, is

The last line gives the number we are interested in—the number of words for
which their shortest contained string of 1’s is of length 1. It is about 98.9 per-
cent of the number of 32-bit words 

What about a closed-form solution? This is also difficult to obtain. We
will just sketch a solution.

Let  which is the quantity we desire to find. Then, from the
difference equations, and using the fact that 

Thus, if we can find a closed-form formula for  we will have one for 
We can find a single-variable difference equation for  as follows. From

the difference equations,

This difference equation can be solved by well-known methods. The pro-
cess is a bit lengthy and messy and won’t be gone into here. It involves the
solution of a cubic polynomial that has two complex roots. When combined
with the equation for  we obtain, approximately,

n 1+

n 1+

a0 1= b0 c0 d0 0.= = =

a32 26,931,732,=

b32 15,346,786,=

c32 20,330,163,=

d32 4,232,358,615,   and=

b32 d32+ 4,247,705,401.=

232( ).

en bn dn,+=
an bn cn dn+ + + 2n,=

en bn dn+=

2n an– cn–=

2n an 1+ .–=

an, en.
an

an an 1– cn 1–+=

an 1– bn 2– cn 2–+ +=

an 1– an 3– cn 2–+ +=

an 1– an 3– an 1– an 2––+ +=

2an 1– an 2–– an 3– .+=

en,
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If n is an integer, the imaginary parts cancel out, which is not hard to prove.
(Hint: If x and y are complex conjugates, then so are  and 

We can get a formula involving only real numbers. The real part of the
second term of the formula above is certainly less than

which is, for n = 0,

and is still smaller for  The same holds for the last term of the equation
for  Therefore the real part of the last two terms sum to less than 0.5. Since

 is known a priori to be an integer, this means that  is given by the first
term rounded to the nearest integer, or

7. Briefly, this problem can be solved by using 10 sets of words, described
below. In this table, “nnn” denotes a string of length  0 whose shortest con-
tained string of 1’s is of length 0 or is  3, “ddd” denotes a string of length  2
whose shortest contained string of 1’s is of length 2, and “sss” denotes a string
of length  1 whose shortest contained string of 1’s is of length 1. (The sets
keep track of the words that contain a singleton at a position other than the
rightmost, because such words will never have a shortest contained string of
1’s of length 2.) The ellipsis means 0 or more of the preceding bit.

At each step, as a bit is appended to the right-hand end of a word from one
of these sets, it moves to another set as shown below. It moves to the left alter-
native if a 0 is appended, and to the right alternative if a 1 is appended.

Set Words of the Form Set Words of the Form

A nnn0… or null F ddd01

B nnn01 or 1 G ddd011

C nnn011 or 11 H ddd0111…

D nnn0111… or 111… I sss0

E ddd0 J sss01…

en 2n 0.41150 1.7549n 1+–

0.29425 0.13811i–( ) 0.12256 0.74486i+( )n 1+–
0.29425 0.13811i+( ) 0.12256 0.74486i–( )n 1+ .–

xn yn.)

0.29425 0.13811i– 0.12256 0.74486i+ n 1+

0.32505 0.75488 0.24537,

n 0.>
en.

en en

en 2n 0.41150 1.7549n 1+ 0.5+– .
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Let  denote the sizes of sets  respectively, after
n steps (when the words are of length n). Then

The initial conditions are  and all other variables are 0.
The quantity we are interested in, the number of words whose shortest

contained string of 1’s is of length 2, is given by  For
 the difference equations give for this the value 44,410,452, which is

about 1.034 percent of the number of 32-bit words. As an additional result, the
number of words whose shortest contained string of 1’s is of length 1 is given
by  which for  evaluates to 4,247,705,401, confirm-
ing the result of the preceding exercise.

This is as far as we are going with this problem.

Chapter 7: Rearranging Bits and Bytes

1. An ordinary integer can be incremented by complementing a certain number
of consecutive low-order bits.1 For example, to add 1 to 0x321F, it suffices to
apply the exclusive or operation to it with the mask 0x003F. Similarly, to
increment a reversed integer, it suffices to complement some high-order bits
with a mask that consists of an initial string of 1’s followed by 0’s. Möbius’s
formula computes this mask and applies it to the reversed integer. (The
method in the text that uses the nlz operation also does this.)

For an ordinary integer, the mask consists of 0’s followed by 1’s from the
rightmost 0-bit to the low-order bit. The integer that consists of a 1-bit at the
position of the rightmost 0-bit in i is given by the expression  (see
Section 2–1). To increment an ordinary integer x, we would compute a mask by
right-propagating the 1-bit in this integer, and then exclusive or the result to x.
To increment a reversed integer, we need to compute the reflection, or bit

1. Base –2 also has this property, but not base –1 + i.

A A or B
B I or C
C E or D
D A or D
E E or F

F I or G
G E or H
H E or H
I I or J
J I or J

an bn, …, jn, A, B, …, J,

an 1+ an dn+=

bn 1+ an=

cn 1+ bn=

dn 1+ cn dn+=

en 1+ cn en gn hn+ + +=

fn 1+ en=

gn 1+ fn=

hn 1+ gn hn+=

in 1+ bn fn in jn+ + +=

jn 1+ in jn+=

a0 1=

cn en gn hn.+ + +
n 32,=

bn fn in jn,+ + + n 32=

i¬ i 1+( )&
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reversal, of that mask. The one-bit (power of 2) quantity  can be
reflected by dividing it into  (This step is the key to this algorithm.) For
example, in the case of 4-bit integers,    

 and  To compute the mask, it is necessary only to left-
propagate the 1-bit of the quotient, which is done by subtracting the quotient
from m. Finally, the mask is exclusive-or’ed to the reversed integer, which pro-
duces the next reversed integer.

As an example, suppose the integers are eight bits in length, so that
m = 256. Let i = 19 (binary 00010011), so that revi = binary 11001000. Then

 = binary 00000100 (decimal 4). Dividing this into  gives a
quotient of 32 (binary 00100000). Subtracting this from m gives binary
11100000. Finally, exclusive or’ing this mask to revi gives binary 00101000,
which is the reversed integer for decimal 20.

2. Notice that

Also, notice that

Thus, we have the formulas

In general,

where W is the length of the word being shuffled, which must be a power of 2.

i¬ i 1+( )&
m 2⁄ .

m 2⁄ 8.= 8 1⁄ 8,= 8 2⁄ 4,=
8 4⁄ 2,= 8 8⁄ 1.=

i¬ i 1+( )& m 2⁄

m0 2 0x11111111=

m1 0xC 0x01010101=

m2 0xF0 0x00010001, and=

m3 0xFF00 0x00000001.=

0x11111111 232 15⁄ ,=
0x01010101 232 255⁄ ,=
0x00010001 232 216 1–( )⁄ , and=
0x00000001 232 232 1–( )⁄ .=

m0 2 1–( )2 232 24 1–( )⁄ ,=

m1 22 1–( )22 232 28 1–( )⁄ ,=

m2 24 1–( )24 232 216 1–( )⁄ , and=

m3 28 1–( )28 232 232 1–( )⁄ .=

mk 22k 1–( )22k 2W 22k 2+ 1–( )⁄ ,=



ptg8736757

ANSWERS TO EXERCISES 425

3. It is necessary only to change the two lines

      s = s + b;
      x = x >> 1;

to

      s = s + 1;
      x = x >> b;

4. Any true LRU algorithm must record the complete order of references to the n
cache lines in a set. Since there are n! orderings of n things, any implementa-
tion of LRU must use at least  memory bits. The table below com-
pares this to the number of bits required by the reference matrix method.

Chapter 8: Multiplication

1. As shown in Section 8–3, if x and y are the multiplication operands interpreted
as signed integers, then their product interpreted as unsigned integers is

where  and  are the sign bits of x and y, respectively, as integers 0 or 1.
Because the product differs from xy by a multiple of  the low-order 32 bits
of the product are the same.

2. Method 1: Chances are the machine has a multiplication instruction that gives
the low-order 32 bits of the product of two 32-bit integers. That is,

   low = u*v;

Method 2: Just before the return statement, insert

   low = (w1 << 16) + (w0 & 0xFFFF);

Method 3: Save the products u1*v0 and u0*v1 in temporaries t1 and
t2. Then

   low = ((t1 + t2) << 16) + w0;

Degree of 
Associativity

Theoretical 
Minimum

Reference Matrix 
Method

2 1 1

4 5 6

8 16 28

16 45 120

32 118 496

log2 n!

x 232x31+( ) y 232y31+( ) xy 232 x31y y31x+( ) 264x31y31,+ +=

x31 y31
232,
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Methods 2 and 3 are three basic RISC instructions each, and they work for
both mulhs and its unsigned counterpart (and may be faster than method 1).

3. Partition the 32-bit operands u and v into 16-bit unsigned components a, b, c,
and d, so that

where  Let

Then  which is easily verified.
Now  so that p and q can be represented by 32-bit

unsigned integers. However, it is easily calculated that

so that r is a signed 33-bit quantity. It will be convenient to represent it by a
signed 64-bit integer, with the high-order 32 bits being either all 0’s or all 1’s.
The machine’s multiply instruction will compute the low-order 32 bits of r,
and the high-order 32 bits can be ascertained from the values of  and

 These are 17-bit signed integers. If they have opposite signs and are
nonzero, then r is negative and hence its high-order 32 bits are all 1’s. If they
have the same signs or either is 0, then r is nonnegative and hence its high-
order 32 bits are all 0’s. The test that either  or  is 0 can be done
by testing only the low-order 32 bits of r. If they are 0, then one of the factors
must be 0, because 

These considerations lead to the following function for computing the
high-order 32 bits of the product of u and v.

unsigned mulhu(unsigned u, unsigned v) {
   unsigned a, b, c, d, p, q, rlow, rhigh;

   a = u >> 16;  b = u & 0xFFFF;
   c = v >> 16;  d = v & 0xFFFF;

   p = a*c;
   q = b*d;
   rlow = (-a + b)*(c - d);
   rhigh = (int)((-a + b)^(c - d)) >> 31;
   if (rlow == 0) rhigh = 0;    // Correction.

u 216a b   and+=
v 216c d,+=

0 a b c d, , , 216 1.–

p ac,=
q bd,   and=
r a– b+( ) c d–( ).=

uv 232p 216 r p q+ +( ) q,+ +=
0 p q, 232 217– 1,+

232– 217 1–+ r 232 217– 1,+

a– b+
c d.–

a– b+ c d–

r 232.<

continues
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After computing p, q, rlow, and rhigh, the function does the following
addition:

           |......p.......|
   |....rhigh.....||.....rlow......|

       |.......p.......|
       |.......q.......|

           |.......q.......|

The statement “if (rlow < p) rhigh = rhigh + 1” is adding 1 to
rhigh if there is a carry from the addition of p to rlow in the previous state-
ment.

The low-order 32 bits of the product can be obtained from the following
expression, inserted just after the “correction” step above:

   q + ((p + q + rlow) << 16)

A branch-free version follows.

   q = q + (q >> 16);  // Overflow cannot occur here.
   rlow = rlow + p;
   if (rlow < p) rhigh = rhigh + 1;
   rlow = rlow + q;
   if (rlow < q) rhigh = rhigh + 1;

   return p + (rlow >> 16) + (rhigh << 16);
}

unsigned mulhu(unsigned u, unsigned v) {
   unsigned a, b, c, d, p, q, x, y, rlow, rhigh, t;

   a = u >> 16;  b = u & 0xFFFF;
   c = v >> 16;  d = v & 0xFFFF;

   p = a*c;
   q = b*d;
   x = -a + b;
   y = c - d;
   rlow = x*y;
   rhigh = (x ^ y) & (rlow | -rlow);
   rhigh = (int)rhigh >> 31;

   q = q + (q >> 16);  // Overflow cannot occur here.
   t = (rlow & 0xFFFF) + (p & 0xFFFF) + (q & 0xFFFF);
   p += (t >> 16) + (rlow >> 16) + (p >> 16) + (q >> 16);
   p += (rhigh << 16);
   return p;
}
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These functions have more overhead than the four-multiplication func-
tion of Figure 8–2 on page 174, and will be superior only if the machine’s
multiply instruction is slower than that found on most modern computers. In
“bignum” arithmetic (arithmetic on multiword integers), the time to multiply
is substantially more than the time to add two integers of similar sizes. For that
application, a method known as Karatsuba multiplication [Karat] applies the
three-multiplication scheme recursively, and it is faster than the straightfor-
ward four-multiplication scheme for sufficiently large numbers. Actually,
Karatsuba multiplication, as usually described, uses

For our application, that method does not work out very well because r can be
nearly as large as  and there does not seem to be any easy way to calculate
the high-order two bits of the 34-bit quantity r.

A signed version of the functions above has problems with overflow. It is
just as well to use the unsigned function and correct it as described in
Section 8–3 on page 174.

Chapter 9: Integer Division

1. Let  where  is an integer and  Then
  =  by the definition of the ceiling function as the next

integer greater than or equal to its argument. Hence  which is

2. Let n/d denote the quotient of signed, truncating, integer division. Then we
must compute

(If  the result is immaterial.) This can be computed as  where

which is four instructions to compute c (the term  commons). Another
way to compute c in four instructions, but with the shifts unsigned, is

p ac,=
q bd,=
r a b+( ) c d+( ),   and=

uv 232p 216 r p– q–( ) q.+ +=

234,

x x0 ,+= x0 0 1.<
x– x0– –= x0–

x–– x0,=
x .

n d,⁄ if n 0, d 0> ,
n d⁄ 1,– if n 0, d 0,><
n d,⁄ if n 0, d 0,<
n d 1,+⁄ if n 0, d 0.<<

d 0= n d⁄ c,+

c n 31>>
s( ) d 31>>

s( )( ) d 31>>
s( ),–=

d 31>>
s
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If your machine has mod-32 shifts, c can be computed in three instructions:

For the remainder, let rem(n, d) denote the remainder upon dividing the
signed integer n by the signed integer d, using truncating division. Then we
must compute

The amount to add to rem(n, d) is 0 or the absolute value of d. This can be
computed from

which is five instructions to compute c. It can be computed in four instructions
if your machine has mod-32 shifts and you use the multiply instruction (details
omitted).

