
M A N N I N G

Site reliability through
controlled disruption

Mikolaj Pawlikowski
 Forewords by Casey Rosenthal
 David Rensin

1. Observability 2. Steady state 3. Hypothesis

4. Run the experiment.

Chaos Engineering

Chaos Engineering
SITE RELIABILITY THROUGH

CONTROLLED DISRUPTION

MIKOLAJ PAWLIKOWSKI

FOREWORDS BY CASEY ROSENTHAL AND DAVE RENSIN

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Toni Arritola
Technical development editor: Nick Watts

Manning Publications Co. Review editor: Mihaela Batinic
20 Baldwin Road Production editor: Deirdre S. Hiam
PO Box 761 Copy editor: Sharon Wilkey
Shelter Island, NY 11964 Proofreader: Melody Dolab

Technical proofreader: Karsten Strøbæk
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617297755
Printed in the United States of America

www.manning.com

 To my father, Maciej, who always had this inexplicable faith in my abilities.
I miss you, man.

brief contents
1 ■ Into the world of chaos engineering 1

PART 1 CHAOS ENGINEERING FUNDAMENTALS..........................17
2 ■ First cup of chaos and blast radius 19

3 ■ Observability 43

4 ■ Database trouble and testing in production 84

PART 2 CHAOS ENGINEERING IN ACTION101
5 ■ Poking Docker 103

6 ■ Who you gonna call? Syscall-busters! 169

7 ■ Injecting failure into the JVM 201

8 ■ Application-level fault injection 228

9 ■ There’s a monkey in my browser! 246

PART 3 CHAOS ENGINEERING IN KUBERNETES263
10 ■ Chaos in Kubernetes 265

11 ■ Automating Kubernetes experiments 303

12 ■ Under the hood of Kubernetes 324

13 ■ Chaos engineering (for) people 345
vii

contents
foreword xv
foreword xvii
preface xix
acknowledgments xxi
about this book xxiii
about the author xxvi
about the cover illustration xxvii

1 Into the world of chaos engineering 1
1.1 What is chaos engineering? 2
1.2 Motivations for chaos engineering 3

Estimating risk and cost, and setting SLIs, SLOs, and SLAs 3
Testing a system as a whole 5 ■ Finding emergent properties 5

1.3 Four steps to chaos engineering 6
Ensure observability 9 ■ Define a steady state 10
Form a hypothesis 10

Run the experiment and prove (or refute) your hypothesis 11

1.4 What chaos engineering is not 11
1.5 A taste of chaos engineering 13

FizzBuzz as a service 13 ■ A long, dark night 13
Postmortem 14 ■ Chaos engineering in a nutshell 15
ix

CONTENTSx
PART 1 CHAOS ENGINEERING FUNDAMENTALS................17

2 First cup of chaos and blast radius 19

2.1 Setup: Working with the code in this book 20
2.2 Scenario 21
2.3 Linux forensics 101 22

Exit codes 23 ■ Killing processes 24 ■ Out-Of-Memory
Killer 26

2.4 The first chaos experiment 29
Ensure observability 33 ■ Define a steady state 34
Form a hypothesis 34 ■ Run the experiment 34

2.5 Blast radius 36
2.6 Digging deeper 38

Saving the world 40

3 Observability 43

3.1 The app is slow 44
3.2 The USE method 45
3.3 Resources 47

System overview 48 ■ Block I/O 50 ■ Networking 54
RAM 59 ■ CPU 66 ■ OS 73

3.4 Application 75
cProfile 76 ■ BCC and Python 77

3.5 Automation: Using time series 79
Prometheus and Grafana 80

3.6 Further reading 82

4 Database trouble and testing in production 84

4.1 We’re doing WordPress 85
4.2 Weak links 86

Experiment 1: Slow disks 87 ■ Experiment 2: Slow
connection 92

4.3 Testing in production 98

CONTENTS xi
PART 2 CHAOS ENGINEERING IN ACTION......................101

5 Poking Docker 103

5.1 My (Dockerized) app is slow! 104
Architecture 105

5.2 A brief history of Docker 106
Emulation, simulation, and virtualization 106
Virtual machines and containers 107

5.3 Linux containers and Docker 110
5.4 Peeking under Docker’s hood 113

Uprooting processes with chroot 114 ■ Implementing a simple
container(-ish) part 1: Using chroot 117 ■ Experiment 1: Can
one container prevent another one from writing to disk? 119
Isolating processes with Linux namespaces 124 ■ Docker and
namespaces 127

5.5 Experiment 2: Killing processes in a different PID
namespace 129
Implementing a simple container(-ish) part 2: Namespaces 133
Limiting resource use of a process with cgroups 135

5.6 Experiment 3: Using all the CPU you can find! 141
5.7 Experiment 4: Using too much RAM 143

Implementing a simple container(-ish) part 3: Cgroups 146

5.8 Docker and networking 150
Capabilities and seccomp 154

5.9 Docker demystified 157
5.10 Fixing my (Dockerized) app that’s being slow 158

Booting up Meower 158 ■ Why is the app slow? 160

5.11 Experiment 5: Network slowness for containers
with Pumba 161
Pumba: Docker chaos engineering tool 161 ■ Chaos experiment
implementation 162

5.12 Other parts of the puzzle 166
Docker daemon restarts 166 ■ Storage for image layers 166
Advanced networking 167 ■ Security 167

CONTENTSxii
6 Who you gonna call? Syscall-busters! 169
6.1 Scenario: Congratulations on your promotion! 170

System X: If everyone is using it, but no one maintains it,
is it abandonware? 170

6.2 A brief refresher on syscalls 172
Finding out about syscalls 174 ■ Using the standard C library
and glibc 176

6.3 How to observe a process’s syscalls 178
strace and sleep 178 ■ strace and System X 182 ■ strace’s
problem: Overhead 183 ■ BPF 185 ■ Other options 187

6.4 Blocking syscalls for fun and profit part 1: strace 188
Experiment 1: Breaking the close syscall 189 ■ Experiment 2:
Breaking the write syscall 193

6.5 Blocking syscalls for fun and profit part 2: Seccomp 195
Seccomp the easy way with Docker 196 ■ Seccomp the hard way
with libseccomp 198

7 Injecting failure into the JVM 201
7.1 Scenario 202

Introducing FizzBuzzEnterpriseEdition 202 ■ Looking around
FizzBuzzEnterpriseEdition 202

7.2 Chaos engineering and Java 204
Experiment idea 204 ■ Experiment plan 206 ■ Brief
introduction to JVM bytecode 207 ■ Experiment
implementation 215

7.3 Existing tools 222
Byteman 223 ■ Byte-Monkey 225 ■ Chaos Monkey for Spring
Boot 226

7.4 Further reading 227

8 Application-level fault injection 228
8.1 Scenario 229

Implementation details: Before chaos 230

8.2 Experiment 1: Redis latency 235
Experiment 1 plan 235 ■ Experiment 1 steady state 236
Experiment 1 implementation 237 ■ Experiment 1
execution 239 ■ Experiment 1 discussion 240

CONTENTS xiii
8.3 Experiment 2: Failing requests 241
Experiment 2 plan 241 ■ Experiment 2 implementation 242
Experiment 2 execution 243

8.4 Application vs. infrastructure 243

9 There’s a monkey in my browser! 246
9.1 Scenario 247

Pgweb 247 ■ Pgweb implementation details 249

9.2 Experiment 1: Adding latency 251
Experiment 1 plan 251 ■ Experiment 1 steady state 252
Experiment 1 implementation 253 ■ Experiment 1 run 255

9.3 Experiment 2: Adding failure 256
Experiment 2 implementation 256 ■ Experiment 2 run 258

9.4 Other good-to-know topics 259
Fetch API 259 ■ Throttling 260 ■ Tooling: Greasemonkey
and Tampermonkey 261

PART 3 CHAOS ENGINEERING IN KUBERNETES..............263

10 Chaos in Kubernetes 265
10.1 Porting things onto Kubernetes 266

High-Profile Project documentation 267 ■ What’s
Goldpinger? 268

10.2 What’s Kubernetes (in 7 minutes)? 268
A very brief history of Kubernetes 269 ■ What can Kubernetes do
for you? 270

10.3 Setting up a Kubernetes cluster 272
Using Minikube 272 ■ Starting a cluster 272

10.4 Testing out software running on Kubernetes 274
Running the ICANT Project 274 ■ Experiment 1: Kill 50% of
pods 284 ■ Party trick: Kill pods in style 289 ■ Experiment 2:
Introduce network slowness 290

11 Automating Kubernetes experiments 303
11.1 Automating chaos with PowerfulSeal 303

What’s PowerfulSeal? 304 ■ PowerfulSeal installation 306
Experiment 1b: Killing 50% of pods 306 ■ Experiment 2b:
Introducing network slowness 308

CONTENTSxiv
11.2 Ongoing testing and service-level objectives 311
Experiment 3: Verifying pods are ready within (n) seconds
of being created 313

11.3 Cloud layer 318
Cloud provider APIs, availability zones 319 ■ Experiment 4:
Taking VMs down 321

12 Under the hood of Kubernetes 324
12.1 Anatomy of a Kubernetes cluster and how to break it 324

Control plane 325 ■ Kubelet and pause container 333
Kubernetes, Docker, and container runtimes 335 ■ Kubernetes
networking 338

12.2 Summary of key components 343

13 Chaos engineering (for) people 345
13.1 Chaos engineering mindset 346

Failure is not a maybe: It will happen 347 ■ Failing early vs.
failing late 347

13.2 Getting buy-in 349
Management 349 ■ Team members 350 ■ Game days 350

13.3 Teams as distributed systems 351
Finding knowledge single points of failure: Staycation 353
Misinformation and trust within the team: Liar, Liar 354
Bottlenecks in the team: Life in the Slow Lane 355 ■ Testing
your processes: Inside Job 356

13.4 Where to go from here? 357

appendix A Installing chaos engineering tools 359
appendix B Answers to the pop quizzes 367
appendix C Director’s cut (aka the bloopers) 375
appendix D Chaos-engineering recipes 379

index 385

foreword
As is often the case with new and technical areas, Chaos Engineering is a simple title for
a rich and complex topic. Many of its principles and practices are counterintuitive—
starting with its name—which makes it doubly challenging to explain. The early days
of a new topic, however, are precisely the time when we need to find and distribute the
easy-to-understand explanations.

 I’m very pleased to say this book does exactly that.
 An oft repeated scientific dictum is that “if you can’t explain it simply, then you

don’t really understand it.” I can safely say to you that Mikolaj clearly understands
chaos engineering because in these pages he explains its principles and practices with
a simplicity and practical use that is uncommon for technical books.

 This, however, brings us to the main question. Why on earth would any reasonable
person want to introduce chaos into their systems? Things are complicated enough
already in our lives, so why go looking for trouble?

 The short answer is that if you don’t look for trouble, you won’t be prepared when
it comes looking for you. And eventually, trouble comes looking for all of us.

 Testing—at least as we have all understood the term—will not be of much help. A
test is an activity you run to make sure that your system behaves in a way that you
expect under a specific set of conditions.

 The biggest source of trouble, however, is not from the conditions we were expect-
ing, but from the conditions that never occurred to us. No amount of testing will save
us from emergent properties and behaviors. For that, we need something new.

 We need chaos engineering.
xv

FOREWORDxvi
 If this is your first book on chaos engineering, you have chosen wisely. If not, then
take solace in the fact that you are about to begin a journey that will fill in the gaps of
your understanding and help you glue it all together in your mind.

 When you are finished, you will feel more comfortable (and excited) about apply-
ing chaos engineering to your systems, and probably more than a little anxious about
what you will find.

 I am very pleased to have been invited to write these words and grateful to have a
book like this available the next time someone asks me, “What is chaos engineering?”

 —DAVID K. RENSIN, Google

foreword
If Miko didn’t write this book, someone else would have to. That said, it would be
difficult to find someone with Miko’s history and experience with chaos engineering
to put such a practical approach into writing. His background with distributed sys-
tems and particularly the critical and complex systems at Bloomberg, combined with
his years of work on PowerfulSeal, give him a unique perspective. Not many people
have the time and skill of working in the trenches on chaos engineering at an enter-
prise level.

 This perspective is apparent in Miko’s pragmatic approach. Throughout the chap-
ters, we see a recurring theme that ties back to the value proposition of doing chaos
engineering in the first place: risk and contract verification, holistic assessment of an
entire system, and discovery of emergent properties.

 One of the most common questions we hear with respect to chaos engineering is
“Is it safe?” The second question is usually “How do I get started with chaos engineer-
ing?” Miko brilliantly answers both by including a virtual machine (VM) with all the
examples and code used in the book. Anyone with basic knowledge of running an
application can ease into common and then more advanced chaos engineering sce-
narios. Mess something up? No worries! Just turn off the VM and reload a new copy.
You can now get started with chaos engineering, and do so safely, as Miko facilitates
your learning journey from basic service outages (killing processes) to cache and data-
base issues through OS- and application-level experiments, being mindful of the blast
radius all the while.

 Along the way, you’ll get introduced to more advanced topics in system analysis,
like the sections on Berkeley Packet Filter (BPF), sar, strace, and tcptop—even virtual
xvii

FOREWORDxviii
machines and containers. Beyond just chaos engineering, this book is a broad educa-
tion in SRE and DevOps practices.

 The book provides examples of chaos engineering experiments across the applica-
tion layer, at the operating system level, into containers, on hardware resources, on
the network, and even in a web browser. Each of these areas alone is worthy of an
entire chapter, if not book; you get the benefit of exploring the full breadth of possi-
ble experiments with an experienced facilitator to guide you through. Miko hits dif-
ferent ways each area can be affected in just the right level of detail to give you
confidence to try it yourself in your own stack.

 It’s all very practical, without glossing over the nuances of understanding technical
trade-offs; for example, in chapter 8 Miko weighs the pros and cons of modifying
application code directly to enable an experiment (easier, more versatile) versus using
another layer of abstraction such as a third-party tool (safer, scales better across con-
texts). These are the appropriate considerations for a pragmatic and tactical approach
to implementing chaos engineering. I can say with confidence that this balance has
not been struck in the literature on this subject prior to this book, making it an instant
addition to the canon.

 If you are chaos-curious, or even if you are well-versed in the history and benefits of
chaos engineering, this book will take you step-by-step, safely, into the practice. Fol-
lowing along with the exercises will give you practical experience under your belt, and
examples and pop quizzes included in the VM reinforce the takeaway learning. You
will emerge with a better understanding of complex systems, how they work, and how
they fail. This will, of course, allow you to build, operate, and maintain systems that
are less likely to fail. The safest systems are, after all, the most complex ones.

 —CASEY ROSENTHAL

 Former manager of the Chaos Engineering Team at Netflix
 CEO and cofounder of Verica.io

preface
People often ask how I ended up doing chaos engineering. I tend to tell them that I
needed a sleeping aid. And chaos engineering is vegan-friendly and surprisingly effec-
tive for that purpose. Let me explain.

 Back in 2016, through a lucky coincidence, I started working on a cutting-edge
project based on Kubernetes. Nobody gets fired for choosing Kubernetes in 2020, but
back then it was rather risky. Kubernetes v1.2 came as a bunch of moving parts, and
bug fixes were rolling out quicker than we could install them.

 To make it work, my team needed to build real operational experience, and do it
fast. We needed to know how things worked and broke, how to fix them, and how to
get alerted when that happened. And the best way to do that, we reasoned, was to
break them preemptively.

 This practice, which I later learned to call chaos engineering for the extra cool factor,
turned out to be very effective at reducing the number of outages. And that, in turn, was
better for my sleep quality than the expensive, bamboo-coated, memory foam pillow I
have. Fast-forward a few years, and chaos engineering is one my primary interests. And
I’m not alone—it is quickly becoming an invaluable tool to engineers around the world.

 Today chaos engineering suffers from a few serious problems. In particular, the
urban myths (that it’s about randomly breaking things in production), a lack of qual-
ity content that teaches people how to do it well, and the initially counterintuitive
mindset that needs to be adopted (failure will happen, so we need to be ready).

 I wrote this book to fix these problems. I want to move chaos engineering from the
funky zone to a legitimate, science-based methodology that’s applicable to any system,
xix

PREFACExx
software or otherwise. I want to show that you don’t need to have massive scale to ben-
efit from it, and that it can give you a lot of value for a little investment.

 This book is designed for all curious software engineers and developers who want
to build more reliable systems, however tiny or humongous they might be. And it gives
them the right tools, from the Linux kernel all the way up to the application or
browser level.

 I’ve put a lot of work into making this book what it is now, and I’m hoping that you
get value—and a few laughs—out of it. And finally, let’s stay in touch. If you’d like to
hear more from me, subscribe to my newsletter at https://chaosengineering.news.
And if you like (or hate) the book, reach out and tell me all about it!

https://chaosengineering.news

acknowledgments
I’ll be honest: if I knew just how much time it would take to write this book, I’m not
sure I’d have signed up in the first place. But now that I can almost smell the freshly
printed copies, I’m really glad that I did!

 A long list of people really helped make it happen, and they all deserve a massive
thank you.

 Tinaye, thank you for the endless streams of freshly brewed tea and for taking up a
brand-new hobby to reduce my feeling of guilt about always being busy. You really
helped me get through that; thank you!

 Thank you to my good friends Sachin Kamboj and Chris Green, who somehow
managed to read through the first, unpolished drafts of these chapters. That required
true grit, and I’m very thankful.

 A massive thank you to my editor, Toni Arritola, who not only fiercely guarded the
quality of this book and always detected any slip-ups I was trying to sweep under the
carpet, but also did all of that while putting up with my sense of humor. And she never
tried explaining that it’s not spelled “humour” across the pond.

 Thank you to the rest of the staff at Manning: Deirdre Hiam, my project editor;
Sharon Wilkey, my copyeditor; Melody Dolab, my proofreader; and Karsten Strøbæk,
my technical proofreader.

 Thank you to all the reviewers: Alessandro Campeis, Alex Lucas, Bonnie Malec,
Burk Hufnagel, Clifford Thurber, Ezra Simeloff, George Haines, Harinath Mallepally,
Hugo Cruz, Jared Duncan, Jim Amrhein, John Guthrie, Justin Coulston, Kamesh
Ganesan, Kelum Prabath Senanayake, Kent R. Spillner, Krzysztof Kamyczek, Lev
xxi

ACKNOWLEDGMENTSxxii
Andelman, Lokesh Kumar, Maciej Drożdżowski, Michael Jensen, Michael Wright, Neil
Croll, Ryan Burrows, Satadru Roy, Simeon Leyzerzon, Teresa Fontanella De Santis,
Tobias Kaatz, Vilas Veeraraghavan, and Yuri Kushch, as well as Nick Watts and Karsten
Strøbæk, who relentlessly called me out on any vagueness and broken code samples.

 Thank you to my mentor, James Hook, who allowed chaos engineering to happen
in my project in the first place. That decision years later resulted in the words you’re
reading right now.

 Finally, I’d like to thank the GitHub community for being awesome. Thank you to
everyone who contributed to PowerfulSeal, Goldpinger, or other projects we worked
on together. It’s an amazing phenomenon, and I hope it never stops.

about this book
The goal of this book is to help turn chaos engineering into a mature, mainstream,
science-based practice, accessible to anyone. I strongly believe that it might offer some
of the best return on investment you can get, and I want everyone to be able to benefit
from that.

 One of the challenges of writing a book like this is that chaos engineering doesn’t
focus on any single technology or programming language. In fact, it can be used on
all kinds of stacks, which is one of its advantages. You can see that reflected in this
book—each chapter is focused on a popular situation a software engineer might find
themselves in, dealing with different languages, layers of the stack, and levels of con-
trol over the source code. The book uses Linux as the primary operating system, but
the principles it teaches are universal.

Who should read this book
This book is for anyone who wants to make their systems more reliable. Are you an
SRE? A full-stack developer? Frontend developer? Do you work with JVM, containers,
or Kubernetes? If you said yes to any of these, you will find chapters of this book writ-
ten for you. The book assumes a minimal familiarity with running day-to-day com-
mands on Linux (Ubuntu). This is not an introduction to all of these things, and I
assume a basic understanding of them so that we can dive deep (notable exceptions
are Docker and Kubernetes, which are relatively new technologies, and we do cover
how they work first).
xxiii

ABOUT THIS BOOKxxiv
How this book is organized: a roadmap
The book ships 13 chapters, split across three parts.

 After chapter 1 introduces chaos engineering and the reasons for implementing it,
part 1 lays the groundwork for further understanding what chaos engineering is about:

■ Chapter 2 shows a real-world example of how a seemingly simple application
might break in unexpected ways.

■ Chapter 3 covers observability and all the tools that you’re going to need to
look under the hood of your system.

■ Chapter 4 takes a popular application (WordPress) and shows you how to
design, execute, and analyze a chaos experiment on the networking layer.