3. To get the quotient of floor division, it is necessary only to subtract 1 from the
quotient of truncating division if the dividend and divisor have opposite signs:

For the remainder, it is necessary only to add the divisor to the remainder
of truncating division if the dividend and divisor have opposite signs:

4. The usual method, most likely, is to compute  The problem
is that  can overflow. (Consider computing  on a 4-bit
machine.)

Another standard method is to compute  using the machine's
divide instruction, then compute the remainder as  and if r is non-
zero, add 1 to q. (Alternatively, add 1 if  ) This gives the correct result
for all n and  but it is somewhat expensive because of the multiply,

c d 31>>u( ) n d( ) 31>>
u( ).–=

c n 31>>
s( ) d 31>>

s( ).>>
u=

rem n d,( ), if n 0, d 0> ,
rem n d,( ) d,+ if n 0, d 0,><
rem n d,( ), if n 0, d 0,<
rem n d,( ) d,– if n 0, d 0.<<

d d d 31>>
s( )( ) d 31>>

s( ),–=

c d n 31>>
s( ),&=

n d⁄ n d( ) 31>>
u( ).–

rem n d,( ) n d( ) 31>>
s( ) d&( ).+

n d 1–+( ) d⁄ .
n d 1–+ 12 5⁄

q n d⁄=
r n qd,–=

n qd.
d 0,
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subtract, and conditional add of 1. On the other hand, if your machine's divide
instruction gives the remainder as a by-product, and especially if it has an effi-
cient way to do the computation  then this is a good way to
do it.

Still another way is to compute  Unfortunately,
this fails for n = 0. It can be fixed if the machine has a simple way to compute
the  predicate, such as by means of a compare instruction that sets the
target register to the integer 1 or 0 (see also Section 2–12 on page 23). Then
one can compute:

Lastly, one can compute  and then change the
result to 0 if n = 0, by means of a conditional move or select instruction, for
example.

5. Let and f(x) = b, as illustrated below.

If b is an integer, then by property (c), x is also, so that  and
there is nothing to prove. Therefore, assume in what follows that b is not an
integer, but a may or may not be.

There cannot be an integer k such that  because if there were,
there would be an integer between  and x (by properties (a), (b), and (c)),
which is impossible. Therefore  that is, 

As examples of the utility of this, we have, for a and b integers,

It can similarly be shown that if f(x) has properties (a), (b), and (c), then

q q r 0( ),+=

q n 1–( ) d⁄ 1.+=

x 0

c x 0( )
q n c–( ) d⁄ c+

q n 1–( ) d⁄ 1+=

f x( ) a=

x x

a
b

x x,=

a k b,<
x

a b ;= f x( ) f x( ) .=

x a+
b

------------------ x a+
b

------------=

x x=
log2 x( ) log2 x( )=

f x( ) f x( ) .=
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Chapter 10: Integer Division by Constants

1. (a) If the divisor is even, then the low-order bit of the dividend does not affect
the quotient (of floor division); if it is 1 it makes the remainder odd. After turn-
ing this bit off, the remainder of the division will be an even number. Hence
for an even divisor d, the remainder is at most  This slight change in the
maximum possible remainder results in the maximum multiplier m being a
W-bit number rather than a -bit number (and hence the shrxi
instruction is not needed), as we will now see. In fact, we will investigate what
simplifications occur if the divisor ends in z 0-bits, that is, if it is a multiple of

 for  In this case, the z low-order bits of the dividend can be cleared
without affecting the quotient, and after clearing those bits, the maximum
remainder is 

Following the derivation of Section 10–9 on page 230, but changed so
that the maximum remainder is  we have 
and inequality (24a) becomes

Inequality (25) becomes

Equation (26) is unchanged, and inequality (27) becomes

(27 )

Inequality (28) becomes

In the case that p is not forced to equal W, combining these inequalities
gives

d 2.–

W 1+( )

2z, z 0.

d 2z.–

d 2z,– nc 2W rem 2W d,( )– 2z,–=

2W d– nc 2W 2z.–

2p

d
----- m 2p

d
-----

nc 2z+
nc

----------------.<

2p nc

2z
----- d 1– rem 2p 1 d,–( )–( ).·

>

1 2p 2nc

2z
-------- d 1–( ) 1.+

1
d
--- m

2nc d 1–( ) 2z+
2zd

------------------------------------
nc 2z+

nc
----------------,<

1 m
2d 2– 2z nc⁄+

2zd
----------------------------------- nc 2z+( ),<

1 m 2
2z
---- nc 2z+( ) 2

2z
----2W.<
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Thus if   so that m fits in a W-bit word. The same result follows
in the case that p is forced to equal W.

To calculate the multiplier for a given divisor, calculate  as shown above,
then find the smallest  that satisfies (27 ), and calculate m from (26). As
an example, for  and  we have 
= 0xFFFFFFFA. Repeated use of (27 ) gives  from which (26) gives

 = 0x92492493. Thus, the code to divide by 14 is

      ins   n,R0,0,1     Clear low-order bit of n.
      li    M,0x92492493    Load magic number.
      mulhu q,M,n       q = floor(M*n/2**32).
      shri  q,q,3           q = q/8.

(b) Again, if the divisor is a multiple of  then the low-order z bits of the div-
idend do not affect the quotient. Therefore, we can clear the low-order z bits of
the dividend, and divide the divisor by  without changing the quotient.
(The division of the divisor would be done at compile time.)

Using the revised n and d, both less than  (24a) becomes

Equation (26) and inequality (27) are not changed, but they are to be used
with the revised values of  and d. We omit the proof that the multiplier will
be less than  and give an example again for  and  In the
equations, we use  Thus, we have  =
0x7FFFFFFF. Repeated use of (27) gives  from which (26) gives

 = 0x92492493, and the code to divide by 14 is

      shri  n,n,1        Halve the dividend.
      li    M,0x92492493    Load magic number.
      mulhu q,M,n       q = floor(M*n/2**32).
      shri  q,q,2           q = q/4.

These methods should not always be used when the divisor is an even
number. For example, to divide by 10, 12, 18, or 22 it is better to use the
method described in the text, because there’s no need for an instruction to
clear the low-order bits of the dividend, or to shift the dividend right. Instead,
the algorithm of Figure 10–3 on page 236 should be used, and if it gives an
“add” indicator of 1 and the divisor is even, then one of the above techniques
can be used to get better code on most machines. Among the divisors less than
or equal to 100, these techniques are useful for 14, 28, 38, 42, 54, 56, 62, 70,
74, 76, 78, 84, and 90.

Which is better, (a) or (b)? Experimentation indicates that method (b) is
preferable in terms of the number of instructions required, because it seems to
always require either the same number of instructions as (a), or one fewer.
However, there are cases in which (a) and (b) require the same number of

z 1, m 2W,<

nc
p W

d 14= W 32,= nc 232 rem 232 14,( )– 2–=
p 35,=

m 235 14 1– 3–+( ) 14⁄=

2z,

2z,

2W z– ,

2W z– d– nc 2W z– 1.–

nc
2W d 14= W 32.=

d 7.= nc 231 rem 231 7,( )– 1–=
p 34,=

m 234 5+( ) 7⁄=
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instructions, but (a) yields a smaller multiplier. Some representative cases are
shown below. The “Book” method is the code that Figure 10–3 gives. We
assume here that the computer’s and immediate instruction sign-propagates
the high-order bit of the immediate field (our basic RISC would use the insert
instruction).

d = 6

d = 28

These techniques are not useful for signed division. In that case, the dif-
ference between the best and worst code is only two instructions (as illustrated
by the code for dividing by 3 and by 7, shown in Section 10–3 on page 207).
The fix-up code for method (a) would require adding 1 to the dividend if it is
negative and odd, and subtracting 1 if the dividend is nonnegative and odd,
which would require more than two instructions. For method (b), the fix-up
code is to divide the dividend by 2, which requires three basic RISC instruc-
tions (see Section 10–1 on page 205), so this method is also not a winner.

2. Python code is shown below.

3. Because  we need for the starting value, the multiplicative inverse of
d modulo 3. This is simply the remainder of dividing d by 3, because

 and  (and if the remainder is 0, there is no
multiplicative inverse). For d = 146, the calculation proceeds as follows.

Book (a) (b)

li  M,0xaaaaaaab
mulhu q,M,n
shri  q,q,2

andi  n,n,-2
li  M,0x2aaaaaab
mulhu q,M,n

shri  n,n,1
li  M,0x55555556
mulhu q,M,n

Book (a) (b)

li  M,0x24924925
mulhu q,M,n
add   q,q,n
shrxi q,q,5

andi  n,n,-4
li  M,0x24924925
mulhu q,M,n
shri  q,q,2

shri  n,n,2
li  M,0x24924925
mulhu q,M,n

def magicg(nmax, d):
   nc = (nmax//d)*d - 1
   nbits = int(log(nmax, 2)) + 1
   for p in range(0, 2*nbits - 1):
      if 2**p > nc*(d - (2**p)%d):
         m = (2**p + d - (2**p)%d)//d
         return (m, p)
   print "Can't find p, something is wrong."
   sys.exit(1)

81 34,=

1 1 1 (mod 3) 2 2 1 (mod 3)
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A fixed point was reached, so the multiplicative inverse of 146 modulo 81 is 5.
Check:  Actually, it is known a priori that two
iterations suffice.

Chapter 11: Some Elementary Functions

1. Yes. The result is correct in spite of the double truncation. Suppose
 Then by the definition of this operation, a is an integer such that

 and 
Let  Then  and  Thus,  and,

because
Because  so that 

Because Hence b is the integer fourth root of x.
This follows more easily from exercise 5 of Chapter 9.

2. Straightforward code is shown below.

   int icbrt64(unsigned long long x) {
      int s;
      unsigned long long y, b, bs;

      y = 0;
      for (s = 63; s >= 0; s = s - 3) {
         y = 2*y;
         b = 3*y*(y + 1) + 1;
         bs = b << s;
         if (x >= bs && b == (bs >> s)) {
            x = x - bs;
            y = y + 1;
         }
      }
      return y;
   }

Overflow of b (bs in the above code) can occur only on the second loop
iteration. Therefore, another way to deal with the overflow is to expand the
first two iterations of the loop, and then execute the loop only from s = 57 on
down, with the phrase “&& b == (bs >> s)” deleted.

By inspection, the effect of the first two loop iterations is:
If  set  and set y = 2.
If  set  and set y = 1.
If  set y = 0 (and don’t change x).

x0 146 mod 3 2,= =

x1 2 2 146 2–( ) 580 68 (mod 81),–= =

x2 68 2 146 68–( ) 674,968 5 (mod 81),= =

x3 5 2 146 5–( ) 3640 5 (mod 81).–= =

146 5 730 1 (mod 81).=

x a.=
a2 x a 1+( )2 x.>

a b.= b2 a b 1+( )2 a.> b4 a2

a2 x, b4 x.
b 1+( )2 a,> b 1+( )2 a 1,+ b 1+( )4 a 1+( )2.

a 1+( )2 x,> b 1+( )4 x.>

x 263, x x 263–=
260 x 263,< x x 260–=
x 260,<
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Therefore, the beginning of the routine can be coded as shown below.

      y = 0;
      if (x >= 0x1000000000000000LL) {
         if (x >= 0x8000000000000000LL) {

 x = x - 0x8000000000000000LL;
            y = 2;
         } else {

 x = x - 0x1000000000000000LL;
            y = 1;
         }
      }

      for (s = 57; s >= 0; s = s - 3) {
…

And, as mentioned, the phrase “&& b == (bs >> s)” can be deleted.

3. Six [Knu2]. The binary decomposition method, based on  = 
takes seven. Factoring  as  or as  also takes seven.
But computing powers of x in the order  in which each
term is a product of two previous terms or of x, does it in six multiplications.

4. (a) x rounded down to an integral power of 2. (b) x rounded up to an integral
power of 2 (in both cases, x itself if x is an integral power of 2).

Chapter 12: Unusual Bases for Number Systems

1. If B is a binary number and N is its base –2 equivalent, then

2. An easy way to do this is to convert the base –2 number x to binary, add 1, and
convert back to base –2. Using Schroeppel’s formula and simplifying, the
result is

3. As in exercise 1, one could convert the base –2 number x to binary, and with
0xFFFFFFF0, and convert back to base –2. This would be five operations.
However, it can be done in four operations with either of the formulas below.2

2. These formulas were found by the exhaustive expression search program Aha! (A
Hacker’s Assistant).

x23 x16 x4 x2 x,
x23 x11( )2 x x5( )2 x( )2 x

x2 x3 x5 x10 x13 x23,, , , , ,

B 0x55555555 N 0x55555555( ), and–
N 0x55555555 B–( ) 0x55555555.

x 0xAAAAAAAA( ) 1+( ) 0xAAAAAAAA, or
x 0x55555555( ) 1–( ) 0x55555555.
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The formulas below round a number up to the next greater power of 16.

There are similar formulas for rounding up or down to other powers of 2.

4. This is very easy to program in Python, because that language supports com-
plex numbers.

5. To convert a base  number to its negative, either subtract it from 0 or
multiply it by –1 (11101), using the rules for base  arithmetic.

To extract the real part of a number x, add in the negative of its imaginary
part. Process the bits of x in groups of four, starting at the right (low-order)
end. Number the bits in each group 0, 1, 2, and 3, from the right. Then:

If bit 1 is on, add –i (0111) at the current group’s position.
If bit 2 is on, add 2i (1110100) at the current group’s position.
If bit 3 is on, add –2i (0100) at the current group’s position.