Part 2 covers various technologies and stacks where chaos engineering shines:

■ Chapter 5 takes you from a vague idea of what Docker is, to understanding how
it works under the hood and testing its limitations using chaos engineering.

■ Chapter 6 demystifies system calls—what they are, how to see applications make
them, and how to block them to see how resistant to failure these applications are.

■ Chapter 7 shows how to inject failure on the fly into the JVM, so that you can
test how a complex application handles the types of failure you’re interested in.

■ Chapter 8 discusses baking failure directly into your application.
■ Chapter 9 covers chaos engineering . . . in the browser (using JavaScript).

Part 3 is dedicated to Kubernetes:

■ Chapter 10 introduces Kubernetes, where it came from, and what it can do
for you.

■ Chapter 11 covers some higher-level tools that let you implement sophisticated
chaos engineering experiments quickly.

■ Chapter 12 takes you deep down the rabbit hole of how Kubernetes works
under the hood. To understand its weak points, you need to know how it works.
This chapter covers all the components that together make Kubernetes tick,
along with ideas on how to identify resiliency problems using chaos engineering.

Finally, the last chapter talks about chaos engineering beyond the machines:

■ Chapter 13 shows that the same principles also apply to the other complex dis-
tributed systems that you deal with on a daily basis—human teams. It covers the
chaos engineering mindset, gives you ideas for games you can use to make your
teams more reliable, and discusses how to get buy-in from stakeholders.

About the code
The book contains various snippets of code along with the expected output to teach
you how to use different tools. The best way to run them is to use the Ubuntu VM that
ships with this book. You can download it, as well as all the source code, from https://
github.com/seeker89/chaos-engineering-book.

https://github.com/seeker89/chaos-engineering-book
https://github.com/seeker89/chaos-engineering-book

ABOUT THIS BOOK xxv
liveBook discussion forum
Purchase of Chaos Engineering includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum, go to http://mng.bz/5jEO. You can also learn more about Manning’s forums
and the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

http://mng.bz/5jEO
https://livebook.manning.com/#!/discussion

about the author
Mikolaj Pawlikowski is a software engineer in love with reliability. Yup, “Miko” is fine!

 If you’d like to hear more, join his newsletter at https://chaosengineering.news. To
reach out directly, use LinkedIn or @mikopawlikowski on Twitter.

 If you’d like to get involved in an open source chaos engineering project and hang
out virtually, check out PowerfulSeal at https://github.com/powerfulseal/powerfulseal/.
See chapter 11 for more details.

 And finally, Miko helps organize a yearly chaos engineering conference. Sign up at
https://www.conf42.com.
xxvi

https://chaosengineering.news
https://github.com/powerfulseal/powerfulseal/
https://www.conf42.com

about the cover illustration
The figure on the cover of Chaos Engineering is captioned “Homme de Buccari en Cro-
atie,” or man from Bakar (Buccari) in Croatia. The illustration is taken from a collec-
tion of dress costumes from various countries by Jacques Grasset de Saint-Sauveur
(1757–1810), titled Costumes de Différents Pays, published in France in 1797. Each illus-
tration is finely drawn and colored by hand. The rich variety of Grasset de Saint-
Sauveur’s collection reminds us vividly of how culturally apart the world’s towns and
regions were just 200 years ago. Isolated from each other, people spoke different dia-
lects and languages. In the streets or in the countryside, it was easy to identify where
they lived and what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.
xxvii

Into the world of
chaos engineering
What would you do to make absolutely sure the car you’re designing is safe? A typi-
cal vehicle today is a real wonder of engineering. A plethora of subsystems, operat-
ing everything from rain-detecting wipers to life-saving airbags, all come together
to not only go from A to B, but to protect passengers during an accident. Isn’t it
moving when your loyal car gives up the ghost to save yours through the strategic
use of crumple zones, from which it will never recover?

 Because passenger safety is the highest priority, all these parts go through rigor-
ous testing. But even assuming they all work as designed, does that guarantee you’ll
survive in a real-world accident? If your business card reads, “New Car Assessment
Program,” you demonstrably don’t think so. Presumably, that’s why every new car
making it to the market goes through crash tests.

This chapter covers
 What chaos engineering is and is not

 Motivations for doing chaos engineering

 Anatomy of a chaos experiment

 A simple example of chaos engineering in
practice
1

2 CHAPTER 1 Into the world of chaos engineering
 Picture this: a production car, heading at a controlled speed, closely observed with
high-speed cameras, in a lifelike scenario: crashing into an obstacle to test the system
as a whole. In many ways, chaos engineering is to software systems what crash tests are to the
car industry: a deliberate practice of experimentation designed to uncover systemic
problems. In this book, you’ll look at the why, when, and how of applying chaos engi-
neering to improve your computer systems. And perhaps, who knows, save some lives
in the process. What’s a better place to start than a nuclear power plant?

1.1 What is chaos engineering?
Imagine you’re responsible for designing the software operating a nuclear power
plant. Your job description, among other things, is to prevent radioactive fallout.
The stakes are high: a failure of your code can produce a disaster leaving people dead
and rendering vast lands uninhabitable. You need to be ready for anything, from
earthquakes, power cuts, floods, or hardware failures, to terrorist attacks. What do
you do?

 You hire the best programmers, set in place a rigorous review process, test cover-
age targets, and walk around the hall reminding everyone that we’re doing serious
business here. But “Yes, we have 100% test coverage, Mr. President!” will not fly at the
next meeting. You need contingency plans; you need to be able to demonstrate that
when bad things happen, the system as a whole can withstand them, and the name of
your power plant stays out of the news headlines. You need to go looking for problems
before they find you. That’s what this book is about.

 Chaos engineering is defined as “the discipline of experimenting on a system in
order to build confidence in the system’s capability to withstand turbulent conditions
in production” (Principles of Chaos Engineering, http://principlesofchaos.org/). In
other words, it’s a software testing method focusing on finding evidence of problems
before they are experienced by users.

 You want your systems to be reliable (we’ll look into that), and that’s why you work
hard to produce good-quality code and good test coverage. Yet, even if your code
works as intended, in the real world plenty of things can (and will) go wrong. The list
of things that can break is longer than a list of the possible side effects of painkillers:
starting with sinister-sounding events like floods and earthquakes, which can take
down entire datacenters, through power supply cuts, hardware failures, networking
problems, resource starvation, race conditions, unexpected peaks of traffic, complex
and unaccounted-for interactions between elements in your system, all the way to the
evergreen operator (human) error. And the more sophisticated and complex your sys-
tem, the more opportunities for problems to appear.

 It’s tempting to discard these as rare events, but they just keep happening. In 2019,
for example, two crash landings occurred on the surface of the Moon: the Indian
Chandrayaan-2 mission (http://mng.bz/Xd7v) and the Israeli Beresheet (http://mng
.bz/yYgB), both lost on lunar descent. And remember that even if you do everything
right, more often than not, you still depend on other systems, and these systems can

http://mng.bz/Xd7v
http://principlesofchaos.org/
http://mng.bz/yYgB
http://mng.bz/yYgB
http://mng.bz/yYgB

3Motivations for chaos engineering
fail. For example, Google Cloud,1 Cloudflare, Facebook (WhatsApp), and Apple all
had major outages within about a month in the summer of 2019 (http://mng.bz/
d42X). If your software ran on Google Cloud or relied on Cloudflare for routing, you
were potentially affected. That’s just reality.

 It’s a common misconception that chaos engineering is only about randomly
breaking things in production. It’s not. Although running experiments in production
is a unique part of chaos engineering (more on that later), it’s about much more than
that—anything that helps us be confident the system can withstand turbulence. It
interfaces with site reliability engineering (SRE), application and systems perfor-
mance analysis, and other forms of testing. Practicing chaos engineering can help you
prepare for failure, and by doing that, learn to build better systems, improve existing
ones, and make the world a safer place.

1.2 Motivations for chaos engineering
At the risk of sounding like an infomercial, there are at least three good reasons to
implement chaos engineering:

 Determining risk and cost and setting service-level indicators, objectives, and
agreements

 Testing a system (often complex and distributed) as a whole
 Finding emergent properties you were unaware of

Let’s take a closer look at these motivations.

1.2.1 Estimating risk and cost, and setting SLIs, SLOs, and SLAs

You want your computer systems to run well, and the subjective definition of what well
means depends on the nature of the system and your goals regarding it. Most of the
time, the primary motivation for companies is to create profit for the owners and
shareholders. The definition of running well will therefore be a derivative of the busi-
ness model objectives.

 Let’s say you’re working on a planet-scale website, called Bookface, for sharing
photos of cats and toddlers and checking on your high-school ex. Your business model
might be to serve your users targeted ads, in which case you will want to balance the
total cost of running the system with the amount of money you can earn from selling
these ads. From an engineering perspective, one of the main risks is that the entire
site could go down, and you wouldn’t be able to present ads and bring home the reve-
nue. Conversely, not being able to display a particular cat picture in the rare event of a
problem with the cat picture server is probably not a deal breaker, and will affect your
bottom line in only a small way.

 For both of these risks (users can’t use the website, and users can’t access a cat
photo momentarily), you can estimate the associated cost, expressed in dollars per

1 You can see the official, detailed Google Cloud report at http://mng.bz/BRMg.

http://mng.bz/BRMg
http://mng.bz/d42X
http://mng.bz/d42X
http://mng.bz/d42X

4 CHAPTER 1 Into the world of chaos engineering
unit of time. That cost includes the direct loss of business as well as various other, less
tangible things like public image damage, that might be equally important. As a real-
life example, Forbes estimated that Amazon lost $66,240 per minute of its website
being down in 2013.2

 Now, to quantify these risks, the industry uses service-level indicators (SLIs). In our
example, the percentage of time that your users can access the website could be an
SLI. And so could the ratio of requests that are successfully served by the cat photos
service within a certain time window. The SLIs are there to put a number to an event,
and picking the right SLI is important.

 Two parties agreeing on a certain range of an SLI can form a service-level objective
(SLO), a tangible target that the engineering team can work toward. SLOs, in turn,
can be legally enforced as a service-level agreement (SLA), in which one party agrees to
guarantee a certain SLO or otherwise pay some form of penalty if they fail to do so.

 Going back to our cat- and toddler-photo-sharing website, one possible way to work
out the risk, SLI, and SLO could look like this:

 The main risk is “People can’t access the website,” or simply the downtime
 A corresponding SLI could be “the ratio of success responses to errors from our

servers”
 An SLO for the engineering team to work toward: “the ratio of success responses

to errors from our servers > 99.95% on average monthly”

To give you a different example, imagine a financial trading platform, where people
query an API when their algorithms want to buy or sell commodities on the global
markets. Speed is critical. We could imagine a different set of constraints, set on the
trading API:

 SLI: 99th percentile response time
 SLO: 99th percentile response time < 25 ms, 99.999% of the time

From the perspective of the engineering team, that sounds like mission impossible: we
allow ourselves about only 5 minutes a year when the top 1% of the slowest requests
average over 25 milliseconds (ms) response time. Building a system like that might be
difficult and expensive.

2 See “Amazon.com Goes Down, Loses $66,240 per Minute,” by Kelly Clay, Forbes, August 2013, http://mng
.bz/ryJZ.

Number of nines
In the context of SLOs, we often talk about the number of nines to mean specific per-
centages. For example, 99% is two nines, 99.9% is three nines, 99.999% is five
nines, and so on. Sometimes, we also use phrases like three nines five or three and
a half nines to mean 99.95%, although the latter is not technically correct (going from

http://mng.bz/ryJZ
http://mng.bz/ryJZ
http://mng.bz/ryJZ

5Motivations for chaos engineering
How does chaos engineering help with these? To satisfy the SLOs, you’ll engineer the
system in a certain way. You will need to take into account the various sinister scenar-
ios, and the best way to see whether the system works fine in these conditions is to go
and create them—which is exactly what chaos engineering is about! You’re effectively
working backward from the business goals, to an engineering-friendly defined SLO,
that you can, in turn, continuously test against by using chaos engineering. Notice
that in all of the preceding examples, I am talking in terms of entire systems.

1.2.2 Testing a system as a whole

Various testing techniques approach software at different levels. Unit tests typically
cover single functions or smaller modules in isolation. End-to-end (e2e) tests and integra-
tion tests work on a higher level; whole components are put together to mimic a real
system, and verification is done to ensure that the system does what it should. Bench-
marking is yet another form of testing, focused on the performance of a piece of code,
which can be lower level (for example, micro-benchmarking a single function) or a
whole system (for example, simulating client calls).

 I like to think of chaos engineering as the next logical step—a little bit like e2e
testing, but during which we rig the conditions to introduce the type of failure we
expect to see, and measure that we still get the correct answer within the expected
time frame. It’s also worth noting, as you’ll see in part 2, that even a single-process sys-
tem can be tested using chaos engineering techniques, and sometimes that comes in
really handy.

1.2.3 Finding emergent properties

Our complex systems often exhibit emergent properties that we didn’t initially intend. A
real-world example of an emergent property is a human heart: its single cells don’t
have the property of pumping blood, but the right configuration of cells produces a
heart that keeps us alive. In the same way, our neurons don’t think, but their intercon-
nected collection that we call a brain does, as you’re illustrating by reading these lines.

 In computer systems, properties often emerge from the interactions among the
moving parts that the system comprises. Let’s consider an example. Imagine that you
run a system with many services, all using a Domain Name System (DNS) server to

99.9% to 99.95% is a factor of 2, but going from 99.9% to 99.99% is a factor of 5).
The following are a few of the most common values and their corresponding down-
times per year and per day:

 90% (one nine)—36.53 days per year, or 2.4 hours per day
 99% (two nines)—3.65 days per year, or 14.40 minutes per day
 99.95% (three and a half nines)—4.38 hours per year, or 43.20 seconds per day
 99.999% (five nines)—5.26 minutes per year, or 840 milliseconds per day

6 CHAPTER 1 Into the world of chaos engineering
find one another. Each service is designed to handle DNS errors by retrying up to 10
times. Similarly, the external users of the systems are told to retry if their requests ever
fail. Now, imagine that, for whatever reason, the DNS server fails and restarts. When it
comes back up, it sees an amount of traffic amplified by the layers of retries, an
amount that it wasn’t set up to handle. So it might fail again, and get stuck in an
infinite loop restarting, while the system as a whole is down. No component of the sys-
tem has the property of creating infinite downtime, but with the components together
and the right timing of events, the system as a whole might go into that state.

 Although certainly less exciting than the example of consciousness I mentioned
before, this property emerging from the interactions among the parts of the system is
a real problem to deal with. This kind of unexpected behavior can have serious conse-
quences on any system, especially a large one. The good news is that chaos engineer-
ing excels at finding issues like this. By experimenting on real systems, often you can
discover how simple, predictable failures can cascade into large problems. And once
you know about them, you can fix them.

Hopefully, I’ve had your curiosity and now I’ve got your attention. Let’s see how to do
chaos engineering!

1.3 Four steps to chaos engineering
Chaos engineering experiments (chaos experiments, for short) are the basic units of chaos
engineering. You do chaos engineering through a series of chaos experiments. Given
a computer system and a certain number of characteristics you are interested in, you
design experiments to see how the system fares when bad things happen. In each
experiment, you focus on proving or refuting your assumptions about how the system
will be affected by a certain condition.

 For example, imagine you are running a popular website and you own an entire
datacenter. You need your website to survive power cuts, so you make sure two inde-
pendent power sources are installed in the datacenter. In theory, you are covered—
but in practice, a lot can still go wrong. Perhaps the automatic switching between
power sources doesn’t work. Or maybe your website has grown since the launch of the
datacenter, and a single power source no longer provides enough electricity for all
the servers. Did you remember to pay an electrician for a regular checkup of the
machines every three months?

Chaos engineering and randomness
When doing chaos engineering, you can often use the element of randomness and
borrow from the practice of fuzzing—feeding pseudorandom payloads to a piece of
software in order to try to come up with an error that your purposely written tests
might be missing. The randomness definitely can be helpful, but once again, I would
like to stress that controlling the experiments is necessary to be able to understand
the results; chaos engineering is not just about randomly breaking things.

7Four steps to chaos engineering
 If you feel worried, you should. Fortunately, chaos engineering can help you sleep
better. You can design a simple chaos experiment that will scientifically tell you what
happens when one of the power supplies goes down (for more dramatic effect, always
pick the newest intern to run these steps).

 Repeat for all power sources, one at a time:

1 Check that The Website is up.
2 Open the electrical panel and turn the power source off.
3 Check that The Website is still up.
4 Turn the power source back on.

This process is crude, and sounds obvious, but let’s review these steps. Given a com-
puter system (a datacenter) and a characteristic (survives a single power source fail-
ure), you designed an experiment (switch a power source off and eyeball whether The
Website is still up) that increases your confidence in the system withstanding a power
problem. You used science for the good, and it took only a minute to set up. That’s one
small step for man, one giant leap for mankind.

 Before you pat yourself on the back, though, it’s worth asking what would happen
if the experiment failed and the datacenter went down. In this overly-crude-for-
demonstration-purposes case, you would create an outage of your own. A big part of
your job will be about minimizing the risks coming from your experiments and choos-
ing the right environment to execute them. More on that later.

 Take a look at figure 1.1, which summarizes the process you just went through.
When you’re back, let me anticipate your first question: What if you are dealing with
more-complex problems?

Figure 1.1 The process of
doing chaos engineering
through a series of chaos
experiments

8 CHAPTER 1 Into the world of chaos engineering
As with any experiment, you start by forming a hypothesis that you want to prove or
disprove, and then you design the entire experience around that idea. When Gregor
Mendel had an intuition about the laws of heredity, he designed a series of experi-
ments on yellow and green peas, proving the existence of dominant and recessive
traits. His results didn’t follow the expectations, and that’s perfectly fine; in fact, that’s
how his breakthrough in genetics was made.3 We will be drawing inspiration from his
experiments throughout the book, but before we get into the details of good crafts-
manship in designing our experiments, let’s plant a seed of an idea about what we’re
looking for.

 Let’s zoom in on one of these chaos experiment boxes from figure 1.1, and see
what it’s made of. Let me guide you through figure 1.2, which describes the simple,
four-step process to design an experiment like that:

1 You need to be able to observe your results. Whether it’s the color of the resulting
peas, the crash test dummy having all limbs in place, your website being up, the
CPU load, the number of requests per second, or the latency of successful
requests, the first step is to ensure that you can accurately read the value for these

3 He did have to wait a couple of decades for anyone to reproduce his findings and for mainstream science to
appreciate it and mark it “a breakthrough.” But let’s ignore that for now.

Figure 1.2 The four steps of a chaos experiment

9Four steps to chaos engineering
variables. We’re lucky to be dealing with computers in the sense that we can often
produce very accurate and very detailed data easily. We will call this observability.

2 Using the data you observe, you need to define what’s normal. This is so that you
can understand when things are out of the expected range. For instance, you
might expect the CPU load on a 15-minute average to be below 20% for your
application servers during the working week. Or you might expect 500 to 700
requests per second per instance of your application server running with four
cores on your reference hardware specification. This normal range is often
referred to as the steady state.

3 You shape your intuition into a hypothesis that can be proved or refuted, using
the data you can reliably gather (observability). A simple example could be
“Killing one of the machines doesn’t affect the average service latency.”

4 You execute the experiment, making your measurements to conclude whether
you were right. And funnily enough, you like being wrong, because that’s what
you learn more from. Rinse and repeat.

The simpler your experiment, usually the better. You earn no bonus points for elabo-
rate designs, unless that’s the best way of proving the hypothesis. Look at figure 1.2
again, and let’s dive just a little bit deeper, starting with observability.

1.3.1 Ensure observability

I quite like the word observability because it’s straight to the point. It means being able
to reliably see whatever metric you are interested in. The keyword here is reliably.
Working with computers, we are often spoiled—the hardware producer or the operat-
ing system (OS) already provides mechanisms for reading various metrics, from the
temperature of CPUs, to the fan’s RPMs, to memory usage and hooks to use for vari-
ous kernel events. But at the same time, it’s often easy to forget that these metrics are
subject to bugs and caveats that the end user needs to take into account. If the process
you’re using to measure CPU load ends up using more CPU than your application,
that’s probably a problem.

 If you’ve ever seen a crash test on television, you will know it’s both frightening and
mesmerizing at the same time. Watching a 3000-pound machine accelerate to a care-
fully controlled speed and then fold like an origami swan on impact with a massive
block of concrete is . . . humbling.

 But the high-definition, slow-motion footage of shattered glass flying around, and
seemingly unharmed (and unfazed) dummies sitting in what used to be a car just sec-
onds before is not just for entertainment. Like any scientist who earned their white
coat (and hair), both crash-test specialists and chaos engineering practitioners alike
need reliable data to conclude whether an experiment worked. That’s why observabil-
ity, or reliably harvesting data about a live system, is paramount.