Bit 1 has a weight of  so adding in –i cancels its imaginary com-
ponent. A similar remark applies to bits 2 and 3. There is no need to do any-
thing for bit 0, because that has no imaginary component. Each group of four
bits has a weight of – 4 times the weight of the group immediately to its right,
because 10000 in base  is – 4 decimal. Thus, the weight of bit n of x is
a real number (– 4) times the weight of bit 

import sys
import cmath

num = sys.argv[1:]
if len(num) == 0:
   print "Converts a base -1 + 1j number, given in decimal"
   print "or hex, to the form a + bj, with a, b real."
   sys.exit()
num = eval(num[0])
r = 0
weight = 1
while num > 0:
   if num & 1:
      r = r + weight;
   weight = (-1 + 1j)*weight
   num = num >> 1;
print 'r =', r

x 0xAAAAAAAA( ) 10–( ) 0xAAAAAAAA( ) 16–&

x 0x55555555( ) 10+( ) 0x55555555( ) 16–&

x 0xAAAAAAAA( ) 5+( ) 0xAAAAAAAA( ) 16–&
x 0x55555555( ) 5–( ) 0x55555555( ) 16–&

1– i+
1– i+

1– i,+

1– i+
n 4.–
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The example below illustrates extracting the real part of the base 
number 101101101.

   1 0110 1101 x
      111 0100  2i added in for bit 2
          0100  –2i added in for bit 3
     0111   –i(– 4) added in for bit 5
 111 0100   2i(– 4) added in for bit 6
--------------
1100 1101 1101  sum

The reader may verify that x is  and the sum is 23. In working out
this addition, many carries are generated, which are not shown above. Several
shortcuts are possible: If bits 2 and 3 are both on, there is no need to add any-
thing in for these bits, because we would be adding in 2i and –2i. If a group
ends in 11, these bits can be simply dropped, because they constitute a pure
imaginary (i). Similarly, bit 2 can be simply dropped, as its weight is a pure
imaginary (–2i).

Carried to its extreme, a method employing these kinds of shortcuts
would translate each group of four bits independently to its real part. In some
cases a carry is generated, and these carries would be added to the translated
number. To illustrate, let us represent each group of four bits in hexadecimal.
The translation is shown below.

The digits 2 and 6 have real part –1, which is written 1D in base 
For these digits, replace the source digit with D and carry a 1. The carries can
be added in using the basic rules of addition in base  but for hand work
there is a more expedient way. After translation, there are only four possible
digits: 0, 1, C, and D, as the translation table shows. Rules for adding 1 to
these digits are shown in the left-hand column below.

Adding 1 to D generates a carry of 1D (because 3 + 1 = 4). We will carry both
digits to the same column. The right-hand column above shows how to handle
the carry of 1D. In doing the addition, it is possible to get a carry of both 1 and

0  0 4  0 8  C C  C

1  1 5  1 9  D D  6

2  1D 6  1D A  1 E  1

3  0 7  0 B  C F  C 

0 + 1 = 1 0 + 1D = 1D

1 + 1 = C 1 + 1D = 0

C + 1 = D C + 1D = 1

D + 1 = 1D0 D + 1D = C

1– i+

23 4i,+

1– i.+

1– i,+
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1D in the same column (the first carry from the translation and the second
from the addition). In this case, the carries cancel each other, because 1D is –1 in
base  It is not possible to get two carries of 1, or two of 1D, in the same
column.

The example below illustrates the use of this method to extract the real
part of the base  number EA26 (written in hexadecimal).

EA26 x
 11    carries from the translation
11DD x with its hex digits translated
----
110D   sum

The reader may verify that x is  and the sum is – 45.
Incidentally, a base  number is real iff all of its digits, expressed in

hexadecimal, are 0, 1, C, or D.
To extract the imaginary part from x, one can, of course, extract the real part

and subtract that from x. To do it directly by the “shortcut” method, the table below
shows the translation of each hexadecimal digit to its pure imaginary part.

Thus, a carry of 7 can occur, so we need addition rules to add 7 to the four
possible translated digits of 0, 3, 4, and 7. These are shown in the left-hand
column below.

Now a carry of 3 can occur, and the right-hand column above shows how to
deal with that.

The example below illustrates the use of this method to extract the imag-
inary part of the base  number 568A (written in hexadecimal).

568A x
 77    carries from the translation
4747 x with its hex digits translated
----
4737   sum

0  0 4  4 8  74 C  0

1  0 5  4 9  74 D  0

2  3 6  7 A  77 E  3

3  3 7  7 B  77 F  3

0 + 7 = 7 0 + 3 = 3

3 + 7 = 0 3 + 3 = 74

4 + 7 = 33 4 + 3 = 7

7 + 7 = 4 7 + 3 = 0

1– i.+

1– i+

45– 21i+
1– i+

1– i+
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The reader may verify that x is  and the sum is 107i.
A base  number is imaginary iff all of its digits, expressed in hexa-

decimal, are 0, 3, 4, or 7.
To convert a number to its complex conjugate, subtract twice a number’s

imaginary part. A table can be used, as above, but the conversion is more com-
plicated because more carries can be generated, and the translated number can
contain any of the 16 hexadecimal digits. The translation table is shown
below.

The carries can be added in using base  arithmetic or by devising a
table that does the addition a hexadecimal digit at a time. The table is larger
than those above, because the carries can be added to any of the 16 possible
hexadecimal digits.

Chapter 13: Gray Code

1. Proof sketch 1: It is apparent from the construction of the reflected binary
Gray code.

Proof sketch 2: From the formula  it can be seen
that G(x) is 1 at position i wherever there is a transition from 0 to 1 or from 1
to 0 from position i to the bit to the left of i, and is 0 otherwise. If x is even,
there are an even number of transitions, and if x is odd, there are an odd num-
ber of transitions.

Proof sketch 3: By induction on the length of x, using the formula given
above: The statement is true for the one-bit words 0 and 1. Let x be a binary
word of length n, and assume inductively that the statement is true for x. If x
is prepended with a 0-bit, G(x) is also prepended with a 0-bit, and the remain-
ing bits are G(x). If x is prepended with a 1-bit, then G(x) is also prepended
with a 1-bit, and its next most significant bit is complemented. The remaining
bits are unchanged. Therefore, the number of 1-bits in G(x) is either increased
by 2 or is unchanged.

Thus, one can construct a random number generator that generates inte-
gers with an even (or odd) number of 1-bits by using a generator of uniformly
distributed integers, setting the least significant bit to 0 (or to 1), and convert-
ing the result to Gray code [Arndt]. 

2. (a) Because each column is a cyclic shift of column 1, the result follows
immediately.

0  0 4  74 8  38 C  C

1  1 5  75 9  39 D  D

2  6 6  2 A  3E E  3A

3  7 7  3 B  3F F  3B

87– 107i+
1– i+

1– i+

G x( ) x x 1>>
u( ),=



ptg8736757

440 ANSWERS TO EXERCISES

(b) No such code exists. This is not difficult to verify by enumerating all pos-
sible Gray codes for  Without loss of generality, one can start with

000
001
011

because any Gray code can be made to start that way by complementing col-
umns and rearranging columns. Corollary: There is no STGC for  that
has eight code words.

3. The code below was devised by reflecting the first five code words of the
reflected binary Gray code.

0000
0001
0011
0010
0110
1110
1010
1011
1001
1000

Another code can be derived by taking the “excess 3” binary coded deci-
mal (BCD) code and converting it to Gray. The result turns out to be cyclic.
The excess 3 code for encoding decimal digits has the property that addition of
coded words generates a carry precisely when addition of the decimal digits
would.

EXCESS THREE GRAY CODE

Decimal
Digit

Excess 3 
Code

Gray Code 
Equivalent

0 0011 0010

1 0100 0110

2 0101 0111

3 0110 0101

4 0111 0100

5 1000 1100

6 1001 1101

7 1010 1111

8 1011 1110

9 1100 1010

n 3.=

n 3=
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4. It is a simple matter to derive a “mixed base” Gray code, using the principle of
reflection. For a number with prime decomposition  the columns
of the Gray code should be in base  For example, for
the number  the list below shows a “base 4 - base 3” Gray code
and the divisor of 72 that each code word represents.

00   1
01   3
02   9
12  18
11   6
10   2
20   4
21  12
22  36
32  72
31  24
30   8

Clearly each divisor follows from the previous one by one multiplication or
division by a prime number.

Even simpler: A binary Gray code can be used to iterate over the subsets
of a set in such a way that in each step only one member is added or removed.

Chapter 14: Cyclic Redundancy Check

1. From the text, a message polynomial M and generator polynomial G satisfy
 where R is the checksum polynomial. Let M  be a message

polynomial that differs from M at term  (That is, the binary message differs
at bit position e.) Then  and

The term  is not divisible by G, because G has two or more terms. (The
only divisors of  are of the form  Therefore, the remainder upon
dividing  by G is distinct from R, so the error is detected.

2. The main loop might be coded as shown below, where word is an unsigned
int [Danne].

      crc = 0xFFFFFFFF;
      while (((word = *(unsigned int *)message) & 0xFF) != 0) {
         crc = crc ^ word;
         crc = (crc >> 8) ^ table[crc & 0xFF];
         crc = (crc >> 8) ^ table[crc & 0xFF];
         crc = (crc >> 8) ^ table[crc & 0xFF];
         crc = (crc >> 8) ^ table[crc & 0xFF];
         message = message + 4;
      }

2e13e25e3…,
e1 1, e2 1, e3 1, ....+ + +

72 23 32,=

Mxr QG R,+=
xe.

M M xe,+=

M xr M xe+( )xr Mxr xe r++ QG R xe r+ .+ += = =

xe r+

xe r+ xn.)
M xr
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Compared to the code of Figure 14–7 on page 329, this saves three load
byte and three exclusive or instructions for each word of message. And,
there are fewer loop control instructions executed.

Chapter 15: Error-Correcting Codes

1. Your table should look like Table 15–1 on page 333, with the rightmost col-
umn and the odd numbered rows deleted.

2. In the first case, if an error occurs in a check bit, the receiver cannot know that,
and it will make an erroneous “correction” to the information bits.

In the second case, if an error occurs in a check bit, the syndrome will be
one of 100…0, 010…0, 001…0, …, 000…1 (k distinct values). Therefore k
must be large enough to encode these k values, as well as the m values to
encode a single error in one of the m information bits, and a value for “no
errors.” So the Hamming rule stands.

One thing along these lines that could be done is to have a single parity bit
for the k check bits, and have the k check bits encode values that designate one
error in an information bit (and where it is), or no errors occurred. For this
code, k could be chosen as the smallest value for which  The code
length would be  where the “+1” is for the parity bit on the check
bits. But this code length is nowhere better than that given by the Hamming
rule, and is sometimes worse.

3. Treating k and m as real numbers, the following iteration converges from
below quite rapidly:

where lg(x) is the log base 2 of x. The correct result is given by —that
is, only two iterations are required for all 

Taking another tack, it is not difficult to prove that for 

Here bitsize(m) is the size of m in bits, for example, bitsize(3) = 2,
bitsize(4) = 3, and so forth. (This is different from the function of the same
name described in Section 5–3 on page 99, which is for signed integers.) Hint:
bitsize(m) =  = , where we take lg(0) to be –1. Thus,
one can try  test it, and if it proves to be too small then simply
add 1 to the trial value. Using the number of leading zeros function to compute

 one way to commit this to code is:

2k m 1.+
m k 1,+ +

k0 0,=

ki 1+ lg ki m 1+ +( ),   = i 0 1 …,, ,=

ceil k2( )
m 0.

m 0,

bitsize m( ) k bitsize m( ) 1.+

lg m 1+( ) lg m( ) 1+
k bitsize m( ),=

bitsize m( ),



ptg8736757

ANSWERS TO EXERCISES 443

where W is the machine’s word size and 

4. Answer: If  it must be that for at least one bit posi-
tion i, that bit position contributes 1 to  and 0 to  This
implies that  but  and  clearly a contradiction.

5. Given a code of length n and minimum distance d, simply double-up each 1
and each 0 in each code word. The resulting code is of length 2n, minimum
distance 2d, and is the same size.

6. Given a code of length n, minimum distance d, and size A(n, d), think of it as
being displayed as in Table 15–1 on page 333. Remove an arbitrary  col-
umns. The resulting code words, of length  have a minimum dis-
tance of at least 1. That is, they are all distinct. Hence their number cannot be
more than  Since deleting columns did not change the code size, the
original code’s size is at most  so that 

7. The Hamming rule applies to the case that d = 3 and the code has 2m code
words, where m is the number of information bits. The right-hand part of
inequality (6), with A(n, d) = 2m and d = 3, is

Replacing n with  gives

which on cancelling 2m on each side becomes inequality (1).

8. The code must consist of an arbitrary bit string and its one’s-complement, so its
size is 2. That these codes are perfect, for odd n, can be seen by showing that
they achieve the upper bound in inequality (6). Proof sketch: An n-bit binary
integer may be thought of as representing uniquely a choice from n objects, with
a 1-bit meaning to choose and a 0-bit meaning not to choose the corresponding
object. Therefore, there are  ways to choose from 0 to n objects from n
objects—that is,  If n is odd, i ranging from 0 to  cov-

ers half the terms of this sum, and because of the symmetry  it

accounts for half the sum. Therefore  so that the upper

bound in (6) is 2. Thus, the code achieves the upper bound of (6).

k W nlz m( ),–

k k 1 k<<( ) 1– k–( ) m<u( ),+

0 m 2W 1.–

d x z,( ) d x y,( ) d y z,( ),+>
d x z,( ) d x y,( ) d y z,( ).+

xi zi, xi yi= yi zi,=

d 1–
n d 1–( ),–

2n d 1–( )– .
2n d 1–( )– , A n d,( ) 2n d– 1+ .