 In this book, we’re going to focus on Linux and the system metrics that it offers to
us (CPU load, RAM usage, I/O speeds) as well as go through examples of higher-level
metrics from the applications we’ll be experimenting on.

10 CHAPTER 1 Into the world of chaos engineering
1.3.2 Define a steady state

Armed with reliable data from the previous step (observability), you need to define
what’s normal so that you can measure abnormalities. A fancier way of saying that is to
define a steady state, which works much better at dinner parties.

 What you measure will depend on the system and your goals about it. It could be
“undamaged car going straight at 60 mph” or perhaps “99% of our users can access
our API in under 200ms.” Often, this will be driven directly by the business strategy.

 It’s important to mention that on a modern Linux server, a lot of things will be
going on, and you’re going to try your best to isolate as many variables as possible.
Let’s take the example of CPU usage of your process. It sounds simple, but in practice,
a lot of things can affect your reading. Is your process getting enough CPU, or is it
being stolen by other processes (perhaps it’s a shared machine, or maybe a cron job
updating the system kicked in during your experiment)? Did the kernel schedule allo-
cate cycles to another process with higher priority? Are you in a virtual machine, and
perhaps the hypervisor decided something else needed the CPU more?

 You can go deep down the rabbit hole. The good news is that often you are going
to repeat your experiments many times, and some of the other variables will be
brought to light, but remembering that all these other factors can affect your experi-
ments is something you should keep in the back of your mind.

1.3.3 Form a hypothesis

Now, for the really fun part. In step 3, you shape your intuitions into a testable
hypothesis—an educated guess of what will happen to your system in the presence of
a well-defined problem. Will it carry on working? Will it slow down? By how much?

 In real life, these questions will often be prompted by incidents (unprompted
problems you discover when things stop working), but the better you are at this game,
the more you can (and should) preempt. Earlier in the chapter, I listed a few exam-
ples of what tends to go wrong. These events can be broadly categorized as follows:

Observability in the quantum realm
If your youth was as filled with wild parties as mine, you might be familiar with the
double-slit experiment (http://mng.bz/MX4W). It’s one of my favorite experiments
in physics, and one that displays the probabilistic nature of quantum mechanics.
It’s also one that has been perfected over the last 200 years by generations of
physicists.

The experiment in its modern form consists of shooting photons (or matter particles
such as electrons) at a barrier that has two parallel slits, and then observing what
landed on the screen on the other side. The fun part is that if you don’t observe which
slit the particles go through, they behave like a wave and interfere with each other,
forming a pattern on the screen. But if you try to detect (observe) which slit each par-
ticle went through, the particles will not behave like a wave. So much for reliable
observability in quantum mechanics!

http://mng.bz/MX4W

11What chaos engineering is not
 External events (earthquakes, floods, fires, power cuts, and so on)
 Hardware failures (disks, CPUs, switches, cables, power supplies, and so on)
 Resource starvation (CPU, RAM, swap, disk, network)
 Software bugs (infinite loops, crashes, hacks)
 Unsupervised bottlenecks
 Unpredicted emergent properties of the system
 Virtual machine (Java Virtual Machine, V8, others)
 Hardware bugs
 Human error (pushing the wrong button, sending the wrong config, pulling

the wrong cable, and so forth)

We will look into how to simulate these problems as we go through the concrete exam-
ples in part 2 of the book. Some of them are easy (switch off a machine to simulate
machine failure or take out the Ethernet cable to simulate network issues), while oth-
ers will be much more advanced (add latency to a system call). The choice of failures
to take into account requires a good understanding of the system you are working on.

 Here are a few examples of what a hypothesis could look like:

 On frontal collision at 60 mph, no dummies will be squashed.
 If both parent peas are yellow, all the offspring will be yellow.
 If we take 30% of our servers down, the API continues to serve the 99th percen-

tile of requests in under 200 ms.
 If one of our database servers goes down, we continue meeting our SLO.

Now, it’s time to run the experiment.

1.3.4 Run the experiment and prove (or refute) your hypothesis

Finally, you run the experiment, measure the results, and conclude whether you were
right. Remember, being wrong is fine—and much more exciting at this stage!

 Everybody gets a medal in the following conditions:

 If you were right, congratulations! You just gained more confidence in your sys-
tem withstanding a stormy day.

 If you were wrong, congratulations! You just found a problem in your system
before your clients did, and you can still fix it before anyone gets hurt!

We’ll spend some time on the good craftsmanship rules in the following chapters,
including automation, managing the blast radius, and testing in production. For now,
just remember that as long as this is good science, you learn something from each
experiment.

1.4 What chaos engineering is not
If you’re just skimming this book in a store, hopefully you’ve already gotten some
value out of it. More information is coming, so don’t put it away! As is often the case,
the devil is in the details, and in the coming chapters you’ll see in greater depth how

12 CHAPTER 1 Into the world of chaos engineering
to execute the preceding four steps. I hope that by now you can clearly see the bene-
fits of what chaos engineering has to offer, and roughly what’s involved in getting to it.

 But before we proceed, I’d like to make sure that you also understand what not to
expect from these pages. Chaos engineering is not a silver bullet, and doesn’t auto-
matically fix your system, cure cancer, or guarantee weight loss. In fact, it might not
even be applicable to your use case or project.

 A common misconception is that chaos engineering is about randomly destroying
stuff. I guess the name kind of hints at it, and Chaos Monkey (https://netflix.github
.io/chaosmonkey/), the first tool to gain internet fame in the domain, relies on ran-
domness quite a lot. But although randomness can be a powerful tool, and sometimes
overlaps with fuzzing, you want to control the variables you are interacting with as
closely as possible. More often than not, adding failure is the easy part; the hard part is
to know where to inject it and why.

 Chaos engineering is not just Chaos Monkey, Chaos Toolkit (https://chaostoolkit
.org/), PowerfulSeal (https://github.com/bloomberg/powerfulseal) or any of the
numerous projects available on GitHub. These are tools making it easier to imple-
ment certain types of experiments, but the real difficulty is in learning how to look
critically at systems and predict where the fragile points might be.

 It’s important to understand that chaos engineering doesn’t replace other testing
methods, such as unit or integration tests. Instead, it complements them: just as air-
bags are tested in isolation, and then again with the rest of the car during a crash test,
chaos experiments operate on a different level and test the system as a whole.

 This book will not give you ready-made answers on how to fix your systems.
Instead, it will teach you how to find problems by yourself and where to look for them.
Every system is different, and although we’ll look at common scenarios and gotchas
together, you’ll need a deep understanding of your system’s weak spots to come up
with useful chaos experiments. In other words, the value you get out of the chaos
experiments is going to depend on your system, how well you understand it, how deep
you want to go testing it, and how well you set up your observability shop.

 Although chaos engineering is unique in that it can be applied to production sys-
tems, that’s not the only scenario that it caters to. A lot of content on the internet
appears to be centered around “breaking things in production,” quite possibly
because it’s the most radical thing you can do, but, again, that’s not all chaos engi-
neering is about—or even its main focus. A lot of value can be derived from applying
chaos engineering principles and running experiments in other environments too.

 Finally, although some overlap exists, chaos engineering doesn’t stem from chaos
theory in mathematics and physics. I know: bummer. Might be an awkward question
to answer at a family reunion, so better be prepared.

 With these caveats out of the way, let’s get a taste of what chaos engineering is like
with a small case study.

https://netflix.github.io/chaosmonkey/
https://netflix.github.io/chaosmonkey/
https://netflix.github.io/chaosmonkey/
https://chaostoolkit.org/
https://chaostoolkit.org/
https://chaostoolkit.org/
https://github.com/bloomberg/powerfulseal

13A taste of chaos engineering
1.5 A taste of chaos engineering
Before things get technical, let’s close our eyes and take a quick detour to Glanden, a
fictional island country in northern Europe. Life is enjoyable for Glandeners. The
geographical position provides a mild climate and a prosperous economy for its hard-
working people. At the heart of Glanden is Donlon, the capital with a large popula-
tion of about 8 million people, all with a rich heritage from all over the world—a true
cultural melting pot. It’s in Donlon that our fictitious startup FizzBuzzAAS tries really
hard to make the world a better place.

1.5.1 FizzBuzz as a service

FizzBuzzAAS Ltd. is a rising star in Donlon’s booming tech scene. Started just a year
ago, it has already established itself as a clear leader in the market of FizzBuzz as a Ser-
vice. Recently supported by serious venture capital (VC) dollars, the company is looking
to expand its market reach and scale its operations. The competition, exemplified by
FizzBuzzEnterpriseEdition (https://github.com/EnterpriseQualityCoding/FizzBuzz-
EnterpriseEdition) is fierce and unforgiving. The FizzBuzzAAS business model is straight-
forward: clients pay a flat monthly subscription fee to access the cutting-edge APIs.

 Betty, head of sales at FizzBuzzAAS, is a natural. She’s about to land a big contract
that could make or break the ambitious startup. Everyone has been talking about that
contract at the water cooler for weeks. The tension is sky-high.

 Suddenly, the phone rings, and everyone goes silent. It’s the Big Company calling.
Betty picks up. “Mhm . . . Yes. I understand.” It’s so quiet you can hear the birds chirp-
ing outside. “Yes ma’am. Yes, I’ll call you back. Thank you.”

 Betty stands up, realizing everyone is holding their breath. “Our biggest client
can’t access the API.”

1.5.2 A long, dark night

It was the first time in the history of the company that the entire engineering team
(Alice and Bob) pulled an all-nighter. Initially, nothing made sense. They could success-
fully connect to each of the servers, the servers were reporting as healthy, and the
expected processes were running and responding—so where did the errors come from?

 Moreover, their architecture really wasn’t that sophisticated. An external request
would hit a load balancer, which would route to one of the two instances of the API
server, which would consult a cache to either serve a precomputed response, if it was
fresh enough, or compute a new one and store it in cache. You can see this simple
architecture in figure 1.3.

 Finally, a couple of gallons of coffee into the night, Alice found the first piece of
the puzzle. “It’s kinda weird,” she said as she was browsing through the logs of one of
the API server instances, “I don’t see any errors, but all of these requests seem to stop
at the cache lookup.” Eureka! It wasn’t long after that moment that she found the
problem: their code gracefully handled the cache being down (connection refused,
no host, and so on), but didn’t have any time-outs in case of no response. It was downhill

https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition
https://github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition

14 CHAPTER 1 Into the world of chaos engineering
from there—a quick session of pair programming, a rapid build and deploy, and it was
time for a nap.

 The order of the world was restored; people could continue requesting FizzBuzz as a
Service, and the VC dollars were being well spent. The Big Company acknowledged the
fix and didn’t even mention cancelling its contract. The sun shone again. Later, it
turned out that the API server’s inability to connect to the cache was a result of a badly
rolled-out firewall policy, in which someone forgot to whitelist the cache. Human error.

1.5.3 Postmortem

“How can we make sure that we’re immune to this kind of issue the next time?” Alice
asked, in what was destined to be a crucial meeting for the company’s future.

 Silence.
 “Well, I guess we could preemptively set some of our servers on fire once in a

while” answered Bob to lift up the mood just a little bit.
 Everyone started laughing. Everyone, apart from Alice, that is.
 “Bob, you’re a genius!” Alice acclaimed and then took a moment to appreciate the

size of everyone’s eyeballs. “Let’s do exactly that! If we could simulate a broken firewall
rule like this, then we could add this to our integration tests.”

 “You’re right!” Bob jumped out of his chair. “It’s easy! I do it all the time to block
my teenager’s Counter Strike servers on the router at home! All you need to do is
this,” he said and proceeded to write on the whiteboard:

iptables -A ${CACHE_SERVER_IP} -j DROP

“And then after the test, we can undo that with this,” he carried on, sensing the grow-
ing respect his colleagues were about to kindle in themselves:

iptables -D ${CACHE_SERVER_IP} -j DROP

API server instances
are identical

Figure 1.3 FizzBuzz as a Service
technical architecture

15Summary
Alice and Bob implemented these fixes as part of the setup and teardown of their inte-
gration tests, and then confirmed that the older version wasn’t working, but the newer
one including the fix worked like a charm. Both Alice and Bob changed their job titles
to site reliability engineer (SRE) on LinkedIn the same night, and made a pact to
never tell anyone they hot-fixed the issue in production.

1.5.4 Chaos engineering in a nutshell

If you’ve ever worked for a startup, long, coffee-fueled nights like this are probably no
stranger to you. Raise your hand if you can relate! Although simplistic, this scenario
shows all four of the previously covered steps in action:

 The observability metric is whether or not we can successfully call the API.
 The steady state is that the API responds successfully.
 The hypothesis is that if we drop connectivity to the cache, we continue getting a

successful response.
 After running the experiment, we can confirm that the old version breaks and the

new one works.

Well done, team: you’ve just increased confidence in the system surviving difficult
conditions! In this scenario, the team was reactive; Alice and Bob came up with this
new test only to account for an error their users already noticed. That made for a
more dramatic effect on the plot. In real life, and in this book, we’re going to do our
best to predict and proactively detect this kind of issue without the external stimulus
of becoming jobless overnight! And I promise that we’ll have some serious fun in the
process (see appendix D for a taste).

Summary
 Chaos engineering is a discipline of experimenting on a computer system in

order to uncover problems, often undetected by other testing techniques.
 Much as the crash tests done in the automotive industry try to ensure that the

car as a whole behaves in a certain way during a well-defined, real-life-like event,
chaos engineering experiments aim to confirm or refute your hypotheses about
the behavior of the system during a real-life-like problem.

 Chaos engineering doesn’t automatically solve your issues, and coming up with
meaningful hypotheses requires a certain level of expertise in the way your sys-
tem works.

 Chaos engineering isn’t about randomly breaking things (although that has its
place, too), but about adding a controlled amount of failure you understand.

 Chaos engineering doesn’t need to be complicated. The four steps we just cov-
ered, along with some good craftsmanship, should take you far before things
get any more complex. As you will see, computer systems of any size and shape
can benefit from chaos engineering.

Part 1

Chaos engineering
fundamentals

Building a house tends to be much easier if you start with the foundation.
This part lays the foundation for the chaos engineering headquarters skyscraper
that we’re going to build in this book. Even if you read only these three chapters,
you will see how a little bit of chaos engineering on a real-life system can detect
potentially catastrophic problems.

 Chapter 2 jumps straight into the action, by showing you how a seemingly sta-
ble application can break easily. It also helps you set up the virtual machine to
try everything in this book without worrying about breaking your laptop, and
covers essentials like the blast radius.

 Chapter 3 covers observability and all the tools that you’re going to need to
look under the hood of your system. Observability is the cornerstone of chaos
engineering—it makes the difference between doing science and guessing. You
will also see the USE methodology.

 Chapter 4 takes a popular application (WordPress) and shows you how to
design, execute, and analyze a chaos experiment on the networking layer. You
will see how fragile the application can be to network slowness, so that you can
design yours to be more resilient.

First cup of chaos
and blast radius
The previous chapter covered what chaos engineering is and what a chaos experi-
ment template looks like. It is now time to get your hands dirty and implement an
experiment from scratch! I’m going to take you step by step through building your
first chaos experiment, using nothing more than a few lines of bash. I’ll also use the
occasion to introduce and illustrate new concepts like blast radius.

 Just one last pit stop before we’re off to our journey: let’s set up the workspace.

DEFINITION I’ll bet you’re wondering what a blast radius is. Let me explain.
Much like an explosive, a software component can go wrong and break
other things it connects to. We often speak of a blast radius to describe the
maximum number of things that can be affected by something going
wrong. I’ll teach you more about it as you read this chapter.

This chapter covers
 Setting up a virtual machine to run through

accompanying code

 Using basic Linux forensics—why did your
process die?

 Performing your first chaos experiment with a
simple bash script

 Understanding the blast radius
19

20 CHAPTER 2 First cup of chaos and blast radius
2.1 Setup: Working with the code in this book
I care about your learning process. To make sure that all the relevant resources and
tools are available to you immediately, I’m providing a virtual machine (VM) image
that you can download, import, and run on any host capable of running VirtualBox.
Throughout this book, I’m going to assume you are executing the code provided in
the VM. This way, you won’t have to worry about installing the various tools on your
PC. It will also allow us to be more playful inside the VM than if it was your host OS.

 Before you get started, you need to import the virtual machine image into Virtual-
Box. To do that, complete the following steps:

1 Download the VM image:
– Go to https://github.com/seeker89/chaos-engineering-book.
– Click the Releases link at the right of the page.
– Find the latest release.
– Follow the release notes to download, verify, and decompress the VM archive

(there will be multiple files to download).
2 Install VirtualBox by following instructions at www.virtualbox.org/wiki/Down-

loads.
3 Import the VM image into VirtualBox:

– In VirtualBox, click File > Import Appliance.
– Pick the VM image file you downloaded and unarchived.
– Follow the wizard until completion.

4 Configure the VM to your taste (and resources):
– In VirtualBox, right-click your new VM and choose Settings.
– Choose General > Advanced > Shared Clipboard and then select Bidirectional.
– Choose System > Motherboard and then select 4096 MB of Base Memory.
– Choose Display > Video Memory and then select at least 64 MB.
– Choose Display > Remote Display and then uncheck Enable Server.
– Choose Display > Graphics Controller and then select what VirtualBox rec-

ommends.
5 Start the VM and log in.

– The username and password are both chaos.

NOTE When using VirtualBox, the Bidirectional check box under General >
Advanced > Shared Clipboard activates copying and pasting in both direc-
tions. With this setting, you can copy things from your host machine by press-
ing Ctrl-C (Cmd-C on a Mac) and paste them into the VM with Ctrl-V (Cmd-V).
A common gotcha is that when pasting into the terminal in Ubuntu, you need
to press Ctrl-Shift-C and Ctrl-Shift-V.

That’s it! The VM comes with all the source code needed and all the tools prein-
stalled. The versions of the tools will also match the ones I use in the text of this book.

https://github.com/seeker89/chaos-engineering-book
http://www.virtualbox.org/wiki/Downloads
http://www.virtualbox.org/wiki/Downloads

21Scenario
All the source code, including the code used to prebuild the VM, can be found at
https://github.com/seeker89/chaos-engineering-book. Once you’ve completed these
steps, you should be able to follow everything in this book. If you find any issues, feel
free to create an issue on that GitHub repo. Let’s get to the meat of it by introducing
an ironically realistic scenario!

TIP I chose VirtualBox because it’s free and accessible to all. If you and
VirtualBox don’t get along, feel free to use the image with whatever does float
your boat. VMware is a popular choice, and you can easily google how to set
it up.

2.2 Scenario
Remember our friends from Glanden from the previous chapter? They have just
reached out for help. They are having trouble with their latest product: the early cli-
ents are complaining it sometimes doesn’t work, but when the engineers are testing, it
all seems fine. As a growing authority in the chaos engineering community, you agree
to help them track and fix the issue they are facing. Challenge accepted.

 This is a more common scenario than any chaos engineer would like to admit. Some-
thing’s not working, the existing testing methods don’t find anything, and the clock is
ticking. In an ideal world, you would proactively think about and prevent situations like
this, but in the real world, you’ll often face problems that are already there. To give you
the right tools to cope, I want to start you off with a scenario of the latter category.

 In this kind of situation, you’ll typically have at least two pieces of information to
work with: the overall architecture and the application logs. Let’s start by taking a look
at the architecture of the FizzBuzz service, shown in figure 2.1.

. Client makes an
HTTP request to
the system

2. Load balancer chooses an
instance of the API server

3. Instance A becomes
unavailable; request fails

4. Load balancer
tries instance B

5. Instance B successfully responds.

6. Load balancer returns the
response. The failure in step 3
is invisible to the user.

Figure 2.1 FizzBuzz as a Service technical architecture

https://github.com/seeker89/chaos-engineering-book

22 CHAPTER 2 First cup of chaos and blast radius
As figure 2.1 illustrates, the architecture consists of a load balancer (NGINX) and two
identical copies of an API server (implemented in Python). When a client makes a
request through their internet browser (1), the request is received by the load bal-
ancer. The load balancer is configured to route incoming traffic to any instance that’s
up and running (2). If the instance the load balancer chooses becomes unavailable
(3), the load balancer is configured to retransmit the request to the other instance
(4). Finally, the load balancer returns the response provided by the instance of the
API server to the client (5), and the internal failure is transparent to the user.

 The other element you have at your disposal is the logs. A relevant sample of the
logs looks like this (similar lines appear multiple times):

[14658.582809] ERROR: FizzBuzz API instance exiting, exit code 143
[14658.582809] Restarting
[14658.582813] FizzBuzz API version 0.0.7 is up and running.