2m 2n

n
0

n
1

+
----------------------- 2n

1 n+
------------.=

m k+

2m 2m k+

1 m k+ +
----------------------,

2n

n
ii 0=

n
2n.= n 1–( ) 2⁄

n
i

n
n i–

,=
n
ii 0=

n 1–( ) 2⁄
2n 1– ,=
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9. For ease of exposition, this proof will make use of the notion of equivalence of
codes. Clearly a code is not changed in any substantial way by rearranging its
columns (as depicted in Table 15–1 on page 333) or by complementing any
column. If one code can be derived from another by such transformations,
they are said to be equivalent. Because a code is an unordered set of code
words, the order of a display of its code words is immaterial. By complement-
ing columns, any code can be transformed into an equivalent code that has a
code word that is all 0’s.

Also for ease of exposition, we illustrate this proof by using the case n = 9
and d = 6.

Wlog (without loss of generality), let code word 0 (the first, which we
will call cw0) be 000 000 000. Then all other code words must have at least six
1’s, to differ from cw0 in at least six places.

Assume (which will be shown) that the code has at least three code words.
Then no code word can have seven or more 1’s. For if one did, then another
code word (which necessarily has six or more 1’s) would have at least four of
its 1’s in the same columns as the word with seven or more 1’s. This means the
code words would be equal in four or more positions, so they could differ in
five or fewer positions (9 – 4), violating the requirement that d = 6. Therefore,
all code words other than the first must have exactly six 1’s.

Wlog, rearrange the columns so that the first two code words are

cw0: 000 000 000
cw1: 111 111 000

The next code word, cw2, cannot have four or more of its 1’s in the left six col-
umns, because then it would be the same as cw1 in four or more positions, so
it would differ from cw1 in five or fewer positions. Therefore it has three or
fewer of its 1’s in the left six columns, so that three of its 1’s must be in the
right three positions. Therefore exactly three of its 1’s are in the left six col-
umns. Rearrange the left six columns (of all three code words) so that cw2
looks like this:

cw2: 111 000 111

By similar reasoning, the next code word (cw3) cannot have four of its 1’s
in the left three and right three positions together, because it would then equal
cw2 in four positions. Therefore it has three fewer 1’s in the left three and right
three positions, so that three of its 1’s must be in the middle three positions. By
similarly comparing it to cw1, we conclude that three of its 1’s must be in the
right three positions. Therefore cw3 is:

cw3: 000 111 111

By comparing the next code word, if one is possible, with cw1, we con-
clude that it must have three 1’s in the right three positions. By comparing it
with cw2, we conclude it must have three 1’s in the middle three positions.
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Thus, the code word is 000 111 111, which is the same as cw3. Therefore a
fifth code word is impossible. By inspection, the above four code words sat-
isfy d = 6, so A(9, 6) = 4.

10. Obviously A(n, d) is at least 2, because the two code words can be all 0’s and
all 1’s. Reasoning as in the previous exercise, let one code word, cw0, be all
0’s. Then all other code words must have more than  1’s. If the code has
three or more code words, then any two code words other than cw0 must have
1’s in the same positions for more than  positions, as sug-
gested by the figure below.

1111…11110…0
   > 2n/3 < n/3

(The figure represents cw1 with its 1’s pushed to the left. Imagine placing the
more than  1’s of cw2 to minimize the overlap of the 1’s.) Since cw1 and
cw2 overlap in more than  positions, they can differ in less than 
=  positions, resulting in a minimum distance less than .

11. It is SEC-DED, because the minimum distance between code words is 4. To
see this, assume first that two code words differ in a single information bit.
Then in addition to the information bit, the row parity, column parity, and cor-
ner check bits will be different in the two code words, making their distance
equal to 4. If the information words differ in two bits, and they are in the same
row, then the row parity bit will be the same in the two code words, but the col-
umn parity bit will differ in two columns. Hence their distance is 4. The same
result follows if they are in the same column. If the two differing information
bits are in different rows and columns, then the distance between the code
words is 6. Lastly, if the information words differ in three bits, it is easy to ver-
ify that no matter what their distribution among the rows and columns, at least
one parity bit will differ. Hence the distance is at least 4.

If the corner bit is not used, the minimum distance is 3. Therefore it is not
SEC-DED, but it is a SEC code.

Whether the corner check bit is a row sum or a column sum, it is the mod-
ulo 2 sum of all 64 information bits, so it has the same value in either case.

The code requires 17 check bits, whereas the Hamming code requires
eight (see Table 15–3 on page 336), so it is not very efficient in that respect.

But it is effective in detecting burst errors. Assume the 9×9 array is trans-
mitted over a bit serial channel in the order row 0, row 1, ..., row 8. Then any
sequence of ten or fewer bits is in one or two rows with at most one bit of over-
lap. Hence if the only errors in a transmission are a subset of ten consecutive
bits, the error will be detected by checking the column parities in most cases,
or the row parity bits in the case that the first and tenth bits only are in error.

An error that is not detected is four corrupted bits arranged in a rectangle.

2n 3⁄

2n 3⁄ n 3⁄– n 3⁄=

2n 3⁄
n 3⁄ n n 3⁄–

2n 3⁄ 2n 3⁄
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Chapter 16: Hilbert’s Curve

1. and 2.

The average jump distance for the traversal shown at the left above is
approximately 1.46. That for the traversal shown at the right is approximately
1.33. Therefore, using the Gray code seems to improve locality, at least by this
measure. (For the Hilbert curve, the jumps are all of distance 1.)

At Edsger Dijkstra’s suggestion, the shuffle algorithm was used in an
early Algol compiler to map a matrix onto backing store. The aim was to
reduce paging operations when inverting a matrix. He called it the “zip-fas-
tener algorithm.” It seems likely that many people have discovered it indepen-
dently.

3. Use every third bit of s.

Chapter 17: Floating-Point

1. ±0, ±2.0, and certain NaNs.

2. Yes!  The program is easily derived by noting that if  then

Ignoring the fraction, this shows that we must change the biased exponent
from  to  The latter is  Thus, it
seems that a rough approximation to  is obtained by shifting rep(x) right
one position and adding 63 in the exponent position, which is 0x1F800000.
This approximation,

also has the property that if we find an optimal value of k for values of x in the
range 1.0 to 4.0, then the same value of k is optimal for all normal numbers.
After refining the value of k with the aid of a program that finds the maximum

(x, y) = unshuf(s) (x, y) = unshuf(Gray(s))

x 2n 1 f+( ),=

x 2n 2/ 1 f+( )1 2/ .=

127 n+ 127 n 2.⁄+ 127 n+( ) 2⁄ 127 2.⁄+
x

rep x( ) k rep x( ) 1>>
s( ),+
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and minimum error for a given value of k, we obtain the program shown
below. It includes one step of Newton-Raphson iteration.

For normal numbers, the relative error ranges from 0 to approximately
0.000601. It gets the correct result for  and  (inf and NaN,
respectively). For  the result is approximately  For

 the result is the rather useless  For x a positive
denorm, the result is either within the stated tolerance or is a positive number
less than 

The Newton step uses division, so on most machines the program is not as
fast as that for the reciprocal square root.

If a second Newton step is added, the relative error for normal numbers
ranges from 0 to approximately 0.00000023. The optimal constant is
0x1FBB3F80. If no Newton step is included, the relative error is slightly less
than ±0.035, using a constant of 0x1FBB4F2E. This is about the same as the
relative error of the reciprocal square root routine without a Newton step, and
like it, uses only two integer operations.

3. Yes, one can do cube roots of positive normal numbers with basically the same
method. The key statement is the first approximation:

   i = 0x2a51067f + i/3;       // Initial guess.

This computes the cube root with a relative error of approximately ±0.0316.
The division by 3 can be approximated with

(where the divisions by powers of 2 are implemented as right shifts). This can
be evaluated with seven instructions and slightly improved accuracy as shown
in the program below. (This division trick is discussed in Section 10–18 on
page 251.)

float asqrt(float x0) {
   union {int ix; float x;};

   x = x0;                      // x can be viewed as int.
   ix = 0x1fbb67a8 + (ix >> 1); // Initial guess.
   x = 0.5f*(x + x0/x);         // Newton step.
   return x;
}

x inf= x NaN=
x 0= 4.0 10 20–× .

x 0,–= 1.35 1019× .–

10 19– .

i
3
--- i

4
--- i

16
------ i

64
------ … i

65536
---------------+ + + +
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Although we avoided the division by 3 (at a cost of seven elementary inte-
ger instructions), there is a division and four other instructions in the Newton
step. The relative error ranges from 0 to approximately +0.00103. Thus, the
method is not as successful as in the case of reciprocal square root and square
root, but it might be useful in some situations.

If the Newton step is repeated and the same constant is used, the relative
error ranges from 0 to approximately +0.00000116.

4. Yes. The program below computes the reciprocal square root of a double-pre-
cision floating-point number with an accuracy of about ±3.5%. It is straight-
forward to improve its accuracy with one or two steps of Newton-Raphson
iteration. Using the constant 0x5fe80...0 gives a relative error in the range 0 to
approximately +0.887, and the constant 0x5fe618fdf80...0 gives a relative
error in the range  0 to approximately –0.0613.

Chapter 18: Formulas for Primes

1. Let  Such a polynomial monotonically
approaches infinity, in magnitude, as x approaches infinity. (For sufficiently
large x, the first term exceeds in magnitude the sum of the others.)

Let  be an integer such that  for all  Let 
and let r be any positive integer. Then  and

float acbrt(float x0) {
   union {int ix; float x;};

   x = x0;                      // x can be viewed as int.
   ix = ix/4 + ix/16;           // Approximate divide by 3.
   ix = ix + ix/16;
   ix = ix + ix/256;
   ix = 0x2a5137a0 + ix;        // Initial guess.
   x = 0.33333333f*(2.0f*x + x0/(x*x));  // Newton step.
   return x;
}

double rsqrtd(double x0) {
   union {long long ix; double x;};

   x = x0;
   ix = 0x5fe6ec85e8000000LL - (ix >> 1);
   return x;
}

f x( ) anxn an 1– xn 1– … a0.+ + +=

x0 f x( ) 2 x x0.> f x0( ) k,=
k 2,

f x0 rk+( ) an x0 rk+( )n an 1– x0 rk+( )n 1– ... + a0+ +=

f x0( ) a multiple of rk+=

k a multiple of rk+ .=



ptg8736757

ANSWERS TO EXERCISES 449

Thus, as r increases,  ranges over composites that increase in mag-
nitude, and hence are distinct. Therefore  takes on an infinite number of
composite values.

Another way to state the theorem is that there is no non-constant polyno-
mial in one variable that takes on only prime numbers, even for sufficiently
large values of its argument.

Example: Let  Then  and

which clearly produces ever-increasing multiples of 43 as r increases.

2. Suppose p is composite. Write the congruence as

for some integer k. Let a be a proper factor of p. Then a divides the left side,
but not the right side, so equality cannot hold.

The theorem is easily seen to be true for p = 1, 2, and 3. Suppose p is a
prime greater than 3. Then in the factorial

the first term,  is congruent to –1 modulo p. Each of the other terms is
relatively prime to p and therefore has a multiplicative inverse modulo p (see
Section 10–16 on page 240), and furthermore, the inverse is unique and not
equal to itself.

To see that the multiplicative inverse modulo a prime is not equal to itself
(except for 1 and  suppose  Then

 so that  Because p is a
prime, either  or  is congruent to 0 modulo p. In the former case

 and in the latter case 
Therefore, the integers  can be paired so that the prod-

uct of each pair is congruent to 1 modulo p. That is,

where a and b are multiplicative inverses, as are c and d, and so forth. Thus

f x0 rk+( )
f x( )

f x( ) x2 x 41.+ += f 1( ) 43=

f 1 43r+( ) 1 43r+( )2 1 43r+( ) 41+ +=

1 86r 432r2+ +( ) 1 43r+( ) 41+ +=

1 1 41 86r 432r2 43r+ + + + +=
43 2 43r 1+ +( ) 43r+=

p 1–( )! pk 1,–=

p 1–( )! p 1–( ) p 2–( )··· 3( ) 2( ),=

p 1,–

p 1),– a2 1  (mod p).
a2 1– 0  (mod p), a 1–( ) a 1+( ) 0  (mod p).

a 1– a 1+
a 1  (mod p) a 1– p 1  (mod p).–

p 2, p– 3, …, 2–

p 1–( )! p 1–( ) ab( ) cd( )…,=

p 1–( )! 1–( ) 1( ) 1( )… 1  (mod p).–
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Example, p = 11:  10! (mod 11) 

The theorem is named for John Wilson, a student of the English mathema-
tician Edward Waring. Waring announced it without proof in 1770. The first
published proof was by Lagrange in 1773. The theorem was known in medi-
eval Europe around 1000 AD.

3. If  with a and b distinct and neither equal to 1 or n, then clearly a and
b are less than n and hence are terms of  Therefore n divides

If  then for a > 2,  so that both a and 2a are terms
of  Therefore  divides 

4. This is probably a case in which a calculation gives more insight into a math-
ematical truth than does a formal proof.

According to Mills’s theorem, there exists a real number  such that
 is prime for all integers  Let us try the possibility that for 

the prime is 2. Then

so that

(1)

Cubing inequality (1) gives

(2)

There is a prime in this range. (From our assumption, there is a prime between
 and  Let us choose 11 for the second prime. Then, we will have

 if we further constrain (2) to

(3)

Continuing, we cube (3), giving

(4)

We are assured that there is a prime between 1331 and 1728. Let us choose the
smallest one, 1361. Further constraining (4),

10 9 8 7 6 5 4 3 2  (mod 11)
10 9 5( ) 8 7( ) 6 2( ) 4 3( )  (mod 11) 1–( ) 1( ) 1( ) 1( ) 1( )  (mod 11)

1  (mod 11).–

n ab,=
n 1–( )!.

n 1–( )!.
n a2,= a2 n 2a,>=

n 1–( )!. a2 n 1–( )!.