While a little bit light on the details, it does provide valuable clues about what is going
on: you can see that their API server instances are restarted and you can also see some-
thing called an exit code. These restarts are a good starting point for designing a
chaos experiment. But before we do that, it’s important that you know how to read
exit codes like these and use them to understand what happened to a process before it
died. With the Criminal Minds theme in the background, let’s take a look at the basics
of Linux forensics.

2.3 Linux forensics 101
When doing chaos engineering, you will often find yourself trying to understand why
a program died. It often feels like playing detective, solving mysteries in a popular
crime TV series. Let’s put on the detective hat and solve a case!

 In the preceding scenario, what you have at your disposal amounts to a black-box
program that you can see died, and you want to figure out why. What do you do, and
how do you check what happened? This section covers exit codes and killing pro-
cesses, both manually through the kill command and by the Out-Of-Memory Killer,
a part of Linux responsible for killing processes when the system runs low on mem-
ory. This will prepare you to deal with processes dying in real life. Let’s begin with
the exit codes.

DEFINITION In software engineering, we often refer to systems that are opaque
to us as black boxes; we can see only their inputs and outputs, and not their
inner workings. The opposite of a black box is sometimes called a white box.
(You might have heard about the bright orange recording devices installed
on airplanes. They are also often referred to as black boxes, because they are
designed to prevent tampering with them, despite their real color.) When
practicing chaos engineering, we will often be able to operate on entire sys-
tems or system components that are black boxes.

23Linux forensics 101
2.3.1 Exit codes

When dealing with a black-box piece of code, the first thing you might want to think
about is running the program and seeing what happens. Unless it’s supposed to rotate
nuclear plant access codes, running it might be a good idea. To show you what that
could look like, I wrote a program that dies. Let’s warm up by running it and investi-
gating what happens. From the provided VM, open a new bash session and start a mys-
terious program by running this command:

~/src/examples/killer-whiles/mystery000

You will notice that it exits immediately and prints an error message like this:

Floating point exception (core dumped)

The program was kind enough to tell us why it died: something to do with a floating-
point arithmetic error. That’s great for a human eye, but Linux provides a better
mechanism for understanding what happened to the program. When a process termi-
nates, it returns a number to inform the user of whether it succeeded. That number is
called an exit code. You can check the exit code returned by the preceding command
by running the following command at the prompt:

echo $?

In this case, you will see the following output:

136

This means that the last program that executed exited with code 136. Many (not all)
UNIX commands return 0 when the command is successful, and 1 when it fails. Some
use different return codes to differentiate various errors. Bash has a fairly compact
convention on exit codes that I encourage you to take a look at (www.tldp.org/LDP/
abs/html/exitcodes.html).

 The codes in range 128–192 are decoded by using 128 + n, where n is the number
of the kill signal. In this example, the exit code is 136, which corresponds to 128 + 8,
meaning that the program received a kill signal number 8, which is SIGFPE. This sig-
nal is sent to a program when it tries to execute an erroneous arithmetic operation.
Don’t worry—you don’t have to remember all the kill signal numbers by heart. You
can see them with their corresponding numbers by running kill -L at the command
prompt. Note that some of the exit codes differ between bash and other shells.

 Remember that a program can return any exit code, sometimes by mistake. But
assuming that it gives you a meaningful exit code, you know where to start debugging,
and life tends to be good. The program did something wrong, it died, the cold kernel
justice was served. But what happens if you suspect a murder?

http://www.tldp.org/LDP/abs/html/exitcodes.html
http://www.tldp.org/LDP/abs/html/exitcodes.html
http://www.tldp.org/LDP/abs/html/exitcodes.html

24 CHAPTER 2 First cup of chaos and blast radius
2.3.2 Killing processes

To show you how to explicitly kill processes, let’s play both the good cop and the bad
cop. Open two bash sessions in two terminal windows. In the first one, run the follow-
ing command to start a long-running process:

sleep 3600

Just as its name indicates, the sleep command blocks for the specified number of sec-
onds. This is just to simulate a long-running process. Your prompt will be blocked,
waiting for the command to finish. To confirm that the process is there, in the second
terminal, run the following command to list the running processes (the f flag shows
visually the parent-child relationships between processes):

ps f

In the following output, you can see sleep 3600 as a child of the other bash process:

 PID TTY STAT TIME COMMAND
 4214 pts/1 Ss 0:00 bash
 4262 pts/1 R+ 0:00 _ ps f
 2430 pts/0 Ss 0:00 bash
 4261 pts/0 S+ 0:00 _ sleep 3600

Now, still in the second terminal, let’s commit a process crime—kill your poor sleep
process:

pkill sleep

Available signals
If you’re curious about the various signals you can send (for example, via the kill com-
mand), you can list them easily by running the following command in your terminal:

kill -L

You will see output similar to the following:

 1)SIGHUP 2)SIGINT 3)SIGQUIT 4)SIGILL 5)SIGTRAP
 6)SIGABRT 7)SIGBUS 8)SIGFPE 9)SIGKILL 10)SIGUSR1
11)SIGSEGV 12)SIGUSR2 13)SIGPIPE 14)SIGALRM 15)SIGTERM
16)SIGSTKFLT 17)SIGCHLD 18)SIGCONT 19)SIGSTOP 20)SIGTSTP
21)SIGTTIN 22)SIGTTOU 23)SIGURG 24)SIGXCPU 25)SIGXFSZ
26)SIGVTALRM 27)SIGPROF 28)SIGWINCH 29)SIGIO 30)SIGPWR
31)SIGSYS 34)SIGRTMIN 35)SIGRTMIN+1 36)SIGRTMIN+2 37)SIGRTMIN+3
38)SIGRTMIN+4 39)SIGRTMIN+5 40)SIGRTMIN+6 41)SIGRTMIN+7 42)SIGRTMIN+8
43)SIGRTMIN+9 44)SIGRTMIN+10 45)SIGRTMIN+11 46)SIGRTMIN+12 47)SIGRTMIN+13
48)SIGRTMIN+14 49)SIGRTMIN+15 50)SIGRTMAX-14 51)SIGRTMAX-13 52)SIGRTMAX-12
53)SIGRTMAX-11 54)SIGRTMAX-10 55)SIGRTMAX-9 56)SIGRTMAX-8 57 SIGRTMAX-7
58)SIGRTMAX-6 59)SIGRTMAX-5 60)SIGRTMAX-4 61)SIGRTMAX-3 62)SIGRTMAX-2
63)SIGRTMAX-1 64)SIGRTMAX

25Linux forensics 101
You will notice the sleep process die in the first terminal. It will print this output, and
the prompt will become available again:

Terminated

This is useful to see, but most of the time, the processes you care about will die when
you’re not looking at them, and you’ll be interested in gathering as much information
about the circumstances of their death as possible. That’s when the exit codes we cov-
ered before become handy. You can verify what exit code the sleep process returned
before dying by using this familiar command:

echo $?

The exit code is 143. Similar to 136, it corresponds to 128 + 15, or SIGTERM, the
default signal sent by the kill command. This is the same code that was displayed in
the FizzBuzz logs, giving us an indication that their processes were being killed. This is
an aha moment: a first piece to our puzzle!

 If you chose a different signal, you would see a different exit code. To illustrate that,
start the sleep process again from the first terminal by running the same command:

sleep 3600

To send a KILL signal, run the following command from the second terminal:

pkill -9 sleep

This will result in getting a different exit code. To see the exit code, run this command
from the first terminal, the one in which the process died:

echo $?

You will see the following output:

137

As you might expect, the exit code is 137, or 128 + 9. Note that nothing prevents us
from using kill -8, and getting the same exit code as in the previous example that
had an arithmetic error in the program. All of this is just a convention, but most of the
popular tooling will follow it.

 So now you’ve covered another popular way for a process to die, by an explicit sig-
nal. It might be an administrator issuing a command, it might be the system detecting
an arithmetic error, or it might be done by some kind of daemon managing the pro-
cess. Of the latter category, an interesting example is the Out-Of-Memory (OOM)
Killer. Let’s take a look at the mighty killer.

26 CHAPTER 2 First cup of chaos and blast radius
2.3.3 Out-Of-Memory Killer

The OOM Killer can be a surprise the first time you learn about it. If you haven’t yet,
I’d like you to experience it firsthand. Let’s start with a little mystery to solve. To illus-
trate what OOM is all about, run the following program I’ve prepared for you from
the command line:

~/src/examples/killer-whiles/mystery001

Can you find out what the program is doing? Where would you start? The source code
is in the same folder as the executable, but stay with me for a few minutes before you
read it. Let’s try to first approach it as a black box.

 After a minute or two of running the program, you might notice your VM getting a
little sluggish, which is a good hint to check the memory utilization. You can see that
by running the top command from the command line, as follows:

top -n1 -o+%MEM

Note the use of -n1 flag to print one output and exit, rather than update continu-
ously, and -o+%MEM to sort the processes by their memory utilization.

 Your output will be similar to the following:

top - 21:35:49 up 4:21, 1 user, load average: 0.55, 0.46, 0.49
Tasks: 175 total, 3 running, 172 sleeping, 0 stopped, 0 zombie
%Cpu(s): 11.8 us, 29.4 sy, 0.0 ni, 35.3 id, 20.6 wa, 0.0 hi, 2.9 si, 0.0 st
MiB Mem : 3942.4 total, 98.9 free, 3745.5 used, 98.0 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 5.3 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
5451 chaos 20 0 3017292 2.9g 0 S 0.0 74.7 0:07.95 mystery001
5375 chaos 20 0 3319204 301960 50504 S 29.4 7.5 0:06.65 gnome-shell
1458 chaos 20 0 471964 110628 44780 S 0.0 2.7 0:42.32 Xorg
(...)

You can see that mystery001 is using 2.9 GB of memory, almost three-quarters for the
VM, and the available memory hovers around 100 MB. Your top might start dying on

Pop quiz: Return codes
Pick the false statement:

1 Linux processes provide a number that indicates the reason for exiting.
2 Number 0 means a successful exit.
3 Number 143 corresponds to SIGTERM.
4 There are 32 possible exit codes.

See appendix B for answers.

Free memory at around 100 MB

Memory usage (RES and %MEM) and the
name of mystery001 process in bold font

27Linux forensics 101
you or struggle to allocate memory. Unless you’re busy encoding videos or maxing out
games, that’s rarely a good sign. While you’re trying to figure out what’s going on, if
my timing is any good, you should see your process die in the prompt (if you’re run-
ning your VM with more RAM, it might take longer):

Killed

A murder! But what happened? Who killed it? The title of this section is a little bit of a
giveaway, so let’s check the kernel log to look for clues. To do that, you can use dmesg.
It’s a Linux utility that displays kernel messages. Let’s search for our mystery001 by
running the following in a terminal:

dmesg | grep -i mystery001

You will see something similar to the following output. As you read through these lines,
the plot thickens. Something called oom_reaper just killed your mysterious process:

[14658.582932] Out of memory: Kill process 5451 (mystery001)
score 758 or sacrifice child
[14658.582939] Killed process 5451 (mystery001)
total-vm:3058268kB, anon-rss:3055776kB, file-rss:4kB, shmem-rss:0kB
[14658.644154] oom_reaper: reaped process 5451 (mystery001),
now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB

What is that, and why is it claiming rights to your processes? If you browse through
dmesg a bit more, you will see a little information about what OOM Killer did,
including the list of processes it evaluated before sacrificing your program on the
altar of RAM.

 Here’s an example, shortened for brevity. Notice the oom_score_adj column,
which displays the scores of various processes from the OOM Killer’s point of view (I
put the name in bold for easier reading):

[14658.582809] Tasks state (memory values in pages):
[14658.582809] [pid] uid tgid total_vm rss pgtables_bytes swapents

oom_score_adj name
(...)
[14658.582912] [5451] 1000 5451 764567 763945 6164480 0 0 mystery001
(...)
[14658.582932] Out of memory: Kill process 5451 (mystery001) score 758 or

sacrifice child
[14658.582939] Killed process 5451 (mystery001) total-vm:3058268kB, anon-

rss:3055776kB, file-rss:4kB, shmem-rss:0kB
[14658.644154] oom_reaper: reaped process 5451 (mystery001), now anon-

rss:0kB, file-rss:0kB, shmem-rss:0kB

The OOM Killer is one of the more interesting (and controversial) memory manage-
ment features in the Linux kernel. Under low-memory conditions, the OOM Killer
kicks in and tries to figure out which processes to kill in order to reclaim some mem-
ory and for the system to regain some stability. It uses heuristics (including niceness,

28 CHAPTER 2 First cup of chaos and blast radius
how recent the process is and how much memory it uses—see https://linux-mm.org/
OOM_Killer for more details) to score each process and pick the unlucky winner. If
you’re interested in how it came to be and why it was implemented the way it was, the
best article on this subject that I know of is “Taming the OOM Killer” by Goldwyn
Rodrigues (https://lwn.net/Articles/317814/).

 So, there it is, the third popular reason for processes to die, one that often sur-
prises newcomers. In the FizzBuzz logs sample, you know that the exit code you saw
could be a result of either an explicit kill command or perhaps the OOM Killer.
Unfortunately, unlike other exit codes that have a well-defined meaning, the one in
the logs sample doesn’t help you conclude the exact reason for the processes dying.
Fortunately, chaos engineering allows you to make progress regardless of that. Let’s go
ahead and get busy applying some chaos engineering!

Pop quiz: What’s OOM?
Pick one:

1 A mechanism regulating the amount of RAM any given process is given
2 A mechanism that kills processes when the system runs low on resources
3 A yoga mantra
4 The sound that Linux admins make when they see processes dying

See appendix B for answers.

OOM Killer settings
The OOM Killer behavior can be tweaked via flags exposed by the kernel. The follow-
ing is from the kernel documentation, www.kernel.org/doc/Documentation/sysctl/
vm.txt:

==

oom_kill_allocating_task

This enables or disables killing the OOM-triggering task in
out-of-memory situations.

If this is set to zero, the OOM killer will scan through the entire
tasklist and select a task based on heuristics to kill. This normally
selects a rogue memory-hogging task that frees up a large amount of
memory when killed.

If this is set to non-zero, the OOM killer simply kills the task that
triggered the out-of-memory condition. This avoids the expensive
tasklist scan.

If panic_on_oom is selected, it takes precedence over whatever value
is used in oom_kill_allocating_task.

The default value is 0.

https://linux-mm.org/OOM_Killer
https://linux-mm.org/OOM_Killer
https://linux-mm.org/OOM_Killer
http://www.kernel.org/doc/Documentation/sysctl/vm.txt
http://www.kernel.org/doc/Documentation/sysctl/vm.txt
http://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://lwn.net/Articles/317814/

29The first chaos experiment
2.4 The first chaos experiment
The exit codes from the logs didn’t give you a good indication of what was causing
FizzBuzz’s API servers to die. While this might feel like an anticlimax, it is by design.
Through that dead end, I want to lead you to a powerful aspect of chaos engineering:
we work on hypotheses about the entire system as a whole.

 As you’ll recall (look at figure 2.2 for a refresher), the system is designed to handle
API server instances dying through load balancing with automatic rerouting if one
instance is down. Alas, the users are complaining that they are seeing errors!

While drilling down and fixing the reason that the API server instances get killed is
important, from the perspective of the whole system, you should be more con-
cerned that the clients are seeing the errors when they shouldn’t. In other words,
fixing the issue that gets the API server instances killed would “solve” the problem

In addition, oom_dump_tasks will dump extra information when killing a process for
easier debugging. In the provided VM based off Ubuntu Disco Dingo, you can see both
flags defaulting to 0 and 1, respectively, meaning that the OOM Killer will attempt to
use its heuristics to pick the victim and then dump extra information when killing pro-
cesses. If you want to check the settings on your system, you can run the following
commands:

cat /proc/sys/vm/oom_kill_allocating_task
cat /proc/sys/vm/oom_dump_tasks

. Client makes an
HTTP request to
the system

2. Load balancer chooses an
instance of the API server

3. Instance A becomes
unavailable; request fails

4. Load balancer
tries instance B

5. Instance B successfully responds.

6. Load balancer returns the
response. The failure in step 3
is invisible to the user.

Figure 2.2 FizzBuzz as a Service technical architecture, repeated

30 CHAPTER 2 First cup of chaos and blast radius
for now, until another bug, outage, or human error reintroduces it, and the end
users are impacted. In our system, or any bigger distributed system, components
dying is a norm, not an exception.

 Take a look at figure 2.3, which illustrates the difference in thinking about the sys-
tem’s properties as whole, as compared to figure 2.2. The client interacts with the sys-
tem, and for just a minute we stop thinking about the implementation and think
about how the system should behave as a single unit.

Let’s design our first chaos experiment to replicate the situation our clients are facing
and see what happens for ourselves. The previous chapter presented the four steps to
designing a chaos experiment:

1 Ensure observability.
2 Define a steady state.

Client

A. Client makes an
HTTP request to the
system

B. Client gets an HTTP
response from the
system

. Client makes an
HTTP request to the
system

6. Load balancer returns
the response. The failure
in step 3 is invisible to
the user.

2. Load balancer
chooses an instance
of the API server 5. Instance B

successfully
responds.3. Instance A becomes

unavailable; request
fails

4. Load balancer
tries instance B

The black box

Figure 2.3 FizzBuzz as a Service whole system properties

31The first chaos experiment
3 Form a hypothesis.
4 Run the experiment!

It’s best to start as simply as possible. You need a metric to work with (observability),
preferably one you can produce easily. In this case, let’s pick the number of failed HTTP
responses that you receive from the system. You could write a script to make requests
and count the failed ones for you, but existing tools can do that for you already.

 To keep things simple, you’ll use a tool that’s well known: Apache Bench. You can
use it to both produce the HTTP traffic for you to validate the steady state and to pro-
duce the statistics on the number of error responses encountered in the process. If
the system behaves correctly, you should see no error responses, even if you kill an
instance of the API server during the test. And that’s going to be our hypothesis.
Finally, implementing and running the experiment will also be simple, as we’ve just
covered killing processes.

 To sum it up, I’ve prepared figure 2.4, which should look familiar. It’s the four-
steps template from chapter 1, figure 1.2, with the details of our first experiment filled
in. Please take a look.

If this sounds like a plan to you, we’re on the right track. It’s finally time to get your
hands dirty! Let’s take a closer look at our application. Your VM comes with all the

’

Figure 2.4 The four steps of our first chaos experiment

32 CHAPTER 2 First cup of chaos and blast radius
components preinstalled and all the source code can be found in the ~/src/exam-
ples/killer_whiles folder. The two instances of the API server are modeled as systemd
services faas001_a and faas001_b. They come preinstalled (but disabled by default),
so you can use systemctl to check their status. Use the command prompt to run this
command for either faas001_a or faas001_b (and press Q to exit):

sudo systemctl status faas001_a
sudo systemctl status faas001_b

The output you see will look something like this:

● faas001_b.service - FizzBuzz as a Service API prototype - instance A
 Loaded: loaded (/home/chaos/src/examples/killer-
whiles/faas001_a.service; static; vendor preset: enabled)
 Active: inactive (dead)

As you can see, the API server instances are loaded but inactive. Let’s go ahead and start
them both via systemctl by issuing the following commands at the command line:

sudo systemctl start faas001_a
sudo systemctl start faas001_b

Note that these are configured to respond correctly to only the /api/v1/ endpoint.
All other endpoints will return a 404 response code.

 Now, onto the next component: the load balancer. The load balancer is an NGINX
instance, configured to distribute traffic in a round-robin fashion between the two
backend instances, and serve on port 8003. It should model the load balancer from
our scenario accurately enough. It has a basic configuration that you can take a sneak
peek into by issuing this at your command line:

cat ~/src/examples/killer-whiles/nginx.loadbalancer.conf | grep -v "#"

You will see the following:

 upstream backend {
 server 127.0.0.1:8001 max_fails=1 fail_timeout=1s;
 server 127.0.0.1:8002 max_fails=1 fail_timeout=1s;
 }
 server {
 listen 8003;

 location / {
 proxy_pass http://backend;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
 }

Configuring NGINX and its best practices are beyond the scope of this book. You won’t
need to know much more than that the server should behave like the one described in

33The first chaos experiment
the scenario at the beginning of the chapter. The only thing worth mentioning might
be the fail_timeout parameter set to 1 second, which means that after one of the
servers returns an error (or doesn’t respond), it will be taken away from the pool for 1
second, and then gracefully reintroduced. max_fails configures NGINX to consider
a single error response enough to take the instance out of the pool. NGINX is config-
ured to listen on port 8003 on localhost in your VM.

 Let’s make sure the load balancer is also up and running by running this at your
command prompt:

sudo systemctl start nginx

To confirm that you can successfully reach the API servers through the load balancer,
feel free to use curl to reach the load balancer. You can do that by making an HTTP
request to localhost, on port 8003, requesting the only implemented endpoint /api/v1/.
To do that, run the following command in your prompt:

curl 127.0.0.1:8003/api/v1/

You should see this amazing response:

{
 "FizzBuzz": true
}

If that’s what you receive, we are good to go. If you’re tempted to take a look at the
source code now, I’m not going to stop you, but I recommend holding off and looking
a bit later. That way, it’s easier to think about these components as black boxes with
certain behaviors you are interested in. OK, we’re done here; it’s time to make the sys-
tem do some work by generating some load!

2.4.1 Ensure observability

There are many ways to generate HTTP loads. To keep things simple, let’s use Apache
Bench, preinstalled and accessible through the ab command. The usage is straightfor-
ward. For example, to run as many requests as you can to your load balancer with

Pop quiz: Which step is not a part of the chaos experiment template?
Pick one:

1 Observability
2 Steady state
3 Hypothesis
4 Crying in the corner when an experiment fails

See appendix B for answers.

34 CHAPTER 2 First cup of chaos and blast radius
concurrency of 10 (-c 10) during a period of up to 30 seconds (-t 30) or up to 50,000
requests (whichever comes first), while ignoring the content length differences (-l),
all you need to do is run this command at your prompt:

ab -t 30 -c 10 -l http://127.0.0.1:8003/api/v1/

The default output of ab is pretty informative. The bit of information that you are
most interested in is Failed requests; you will use that as your success metric. Let’s go
ahead and take a look at what value it has in the steady state.

2.4.2 Define a steady state

To establish the steady state, or the normal behavior, execute the ab command in your
terminal:

ab -t 30 -c 10 -l http://127.0.0.1:8003/api/v1/

You will see output similar to the following; it is a little verbose, so I removed the irrel-
evant parts:

(...)
Benchmarking 127.0.0.1 (be patient)
(...)
Concurrency Level: 10
Time taken for tests: 22.927 seconds
Complete requests: 50000
Failed requests: 0
(...)

As you can see, Failed requests is 0, and your two API servers are serving the load
through the load balancer. The throughput itself is nothing to brag about, but since
you’re running all the components in the same VM anyway, you’re going to ignore the
performance aspect for the time being. You will use Failed requests as your single
metric; it is all you need for now to monitor your steady state. It’s time to write down
your hypothesis.

2.4.3 Form a hypothesis

As I said before, you expect our system to handle a restart of one of the servers at a
time. Your first hypothesis can therefore be written down as follows: “If we kill both
instances, one at a time, the users won’t receive any error responses from the load bal-
ancer.” No need to make it any more complex than that; let’s run it!

2.4.4 Run the experiment

The scene is now set, and you can go ahead and implement your very first experiment
with some basic bash kung fu. You’ll use ps to list the processes you’re interested in,
and then first kill instance A (port 8001), then add a small delay, and then kill

35The first chaos experiment
instance B (port 8002), while running ab at the same time. I’ve prepared a simple
script for you. Take a look by executing this command at your prompt:

cat ~/src/examples/killer-whiles/cereal_killer.sh

You will see the following output (shortened for brevity):

echo "Killing instance A (port 8001)"
ps auxf | grep 8001 | awk '{system("sudo kill " $2)}'
(...)

echo "Wait some time in-between killings"
sleep 2
(...)

echo "Killing instance B (port 8002)"
ps auxf | grep 8002 | awk '{system("sudo kill " $2)}'

The script first kills one instance, then waits some, and finally kills the other instance.
The delay between killing instances is for nginx to have enough time to re-add the
killed instance A to the pool before you kill instance B. With that, you should be ready
to go! You can start the ab command in one window by running the following:

bash ~/src/examples/killer-whiles/run_ab.sh

And in another window, you can start killing the instances by using the cereal_
killer.sh script you just looked at. To do that, run this command in your prompt:

bash ~/src/examples/killer-whiles/cereal_killer.sh

You should see something similar to this (I shortened the output by removing some
less relevant bits):

Listing backend services
(...)

Killing instance A (port 8001)
● faas001_a.service - FizzBuzz as a Service API prototype - instance A
 Loaded: loaded (/home/chaos/src/examples/killer-
whiles/faas001_a.service; static; vendor preset: enabled)
 Active: active (running) since Sat 2019-12-28 21:33:00 UTC; 213ms ago
(...)

Wait some time in-between killings

Killing instance B (port 8002)
● faas001_b.service - FizzBuzz as a Service API prototype - instance B
 Loaded: loaded (/home/chaos/src/examples/killer-
whiles/faas001_b.service; static; vendor preset: enabled)
 Active: active (running) since Sat 2019-12-28 21:33:03 UTC; 260ms ago
(...)

Searches output of ps for a
process with string “8001”
(faas001_a) in it and kills it

Waits 2 seconds to give NGINX
enough time to detect the
instance restarted by systemd

Searches output of ps for a
process with string “8002”
(faas001_b) in it and kills it

36 CHAPTER 2 First cup of chaos and blast radius
Listing backend services
(...)

Done here!

Both instances are killed and restarted correctly—you can see their process ID (PID)
change, and systemd reports them as active. In the first window, once finished, you
should see no errors:

Complete requests: 50000
Failed requests: 0

You have successfully confirmed your hypothesis and thus concluded the experiment.
Congratulations! You have just designed, implemented, and executed your very first
chaos experiment. Give yourself a pat on the back!

 It looks like our system can survive a succession of two failures of our API server
instances. And it was pretty easy to do, too. You used ab to generate a reliable metric,
established its normal value range, and then introduced failure in a simple bash script.
And while the script is simple by design, I’m expecting that you thought I was being a
little trigger-happy with the kill command—which brings me to a new concept called
blast radius.

2.5 Blast radius
If you were paying attention, I’m pretty sure you noticed that my previous example
cereal_killer.sh was a bit reckless. Take a look at the lines with sudo in them in our
cereal_killer.sh script by running this command at the prompt:

grep sudo ~/src/examples/killer-whiles/cereal_killer.sh

You will see these two lines:

ps auxf | grep 8001 | awk '{system("sudo kill " $2)}'
ps auxf | grep 8002 | awk '{system("sudo kill " $2)}'

That implementation worked fine in the little test, but if any processes showed up with
the string 8001 or 8002 in the output of ps, even just having such a PID, they would be
killed. Innocent and without trial. Not a great look, and a tough one to explain to
your supervisor at the nuclear power plant.

 In this particular example, you could do many things to fix that, starting from nar-
rowing your grep, to fetching PIDs from systemd, to using systemctl restart
directly. But I just want you to keep this problem at the back of your mind as you go
through the rest of the book. To drive the point home, figure 2.5 illustrates three pos-
sible blast radiuses, ranging from a broad grep from the example before to a more
specific one, designed to affect only the targeted process.

 That’s what blast radius is all about: limiting the number of things our experiments can
affect. You will see various examples of techniques used to limit the blast radius as we

37Blast radius
cover various scenarios in the following chapters, but in general they fall into two cate-
gories: strategic and implementational.

 The preceding situation falls into the latter category of an implementational
approach. You can proactively look for ways to make the execution safer, but as with
any code, you are bound to make mistakes.

 The former category, strategic, is more about planning your experiments in a way
so as to minimize the room for catastrophic events if your experiments go awry. Many
good software deployment practices will apply. Here are a few examples:

 Roll out the experiment on a small subset of your traffic first, and expand later.
 Roll out the experiment in a quality assurance (QA) environment before going

to production (we’ll talk about testing in production later).
 Automate early, so that you can reproduce your findings more easily.
 Be careful with randomness; it’s a double-edged sword. It can help find things

like race conditions, but it might make things difficult to reproduce (we’ll also
come back to this a bit later).

All right, so knowing your blast radius is important. For this example, we’re not going
to change the script, but I’d like you to keep the blast radius at the back of your mind
from now on. Our first experiment didn’t detect any issues, and we’ve patted ourselves
on the back, but wait! The FizzBuzz clients are still seeing errors, which indicates that
we didn’t go deep enough into the rabbit hole. Let’s dig deeper!

. Blast radius of our
broad search:
grep 8001

3. Blast radius of an even
narrower search:
grep “ python3
-m http.server 8001”

2. Blast radius of a
narrower search:
grep python | grep 8001

Figure 2.5 Example of blast radiuses

38 CHAPTER 2 First cup of chaos and blast radius

Sleep
bit to

service
tim

r

2.6 Digging deeper
In our first experiment, we have been pretty conservative with our timing, allowing
enough time for NGINX to re-add the previously killed server to the pool and grace-
fully start sending it requests. And by conservative, I mean to say that I put the sleep
there to show you how a seemingly successful experiment might prove insufficient.
Let’s try to fix that. What would happen if the API server crashed more than once in
succession? Would it continue to work?

 Let’s tweak our chaos experiment by changing our hypothesis with some concrete
numbers: “If we kill an instance A six times in a row, spaced out by 1.25 seconds, and
then do the same to instance B, we continue seeing no errors.” Yes, these numbers are
weirdly specific, and you’re about to see why I picked these in just a second!

 I wrote a script that does that for you: it’s called killer_while.sh. Please take a
look at the source code by running this in your prompt:

cat ~/src/examples/killer-whiles/killer_while.sh

You will see the body of the script, just like the following:

restart instance A a few times, spaced out by 1.25 second delays
i="0"
while [$i -le 5]
do
 echo "Killing faas001_a ${i}th time"
 ps auxf | grep killer-whiles | grep python | grep 8001 | awk

'{system("sudo kill " $2)}'
 sleep 1.25
 i=$[$i+1]
done

systemctl status faas001_a --no-pager

(...)

This is essentially a variation of our previous script cereal_killer.sh, this time
wrapped in a couple of while loops. (Yes, I did use while loops instead of for loops so
that the killer “whiles” joke works. Worth it!).

Pop quiz: What’s a blast radius?
Pick one:

1 The amount of stuff that can be affected by our actions
2 The amount of stuff that we want to damage during a chaos experiment
3 The radius, measured in meters, that’s a minimal safe distance from coffee

being spilled when the person sitting next to you realizes their chaos experiment
went wrong and suddenly stands up and flips the table

See appendix B for answers.

Introduces a while loop to
repeat the killing six times

Uses a slightly more conservative
series of grep commands to narrow
the target processes, and kills them

s a little
 give the
 enough
e to get

estarted

Displays status of the service
faas001_a (--no-pager to prevent
piping the output to less)

39Digging deeper
 What do you think will happen when you run it? Let’s go ahead and find out by
running the script at the command prompt like so:

bash ~/src/examples/killer-whiles/killer_while.sh

You should see output similar to this (again, shortened to show the most interesting
bits):

Killing faas001_a 0th time
(...)
Killing faas001_a 5th time
● faas001_a.service - FizzBuzz as a Service API prototype - instance A
 Loaded: loaded (/home/chaos/src/examples/killer-
whiles/faas001_a.service; static; vendor preset: enabled)
 Active: failed (Result: start-limit-hit) since Sat 2019-12-28 22:44:04
UTC; 900ms ago
 Process: 3746 ExecStart=/usr/bin/python3 -m http.server 8001 --directory
/home/chaos/src/examples/killer-whiles/static (code=killed, signal=TERM)
 Main PID: 3746 (code=killed, signal=TERM)

Dec 28 22:44:04 linux systemd[1]: faas001_a.service: Service
RestartSec=100ms expired, scheduling restart.
Dec 28 22:44:04 linux systemd[1]: faas001_a.service: Scheduled restart job,
restart counter is at 6.
Dec 28 22:44:04 linux systemd[1]: Stopped FizzBuzz as a Service API
prototype - instance A.
Dec 28 22:44:04 linux systemd[1]: faas001_a.service: Start request repeated
too quickly.
Dec 28 22:44:04 linux systemd[1]: faas001_a.service: Failed with result
'start-limit-hit'.
Dec 28 22:44:04 linux systemd[1]: Failed to start FizzBuzz as a Service API
prototype - instance A.
Killing faas001_b 0th time
(...)
Killing faas001_b 5th time
● faas001_b.service - FizzBuzz as a Service API prototype - instance B
 Loaded: loaded (/home/chaos/src/examples/killer-
whiles/faas001_b.service; static; vendor preset: enabled)
 Active: failed (Result: start-limit-hit) since Sat 2019-12-28 22:44:12
UTC; 1s ago
 Process: 8864 ExecStart=/usr/bin/python3 -m http.server 8002 --directory
/home/chaos/src/examples/killer-whiles/static (code=killed, signal=TERM)
 Main PID: 8864 (code=killed, signal=TERM)

(...)

Not only do you end up with errors, but both of your instances end up being com-
pletely dead. How did that happen? It was restarting just fine a minute ago; what went
wrong? Let’s double-check that you didn’t mess something up with the systemd ser-
vice file. You can see it by running this command in your prompt:

cat ~/src/examples/killer-whiles/faas001_a.service

40 CHAPTER 2 First cup of chaos and blast radius
You will see this output:

[Unit]
Description=FizzBuzz as a Service API prototype - instance A

[Service]
ExecStart=python3 -m http.server 8001 --directory
/home/chaos/src/examples/killer-whiles/static
Restart=always

The Restart=always part sounds like it should always restart, but it clearly doesn’t.
Would you like to take a minute to try to figure it out by yourself? Did you notice any
clues in the preceding output?

2.6.1 Saving the world

As it turns out, the devil is in the details. If you read the logs in the previous section
carefully, systemd is complaining about the start request being repeated too quickly.
From the systemd documentation (http://mng.bz/VdMO), you can get more details:

DefaultStartLimitIntervalSec=, DefaultStartLimitBurst=
Configure the default unit start rate limiting, as configured per-service
by StartLimitIntervalSec= and StartLimitBurst=. See systemd.service(5) for
details on the per-service settings. DefaultStartLimitIntervalSec= defaults
to 10s. DefaultStartLimitBurst= defaults to 5.

Unless StartLimitIntervalSec is specified, the default values allow only five restarts
within a 10-second moving window and will stop restarting the service if that’s ever
exceeded. Which is both good news and bad news. Good news, because we’re only two
lines away from tweaking the systemd unit file to make it always restart. Bad, because
once we fix it, the API itself might keep crashing, and our friends from Glanden might
never fix it, because their clients are no longer complaining!

 Let’s fix it. Copy and paste the following command at your prompt to add the extra
parameter StartLimitIntervalSec set to 0 to the service description (or use your
favorite text editor to add it):

cat >> ~/src/examples/killer-whiles/faas001_a.service <<EOF
[Unit]
StartLimitIntervalSec=0
EOF

After that, you need to reload the systemctl daemon and start the two services again.
You can do this by running the following command:

sudo systemctl daemon-reload
sudo systemctl start faas001_a
sudo systemctl start faas001_b

http://mng.bz/VdMO

41Summary
You should now be good to go. With this new parameter, instance A will be restarted
indefinitely, thus surviving repeated errors, while instance B still fails. To test that,
you can now run killer_while.sh again by executing the following command at
your prompt:

bash ~/src/examples/killer-whiles/killer_while.sh

You will see output similar to this (again, shortened for brevity):

Killing faas001_a 0th time
(...)
Killing faas001_a 5th time
● faas001_a.service - FizzBuzz as a Service API prototype - instance A
 Loaded: loaded (/home/chaos/src/examples/killer-
whiles/faas001_a.service; static; vendor preset: enabled)
 Active: active (running) since Sat 2019-12-28 23:16:39 UTC; 197ms ago
(...)
Killing faas001_b 0th time
(...)
Killing faas001_b 5th time
● faas001_b.service - FizzBuzz as a Service API prototype - instance B
 Loaded: loaded (/home/chaos/src/examples/killer-
whiles/faas001_b.service; static; vendor preset: enabled)
 Active: failed (Result: start-limit-hit) since Sat 2019-12-28 23:16:44
UTC; 383ms ago
 Process: 9347 ExecStart=/usr/bin/python3 -m http.server 8002 --directory
/home/chaos/src/examples/killer-whiles/static (code=killed, signal=TERM)
 Main PID: 9347 (code=killed, signal=TERM)
(...)

Instance A now survives the restarts and reports as active, but instance B still fails. You
made instance A immune to the condition you’ve discovered. You have successfully
fixed the issue!

 If you fix faas001_b the same way and then rerun the experiment with killer_
while.sh, you will notice that you no longer see any error responses. The order of the
universe is restored, and our friends in Glanden can carry on with their lives. You just
used chaos engineering to test out the system without looking once into the actual
implementation of the API servers, and you found a weakness that’s easily fixed. Good
job. Now you can pat yourself on the back, and I promise not to ruin that feeling for at
least 7.5 minutes! Time for the next challenge!

Summary
 When performing chaos experiments, it’s important to be able to observe why a

process dies—from a crash, a kill signal, or the OOM Killer.
 The blast radius is the maximum number of things that can be affected by an

action or an actor.

42 CHAPTER 2 First cup of chaos and blast radius
 Limiting the blast radius consists of using techniques that minimize the risk
associated with running chaos experiments, and is an important aspect of plan-
ning the experiments.

 Useful chaos experiments can be implemented with a handful of bash com-
mands, as illustrated in this chapter, by applying the simple four-step template
that you saw in chapter 1.

Observability
Strap in. We’re about to tackle one of the more annoying situations you’ll face
when practicing chaos engineering: the infamous “my app is slow” complaint. If the
piece of software in question went through all the stages of development and made
it to production, chances are that it passed a decent number of tests and that multi-
ple people signed off. If, later, for no obvious reason, the application begins to slow
down, it tends to be a sign we’re in for a long day at work.

 “My app is slow” offers much more subtlety than an ordinary “my app doesn’t
work” and can sometimes be rather tricky to debug. In this chapter, you’ll learn
how to deal with one of the popular reasons for that: resource contention. We will
cover tools necessary to detect and analyze this kind of issue.

This chapter covers
 Diagnosing system performance issues with the

USE method

 Understanding basic system metrics used in
chaos experiments

 Using Linux tools to check system metrics

 Using a time-series database to gain continuous
insight into system performance
43

44 CHAPTER 3 Observability
 A thin line separates chaos engineering, site reliability engineering (SRE), and sys-
tem performance engineering in day-to-day life. In an ideal world, the job of a chaos
engineer would only involve prevention. In practice, you will often need to debug,
and then design an experiment to prevent the issue from happening again. There-
fore, the purpose of this chapter is to give you just enough tools and the background
you’ll need in the practice of chaos engineering.

 If I do my job well, by the end of the chapter, I expect you to feel comfortable dis-
cussing basic Linux performance-analysis tools with that slightly weird uncle at the
next Thanksgiving dinner. Shoot me an email when you do! Let’s set the scene with
another helping of our dramatic friends from Glanden—the FaaS crowd. What are
they up to?

3.1 The app is slow
It was a cold, windy, and exceptionally rainy November afternoon. The clouds were
thick and heavy, ripping open with buckets of water pounding on the roof of the yel-
low cab stuck in traffic in Midtown Manhattan. Alice, the head of engineering (all five
team members) at FaaS, trapped inside the cab, was making some last-minute changes
to the presentation she was going to give to a client in a few minutes.

 She had a bad feeling about it. Since the moment she flew in that day, she had
been feeling like something was going to go terribly wrong—the feeling of impending
doom. When she stepped out of the car into a wall of water, her phone started ringing.
As she looked at her phone, lightning struck. It was the Big Client, accounting for
most of her company’s income. This client never called with good news.

 Alice picked up. A cold shiver went down her spine. The wind wrestled away her
umbrella and sent it flying away. Alice nodded a few times and hung up. The client
said the four words that were about to shake her world: “The app is slow.” Cue very
loud thunder.

 If you’ve ever had to deal with weird slowness issues in your system, I’m sure you
can relate. They make for good stories and anecdotes later, but at the time they’re any-
thing but fun. Depending on the nature of the system, a little bit of slowness might go
unnoticed (probably a bad thing anyway), but enough of it means that the system is as
good as down. I’m sure you’ve heard stories about companies and products getting
positive media attention only to succumb to the spike in traffic and receive negative
coverage for unreliability shortly after. Slowness is dangerous for any business, and we
need to be able to diagnose and fight it.

 Great, but what does all of this have to do with chaos engineering? Plenty, as it
turns out. When practicing chaos engineering, we often either try to actively prevent
situations like this from happening (through simulating it and seeing what hap-
pens), or we’re involved in debugging an ongoing situation and then trying to pre-
vent it from happening again. Either way, in order to wreak havoc responsibly, we
need to be able to have good insight (observability) into the system’s performance
metrics, and fast.

45The USE method
 Typically, during problems like that, everyone is in panic mode, and you need to
think quickly. In this chapter, I want to give you all the information you need to get
started. Let’s begin with a high-level overview of the methodology.

3.2 The USE method
Just like skinning a cat, there are many ways to go about debugging a server perfor-
mance issue. My favorite, and the one we’re going to cover, is called USE, which stands
for utilization, saturation, and errors (see Brendan Gregg, www.brendangregg.com/
usemethod.html). The idea is simple: for each type of resource, check for errors, utili-
zation, and saturation to get a high-level idea of what might be going wrong.