3n n 1. n 1,=

31 2,=

2 31 3,  or<

21 3/ 31 3/ ,  or<
1.2599… 1.4422….<

8 32 27.<

23 2 1+( )3.)
32 11=

11 32 12.<

1331 33 1728.<

1361 33 1362.<
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So far, we have shown that there exists a real number theta such that
 is prime for n = 1, 2, and 3 and, by taking 27th roots of 1361 and 1362,

that  is between 1.30637 and 1.30642.
Obviously the process can be continued. It can be shown that a limiting

value of  exists, but that is not really necessary. If, in the limit,  is an arbi-
trary number in some finite range, that still verifies Mills’s theorem.

The above calculation shows that Mills’s theorem is a little contrived. As
far as its being a formula for primes, you have to know the primes to determine

. It is like the formula for primes involving the constant

 a = 0.203005000700011000013…,

given on page 392. The theorem clearly has little to do with primes. A similar
theorem holds for any increasing sequence provided it is sufficiently dense.

The steps above calculate the smallest theta that satisfies Mills’s theorem.
It is sometimes called Mills’ constant, and it has been calculated to over 6850
decimal places [CC].

5. Suppose that there exist integers a, b, c, and d such that

(5)

Equating real and imaginary parts,

(6)

(7)

Clearly  because if  then from (6),  which has
no solution in integers.

Also  because if  then from (7), either a or d is 0. 
does not satisfy (5). Therefore  Then (5) becomes  so one of
the factors in (5) is a unit, which is not an acceptable decomposition.

From (7),  From (6),  Combining,
 or

(8)

(recall that  The left side of (8) is at least  which exceeds 
whatever the values of a and c are.

To see that 3 is prime, the equation

3n

a b 5–+( ) c d 5–+( ) 2.=

ac 5bd– 2, and=

ad bc+ 0.=

c 0, c 0,= 5bd– 2,=

b 0, b 0,= a 0=
d 0.= ac 2,=

abd b2c+ 0.= a2c 5abd– 2a.=
a2c 5b2c+ 2a,=

a2 5b2+ 2a c⁄=

c 0). a2 5,+ 2a c⁄

a2 5b2+ 3a c⁄=
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can be similarly derived, with  and  This also cannot be satisfied in
integers.

The number 6 has two distinct decompositions into primes:

We have not shown that  are primes. This can be shown by arguments
similar to those given above (although somewhat longer), but it is not really
necessary to do so to demonstrate that prime factorization is not unique in this
ring. This is because however each of these numbers might factor into primes,
the total decomposition will not be 

b 0 c 0.

6 2 3 1 5–+( ) 1 5––( ).= =

1 5–±

2 3.



ptg8736757

453

 APPENDIX  A

ARITHMETIC TABLES FOR A 
4-BIT MACHINE

In the tables in Appendix A, underlining denotes signed overflow. For example, in
Table A–1, 7 + 1 = 8, which is not representable as a signed integer on a 4-bit
machine, so signed overflow occurred.

The table for subtraction (Table A–2) assumes that the carry bit for  is
set as it would be for  so that carry is equivalent to “not borrow.”

TABLE A–1.  ADDITION
-8 -7 -6 -5 -4 -3 -2 -1

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 0 1 2 3 4 5 6 7 8 9 A B C D E F
1 1 2 3 4 5 6 7 8 9 A B C D E F 10
2 2 3 4 5 6 7 8 9 A B C D E F 10 11
3 3 4 5 6 7 8 9 A B C D E F 10 11 12
4 4 5 6 7 8 9 A B C D E F 10 11 12 13
5 5 6 7 8 9 A B C D E F 10 11 12 13 14
6 6 7 8 9 A B C D E F 10 11 12 13 14 15
7 7 8 9 A B C D E F 10 11 12 13 14 15 16

-8 8 8 9 A B C D E F 10 11 12 13 14 15 16 17
-7 9 9 A B C D E F 10 11 12 13 14 15 16 17 18
-6 A A B C D E F 10 11 12 13 14 15 16 17 18 19
-5 B B C D E F 10 11 12 13 14 15 16 17 18 19 1A
-4 C C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B
-3 D D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C
-2 E E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
-1 F F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

TABLE A–2.  SUBTRACTION (ROW – COLUMN)
-8 -7 -6 -5 -4 -3 -2 -1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 10 F E D C B A 9 8 7 6 5 4 3 2 1
1 11 10 F E D C B A 9 8 7 6 5 4 3 2
2 12 11 10 F E D C B A 9 8 7 6 5 4 3
3 13 12 11 10 F E D C B A 9 8 7 6 5 4
4 14 13 12 11 10 F E D C B A 9 8 7 6 5
5 15 14 13 12 11 10 F E D C B A 9 8 7 6
6 16 15 14 13 12 11 10 F E D C B A 9 8 7
7 17 16 15 14 13 12 11 10 F E D C B A 9 8

-8 8 18 17 16 15 14 13 12 11 10 F E D C B A 9
-7 9 19 18 17 16 15 14 13 12 11 10 F E D C B A
-6 A 1A 19 18 17 16 15 14 13 12 11 10 F E D C B
-5 B 1B 1A 19 18 17 16 15 14 13 12 11 10 F E D C
-4 C 1C 1B 1A 19 18 17 16 15 14 13 12 11 10 F E D
-3 D 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10 F E
-2 E 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10 F
-1 F 1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10

a b–
a b 1,+ +
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For multiplication (Tables A–3 and A–4), overflow means that the result can-
not be expressed as a 4-bit quantity. For signed multiplication (Table A–3), this is
equivalent to the first five bits of the 8-bit result not being all 1’s or all 0’s.

TABLE A–3.  SIGNED MULTIPLICATION

-8 -7 -6 -5 -4 -3 -2 -1
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 F8 F9 FA FB FC FD FE FF
2 0 2 4 6 8 A C E F0 F2 F4 F6 F8 FA FC FE
3 0 3 6 9 C F 12 15 E8 EB EE F1 F4 F7 FA FD
4 0 4 8 C 10 14 18 1C E0 E4 E8 EC F0 F4 F8 FC
5 0 5 A F 14 19 1E 23 D8 DD E2 E7 EC F1 F6 FB
6 0 6 C 12 18 1E 24 2A D0 D6 DC E2 E8 EE F4 FA
7 0 7 E 15 1C 23 2A 31 C8 CF D6 DD E4 EB F2 F9

-8 8 0 F8 F0 E8 E0 D8 D0 C8 40 38 30 28 20 18 10 8
-7 9 0 F9 F2 EB E4 DD D6 CF 38 31 2A 23 1C 15 E 7
-6 A 0 FA F4 EE E8 E2 DC D6 30 2A 24 1E 18 12 C 6
-5 B 0 FB F6 F1 EC E7 E2 DD 28 23 1E 19 14 F A 5
-4 C 0 FC F8 F4 F0 EC E8 E4 20 1C 18 14 10 C 8 4
-3 D 0 FD FA F7 F4 F1 EE EB 18 15 12 F C 9 6 3
-2 E 0 FE FC FA F8 F6 F4 F2 10 E C A 8 6 4 2
-1 F 0 FF FE FD FC FB FA F9 8 7 6 5 4 3 2 1

TABLE A–4.  UNSIGNED MULTIPLICATION

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 A B C D E F
2 0 2 4 6 8 A C E 10 12 14 16 18 1A 1C 1E
3 0 3 6 9 C F 12 15 18 1B 1E 21 24 27 2A 2D
4 0 4 8 C 10 14 18 1C 20 24 28 2C 30 34 38 3C
5 0 5 A F 14 19 1E 23 28 2D 32 37 3C 41 46 4B
6 0 6 C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A
7 0 7 E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69
8 0 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78
9 0 9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87
A 0 A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96
B 0 B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5
C 0 C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4
D 0 D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3
E 0 E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2
F 0 F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1
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Tables A–5 and A–6 are for conventional truncating division. Table A–5
shows a result of 8 with overflow for the case of the maximum negative number
divided by –1, but on most machines the result in this case is undefined, or the
operation is suppressed.

TABLE A–5.  SIGNED SHORT DIVISION (ROW ÷ COLUMN)
-8 -7 -6 -5 -4 -3 -2 -1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 F
2 - 2 1 0 0 0 0 0 0 0 0 0 0 0 F E
3 - 3 1 1 0 0 0 0 0 0 0 0 0 F F D
4 - 4 2 1 1 0 0 0 0 0 0 0 F F E C
5 - 5 2 1 1 1 0 0 0 0 0 F F F E B
6 - 6 3 2 1 1 1 0 0 0 F F F E D A
7 - 7 3 2 1 1 1 1 0 F F F F E D 9

-8 8 - 8 C E E F F F 1 1 1 1 2 2 4 8
-7 9 - 9 D E F F F F 0 1 1 1 1 2 3 7
-6 A - A D E F F F 0 0 0 1 1 1 2 3 6
-5 B - B E F F F 0 0 0 0 0 1 1 1 2 5
-4 C - C E F F 0 0 0 0 0 0 0 1 1 2 4
-3 D - D F F 0 0 0 0 0 0 0 0 0 1 1 3
-2 E - E F 0 0 0 0 0 0 0 0 0 0 0 1 2
-1 F - F 0 0 0 0 0 0 0 0 0 0 0 0 0 1

TABLE A–6.  UNSIGNED SHORT DIVISION (ROW ÷ COLUMN)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 - 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3 - 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0
4 - 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0
5 - 5 2 1 1 1 0 0 0 0 0 0 0 0 0 0
6 - 6 3 2 1 1 1 0 0 0 0 0 0 0 0 0
7 - 7 3 2 1 1 1 1 0 0 0 0 0 0 0 0
8 - 8 4 2 2 1 1 1 1 0 0 0 0 0 0 0
9 - 9 4 3 2 1 1 1 1 1 0 0 0 0 0 0
A - A 5 3 2 2 1 1 1 1 1 0 0 0 0 0
B - B 5 3 2 2 1 1 1 1 1 1 0 0 0 0
C - C 6 4 3 2 2 1 1 1 1 1 1 0 0 0
D - D 6 4 3 2 2 1 1 1 1 1 1 1 0 0
E - E 7 4 3 2 2 2 1 1 1 1 1 1 1 0
F - F 7 5 3 3 2 2 1 1 1 1 1 1 1 1
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Tables A–7 and A–8 give the remainder associated with conventional truncat-
ing division. Table A–7 shows a result of 0 for the case of the maximum negative
number divided by –1, but on most machines the result for this case is undefined,
or the operation is suppressed.

TABLE A–7.   REMAINDER FOR SIGNED SHORT DIVISION (ROW ÷ COLUMN)
-8 -7 -6 -5 -4 -3 -2 -1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
2 - 0 0 2 2 2 2 2 2 2 2 2 2 2 0 0
3 - 0 1 0 3 3 3 3 3 3 3 3 3 0 1 0
4 - 0 0 1 0 4 4 4 4 4 4 4 0 1 0 0
5 - 0 1 2 1 0 5 5 5 5 5 0 1 2 1 0
6 - 0 0 0 2 1 0 6 6 6 0 1 2 0 0 0
7 - 0 1 1 3 2 1 0 7 0 1 2 3 1 1 0

-8 8 - 0 0 E 0 D E F 0 F E D 0 E 0 0
-7 9 - 0 F F D E F 0 9 0 F E D F F 0
-6 A - 0 0 0 E F 0 A A A 0 F E 0 0 0
-5 B - 0 F E F 0 B B B B B 0 F E F 0
-4 C - 0 0 F 0 C C C C C C C 0 F 0 0
-3 D - 0 F 0 D D D D D D D D D 0 F 0
-2 E - 0 0 E E E E E E E E E E E 0 0
-1 F - 0 F F F F F F F F F F F F F 0

TABLE A–8.  REMAINDER FOR UNSIGNED SHORT DIVISION (ROW ÷ COLUMN)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 - 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 - 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2
3 - 0 1 0 3 3 3 3 3 3 3 3 3 3 3 3
4 - 0 0 1 0 4 4 4 4 4 4 4 4 4 4 4
5 - 0 1 2 1 0 5 5 5 5 5 5 5 5 5 5
6 - 0 0 0 2 1 0 6 6 6 6 6 6 6 6 6
7 - 0 1 1 3 2 1 0 7 7 7 7 7 7 7 7
8 - 0 0 2 0 3 2 1 0 8 8 8 8 8 8 8
9 - 0 1 0 1 4 3 2 1 0 9 9 9 9 9 9
A - 0 0 1 2 0 4 3 2 1 0 A A A A A
B - 0 1 2 3 1 5 4 3 2 1 0 B B B B
C - 0 0 0 0 2 0 5 4 3 2 1 0 C C C
D - 0 1 1 1 3 1 6 5 4 3 2 1 0 D D
E - 0 0 2 2 4 2 0 6 5 4 3 2 1 0 E
F - 0 1 0 3 0 3 1 7 6 5 4 3 2 1 0
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 APPENDIX  B

NEWTON’S METHOD

To review Newton’s method very briefly, we are given a differentiable function f
of a real variable x and we wish to solve the equation  for x. Given a
current estimate  of a root of f, Newton’s method gives us a better estimate

 under suitable conditions, according to the formula

Here,  is the derivative of f at  The derivation of this formula can be
read off the figure below (solve for ).

The method works very well for simple, well-behaved functions such as poly-
nomials, provided the first estimate is quite close. Once an estimate is sufficiently
close, the method converges quadratically. That is, if r is the exact value of the
root, and  is a sufficiently close estimate, then

Thus, the number of digits of accuracy doubles with each iteration (e.g., if
 then ).