DEFINITION In this chapter, we’re going to talk a lot about utilization and sat-
uration of resources. A resource is any of the physical components making up a
physical server, such as the CPU, disk, networking devices, and RAM. You may
also have software resources, including threads, PIDs, or inode IDs. Utilization
of a resource is indicated by an average time or proportion of the resource
used. For example, for a CPU, a meaningful metric is the percentage of time
spent doing work. For a disk, the percentage of the disk that is full can be a
meaningful metric, but so can its throughput. Finally, saturation is the amount
of work that the resource can’t service at any given moment (often queued).
A high saturation might be a sign of a problem, but also may very well be
desirable (for example, in a batch processing system, where we want to use as
close to 100% of the available processing power as possible).

Figure 3.1 shows a flowchart for applying the USE method. You start by identifying
resources, and then for each one, you check for errors. If found, you investigate and
try to fix them. Otherwise, you check the utilization level. If high, you investigate fur-
ther. Otherwise, you look for saturation, and if that looks problematic, you dig deeper.
If you don’t find anything, at least you’ve reduced the number of unknown unknowns.

Known unknowns vs. unknown unknowns and the dark debt
Unknowns come in two flavors: known and unknown.

Known unknowns are the things we know we don’t know. If I haven’t opened the
fridge, I can’t be sure whether bacon is inside (please don’t get me started on
Schrödinger’s bacon or smart fridges with cameras inside). Bacon is already on my
radar. But what about things that aren’t on my radar, and I don’t know I should know?

These are the unknown unknowns, and every sufficiently complex computer system
has some. These are harder to deal with, because usually by the time we realize we
need to know about them, it’s too late. For instance, after an incident, we might come
up with some monitoring that would have alerted us to the problem. That’s an
unknown becoming a known unknown. Unknown unknowns are also often referred to
as the dark debt. If that doesn’t sound like something from a galaxy far, far away,
then I don’t know what does.

http://www.brendangregg.com/usemethod.html
http://www.brendangregg.com/usemethod.html
http://www.brendangregg.com/usemethod.html

46 CHAPTER 3 Observability
This approach lets us quickly identify bottlenecks. It’s worth noting that at the various
steps of the flowchart, you will often find a problem, but not necessarily the problem
causing the issue that prompted you to start the investigation. That is fine; you can
add them to the to-do list and carry on with your investigation.

Start

Identify

resources

Pick resource

Errors?

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Fix the problem.

High

Saturation?

High

Utilization?

Investigate

U
S

E
 m

e
th

o
d

Identified

the

problem?

More

resources left?

Done

CPU, RAM, block I/O
networking, filesystem,
software resources ...

Any errors present
can point to your issue
(or distract you from
the real one).

For example, a
filesystem running
out of space...

... might be a sign of
a peak in traffic, or
might be by design.

Figure 3.1 Flowchart of the USE method

47Resources
 It also needs to be said that books have been (and will be) written about Linux per-
formance observability, and in this chapter my goal is to give you just enough informa-
tion to cover the useful types of issues in the context of chaos engineering. For those
who are new to these Linux performance analysis tools, getting comfortable with the
ones covered in this chapter will be left for you as an exercise. For others, please don’t
hate me for not including your favorite tool! With that asterisk out of the way, let’s
take a closer look, starting with the resources.

3.3 Resources
Figure 3.2 illustrates the types of resources we will be looking into. It’s a high-level
overview, and we’ll zoom in to the various sections later, but for now I would like you
to take a look at the broad categories of resources we will be working with.

At the bottom sit four main logical components of a physical computer: CPU, RAM,
networking, and block I/O. Above is an OS layer, which also provides software
resources (such as file descriptors or threads). At the top we have an application layer,
in which I included libraries and runtimes.

Pop quiz: What’s USE?
Pick one:

1 A typo in USA
2 A method of debugging a performance issue, based around measuring utilization,

severity, and exiting
3 A command showing you the usage of resources on a Linux machine
4 A method of debugging a performance issue, based around measuring utilization,

saturation, and errors

See appendix B for answers.

Application

Operating system Software resources

Libraries

Runtimes

CPU RAM Networking
Block I/O

(storage)

Figure 3.2 A simplified view of
system resources

48 CHAPTER 3 Observability
 Now, going back to Alice and her terrible day, I would like you to put yourself in
her shoes, and I’ll guide you through the steps to finding out why her application was
slow. We will use the USE method for that.

 To make things more fun, I’ve prepared a simulation of Alice’s situation for you.
All of the commands we’ll cover are already available in your VM, and the code snip-
pets are to be executed inside a terminal in the VM. To start Alice’s application in your
VM, run the following command in your terminal:

~/src/examples/busy-neighbours/mystery002

You will see output similar to the following, calculating pi’s digits in a loop. Notice the
time it takes to do one set of calculations (bold font):

Press [CTRL+C] to stop..
Calculating pi's 3000 digits...
3.141592653589793238462643383279502884197169399375105820974944592307\

real 0m4.183s
user 0m4.124s
sys 0m0.022s

This is an approximation of what Alice was seeing when she logged in, running
indefinitely.

NOTE This will run your CPUs hot (it’s set up to use two cores), so if you’re
running this on modest hardware and don’t want your laptop to work as a
heater, you might want to switch it on and off as we go through the tools.

In the rest of the chapter, I’ll assume that you have this running in a command-line win-
dow. When you’re finished with the program, just press Ctrl-C to kill it. If you’re curious
about how it works, feel free to have a look, but it would be more fun if you tried to figure
it out by letting me walk you through a collection of visibility tools available for Linux.

 After the first few iterations, you should notice that the calculations of pi begin to
take much longer, and with more variance in terms of time. This is going to be your
“my app is slow” simulation. You’ll feel some of Alice’s pain.

 Each of the following sections covers a subgroup of tools that you’re going to be
able to use when trying to gain visibility (observability) of your system, prompted by a
slowness of the application. Let’s dive in. First stop, “tools that apply to the system as
a whole.” I know, a pretty lousy name for a bus stop.

3.3.1 System overview

We’ll begin by covering two basic tools that give us information about the whole sys-
tem, uptime and dmesg. Let’s start by looking at uptime.

UPTIME

uptime is often the first command you’re going to run. Apart from telling you how
long the system has been up (whether it has restarted recently), it gives you the load

49Resources
averages. Load averages are a quick way of seeing the direction (trend) in which your
system is going in terms of load. Run the command uptime in your terminal window.
You will see output similar to the following:

 05:27:47 up 18 min, 1 user, load average: 2.45, 1.00, 0.43

The three numbers represent a moving window sum average of processes competing
over CPU time to run over 1, 5, and 15 minutes. The numbers are exponentially
scaled, so a number twice as large doesn’t mean twice as much load.

 In this example, the 1-minute average is 2.45, 5-minute average is 1.00, and 15-min-
ute average is 0.43, which indicates that the amount of load on the system is on the
rise. It’s an increasing trend. This is useful only for seeing the direction in which the
load is going (increasing or decreasing), but the values don’t paint the whole picture
by themselves. In fact, don’t worry about the values at all. Just remember that if the
numbers are decreasing sharply, it might mean that we’re too late and the program
that was eating up all the resources went away. And if the numbers are increasing, it’s
a nice proxy for the rising load on the system.

 And that’s it for uptime. Let’s take a look at dmesg.

DMESG

dmesg reads the message buffer of the kernel. Think of it as kernel and driver logs.
You can read these logs by running the following command at your terminal prompt.
Because there will be multiple pages of output, you’re piping it to less for paging and
easy searching:

dmesg | less

What are you looking for? Any errors and anomalies that can give you a clue about
what’s going on. Do you remember the OOM Killer from the previous chapter? You can

Load averages
If you’re ever interested in writing a program that uses load averages like the ones
printed by uptime, you’re in for a treat. Linux has you covered. All you need to do is
read /proc/loadavg. If you print its contents by running the command cat /proc/
loadavg in the terminal, the output you’ll see is similar to this:

0.12 0.91 0.56 1/416 5313

The first three numbers are the 1-, 5-, and 15-minute moving window averages you
saw previously in uptime. The fourth and fifth, separated by a slash, are the number
of currently runnable, kernel schedulable entities (process, thread) and the total num-
ber of kernel schedulable entities currently existing, respectively. The last number is
the PID of the most recently started program. To learn more, just run man proc in your
terminal and search for loadavg.

50 CHAPTER 3 Observability
search for Kill in the logs by typing /Kill and pressing Enter inside less. If your OOM
Killer actually killed any processes, you should see output similar to the following:

[14658.582932] Out of memory: Kill process 5451 (mystery001)
score 758 or sacrifice child
[14658.582939] Killed process 5451 (mystery001) total-vm:3058268kB,
anon-rss:3055776kB, file-rss:4kB, shmem-rss:0kB

You want to give the output a quick glance to ensure that there isn’t anything remark-
able going on. If you see any error messages, they might or might not be related to
what you’re diagnosing. If the logs don’t contain anything interesting, you can move
on. The dmesg command also has a --human option, which makes the output slightly
easier to read by displaying times in a human-readable format. You can run it with the
following line at your command prompt:

dmesg --human

The output will then have relative times taken by each line, similar to this output (I’ve
shortened the lines for brevity):

[Sep10 10:05] Linux version 5.4.0-42-generic (buildd@lgw01-amd64-038) (...)
[+0.000000] Command line: BOOT_IMAGE=/boot/vmlinuz-5.4.0-42-generic (...)

The logs take a little while to get used to, but they are worth giving a quick check every
time you want to debug a system performance issue. Don’t worry if you’re seeing
things you don’t understand in the logs; the kernel messages are pretty verbose. Most
of the time, you can ignore anything that doesn’t mention error.

 That’s all you need to know about dmesg for now. So far, so good. Let’s segue into
the next group of resources: the block I/O.

3.3.2 Block I/O

Let’s take a closer look at block input/output (block I/O) devices, such as disks and
other types of storage on your system. These have an interesting twist that can affect
your system in two ways: they can be underperforming or they can be full. Thus, you’ll
need to look at their utilization from both of these perspectives: their throughput and
their capacity.

Pop quiz: Where can you find kernel logs?
Pick one:

1 /var/log/kernel
2 dmesg
3 kernel --logs

See appendix B for answers.

51Resources
 Figure 3.3 shows what we are zooming in on, relative to the entire resource map
from figure 3.2, including the tools we’re going to use to get more information about
the utilization and saturation.

Let’s review some of the tools available for this investigation, starting with df.

DF

The definition of utilization is the percentage of the resource used. To assess that,
you can use df, which reports filesystem disk space usage. Using it is straightforward:
type the following command at your terminal prompt (-h here, sneakily, stands for
human readable, not help) to list all the filesystems mounted and to show their size
and used space:

df -h

You will see output similar to this (/dev/sda1, my main filesystem, in bold):

Filesystem Size Used Avail Use% Mounted on
udev 2.0G 0 2.0G 0% /dev
tmpfs 395M 7.9M 387M 2% /run
/dev/sda1 40G 13G 27G 33% /
tmpfs 2.0G 0 2.0G 0% /dev/shm
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 2.0G 0 2.0G 0% /sys/fs/cgroup
tmpfs 395M 24K 395M 1% /run/user/1000

For the device /dev/sda1, the utilization is at 33%. When the filesystem gets full,
nothing more can be written to it, and it will become a problem. But how much data it
can hold is just one of the two sides of utilization that a storage device provides. The

The tools we’re
going to cover

Runtimes

Libraries

Application

Operating System

CPU RAM

Software resources

Networking
Block I/O

(storage)

The section we’re
discussing

Block I/O

(storage)

df
iostat
biotop

Figure 3.3 Zooming in to block
I/O-related observability tools

52 CHAPTER 3 Observability
other is how much it can write in a unit of time—the throughput. Let’s investigate that
part by using iostat.

IOSTAT

iostat is a great tool for looking into the performance and utilization (in terms of
throughput) of block I/O devices such as disks. One flag you’re going to use is -x to
get the extended statistics, including percentage of utilization. Run the following
command in your terminal:

iostat -x

You should see output similar to the following. In this example, the numbers of reads
and writes per second (r/s and w/s, respectively) seem reasonable, but by themselves
don’t say much about what is going on. The fields rkB/s and wkB/s, which stand for
read and write kilobytes per second, respectively, show the total throughput. Together, the
two metrics (raw number and throughput) also give you a feel for an average size of a
read or write.

 aqu-sz is the average queue length of the requests issued to the device (nothing to
do with Aquaman), a measure of saturation, and it shows the system is doing some
work. Again, the bare number is hard to interpret, but you can look at whether it’s
increasing or decreasing.

 Depending on the host system you use to run your VM, you might see very differ-
ent values. My 2019 MacBook Pro is managing almost 750 MB/s, which is comfortably
below the values set by online benchmarks:

Linux 5.0.0-38-generic (linux) 01/28/2020 _x86_64_ (2 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle
 57.29 0.00 42.71 0.00 0.00 0.00

Device r/s w/s rkB/s wkB/s rrqm/s wrqm/s %rrqm
%wrqm r_await w_await aqu-sz rareq-sz wareq-sz svctm %util
loop0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sda 0.00 817.00 0.00 744492.00 0.00 0.00 0.00
0.00 0.00 3.44 1.29 0.00 911.25 0.56 46.00

Finally, the %util column shows the utilization, here defined as the percentage of
time the device spent doing work. A high value might indicate saturation, but it’s
important to remember a couple of things. First, a logical device representing some-
thing more complex, like a RAID, might show a high saturation, whereas the underly-
ing disks might actually be underused, so be careful when interpreting that. And
second, a high saturation doesn’t automatically translate into a performance bottle-
neck in the application, because various techniques are developed to try to do some-
thing productive while waiting for I/O.

 All in all, in the preceding example, iostat shows some activity writing to my pri-
mary disk, but it seems to be comfortably within the range of what it should be able to

53Resources
do at around 740 MB/s writes and 46% utilization. Nothing really suspicious to see
here, so let’s move to the next tool: biotop.

BIOTOP

biotop, which stands for block I/O top, is part of the suite of tools called BCC (https://
github.com/iovisor/bcc) that provides a toolkit for writing kernel monitoring and
tracing programs. It leverages eBPF and provides example utilities, which are very use-
ful in their own right, to show what you can do with it.

The BCC tools are preinstalled on your VM, and you can install them from https://
github.com/iovisor/bcc/blob/master/INSTALL.md. I would love to show you just
how powerful eBPF is, and I recommend you get a book or two about it.1 For now, let’s
just get a taste of a few example tools, starting with biotop.

 On Ubuntu, which your VM is running, the tools come appended with -bpfcc.
Run biotop by typing the following command into your terminal:

sudo biotop-bpfcc

You should see output similar to this, refreshed every second (pro tip: you can add -C
if you’d like to prevent the command from clearing the screen every time):

06:49:44 loadavg: 2.70 1.24 0.47 6/426 5269

PID COMM D MAJ MIN DISK I/O Kbytes AVGms
5137 kworker/u4:3 W 8 0 sda 677 611272 3.37
246 jbd2/sda1-8 W 8 0 sda 2 204 0.20

Berkeley Packet Filter
Berkeley Packet Filter (BPF), a powerful feature of the Linux kernel, allows a program-
mer to execute code inside the kernel in a way that guarantees safety and perfor-
mance. It allows for a host of applications, most of which are beyond the scope of
this book, but I strongly recommend you become familiar with it.

The BCC project builds on BPF and makes it much easier to work with BPF by provid-
ing wrappers and extra layers of abstraction. The official website of BCC (https://
github.com/iovisor/bcc/tree/master/tools) has the source code of all the example
applications, including biotop, opensnoop, and execsnoop that we’ll cover in this
chapter, and many more. The tools themselves are written in a manner that facili-
tates getting started with your own programs.

The e in eBPF stands for extended, a more modern version of BPF. However, BPF is
often used to describe eBPF, and classic BPF to talk about the non-extended version.

1 You can start with BPF Performance Tools by Brendan Gregg (Addison-Wesley, 2019); http://mng.bz/aoA7.

sudo is required here, because running
BPF requires administrator privileges.

https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc/tree/master/tools
https://github.com/iovisor/bcc/tree/master/tools
https://github.com/iovisor/bcc/tree/master/tools
http://mng.bz/aoA7
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md
https://github.com/iovisor/bcc/blob/master/INSTALL.md

54 CHAPTER 3 Observability
biotop helps you identify where the load writing to the disk is coming from. In this
case, you can see a process called kworker, which is writing more than 600 MB/s to
the disk, and on occasion some other, less hungry processes. We’ve established that in
our case this is fine, and you can let it carry on doing its thing. But if you are looking
for the culprit eating up all the resources, this is the tool that will help you with that—
good to remember when you’re stressed out!2

 It’s also worth noting that the tools installed by the bpfcc-tool package are writ-
ten in Python, so if you’re curious about what their source code looks like, you can
take a sneak peek directly from your command line by running this command
(replace biotop-bpfcc with the command you want to investigate) in your terminal:

less $(which biotop-bpfcc)

All right. So that covers what you’re going to need for now in terms of finding out
utilization and saturation of the block I/O. Let’s take a look at the next section:
networking!

3.3.3 Networking

Networking in Linux can get pretty complex, and my assumption here is that you have
an idea of how it works. In this section, we’re going to focus on establishing the utiliza-
tion and saturation of the network interfaces and on gaining insight into TCP. Fig-
ure 3.4 shows how the networking layer fits into our resource map and mentions the
tools we’re going to look into: sar and tcptop. Let’s start by looking into the network
interfaces utilization with sar.

2 Brendan Gregg, the author of the BCC project, also maintains a set of graphics about Linux tooling that you
can look into at www.brendangregg.com/linuxperf.html. They provide a memory aid of which tools you can
use when you need to debug a particular part of the system and can be very valuable attached to the wall of
your cubicle!

Pop quiz: Which command does not help you see statistics about disks?
Pick one:

1 df
2 du
3 iostat

4 biotop
5 top

See appendix B for answers.

http://www.brendangregg.com/linuxperf.html

55Resources
SAR

sar is a tool to collect, report, and save system metrics. I’ve preinstalled it into your
VM, but in order for it to collect system metrics, you need to activate it. You can do
that by editing the file /etc/default/sysstat to change ENABLED="false" to ENABLED=
"true". In order for sysstat to pick up the changes, you also need to restart its ser-
vice by running the following command at the prompt:

sudo service sysstat restart

sar provides various metrics around your system usage, but here we’re going to focus
on what it offers for networking. Let’s start by checking the utilization. You can use the
DEV keyword provided by sar, which provides a comprehensive overview of the net-
work interfaces.

Run the following command at your prompt:

sar -n DEV 1 1

You should see output similar to this (the utilization field and value are in bold font,
and the output is shortened for easier reading). In this example (what you’re likely to
see when you run this command in your VM), nothing is really using networking, so
all the stats are at 0. The sar command is showing two network interfaces—eth0 (the
main network card) and lo (loopback):

Interval and count
Note that sar, as well as many tools in the BCC suite, takes two optional, positional
parameters at the end: [interval] [count]. They steer how often the output should
be printed in seconds (interval) and how many times it should be printed before the
program exits (count). Often, the default is 1 second and infinite count. In our exam-
ples, we’ll often use 1 1 to print a single set of stats and exit.

Runtimes

Libraries

Application

Operating System Software resources

CPU RAM Networking
Block I/O

(storage)

Networking
sar

tcptop

Figure 3.4 Zooming in to network-
related observability tools

56 CHAPTER 3 Observability
Linux 5.0.0-38-generic (linux) 01/29/2020 _x86_64_ (2 CPU)

07:15:57 AM
IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s %ifutil
07:15:58 AM
lo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
07:15:58 AM
eth0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(...)

The %ifutil field is where you can read your utilization from. The other field names
are not 100% straightforward, so let me include their definitions here from man sar:

 rxpck/s—Total number of packets received per second
 txpck/s—Total number of packets transmitted per second
 rxkB/s—Total number of kilobytes received per second
 txkB/s—Total number of kilobytes transmitted per second
 rxcmp/s—Number of compressed packets received per second (for cslip and

so on)
 txcmp/s—Number of compressed packets transmitted per second
 rxmcst/s—Number of multicast packets received per second

To generate traffic, let’s download a large file from the internet. You can download an
ISO image with Ubuntu 19.10 from a relatively slow mirror by running this command
from the prompt:

wget \
http://mirrors.us.kernel.org/ubuntu-releases/19.10/
ubuntu-19.10-desktop-amd64.iso

While that is downloading, you can use another terminal window to issue the same
sar command you did before:

sar -n DEV 1 1

This time, the output should show the traffic going through on the eth0 interface
(again, the utilization is in bold font):

07:29:44 AM
IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s %ifutil
07:29:45 AM
lo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
07:29:45 AM
eth0 1823.00 592.00 1616.29 34.69 0.00 0.00 0.00 1.32

The sar command also supports another keyword, EDEV, to display error statistics on
the network. To do that, issue the following command at the prompt:

sar -n EDEV 1 1

57Resources
You will see output similar to the following:

Linux 5.0.0-38-generic (linux) 01/29/2020 _x86_64_ (2 CPU)

07:33:53 AM
IFACE rxerr/s txerr/s coll/s rxdrop/s xdrop/s txcarr/s rxfram/s rxfifo/s txfifo/s
07:33:54 AM
lo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
07:33:54 AM
eth0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(...)