If the first estimate is way off, then the iterations may converge very slowly,
may diverge to infinity, may converge to a root other than the one closest to the
first estimate, or may loop among certain values indefinitely.

This discussion has been quite vague because of phrases like “suitable condi-
tions,” “well-behaved,” and “sufficiently close.” For a more precise discussion,
consult almost any first-year calculus textbook.

In spite of the caveats surrounding this method, it is occasionally useful in the
domain of integers. To see whether or not the method applies to a particular

f x( ) 0=
xn

xn 1+ ,

xn 1+ xn
f xn( )

f xn( )
------------.–=

f xn( ) x xn.=
xn 1+

xn+1 xn

f (xn) f (xn ) = 
f(xn)

xn – xn+1

slope =

y = f(x)

y

x

xn

xn 1+ r– xn r–( )2.

xn r– 0.001, xn 1+ r– 0.000001
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function, you have to work it out, such as is done in Section 11–1, “Integer Square
Root,” on page 279.

Table B–1 gives a few iterative formulas derived from Newton’s method, for
computing certain numbers. The first column shows the number it is desired to
compute. The second column shows a function that has that number as a root. The
third column shows the right-hand side of Newton’s formula corresponding to that
function.

It is not always easy, incidentally, to find a good function to use. There are,
of course, many functions that have the desired quantity as a root, and only a few
of them lead to a useful iterative formula. Usually, the function to use is a sort of
inverse of the desired computation. For example, to find  use 
to find  use  and so on.1

The iterative formula for  converges (to ) even if the multiplier
 is altered somewhat (for example, to 1, or to 2). However, it then con-

verges more slowly. A value of 3/2 or 23/16 might be useful in some applications
(  1.4427).

TABLE B–1.  NEWTON’S METHOD FOR COMPUTING CERTAIN NUMBERS

Quantity to Be 
Computed Function Iterative Formula

1. Newton’s method for the special case of the square root function was known to Babylonians
about 4,000 years ago.

a f x( ) x2 a;–=
log2 a f x( ) 2x a,–=

a x2 a–
1
2
--- xn

a
xn
----+

a3 x3 a–
1
3
--- 2xn

a
xn

2
-----+

1
a

------- x 2– a–
xn
2
---- 3 axn

2–( )

1
a
--- x 1– a– xn 2 axn–( )

log2 a 2x a– xn
1

ln 2
--------- a

2xn
------ 1–+

log2 a log2 a
1 ln2⁄

1 ln2⁄
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 APPENDIX  C

A GALLERY OF GRAPHS OF 
DISCRETE FUNCTIONS

This appendix shows plots of a number of discrete functions. They were produced
by Mathematica. For each function, two plots are shown: one for a word size of
three bits and the other for a word size of five bits. This material was suggested by
Guy Steele.

C–1  Plots of Logical Operations on Integers
This section includes 3D plots of and(x, y), or(x, y), and xor(x, y) as functions of
integers x and y, in Figures C–1, C–2, and C–3, respectively.

FIGURE C–1.  Plots of the logical and function.

FIGURE C–2. Plots of the logical or function.
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In Figure C–3, almost half of the points are hidden behind the diagonal plane

For and(x, y) (Figure C–1), a certain self-similar, or fractal, pattern of trian-
gles is apparent. If the figure is viewed straight on parallel to the y-axis and taken
to the limit for large integers, the appearance would be as shown in Figure C–4.

This is much like the Sierpinski triangle [Sagan], except Figure C–4 uses right tri-
angles whereas Sierpinski used equilateral triangles. In Figure C–3, a pattern
along the slanted plane is evident that is precisely the Sierpinski triangle if carried
to the limit.

FIGURE C–3.  Plots of the logical exclusive or function.

FIGURE C–4. Self-similar pattern made by and(x, y).
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C–2   Plots of Addition, Subtraction, and Multiplication
This section includes 3D plots of addition, subtraction, and three forms of multi-
plication of unsigned numbers, using “computer arithmetic,” in Figures C–5
through C–9. Note that for the plot of the addition operation, the origin is the far-
left corner.

In Figure C–7, the vertical scales are compressed; the highest peaks in the left
figure are of height 7·7 = 49.

FIGURE C–5. Plots of x + y (computer arithmetic).

FIGURE C–6. Plots of x – y (computer arithmetic).

0

2

4

6

8

x

0

2

4

6

8

y

0

2

4

6

8

x

0

8

16

24

32

x

0

8

16

24

32

y

0

8

16

24

32

x

0

2

4

6

8

x

0

2

4

6

8

y

0

2

4

6

8

x

0

8

16

24

32

x

0

8

16

24

32

y

0

8

16

24

32

x



ptg8736757

462 A GALLERY OF GRAPHS OF DISCRETE FUNCTIONS C–2

FIGURE C–7. Plots of the unsigned product of x and y.

FIGURE C–8. Plots of the low-order half of the unsigned product of x and y.

FIGURE C–9. Plots of the high-order half of the unsigned product of x and y.
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C–3  Plots of Functions Involving Division
This section includes 3D plots of the quotient, remainder, greatest common divi-
sor, and least common multiple functions of nonnegative integers x and y, in Fig-
ures C–10, C–11, C–12, and C–13, respectively. Note that in Figure C–10, the
origin is the rightmost corner.

FIGURE C–10. Plots of the integer quotient function x÷y.

FIGURE C–11. Plots of the remainder function rem(x, y).
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In Figure C–13, the vertical scales are compressed; the highest peaks in the
left figure are of height LCM(6, 7) = 42.

C–4  Plots of the Compress, SAG, and Rotate Left Functions
This section includes 3D plots of compress(x, m), SAG(x, m), and rotate left

 as functions of integers x, m, and r, in Figures C–14, C–15, and C–16,
respectively

For compress and SAG, m is a mask. For compress, bits of x selected by m
are extracted and compressed to the right, with 0-fill on the left. For SAG, bits of x
selected by m are compressed to the left, and the unselected bits are compressed to
the right.

FIGURE C–12. Plots of the greatest common divisor function GCD(x, y).

FIGURE C–13. Plots of the least common multiple function LCM(x, y).
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FIGURE C–14. Plots of the generalized extract, or compress(x, m) function.

FIGURE C–15. Plots of the sheep and goats function SAG(x, m).

FIGURE C–16. Plots of the rotate left function 
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C–5  2D Plots of Some Unary Functions
Figures C–17 through C–21 show 2D plots of some unary functions on bit strings
that are reinterpreted as functions on integers. Like the 3D plots, these were also
produced by Mathematica. For most functions, two plots are shown: one for a
word size of four bits and the other for a word size of seven bits.

“Gray code function” refers to a function that maps an integer that represents
a displacement or rotation amount to the Gray encoding for that displacement or
rotation amount. The inverse Gray code function maps a Gray encoding to a dis-
placement or rotation amount. See Figure 13–1 on page 313.

FIGURE C–17. Plots of the Gray code function.

FIGURE C–18. Plots of the inverse Gray code function.

FIGURE C–19. Plots of the ruler function (number of trailing zeros).
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Figure C–22 shows what happens to a deck of 16 cards, numbered 0 to 15,
after one, two, and three outer perfect shuffles (in which the first and last cards do
not move). The x coordinate is the original position of a card, and the y coordinate
is the final position of that card after one, two, or three shuffles. Figure C–23 is
the same for one, two, and three perfect inner shuffles. Figures C–24 and C–25 are
for the inverse operations.

FIGURE C–20. Plots of the population count function (number of 1-bits).

FIGURE C–21. Plots of the bit reversal function.

FIGURE C–22. Plots of the outer perfect shuffle function.
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FIGURE C–23. Plots of the inner perfect shuffle function.

FIGURE C–24. Plots of the outer perfect unshuffle function.

FIGURE C–25. Plots of the inner perfect unshuffle function.
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Figures C–26 and C–27 show the mapping that results from shuffling the bits
of an integer of four and eight bits in length. Informally,

shuffleBits(x) = asInteger(shuffle(bits(x)))

FIGURE C–26. Plots of the outer perfect shuffle bits function.

FIGURE C–27. Plots of the inner perfect shuffle bits function.
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INDEX

0-bits, leading zeros. See nlz function.
0-bits, trailing zeros. See also ntz (number

of trailing zeros) function.
counting, 107–114.
detecting, 324. See also CRC (cyclic 

redundancy check).
plots and graphs, 466

0-bytes, finding, 117–121
1-bits, counting. See Counting bits.
3:2 compressor, 90–95
The 16 Boolean binary operations, 53–57

A
Absolute value

computing, 18
multibyte, 40–41
negative of, 23–26

add instruction
condition codes, 36–37
propagating arithmetic bounds, 70–73

Addition
arithmetic tables, 453
combined with logical operations, 

16–17
double-length, 38–39
multibyte, 40–41
of negabinary numbers, 301–302
overflow detection, 28–29
plots and graphs, 461
in various number encodings, 304–305

Advanced Encryption Standard, 164
Alternating among values, 48–51
Alverson's method, 237–238
and

plots and graphs, 459
in three instructions, 17

and with complement, 131
Answers to exercises, by chapter

1: Introduction, 405–406
2: Basics, 407–415
3: Power-of-2 Boundaries, 415–416
4: Arithmetic Bounds, 416–417
5: Counting Bits, 417–418

6: Searching words, 418–423
7: Rearranging Bits and Bytes, 

423–425
8: Multiplication, 425–428
9: Integer Division, 428–430
10: Integer Division by Constants, 

431–434
11: Some Elementary Functions, 

434–435
12: Unusual Bases for Number Sys-

tems, 435–439
13: Gray Code, 439–441
14: Cyclic Redundancy Check, 

441–442
15: Error-Correcting Codes, 442–445
16: Hilbert's Curve, 446
17: Floating-Point, 446–448
18: Formulas for Primes, 448–452

Arithmetic, computer vs. ordinary, 1
Arithmetic bounds

checking, 67–69
of expressions, 70–71
propagating through, 70–73
range analysis, 70
searching for values in, 122

Arithmetic tables, 4-bit machine, 453–456
Arrays

checking bounds. See Arithmetic 
bounds.

counting 1-bits, 89–96
indexes, checking. See Arithmetic 

bounds.
indexing a sparse array, 95
permutation, 161–163
rearrangements, 165–166
of short integers, 40–41

Autodin-II polynomial, 323
Average, computing, 19, 55–56

B
Base –1 + i number system, 306–308

extracting real and imaginary parts, 310
Base –1 – i number system, 308–309
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Base –2 number system, 299–306
Gray code, 315
rounding down, 310

Basic RISC instruction set, 5–6
Basic, Wang System 2200B, 55
Big-endian format, converting to little-

endian, 129
Binary decomposition, integer exponentia-

tion, 288–290
Binary forward error-correcting block 

codes (FEC), 331
Binary search

counting leading 0's, 99–104
integer logarithm, 291–297
integer square root, 279–287

Bit matrices, multiplying, 98
Bit operations

compress operation, 150–156
computing parity. See Parity.
counting bits. See Counting bits.
finding strings of 1-bits, 123–128
flipping bits, 135
general permutations, 161–165
generalized bit reversal, 135
generalized extract, 150–156
half shuffle, 141
inner perfect shuffle, plots and graphs, 

468–469
inner perfect unshuffle, plots and 

graphs, 468
inner shuffle, 139–141
numbering schemes, 1
outer shuffle, 139–141, 373
perfect shuffle, 139–141
reversing bits. See Reversing bits and 

bytes.
on rightmost bits. See Rightmost bits.
searching words for bit strings, 107, 

123–128
sheep and goats operation, 161–165
shuffling bits, 139–141, 165–166
transposing a bit matrix, 141–150
unshuffling bits, 140–141, 150, 162

Bit reversal function, plots and graphs, 467
Bit vectors, 1
bitgather instruction, 163–165
Bits. See specific topics.
bitsize function, 106–107

Bliss, Robert D., xv
Bonzini, Paolo, 263
BOOL function, 54–55
Boole, George, 54
Boolean binary operations, all 16, 53–57
Boolean decomposition formula, 51–53, 

56–57
Boundary crossings, powers of 2, 63–64
Bounds, arithmetic. See Arithmetic 

bounds.
Bounds checking. See Checking arithmetic 

bounds.
branch on carry and register result non-

zero instruction, 63
Bytes. See also specific topics.

definition, 1
finding first 0-byte, 117–121

C
C language

arithmetic on pointers, 105, 240
GNU extensions, 105
iIterative statements, 4, 10
referring to same location with different 

types, 104
representation of character strings, 117
summary of elements, 2–4

Caches, 166-167
Carry-save adder (CSA) circuit, 90–95
CCITT (Le Comité Consultatif Internatio-

nale...), 321
Ceiling function, identities, 183–184
Chang, Albert, 123
Character strings, 117
Check bits

Hamming code, 332
SEC-DED code, 334–335

Checking arithmetic bounds, 67–69
Chinese ring puzzle, 315
Chipkill technology, 336
Code, definition, 343
Code length, 331, 343
Code rate, 343
Code size, 343
Comparison predicates

from the carry bit, 26–27
definition, 23
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number of leading zeros (nlz) function, 
23–24, 107

signed comparisons, from unsigned, 25
true/false results, 23
using negative absolute values, 23–26

Comparisons
computer evaluation of, 27
floating-point comparisons using inte-

ger operations, 381–382
three-valued compare function, 21–22.

See also sign function.
Compress function, plots and graphs, 

464–465
compress operation, 119, 150–161

with insert and extract instruc-
tions, 155–156

Computability test, right-to-left, 13–14, 55
Computer algebra, 2–4
Computer arithmetic

definition, 1
plots and graphs, 461–463

Condition codes, 36–37
Constants

dividing by. See Division of integers by 
constants.

multiplying by, 175–178
Counting bits. See also ntz (number of 

trailing zeros) function; nlz (number
of leading zeros) function; popula-
tion count function.