As you can see, no errors are showing in our example. It doesn’t look like Alice’s prob-
lem lies here.

 Again, the field names might seem a little confusing, especially at first, so let me
include the definitions for your convenience:

 rxerr/s—Total number of bad packets received per second
 txerr/s—Total number of errors that happened per second while transmitting

packets
 coll/s—Number of collisions that happened per second while transmitting

packets
 rxdrop/s—Number of received packets dropped per second because of a lack

of space in Linux buffers
 txdrop/s—Number of transmitted packets dropped per second because of a

lack of space in Linux buffers
 txcarr/s—Number of carrier errors that happened per second while transmit-

ting packets
 rxfram/s—Number of frame-alignment errors that happened per second on

received packets
 rxfifo/s—Number of FIFO overrun errors that happened per second on

received packets
 txfifo/s—Number of FIFO overrun errors that happened per second on

transmitted packets

Finally, let’s explore two keywords offered by sar: TCP (for TCP statistics) and ETCP
(for errors in the TCP layer). You can run both at the same time by issuing the follow-
ing command at your prompt:

sar -n TCP,ETCP 1 1

You will see output similar to this. No errors show up, which means it’s not the source
of Alice’s trouble—not this time, at least. You can safely move on to the next tool:

Linux 5.0.0-38-generic (linux) 01/29/2020 _x86_64_ (2 CPU)

07:56:30 AM active/s passive/s iseg/s oseg/s
07:56:31 AM 0.00 0.00 1023.00 853.00

58 CHAPTER 3 Observability
07:56:30 AM atmptf/s estres/s retrans/s isegerr/s orsts/s
07:56:31 AM 0.00 0.00 0.00 0.00 0.00

Average: active/s passive/s iseg/s oseg/s
Average: 0.00 0.00 1023.00 853.00

Average: atmptf/s estres/s retrans/s isegerr/s orsts/s
Average: 0.00 0.00 0.00 0.00 0.00

Again, for your convenience, here are the descriptions of the field names:

 active/s—The number of times TCP connections have made a direct transi-
tion to the SYN-SENT state from the CLOSED state per second [tcpActiveOpens].

 passive/s—The number of times TCP connections have made a direct transi-
tion to the SYN-RCVD state from the LISTEN state per second [tcpPassiveOpens].

 iseg/s—The total number of segments received per second, including those
received in error [tcpInSegs]. This count includes segments received on cur-
rently established connections.

 oseg/s—The total number of segments sent per second, including those on
current connections but excluding those containing only retransmitted octets
[tcpOutSegs].

 atmptf/s—The number of times per second TCP connections have made a direct
transition to the CLOSED state from either the SYN-SENT state or the SYN-RCVD
state, plus the number of times per second TCP connections have made a direct
transition to the LISTEN state from the SYN-RCVD state [tcpAttemptFails].

 estres/s—The number of times per second TCP connections have made a
direct transition to the CLOSED state from either the ESTABLISHED state or the
CLOSE-WAIT state [tcpEstabResets].

 retrans/s—The total number of segments retransmitted per second—that is,
the number of TCP segments transmitted containing one or more previously
transmitted octets [tcpRetransSegs].

 isegerr/s—The total number of segments received in error (for example, bad
TCP checksums) per second [tcpInErrs].

 orsts/s—The number of TCP segments sent per second containing the RST
flag [tcpOutRsts].

If the download hasn’t finished, please keep it on for the next section. You’ll still need
to generate some traffic, while you’re looking at tcptop!

TCPTOP

tcptop is part of the BCC project I mentioned earlier (https://github.com/iovisor/bcc).
It shows the top (by default, 20) processes using TCP, sorted by bandwidth. You can
run it from your command line like this:

sudo tcptop-bpfcc 1 1

https://github.com/iovisor/bcc

59Resources
You will see output similar to the following. RX_KB is the received traffic in kilobytes,
TX_KB is the traffic sent (t is for transmitted). You can see the wget command, slowly
downloading the Ubuntu image at just over 2 MB/s. You know that it’s there, because
you ran it on purpose to generate traffic, but tcptop can be an invaluable tool allow-
ing you to track down what’s using the bandwidth on the system. Isn’t BPF pretty cool?

08:05:51 loadavg: 0.20 0.09 0.07 1/415 8210

PID COMM LADDR RADDR RX_KB TX_KB
8142 wget 10.0.2.15:60080 149.20.37.36:80 2203 0

As you can see, the usage is really simple, and in certain circles might even earn you
the title of the local computer magician (computer whisperer?) Make sure you
remember about it in times of hardship!

 OK, that’s all you’ll need to know about tcptop and hopefully enough to get you
going using the USE method on the networking part of the system. Next stop: RAM.

3.3.4 RAM

No program can run without random access memory, and RAM contention is often a
problem you’re going to have to deal with. It’s paramount to be able to read the USE
metrics of your system. Figure 3.5 shows where we are on our resource map and the
tools we’re going to cover: free, top, vmstat, and oomkill. Let’s start with free.

Pop quiz: Which command does not help you see statistics about networking?
Pick one:

1 sar
2 tcptop

3 free

See appendix B for answers.

Runtimes

Libraries

Application

Operating System

CPU

Software resources

RAM Networking
Block I/O

(storage)

RAM

free
top

vmstat
oomkill

Figure 3.5 Zooming in to RAM-
related observability tools

60 CHAPTER 3 Observability
FREE

free is an equivalent of df for RAM: it shows utilization of RAM. It even accepts the
same -h argument for human-readable output. You can run free from your command
line like this:

free -h

You will see output similar to this, with the difference that I activated swap here, for it
to show in the output, and yours will be disabled (discussed columns in bold font):

 total used free shared buff/cache available
Mem: 3.8Gi 1.1Gi 121Mi 107Mi 2.7Gi 2.4Gi
Swap: 750Mi 3.0Mi 747Mi

If this is the first time you’ve seen this screen, I’d almost bet my breakfast that you’re
confused. If the total memory is 3.8 GB and you’re using 1.1 GB, then why is only 121
MB free? If something smells fishy to you, you’re not the only one. In fact, it’s such a
common reaction that it has its own website (www.linuxatemyram.com)!

 So what’s going on? The Linux kernel uses some of the available memory to speed
things up for you (by maintaining disk caches), but it’s perfectly happy to give it back
to you (or any other user) anytime you ask for it. So that memory is technically not
free, but it is indeed available. It’s the equivalent of your younger brother borrowing
your car when you’re not using it, except that Linux always hands the memory back to
you unscathed when you need it.

 Fortunately, recent versions of free have the column available, just as in the pre-
ceding output. Versions not that long ago didn’t have it, and instead provided an
extra row called -/+ buffers/cache, which only added to the confusion.

 If you are using an older version, you might see an extra row like the following
one. This shows the values of used minus buffers and cache (so used, and can’t be
reclaimed), as well as free plus buffers and cache (free or can be reclaimed, so avail-
able). Also, in that version, used used to equal total minus free:

 total used free shared buffers cache
Mem: 3.8Gi 2.7Gi 121Mi 107Mi 1.1Gi 1.3Gi
-/+ buffers/cache: 302Mi 2.4Gi

So how do you know you’ve really run out of RAM? The surefire giveaways are the
available column being close to zero, and (as you saw before with dmesg) the OOM
Killer going wild (if active). If the available column is showing a reasonable amount
left, you’re all right. And looking at the preceding output, it looks like Alice is also all
right. Let’s move on to the next tool: the good old top.

TOP

top gives you an overview of the memory and CPU utilization of your system. Running
top with default settings is easy. Strike the following three keys at the prompt:

top

http://www.linuxatemyram.com

61Resources
You will see interactive output refreshing every 3 seconds, looking something like the
following. Notice that by default, the output is sorted by the value of field %CPU, which
is CPU usage of the program. You can exit by pressing Q on the keyboard, and again,
I’m showing what it looks like with swap on; yours will be off. I’ve used bold font for
columns corresponding to CPU utilization (%CPU) and memory utilization (%MEM), as
well as the system CPU and memory overview rows:

Tasks: 177 total, 6 running, 171 sleeping, 0 stopped, 0 zombie
%Cpu(s): 53.3 us, 40.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 6.7 si, 0.0 st
MiB Mem : 3942.4 total, 687.8 free, 1232.1 used, 2022.5 buff/cache
MiB Swap: 750.5 total, 750.5 free, 0.0 used. 2390.4 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
3508 chaos 20 0 265960 229772 264 R 43.8 5.7 0:02.51 stress
3510 chaos 20 0 3812 96 0 R 43.8 0.0 0:02.72 stress
3507 chaos 20 0 3812 96 0 R 37.5 0.0 0:02.63 stress
3509 chaos 20 0 4716 1372 264 R 37.5 0.0 0:02.43 stress
 7 root 20 0 0 0 0 I 18.8 0.0 0:00.68 kworker/u4:0-
flush-8:0
1385 chaos 20 0 476172 146252 99008 S 6.2 3.6 0:01.95 Xorg
 1 root 20 0 99368 10056 7540 S 0.0 0.2 0:01.38 systemd
 2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd

I’ll let you check the meaning of the other fields by using man top (which, by the way,
is an amazing read; it explains everything from how the memory works, to some stupid
tricks you can use to show off at the next team dinner).

 You can see that my CPUs are working pretty hard, but more on that in a second.
Also, notice the header, which gives you a quick overview of the CPU and memory uti-
lization of the system as a whole. We’ll cover what the different values mean in just a
bit when we talk about CPUs. The memory summary should feel familiar to you, as it’s
similar to the output of free (minus the handy available field).

 OK. Now, a show of hands of those who have never run top in their lives. Exactly, I
see no hands up! So why are we even cutting down trees to talk about it? Well, the fun
begins when you press the question mark (?) on the keyboard while running top. Do
it, and you’ll see something like this:

Help for Interactive Commands - procps-ng 3.3.15
Window 1:Def: Cumulative mode Off. System: Delay 3.0 secs; Secure mode Off.

Z,B,E,e Global: 'Z' colors; 'B' bold; 'E'/'e' summary/task memory scale
l,t,m Toggle Summary: 'l' load avg; 't' task/cpu stats; 'm' memory info
0,1,2,3,I Toggle: '0' zeros; '1/2/3' cpus or numa node views; 'I' Irix mode
f,F,X Fields: 'f'/'F' add/remove/order/sort; 'X' increase fixed-width

L,&,<,> . Locate: 'L'/'&' find/again; Move sort column: '<'/'>' left/right
R,H,V,J . Toggle: 'R' Sort; 'H' Threads; 'V' Forest view; 'J' Num justify
c,i,S,j . Toggle: 'c' Cmd name/line; 'i' Idle; 'S' Time; 'j' Str justify
x,y . Toggle highlights: 'x' sort field; 'y' running tasks
z,b . Toggle: 'z' color/mono; 'b' bold/reverse (only if 'x' or 'y')
u,U,o,O . Filter by: 'u'/'U' effective/any user; 'o'/'O' other criteria

62 CHAPTER 3 Observability
n,#,^O . Set: 'n'/'#' max tasks displayed; Show: Ctrl+'O' other filter(s)
C,... . Toggle scroll coordinates msg for: up,down,left,right,home,end

k,r Manipulate tasks: 'k' kill; 'r' renice
d or s Set update interval
W,Y Write configuration file 'W'; Inspect other output 'Y'
q Quit
 (commands shown with '.' require a visible task display window)
Press 'h' or '?' for help with Windows,
Type 'q' or <Esc> to continue

It’s like accidentally walking into that weird wardrobe taking you to Narnia! Have a
look through what that says when you have a minute, but let me highlight a few amaz-
ing features you’ll love.

 Toggle memory units—By default, the memory usage is displayed in KB. If you
want to toggle it through MB, GB, and so forth, type e (toggle in the list of pro-
cesses) or E (toggle the summary).

 Toggle memory (and CPU) summary—Type m to change the view into progress bars
if you don’t fancy comparing numbers in your head. The same works with t for
toggling CPU usage.

 Hide clutter—Type 0 (zero) to hide any zeros on the display.
 Change and sort columns—Typing f opens a new dialog box in which you can

choose which columns to display, rearrange them, and choose which one to sort
on. The dialog looks like the following output and lists all available options,
along with the instructions on how to use them:

Fields Management for window 1:Def, whose current sort field is RES
 Navigate with Up/Dn, Right selects for move then <Enter> or Left commits,
 'd' or <Space> toggles display, 's' sets sort. Use 'q' or <Esc> to end!

* RES = Resident Size (KiB) nDRT = Dirty Pages Count
* PID = Process Id WCHAN = Sleeping in Function
* USER = Effective User Name Flags = Task Flags <sched.h>
* PR = Priority CGROUPS = Control Groups
* NI = Nice Value SUPGIDS = Supp Groups IDs
* VIRT = Virtual Image (KiB) SUPGRPS = Supp Groups Names
* SHR = Shared Memory (KiB) TGID = Thread Group Id
* S = Process Status OOMa = OOMEM Adjustment
* %CPU = CPU Usage OOMs = OOMEM Score current
* %MEM = Memory Usage (RES) ENVIRON = Environment vars
* TIME+ = CPU Time, hundredths vMj = Major Faults delta
* COMMAND = Command Name/Line vMn = Minor Faults delta
 PPID = Parent Process pid USED = Res+Swap Size (KiB)
 UID = Effective User Id nsIPC = IPC namespace Inode
 RUID = Real User Id nsMNT = MNT namespace Inode
 RUSER = Real User Name nsNET = NET namespace Inode
 SUID = Saved User Id nsPID = PID namespace Inode
 SUSER = Saved User Name nsUSER = USER namespace Inode
 GID = Group Id nsUTS = UTS namespace Inode
 GROUP = Group Name LXC = LXC container name

63Resources
 PGRP = Process Group Id RSan = RES Anonymous (KiB)
 TTY = Controlling Tty RSfd = RES File-based (KiB)
 TPGID = Tty Process Grp Id RSlk = RES Locked (KiB)
 SID = Session Id RSsh = RES Shared (KiB)
 nTH = Number of Threads CGNAME = Control Group name
 P = Last Used Cpu (SMP) NU = Last Used NUMA node
 TIME = CPU Time
 SWAP = Swapped Size (KiB)
 CODE = Code Size (KiB)
 DATA = Data+Stack (KiB)
 nMaj = Major Page Faults
 nMin = Minor Page Faults

Note that from the main screen of top, you can also change which column is
used for sorting by using the < and > keys, but it’s a little awkward, because
there is no visual indication next to the column name. You can use x to toggle
the sorted column to be in bold font, which helps with that.

 Search (locate) a process name—Type L to open a search dialog.
 Show forest view—Much like ps f, typing V shows which processes are children of

which parents.
 Save the view—You can write the configuration file by typing w. This can be a real

time-saver. Once you type w, top will write with all the interactive settings you’ve
changed so that the next time you run it, it can pick up the same settings.

NOTE If you’re running the Linux VM from a macOS host, you might be
tempted to go and see what the built-in top on macOS offers by comparison.
You will be disappointed, but fortunately, better alternatives (htop, glances, . . .)
are available through Homebrew and MacPorts.

OK, so that might feel a little off topic, but it really isn’t. When practicing chaos engi-
neering, I can’t stress enough how important it is to understand your metrics and how
to read them reliably. top is both powerful and pleasant to use, and knowing how to
use it efficiently is crucial. If you’ve used top for years but still learned something new
about it from this section, shoot me an email!

 In the initial output, the memory utilization and saturation were pretty low, which
indicates that it’s not what we’re looking for, so let’s move on to the next tool. We’ll
get back to the busy CPUs in just a few moments. Next in line is vmstat.

VMSTAT

vmstat shows much more than just the virtual memory statistics its name implies. Run
the vmstat command first without any arguments in your command prompt:

vmstat

You will see output similar to the following:

procs---------memory------------swap-- -----io---- -system-- ------cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
5 0 0 1242808 47304 1643184 0 0 1866 53616 564 928 17 13 69 1 0

64 CHAPTER 3 Observability
The values fit in a single row, which makes it practical to print them every n seconds
(with vmstat n). The interesting columns include the memory (similar to free, with
swpd showing used swap memory), r (the number of runnable processes, running or
waiting to run), and b (the number of processes in uninterruptible sleep). The num-
ber of runnable processes gives an indication of the saturation of the system (the
more processes competing for runtime, the busier the system—remember the load
averages earlier in the chapter?). The columns in and cs stand for the total number
of interrupts and context switches, respectively. We’ll cover the breakdown of the CPU
time in section 3.3.5.

 As you can see, vmstat overlaps with the other tools like free and top. Among
tools showing the same information, picking the one to use is largely a personal pref-
erence. But to help you make an informed decision, here are a few other things that
vmstat can do for you:

 Generate readable system usage stats—If you run vmstat with the -s flag in your
prompt, like this

vmstat -s

you will be presented a nicely readable list, just like the following:

 4037032 K total memory
 1134620 K used memory
 679320 K active memory
 1149236 K inactive memory
 2049752 K free memory
 17144 K buffer memory
 835516 K swap cache
 768476 K total swap
 0 K used swap
 768476 K free swap
 54159 non-nice user cpu ticks
 630 nice user cpu ticks
 45166 system cpu ticks
 25524 idle cpu ticks
 337 IO-wait cpu ticks
 0 IRQ cpu ticks
 3870 softirq cpu ticks
 0 stolen cpu ticks
 1010446 pages paged in
 255820616 pages paged out
 0 pages swapped in
 0 pages swapped out
 1363878 interrupts
 1140588 CPU context switches
 1580450660 boot time
 3541 forks

Notice the last row, forks. It’s the number of forks executed since the boot—
basically, the total number of processes that have run. It’s yet another indication

65Resources
of the busyness of the system. You can even get just that piece of information by
running vmstat -f directly.

 Generate readable disk usage stats—If you run vmstat -d, you will be presented
with utilization/saturation statistics for the disks in your system. You can also
run vmstat -D to get a one-off summary.

OK, enough about vmstat. Let’s cover one last utility in the RAM department: oomkill.

OOMKILL

oomkill (part of the BCC project, https://github.com/iovisor/bcc) works by tracing
kernel calls to oom_kill_process and printing to the screen information about it
every time it happens.3 Do you remember when we covered looking through dmesg
output, searching for information about processes being killed by the OOM Killer?
Well, this is the equivalent of plugging directly into the Matrix; you get the informa-
tion from the source, and you can plug it into whatever system you are looking at.

 To run oomkill, execute the following command in one terminal window:

sudo oomkill-bpfcc

It will start tracing OOM kills. You’re now well equipped for dealing with a situation
where a process gets killed by the OOM. Open another terminal window and run top
in it, this time with -d 0.5 to refresh every half second:

top -d 0.5

You can type m a couple of times to get a nice progress bar showing the memory utili-
zation of the system. Now, for the big finale: in a third terminal window, try to eat all
the memory by using Perl (this actually comes directly from http://mng.bz/xmnY:

perl -e 'while (1) { $a .= "A" x 1024; }'

You should see top show more and more memory usage for a few seconds, and then
go back to the previous state. In the first window with the oomkill, you should see the
trace of the assassin:

06:49:11 Triggered by PID 3968 ("perl"), OOM kill of PID 3968 ("perl"),
1009258 pages, loadavg: 0.00 0.23 1.22 3/424 3987

Pretty neat, isn’t it? If that was too quick, do you remember the mystery001 program
you were debugging in the previous chapter? You can revisit that by running the fol-
lowing in the third terminal window:

./src/examples/killer-whiles/mystery001

3 Look how simple BPF and BCC make it to attach a probe like that: http://mng.bz/A0y7. Isn’t that amazing?

https://github.com/iovisor/bcc
http://mng.bz/A0y7. Isn’t that amazing
http://mng.bz/xmnY

66 CHAPTER 3 Observability
The memory usage bar in top should now be slowly creeping up, and in under a min-
ute, you should see oomkill print another message, similar to the following:

07:09:20 Triggered by PID 4043 ("mystery001"), OOM kill of PID 4043
("mystery001"), 1009258 pages, loadavg: 0.22 0.10 0.36 4/405 4043

Sweet. Now you’re fully armed to deal with OOM kills and read RAM utilization and
saturation. Well done, detective. Time to move on to the next resource: the CPU.