1-bits in
7- and 8-bit quantities, 87
an array, 89–95
a word, 81–88

bitsize function, 106–107
comparing two words, 88–89
divide and conquer strategy, 81–82
leading 0's, with

binary search method, 99–100
floating-point methods, 104–106
population count instruction, 

101–102
rotate and sum method, 85–86
search tree method, 109
with table lookup, 86–87
trailing 0's, 107–114
by turning off 1-bits, 85

CRC (cyclic redundancy check)
background, 319–320
check bits, generating, 319–320
checksum, computing

generator polynomials, 322–323, 
329

with hardware, 324–326
with software, 327–329
with table lookup, 328–329
techniques for, 320

code vector, 319
definition, 319
feedback shift register circuit, 325–326
generator polynomial, choosing, 

322–323, 329
parity bits, 319–320
practice

hardware checksums, 324–326
leading zeros, detecting, 324
overview, 323–324
residual/residue, 324
software checksums, 327–329
trailing zeros, detecting, 324

theory, 320–323
CRC codes, generator polynomials, 322, 

323
CRC-CITT polynomial, 323
Cryptography

Advanced Encryption Standard, 164
bitgather instruction, 164–165
DES (Data Encryption Standard), 164
Rijndael algorithm, 164
SAG method, 162–165
shuffling bits, 139–141, 165
Triple DES, 164

CSA (carry-save addr) circuit, 90–95
Cube root, approximate, floating-point, 389
Cube root, integer, 287–288
Curves. See also Hilbert's curve.

Peano, 371–372
space-filling, 355–372

Cycling among values, 48–51

D
Davio decomposition, 51-53, 56–57
de Bruijn cycles, 111–112
de Kloet, David, 55
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De Morgan's laws, 12–13
DEC PDP-10 computer, xiii, 84
Decryption. See Cryptography.
DES (Data Encryption Standard), 164
Dietz's formula, 19, 55
difference or zero (doz) function, 41–45
Distribution of leading digits, 385–387
Divide and conquer strategy, 81–82
Division

arithmetic tables, 455
doubleword

from long division, 197–202
signed, 201–202
by single word, 192–197
unsigned, 197–201

floor, 181–182, 237
modulus, 181–182, 237
multiword, 184–188
of negabinary numbers, 302–304
nonrestoring algorithm, 192–194
notation, 181
overflow detection, 34–36
plots and graphs, 463–464
restoring algorithm, 192–193
shift-and-subtract algorithms (hard-

ware), 192–194
short, 189–192, 195–197
signed

computer, 181
doubleword, 201–202
long, 189
multiword, 188
short, 190–192

unsigned
computer, 181
doubleword, 197–201
long, 192–197
short from signed, 189–192

Division of integers by constants
by 3, 207–209, 276–277
by 5 and 7, 209–210
exact division

converting to, 274–275
definition, 240
multiplicative inverse, Euclidean 

algorithm, 242–245
multiplicative inverse, Newton's 

method, 245–247

multiplicative inverse, samples, 
247–248

floor division, 237
incorporating into a compiler, signed, 

220–223
incorporating into a compiler, 

unsigned, 232–234
magic numbers

Alverson's method, 237–238
calculating, signed, 212–213, 

220–223
calculating, unsigned, 231–234
definition, 211
sample numbers, 238–239
table lookup, 237
uniqueness, 224

magicu algorithm, 232–234
magicu2 algorithm, 236
modulus division, 237
remainder by multiplication and shift-

ing right
signed, 273–274
unsigned, 268–272

remainder by summing digits
signed, 266–268
unsigned, 262–266

signed
by divisors  –2, 218–220
by divisors  2, 210–218
by powers of 2, 205–206
incorporating into a compiler, 

220–223
not using mulhs (multiply high 

signed), 259–262
remainder by multiplication and 

shifting right, 273–274
remainder by summing digits, 

266–268
remainder from powers of 2, 

206–207
test for zero remainder, 250–251
uniqueness, 224

timing test, 276
unsigned

best programs for, 234–235
by 3 and 7, 227–229
by divisors  1, 230–232
by powers of 2, 227
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Division of integers by constants, unsigned 
(continued)
incorporating into a compiler, 

232–234
incremental division and remainder 

technique, 232–234
not using mulhu (multiply high 

unsigned) instruction, 251–259
remainder by multiplication and 

shifting right, 268–272
remainder by summing digits, 

262–266
remainder from powers of 2, 227
test for zero remainder, 248–250

Double buffering, 46
Double-length addition/subtraction, 38–39
Double-length shifts, 39–40
Doubleword division

by single word, 192–197
from long division, 197–202
signed, 201–202
unsigned, 197–201

Doublewords, definition, 1
doz (difference or zero) function, 41–45
Dubé, Danny, 112

E
ECCs (error-correcting codes)

check bits, 332
code, definition, 343
code length, 331, 343
code rate, 343
code size, 343
coding theory problem, 345–351
efficiency, 343
FEC (binary forward error-correcting 

block codes), 331
Gilbert-Varshamov bound, 348–350
Hamming bound, 348, 350
Hamming code, 332-342

converting to SEC-DED code, 
334–337

extended, 334–337
history of, 335–337
overview, 332–334
SEC-DED on 32 information bits, 

337–342

Hamming distance, 95, 343–345
information bits, 332
linear codes, 348–349
overview, 331, 342–343
perfect codes, 333, 349, 352
SEC (single error-correcting) codes, 

331
SEC-DED (single error-correcting, 

double error-detecting) codes
on 32 information bits, 337–342
check bits, minimum required, 335
converting from Hamming code, 

334–337
definition, 331

singleton bound, 352
sphere-packing bound, 348, 350
spheres, 347–351

Encryption. See Cryptography.
End-around-carry, 38, 56, 304–305
Error detection, digital data. See CRC 

(cyclic redundancy check).
Estimating multiplication overflow, 33–34
Euclidean algorithm, 242–245
Euler, Leonhard, 392
Even parity, 96
Exact division

definition, 240
multiplicative inverse, Euclidean algo-

rithm, 242–245
multiplicative inverse, Newton's 

method, 245–247
multiplicative inverse, samples, 

247–248
overview, 240–242

Exchanging
conditionally, 47
corresponding register fields, 46
two fields in same register, 47
two registers, 45–46

exclusive or
plots and graphs, 460
propagating arithmetic bounds through, 

77–78
scan operation on an array of bits, 97
in three instructions, 17

Execution time model, 9–10
Exercise answers. See Answers to exercises.
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Expand  operation, 156–157, 159–161
Exponentiation

by binary decomposition, 288–290
in Fortran, 290

Extended Hamming code, 334–342
on 32 information bits, 337-342

Extract, generalized, 150–156

F
Factoring, 178
FEC (binary forward error-correcting 

block codes), 331
feedback shift register circuit, 325–326
Fermat numbers, 391
FFT (Fast Fourier Transform), 137–139
find leftmost 0-byte, 117–121
find rightmost 0-byte, 118–121
Finding

decimal digits, 122
first 0-byte, 117–121
first uppercase letter, 122
length of character strings, 117
next higher number, same number of 1-

bits, 14–15
the nth prime, 391–398, 403
strings of 1-bits

first string of a given length, 
123–125

longest string, 125–126
shortest string, 126–128

values within arithmetic bounds, 122
Flipping bits, 135
Floating-point numbers, 375–389

distribution of leading digits, 385–387
formats (single/double), 375–376
gradual underflow, 376
IEEE arithmetic standard, 375
IEEE format, 375–377
NaN (not a number), 375–376
normalized, 375–377
subnormal numbers, 375–377
table of miscellaneous values, 387–389
ulp (unit in the last position), 378

Floating-point operations
approximate cube root, 389
approximate reciprocal square root, 

383–385

approximate square root, 389
comparing using integer operations, 

381–382
conversion table, 378–381
converting to/from integers, 377–381
counting leading 0's with, 104–106
simulating, 107

Floor division, 181–182, 237
Floor function, identities, 183, 202–203
Floyd, R. W., 114
Formula functions, 398–403
Formulas for primes, 391–403
Fortran

IDIM function, 44
integer exponentiation, 290
ISIGN function, 22
MOD function, 182

Fractal triangles, plots and graphs, 460
Full adders, 90
Full RISC instruction set, 7
Fundamental theorem of arithmetic, 404

G
Gardner, Martin, 315
Gaudet, Dean, 110
Gaudet's algorithm, 110
generalized extract operation, 150–156
Generalized unshuffle. See SAG (sheep 

and goats) operation.
Generator polynomials, CRC codes, 

321–323
Gilbert-Varshamov bound, 348–350
Golay, M. J. E., 331
Goryavsky, Julius, 103
Gosper, R. W.

iterating through subsets, 14–15
loop-detection, 114–116

Gradual underflow, 376
Graphics-rendering, Hilbert's curve, 

372–373
Graphs. See Plots and graphs.
Gray, Frank, 315
Gray code

applications, 315–317
balanced, 317
converting integers to, 97, 312–313
cyclic, 312
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definition, 311
history of, 315–317
incrementing Gray-coded integers, 

313–315
negabinary Gray code, 315
plots and graphs, 466
reflected, 311–312, 315
single track (STGC), 316–317

Greatest common divisor function, plots 
and graphs, 464

GRP instruction, 165

H
Hacker, definition, xvi
HAKMEM (hacks memo), xiii
Half shuffle, 141
Halfwords, 1
Hamiltonian paths, 315
Hamming, R. W., 331
Hamming bound, 348, 350
Hamming code

on 32 information bits, 337–342
converting to SEC-DED code, 334–337
extended, 334–337
history of, 335–337
overview, 332–334
perfect, 333, 352

Hamming distance, 95, 343–345
triangle inequality, 352

Hardware checksums, 324–326
Harley, Robert, 90, 101
Harley's algorithm, 101, 103
Hexadecimal floating-point, 385
High-order half of product, 173–174
Hilbert, David, 355
Hilbert's curve. See also Space-filling 

curves.
applications, 372–373
coordinates from distance

curve generator driver program, 359
description, 358–366
Lam and Shapiro method, 362–364, 

368
parallel prefix operation, 3

65–366
state transition table, 361, 367

description, 355–356

distance from coordinates, 366–368
generating, 356–358
illustrations, 355, 357
incrementing coordinates, 368–371
non-recursive generation, 371
ray tracing, 372
three-dimensional analog, 373

Horner's rule, 49

I
IBM

Chipkill technology, 336
Harvest computer, 336
PCs, error checking, 336
PL/I language, 54
Stretch computer, 81, 336
System/360 computer, 385
System/370 computer, 63

IDIM function, 44
IEEE arithmetic standard, 375
IEEE format, floating-point numbers, 

375–377
IEEE Standard for Floating-Point Arith-

metic, 375
Image processing, Hilbert's curve, 372
Incremental division and remainder tech-

nique, 232–234
Inequalities, logical and arithmetic expres-

sions, 17–18
Information bits, 332
Inner perfect shuffle function, plots and 

graphs, 468–469
Inner perfect unshuffle function, plots and 

graphs, 468
Inner shuffle, 139–141
insert instruction, 155–156
Instruction level parallelism, 9
Instruction set for this book, 5–8
integer cube root function, 287–288, 297
Integer exponentiation, 288–290
integer fourth root function, 297
integer log base 2 function, 106, 291
integer log base 10 function, 292–297
Integer quotient function, plots and graphs, 

463
integer remainder function, 463
integer square root function, 279–287
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Integers. See also specific operations on 
integers.

complex, 306–309
converting to/from floating-point, 

377–381
converting to/from Gray code, 97, 

312–313
reversed, incrementing, 137–139
reversing, 129–137

Inverse Gray code function
formula, 312
plots and graphs, 466

An Investigation of the Laws of Thought,
54

ISIGN (transfer of sign) function, 22
Iterating through subsets, 14–15
ITU-TSS (International Telecommunica-

tions Union...), 321
ITU-TSS polynomial, 323

K
Knuth, Donald E., 132
Knuth's Algorithm D, 184–188
Knuth's Algorithm M, 171–172, 174–175
Knuth's mod operator, 181
Kronecker, Leopold, 375

L
Lam and Shapiro method, 362–364, 368
Landry, F., 391
Leading 0's, counting, 99–106. See also nlz 

(number of leading zeros) function.
Leading 0’s, detecting, 324. See also CRC 

(cyclic redundancy check).
Leading digits, distribution, 385–387
Least common multiple function, plots and 

graphs, 464
Linear codes, 348–349
Little-endian format, converting to/from 

big-endian, 129
load word byte-reverse (lwbrx) instruc-

tion, 118
Logarithms

binary search method, 292–293
definition, 291
log base 2, 106–107, 291
log base 10, 291–297

table lookup, 292, 294–297
Logical operations

with addition and subtraction, 16–17
and, plots and graphs, 459
binary, table of, 17
exclusive or, plots and graphs, 460
or, plots and graphs, 459
propagating arithmetic bounds through, 

74–76, 78
tight bounds, 74–78

Logical operators on integers, plots and 
graphs, 459–460

Long Division, definition, 189
Loop detection, 114–115
LRU (least recently used) algorithm, 

166–169
lwbrx (load word byte-reverse) instruc-

tion, 118

M
MacLisp, 55
magic algorithm

incremental division and remainder 
technique, 232–234

signed division, 220–223
unsigned division, 232–234

Magic numbers
Alverson's method, 237–238
calculating, signed, 212–213, 220–223
calculating, unsigned, 232–234
calculating, Python code for
definition, 211
samples, 238–239
table lookup, 237
uniqueness, 224

magicu algorithm, 232–234
in Python, 240

magicu2 algorithm, 236–237
max function, 41–45
Mills, W. H., 403
Mills’s theorem, 403–404
min function, 41–45
MIT PDP-6 Lisp, 55
MOD function (Fortran), 182
modu (unsigned modulus) function, 98
Modulus division, 181–182, 237
Moore, Eliakim Hastings, 371–372



ptg8736757

INDEX 489

mulhs (multiply high signed) instruction
division with, 207–210, 212, 218, 222, 

235
implementing in software, 173–174
not using, 259–262

mulhu (multiply high unsigned) instruction
division with, 228–229, 234–235, 238
implementing in software, 173
not using, 251–259

Multibyte absolute value, 40–41
Multibyte addition/subtraction, 40–41
Multiplication

arithmetic tables, 454
of complex numbers, 178–179
by constants, 175–178
factoring, 178
low-order halves independent of signs, 

178
high-order half of 64-bit product, 

173–174
high-order product signed from/to 

unsigned, 174–175
multiword, 171–173
of negabinary numbers, 302
overflow detection, 31–34
plots and graphs, 462

Multiplicative inverse
Euclidean algorithm, 242–245
Newton's method, 245–247, 278
samples, 247–248

multiply instruction, condition codes, 
36–37

Multiword division, 184–189
Multiword multiplication, 171–173
MUX (multiplex) operation, 42, 56, 131, 

163, 406

N
NAK (negative acknowledgment), 319
NaN (not a number), 375–376
Negabinary number system, 299–306

Gray code, 315
Negative absolute value, 23–26
Negative overflow, 30
Newton-Raphson calculation, 383
Newton's method, 457–458

integer cube root, 287–288

integer square root, 279–283
multiplicative inverse, 245–248

Next higher number, same number of 1-
bits, 14–15

Nibbles, 1
nlz (number of leading zeros) function

applications, 79, 107, 128
bitsize function, 106–107
comparison predicates, 23–24, 107
computing, 99–106
for counting trailing 0's, 107
finding 0-bytes, 118
finding strings of 1-bits, 123–124
incrementing reversed integers, 138
and integer log base 2 function, 106
rounding to powers of 2, 61

Nonrestoring algorithm, 192–194
Normalized numbers, 376
Notation used in this book, 1–4
nth prime, finding

formula functions, 398–401
Willans's formulas, 393–397
Wormell's formula, 397–398

ntz (number of trailing zeros) function
applications, 114–116
from counting leading 0's, 107
loop detection, 114–115
ruler function, 114

Number systems
base –1 + i, 306–308
base –1 – i, 308–309
base –2, 299–306, 315
most efficient base, 309–310
negabinary, 299–306, 315

O
Odd parity, 96
1-bits, counting. See Counting bits.
or

plots and graphs, 459
in three instructions, 17

Ordinary arithmetic, 1
Ordinary rational division, 181
Outer perfect shuffle bits function, plots 

and graphs, 469
Outer perfect shuffle function, plots and 

graphs, 467
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Outer perfect unshuffle function, plots and 
graphs, 468

Outer shuffle, 139–141, 373
Overflow detection

definition, 28
division, 34–36
estimating multiplication overflow, 

33–34
multiplication, 31–34
negative overflow, 30
signed add/subtract, 28–30
unsigned add/subtract, 31

P
Parallel prefix operation

definition, 97
Hilbert's curve, 364–366
inverse, 116
parity, 97

Parallel suffix operation
compress operation, 150–155
expand operation, 156–157, 159–161
generalized extract, 150–156
inverse, 116

Parity
adding to 7-bit quantities, 98
applications, 98
computing, 96–98
definition, 96
parallel prefix operation, 97
scan operation, 97
two-dimensional, 352

Parity bits, 319–320
PCs, error checking, 336
Peano, Giuseppe, 355
Peano curves, 371–372. See also Hilbert's 

curve.
Peano-Hilbert curve. See Hilbert's curve.
Perfect codes, 333, 349
Perfect shuffle, 139–141, 373
Permutations on bits, 161–165. See also

Bit operations.
Planar curves, 355. See also Hilbert's curve.
Plots and graphs, 459–469

addition, 461
bit reversal function, 467
compress function, 464–465

division, 463–464
fractal triangles, 460
Gray code function, 466
greatest common divisor function, 464
inner perfect shuffle, 468–469
inner perfect unshuffle, 468
integer quotient function, 463
inverse Gray code function, 466
least common multiple function, 464
logical and function, 459
logical exclusive or function, 460
logical operators on integers, 459–460
logical or function, 459
multiplication, 462
number of trailing zeros, 466
outer perfect shuffle, 467–469
outer perfect unshuffle, 468
population count function, 467
remainder function, 463
rotate left function, 465
ruler function, 466
SAG (sheep and goats) function, 

464–465
self-similar triangles, 460
Sierpinski triangle, 460
subtraction, 461
unary functions, 466–469
unsigned product of x and y, 462

Poetry, 278, 287
population count function. See also Count-

ing bits.
applications, 95–96
computing Hamming distance, 95
counting 1-bits, 81
counting leading 0's, 101–102
counting trailing 0's, 107–114
plots and graphs, 467

Position sensors, 315–317
Powers of 2

boundary crossings, detecting, 63–64
rounding to, 59–62, 64
signed division, 205–206
unsigned division, 227

PPERM instruction, 165
Precision, loss of, 385–386
Prime numbers

Fermat numbers, 391
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finding the nth prime
formula functions, 398–403
Willans's formulas, 393–397
Wormell's formula, 397–398

formulas for, 391–403
from polynomials, 392

Propagating arithmetic bounds
add and subtract instructions, 70–73
logical operations, 73–78
signed numbers, 71–73
through exclusive or, 77–78

PSHUFB (Shuffle Packed Bytes) instruc-
tion, 163

PSHUFD (Shuffle Packed Doublewords)
instruction, 163

PSHUFW (Shuffle Packed Words) instruc-
tion, 163

Q
Quicksort, 81

R
Range analysis, 70
Ray tracing, Hilbert's curve, 372
Rearrangements and index transforma-

tions, 165–166
Reed-Muller decomposition, 51-53, 

56–57
Reference matrix method (LRU), 166–169
Reflected binary Gray code, 311–312, 

315
Registers

exchanging, 45–46
exchanging conditionally, 47
exchanging fields of, 46–47
reversing contents of, 129–135
RISC computers, 5

Reiser, John, 113
Reiser's algorithm, 113–114
Remainder function, plots and graphs, 

463
Remainders

arithmetic tables, 456
of signed division

by multiplication and shifting right, 
273–274

by summing digits, 266–268

from non-powers of 2, 207–210
from powers of 2, 206–207
test for zero, 248–251

of unsigned division
by multiplication and shifting right, 

268–272
by summing digits, 262–266
and immediate instruction, 227
incremental division and remainder 

technique, 232–234
test for zero, 248–250

remu function, 119, 135–136
Residual/residue, 324
Restoring algorithm, 192–193
Reversing bits and bytes, 129–137

6-, 7-, 8-, and 9-bit quantities, 135–137
32-bit words, 129–135
big-endian format, converting to little-

endian, 129
definition, 129
generalized, 135
load word byte-reverse (lwbrx)

instruction, 118
rightmost 16 bits of a word, 130
with rotate shifts, 129–133
small integers, 135–137
table lookup, 134

Riemann hypothesis, 404
Right justify function, 116
Rightmost bits, manipulating, 11–12, 15

De Morgan's laws, 12–13
right-to-left computability test, 13–14, 

55
Rijndael algorithm, 164
RISC

basic instruction set, 5–6
execution time model, 9–10
extended mnemonics, 6, 8
full instruction set, 7–8
registers, 5–6

Rotate and sum method, 85–86
Rotate left function, plots and graphs, 

464–465
Rotate shifts, 37–38, 129–133
Rounding to powers of 2, 59–62, 64
Ruler function, 114, 466
Russian decomposition, 51-53, 56–57
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S
SAG (sheep and goats) operation

description, 162–165
plots and graphs, 464–465

Scan operation, 97
Seal, David, 90, 110
Search tree method, 109
Searching. See Finding.
SEC (single error-correcting) codes, 331
SEC-DED (single error-correcting, double 

error-detecting) codes
on 32 information bits, 337–342
check bits, minimum required, 335
converting from Hamming code, 

334–335
definition, 331

Select instruction, 406
Self-reproducing program, xvi
Self-similar triangles, plots and graphs, 460
shift left double operation, 39
shift right double signed operation, 39–40
shift right double unsigned operation, 39
shift right extended immediate (shrxi)

instruction, 228–229
shift right signed instruction

alternative to, for sign extension, 19–20
division by power of 2, 205–206
from unsigned, 20

Shift-and-subtract algorithm
hardware, 192–194
integer square root, 285–287

Shifts
double-length, 39–40
rotate, 37–38

Short division, 189–192, 195–196
Shroeppel's formula, 305–306
shrxi (shift right extended immediate)

instruction, 228–229
Shuffle Packed Bytes (PSHUFB) instruc-

tion, 163
Shuffle Packed Doublewords (PSHUFD)

instruction, 163
Shuffle Packed Words (PSHUFW) instruc-

tion, 163
Shuffling

arrays, 165–166
bits

half shuffle, 141

inner perfect shuffle, plots and 
graphs, 468–469

inner perfect unshuffle, plots and 
graphs, 468

inner shuffle, 139–141
outer shuffle, 139–141, 373
perfect shuffle, 139–141
shuffling bits, 139–141, 165–166
unshuffling, 140–141, 150, 162, 

165-166
Sierpinski triangle, plots and graphs, 460
Sign extension, 19–20
sign function, 20–21. See also three-valued 

compare function.
Signed bounds, 78
Signed comparisons, from unsigned, 25
Signed computer division, 181–182
Signed division

arithmetic tables, 455
computer, 181
doubleword, 201–202
long, 189
multiword, 188
short, 190–192

Signed division of integers by constants
best programs for, 225–227
by divisors  –2, 218–220
by divisors  2, 210–218
by powers of 2, 205–206
incorporating into a compiler, 

220–223
remainder from non-powers of 2, 

207–210
remainder from powers of 2, 206–207
test for zero remainder, 250–251
uniqueness of magic number, 224

Signed long division, 189
Signed numbers, propagating arithmetic 

bounds, 71–73
Signed short division, 190–192
signum function, 20–21
Single error-correcting, double error-

detecting (SEC-DED) codes. See
SEC-DED (single error-correcting, 
double error-detecting) codes.

Single error-correcting (SEC) codes, 331
snoob function, 14–15
Software checksums, 327–329
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Space-filling curves, 371–372. See also
Hilbert's curve.

Sparse array indexing, 95
Sphere-packing bound, 348–350
Spheres, ECCs (error-correcting codes), 

347–350
Square root, integer

binary search, 281–285
hardware algorithm, 285–287
Newton's method, 279–283
shift-and-subtract algorithm, 285–287

Square root, approximate, floating-point, 
389

Square root, approximate reciprocal, float-
ing-point, 383–385

Stibitz, George, 308
Strachey, Christopher, 130
Stretch computer, 81, 336
Strings. See Bit operations; Character 

strings.
strlen (string length) C function, 117
Subnormal numbers, 376
Subnorms, 376
subtract instruction

condition codes, 36–37
propagating arithmetic bounds, 70–73

Subtraction
arithmetic tables, 453
difference or zero (doz) function, 41–45
double-length, 38–39
combined with logical operations, 

16–17
multibyte, 40–41
of negabinary numbers, 301–302
overflow detection, 29–31
plots and graphs, 461

Swap-and-complement method, 362–365
Swapping pointers, 46
System/360 computer, 385
System/370 computer, 63

T
Table lookup, counting bits, 86–87
three-valued compare function, 21–22. See

also sign function.
Tight bounds

add and subtract instructions, 70–73
logical operations, 74–79

Timing test, division of integers by 
constants, 276

Toggling among values, 48–51
Tower of Hanoi puzzle, 116, 315
Trailing zeros. See also ntz (number of 

trailing zeros) function.
counting, 107–114
detecting, 324. See also CRC (cyclic 

redundancy check).
plots and graphs, 466

Transfer of sign (ISIGN) function, 22
Transposing a bit matrix

8 x 8, 141–145
32 x 32, 145–149

Triangles
fractal, 460
plots and graphs, 460
self-similar, 460
Sierpinski, 460

Triple DES, 164
True/false comparison results, 23
Turning off 1-bits, 85

U
Ulp (unit in the last position), 378
Unaligned load, 65
Unary functions, plots and graphs, 

466–469
Uniqueness, of magic numbers, 224
Unshuffling

arrays, 162
bits, 140–141, 162, 468

Unsigned division
arithmetic tables, 455
computer, 181
doubleword, 197–201
long, 192–197
short from signed, 189–192

Unsigned division of integers by constants
best programs for, 234–235
by 3 and 7, 227–229
by divisors  1, 230–232
by powers of 2, 227
incorporating into a compiler, 232–234
incremental division and remainder 

technique, 232–234
remainders, from powers of 2, 227
test for zero remainder, 248–250
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unsigned modulus (modu) function, 84
Unsigned product of x and y, plots and 

graphs, 462
Uppercase letters, finding, 122

V
Voorhies, Douglas, 373

W
Willans, C. P., 393
Willans's formulas, 393–397
Wilson's theorem, 393, 403
Word parity. See Parity.
Words

counting bits, 81–87
definition, 1
division

doubleword by single word, 192–197

Knuth's Algorithm D, 184–188
multiword, 184–189
signed, multiword, 188

multiplication, multiword, 171–173
reversing, 129–134
searching for

first 0-byte, 117–121
first uppercase letter, 122
strings of 1-bits, 123–128
a value within a range, 122

word parallel operations, 13
Wormell, C. P., 397
Wormell's formula, 397–398

Z
zbytel function, 117–121
zbyter function, 117–121
Zero means 2n, 22–23
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