3.3.5 CPU

Time to talk about the workhorse of all the system resources: the CPU! Let’s take a min-
ute to appreciate all the hard work the processor is doing for us. I’m running my VM
with two cores of my 2019 MacBook Pro. Let’s take a sneak peek at what my Ubuntu sees
about the processors, by running the following at your command prompt:

cat /proc/cpuinfo

You will see output similar to this (I removed most of it for brevity), containing the
details of each processor, including the model and the CPU clock:

processor : 0
(...)
model name : Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
stepping : 10
cpu MHz : 2591.998
(...)

So during that minute we were appreciating its hard work, each of the two cores did
about 2591.998 million cycles × 60 seconds in a minute = ~166 billion cycles total. If
only our politicians were that hardworking! Now, what were the cores busy doing all
that time? In this section, we’ll take a look at that.

 Figure 3.6 zooms in on our resource graph to show where we are, and lists the
tools we’re going to cover in this section: top and mpstat. We’ve already covered
the memory-related aspects of top, so let’s finish that one off by covering what it has to
offer in the context of CPU!

Pop quiz: Which command does not help you see statistics about RAM?
Pick one:

1 top
2 free

3 mpstat

See appendix B for answers.

67Resources
TOP

By now you’re familiar with how to read top’s memory usage, and how to use a few
very cool features (if you’re not, go back to section 3.3.4). Let’s finally cover what a
processor spends its time doing. Run top again from your terminal:

top

You will see output similar to the following. This time, let’s focus on the %Cpu(s) row
(bold font):

Tasks: 177 total, 6 running, 171 sleeping, 0 stopped, 0 zombie
%Cpu(s): 71.9 us, 25.0 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 3.1 si, 0.0 st

What do all these numbers mean? Let’s take a look:

 us (user time)—The percentage of time the CPU spent in user space.
 sy (system time)—The percentage of time the CPU spent in kernel space.
 ni (nice time)—The percentage of time spent on low-priority processes.
 id (idle time)—The percentage of time the CPU spent doing literally nothing.

(It can’t stop!)
 wa (I/O wait time)—The percentage of time the CPU spent waiting on I/O.
 hi (hardware interrupts)—The percentage of time the CPU spent servicing

hardware interrupts.
 si (software interrupts)—The percentage of time the CPU spent servicing soft-

ware interrupts.
 st (steal time)—The percentage of time a hypervisor stole the CPU to give it to

someone else. This kicks in only in virtualized environments.

In the preceding output, you can see that you spend a majority of the time in user
space (presumably running Alice’s application), 25% in kernel space (probably exe-
cuting system calls, or syscalls), and the remainder in software interrupts (most likely

Libraries

Runtimes

Application

Operating System Software resources

RAMCPU Networking
Block I/O

(storage)

top
mpstat

CPU

Figure 3.6 Zooming in to CPU
observability tools

68 CHAPTER 3 Observability

handling the syscall invocations). There is no idle time at all, which means that what-
ever Alice’s application is doing, it’s using up all the available CPU!

 Now, if you take a look at the rest of the output of the top command, you will see
something similar to this (again, I’ve removed some output for brevity):

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 2893 chaos 20 0 3812 100 0 R 52.9 0.0 0:02.57 stress
 2894 chaos 20 0 265960 183156 324 R 23.5 4.5 0:02.60 stress
 2895 chaos 20 0 4712 1376 264 R 23.5 0.0 0:02.62 stress
 2896 chaos 20 0 3812 100 0 R 17.6 0.0 0:02.64 stress
 2902 chaos 20 0 3168 2000 1740 R 17.6 0.0 0:01.90 bc

(...)

You can see the top commands taking up pretty much all of the available two cores:
stress and bc. It’s now a good time to look under the covers of the simulation we’ve
been investigating. Run this in your terminal to look at the mystery002 command
you’ve been running:

cat ~/src/examples/busy-neighbours/mystery002

You will see this output, which is a simple bash script, calculating pi’s digits and run-
ning a totally benign script in the background:

#!/bin/bash
echo "Press [CTRL+C] to stop.."

start some completely benign background daemon to do some
__lightweight__work
^ this simulates Alice's server's environment
export dir=$(dirname "$(readlink -f "$0")")
(bash $dir/benign.sh)&

do the actual work
while :
do
 echo "Calculating pi's 3000 digits..."
 time echo "scale=3000; 4*a(1)" | bc -l | head -n1
done

Niceness
Niceness is an interesting concept in Linux. It’s a numeric value, which shows how
happy a process is to give CPU cycles to more high-priority neighbors (how nice it is
with others). Allowed values range from –20 to 19.

A higher value means nicer, so happier to give CPU away (and so lower priority). A
lower value means higher priority. See man nice and man renice for more info. These
are the values you can see in the ni column in top.

This is the background
process being started.

Here’s our bc command,
creatively used to
calculate pi’s digits!

69Resources

e
So far, so good, but let’s double-check how benign that background process really is by
running this command at your prompt:

cat ~/src/examples/busy-neighbours/benign.sh

You will see the following output:

#!/bin/bash

sleep a little, sneakily
sleep 20

Just doing some lightweight background work
Nothing to see here ;)
while :
do
 stress --cpu 2 -m 1 -d 1 --timeout 30 2>&1 > /dev/null
 sleep 5
done

There you go. Here’s your problem: your app (bc command calculating pi) was com-
peting for CPU time with the other commands in the system (stress), and as you can
see in the output of top earlier in this section, it wasn’t always winning (stress tended
to get more %CPU allocated). For your convenience, let me repeat that output:

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 2893 chaos 20 0 3812 100 0 R 52.9 0.0 0:02.57 stress
 2894 chaos 20 0 265960 183156 324 R 23.5 4.5 0:02.60 stress
 2895 chaos 20 0 4712 1376 264 R 23.5 0.0 0:02.62 stress
 2896 chaos 20 0 3812 100 0 R 17.6 0.0 0:02.64 stress
 2902 chaos 20 0 3168 2000 1740 R 17.6 0.0 0:01.90 bc

(...)

This is the source of our perceived slowness, your honor. The stress processes were a
classic case of a busy neighbor. Case closed. Another mystery solved. Well done!

 There should now be no top secrets anymore, and you’re basically a certified top
agent (I really can’t help it). Hopefully, your computer hasn’t overheated yet, but I do
expect that your room temperature has risen since you started the chapter. We’ll talk
about how to deal with resource starvation and busy neighbors just a little later. Let’s
cover the last tool really quickly, and we’ll be done with the CPU stuff!

MPSTAT --P ALL 1
mpstat is another tool that can show you the CPU utilization. The nice thing about it
is that it can show you each CPU separately. Run the following in a terminal:

mpstat -P ALL 1

Here’s the stress
command you wer
seeing in top!

70 CHAPTER 3 Observability
It will display output similar to this, printed every second:

01:14:08 PM CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
01:14:09 PM all 60.10 0.00 33.33 0.00 0.00 6.57 0.00 0.00 0.00 0.00
01:14:09 PM 0 41.41 0.00 45.45 0.00 0.00 13.13 0.00 0.00 0.00 0.00
01:14:09 PM 1 78.79 0.00 21.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The same statistics you were looking at with top are visible here, but now split sepa-
rately for each CPU. This split is useful because you can see the distribution of load
and analyze it. If you’d like to kill and restart the mystery002 process from the
beginning of the chapter, you should see that for the first 20 seconds, the bc com-
mand is allowed to take as much CPU as it wants, but since it’s single-threaded, it’s
scheduled on only a single CPU anyway. And then, after the initial 20 seconds, when
the stress command starts running, it creates workers for both CPUs, and both of
them become busy.

 I like the output of mpstat, because the columns are more readable (nothing to do
with the fact that it starts with my initials!). If you don’t have mpstat available on your
system, top also supports a split view similar to this one, and in the version available on
our Ubuntu VM, you can toggle it by typing 1 (number one).

 All right, so that puts mpstat on your radar. You have now more than enough tool-
ing to detect what’s going on, and to see when someone is eating up the CPU time you
were hoping to get yourself. So, the question now becomes, how do you prevent that
from happening? Let’s take a look at your options.

MY DOG ATE MY CPU—HOW DO I FIX IT?
You found out that the app was slow for the simple reason that it was not getting
enough CPU. This might sound pretty basic in our simulated environment, but in a
larger, shared environment, it might be everything but obvious. A lot of serious pro-
duction problems aren’t rocket science, and that’s fine.

 I would like you to recall the four steps of the chaos experiment from the first
chapter: ensure observability, define a steady state, form a hypothesis, and run the
experiment. Let’s look at what you have done so far:

1 You observed the times needed for your program to calculate the 3000 digits of
pi—your metric.

2 You saw that initially an iteration was taking a certain time—your steady state.
3 You expected that the time per iteration would remain the same—your hypothesis.
4 But when you ran the experiment, the times were larger—you were wrong.

Look, ma, no hands! You’ve just applied what you learned in the previous chapters
and conducted a reasonable chaos experiment. Take a look at figure 3.7, which sums
all of it up in a format you should now find familiar.

 Our experiment showed that the hypothesis was wrong; when the background pro-
cesses were running, our application was slowing down considerably. How can you go
about fixing it? One option would be to use niceness, a property you saw earlier in the

71Resources
chapter, which allows you to set a higher relative priority for your process compared to
other processes on the system to ensure it gets more CPU time. This could work, but it
has one major drawback: it’s hard to control precisely how much CPU they would get.

 Linux offers another tool you can use in this situation: control groups. Control
groups are a feature in the Linux kernel that allows the user to specify exact amounts
of resources (CPU, memory, I/O) that the kernel should allocate to a group of pro-
cesses. We will play with them a fair bit in chapter 5, but for now I want to give you a
quick taste of what they can do.

 Let’s start by using cgcreate to create two control groups: formulaone and
formulatwo. You can do that by running these commands at your prompt:

sudo cgcreate -g cpu:/formulaone
sudo cgcreate -g cpu:/formulatwo

Think of them as . . . Tupperware (oh my, was I just about to say containers?), in which
you can put processes and have them share that space. You can put a process in one of
these lunch boxes by starting it with cgexec. Let’s tweak our initial mystery002 script
to use cgcreate and cgexec. I’ve included a modified version for you. You can see it
by running this command at your prompt:

cat ~/src/examples/busy-neighbours/mystery002-cgroups.sh

Speed of calculating the digits of pi

Around 5 seconds per iteration

When other processes are running,

the speed should remain the same.

1. Observability

2. Steady state

3. Hypothesis

4. Run experiment

Correct Wrong

Great, let’s fix it.Great, nothing to see here.

Figure 3.7 The four steps of our second chaos experiment

72 CHAPTER 3 Observability

s
You will see this output (the modified parts are in bold font):

#!/bin/bash
echo "Press [CTRL+C] to stop.."

sudo cgcreate -g cpu:/formulaone
sudo cgcreate -g cpu:/formulatwo

start some completely benign background daemon to do some
 __lightweight__work
^ this simulates Alice's server's environment
export dir=$(dirname "$(readlink -f "$0")")
(sudo cgexec -g cpu:/formulatwo bash $dir/benign.sh)&

do the actual work
while :
do
 echo "Calculating pi's 3000 digits..."
 sudo cgexec -g cpu:/formulaone bash -c 'time echo "scale=3000; 4*a(1)"
| bc -l | head -n1'
done

By default, each control group gets 1024 shares, or one core. You can confirm that it
works yourself by running the new version of the script in one terminal:

~/src/examples/busy-neighbours/mystery002-cgroups.sh

And in another terminal, running top, you should see output like the following, in
which all the stress processes are sharing roughly one CPU, while the bc process is
able to use another CPU:

Tasks: 187 total, 7 running, 180 sleeping, 0 stopped, 0 zombie
%Cpu(s): 72.7 us, 27.3 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 3942.4 total, 494.8 free, 1196.3 used, 2251.3 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 2560.1 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 4888 chaos 20 0 3168 2132 1872 R 80.0 0.1 0:03.04 bc
 4823 root 20 0 3812 100 0 R 26.7 0.0 0:06.05 stress
 4824 root 20 0 265960 221860 268 R 26.7 5.5 0:06.13 stress
 4825 root 20 0 4712 1380 268 R 26.7 0.0 0:05.97 stress
 4826 root 20 0 3812 100 0 R 26.7 0.0 0:06.10 stress

We will look into that much more in later chapters. If you’re curious to know now, run
man cgroups in the terminal. Otherwise, we’re done with the CPUs for now. Let’s take
a step up our resource map and visit the OS layer.

Creates the CPU-
controlled control
groups

Executes the
benign.sh script in it
own control group

Executes the main, pi-digit-calculating
code in a separate control group

73Resources
3.3.6 OS

We’ve already solved Alice’s mystery with her app being slow, but before we go, I
wanted to give you a few really powerful tools at the OS level—you know, for the next
time the app is slow, but the CPU is not the issue.

 Figure 3.8 shows where that fits on our resource map. The tools we’ll take a look at
are opensnoop and execsnoop, both coming from the BCC project. Let’s start with
opensnoop.

OPENSNOOP

opensnoop allows you to see all the files being opened by all the processes on your sys-
tem, in what’s basically real time. BPF really is kind of like a Linux superpower, isn’t it?
To start it (again, remember about the postfix for the Ubuntu package), run this in
your command line:

sudo opensnoop-bpfcc

You should start seeing files being opened by various processes on your system. If you
want to get a sample of what it can do, try opening another terminal window, and do
just one execution of top:

top -n1

You will see output similar to this (I’ve abbreviated most of it for you):

(...)
12396 top 6 0 /proc/sys/kernel/osrelease
12396 top 6 0 /proc/meminfo
12396 top 7 0 /sys/devices/system/cpu/online
12396 top 7 0 /proc
(...)
12396 top 8 0 /proc/12386/stat
12396 top 8 0 /proc/12386/statm
12396 top 7 0 /etc/localtime

Libraries

Runtimes

Software resources

Application

Operating System

RAMCPU Networking
Block I/O

(storage)

opensoop
execsnoop

...

Operating

system

Figure 3.8 Zooming in to
OS observability tools

74 CHAPTER 3 Observability
12396 top 7 0 /var/run/utmp
12396 top 7 0 /proc/loadavg
(...)

This is how you know where top is getting all of its information from (feel free to
explore what’s in /proc). When practicing chaos engineering, you will often want
to know what a particular application you didn’t write is actually doing, in order to
know how to design or implement your experiments. Knowing what files it opens is a
really useful feature. Speaking of which, here’s another one for you: execsnoop.

EXECSNOOP

execsnoop is similar to opensnoop, but it listens for calls to exec variants in the kernel,
which means that you get a list of all the processes being started on the machine. You
can start it by running the following command at a prompt:

sudo execsnoop-bpfcc

While that runs, try to open another terminal window, and execute ls. In the first win-
dow, execsnoop should print output similar to this:

PCOMM PID PPID RET ARGS
ls 12419 2073 0 /usr/bin/ls --color=auto

Now, instead of ls, try running the mystery002 command we started the chapter with
in the second terminal window, by running the following command at your prompt:

~/src/examples/busy-neighbours/mystery002

You will see all the commands being executed, just as in the following output. You
should recognize all the auxiliary commands, like readlink, dirname, head, and sleep.
You will also find the bc and stress commands starting.

PCOMM PID PPID RET ARGS
mystery002 12426 2012 0 /home/chaos/src/examples/busy-
neighbours/mystery002
readlink 12428 12427 0 /usr/bin/readlink -f
/home/chaos/src/examples/busy-neighbours/mystery002
dirname 12427 12426 0
bash 12429 12426 0 /usr/bin/bash /home/chaos/src/examples/busy-
neighbours/benign.sh
bc 12431 12426 0 /usr/bin/bc -l
head 12432 12426 0 /usr/bin/head -n1
sleep 12433 12429 0 /usr/bin/sleep 20
(...)
stress 12462 12445 0 /usr/bin/stress --cpu 2 -m 1 -d 1 --timeout 30
(...)

This is an extremely convenient way of looking into what is being started on a Linux
machine. Have I mentioned BFS was really awesome?

75Application
OTHER TOOLS

The OS level offers a large surface to cover, so the purpose of this section is not to give
you a full list of all tools available, but rather to emphasize that you can (and should)
consider all of that when you’re doing chaos engineering.

 I didn’t include tools like strace, dtrace, and perf, which you might have
expected to see here (if you don’t know them, do look them up). Instead, I’ve opted
to give you a taste of what BPF has to offer, because I believe that it will slowly replace
the older technologies for this use case. I strongly recommend visiting https://github
.com/iovisor/bcc and browsing through other available tools. We don’t have room to
cover them all here, but I hope that I’ve given you a taste, and I’ll leave discovering
others to you as an exercise. Let’s take a look at the top level of our resource map.

3.4 Application
So here we are; we’ve reached the top layer of our resource map, the application layer.
This is where the code is being written directly to implement what the clients want,
whether it’s a serious business app, video game, or bitcoin miner.

 Every application is different, and it often makes sense to talk about high-level met-
rics provided directly by the application in the context of chaos experiments. For
example, we could be looking into bank transaction latencies, the number of players
able to play at the same time, or a number of hash processes per second. When doing
chaos engineering, we will work with these on a case-by-case basis, because they have
unique meanings.

 But between the OS and the application, a lot of code is running that we don’t
always think about—the runtimes and libraries. And these are shared across applica-
tions and are therefore easier to look into and diagnose. In this section, we’ll look
into how to see what’s going on inside a Python application. I’ll show you how to use
cProfile, pythonstat, and pythonflow to give you an idea of what you can easily do.
Figure 3.9 is once again showing where all of this fits on the resource map.

 Let’s start with cProfile.

Libraries

Runtimes

Software resources

Application

Operating System

RAMCPU Networking
Block I/O

(storage)

cProfile
pythonstat
pythonflow

Application

Figure 3.9 Zooming in to application
observability tools

https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc

76 CHAPTER 3 Observability
3.4.1 cProfile

Python, true to its “batteries included” motto, ships with two profiling modules: cProfile
and profile (https://docs.python.org/3.7/library/profile.html). We will use the for-
mer, as it provides a lower overhead and is recommended for most use cases.

 To play with it, let’s start a Python read-eval-print loop (REPL) by running this in a
command prompt:

python3.7

This will present you with some data on the Python binary and a blinking cursor
where you can type your commands, much like the following output:

Python 3.7.0 (default, Feb 2 2020, 12:18:01)
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Imagine that you are again trying to find out why a particular application is slow, and
you want to check where it spends its time when executed by Python. That’s where a
profiler like cProfile can help. In its simplest form, cProfile can be used to analyze
a snippet of code. Try running this in the interactive Python session you just started:

>>> import cProfile
>>> import re
>>> cProfile.run('re.compile("foo|bar")')

When you run the last line, you should see output similar to the following (output
abbreviated for clarity). The output says that while running re.compile("foo|bar"),
the program makes 243 function calls (236 primitive, or nonrecursive), and then lists
all the calls. I used bold font to focus your attention on two columns: ncalls (total
number of calls—if there are two numbers separated by slash, the second one is the
number of primitive calls) and tottime (total time spent in there). cumtime is also
noteworthy, as it gives a cumulative time spent in that call and all its subcalls:

 243 function calls (236 primitive calls) in 0.000 seconds

 Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
 1 0.000 0.000 0.000 0.000 <string>:1(<module>)
(...)
 1 0.000 0.000 0.000 0.000 re.py:232(compile)
(...)
 1 0.000 0.000 0.000 0.000 sre_compile.py:759(compile)
(...)
 1 0.000 0.000 0.000 0.000 {built-in method builtins.exec}
 26 0.000 0.000 0.000 0.000 {built-in method builtins.isinstance}
30/27 0.000 0.000 0.000 0.000 {built-in method builtins.len}
 2 0.000 0.000 0.000 0.000 {built-in method builtins.max}

https://docs.python.org/3.7/library/profile.html

77Application
 9 0.000 0.000 0.000 0.000 {built-in method builtins.min}
 6 0.000 0.000 0.000 0.000 {built-in method builtins.ord}
 48 0.000 0.000 0.000 0.000 {method 'append' of 'list' objects}
 1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler'
objects}
 5 0.000 0.000 0.000 0.000 {method 'find' of 'bytearray' objects}
 1 0.000 0.000 0.000 0.000 {method 'get' of 'dict' objects}
 2 0.000 0.000 0.000 0.000 {method 'items' of 'dict' objects}
 1 0.000 0.000 0.000 0.000 {method 'setdefault' of 'dict' objects}
 1 0.000 0.000 0.000 0.000 {method 'sort' of 'list' objects}

To make sense of this, a certain level of understanding of the source code is helpful,
but by using this technique, you can at least get an indication of where the slowness
might be happening.

 If you’d like to run a module or a script, rather than just a snippet, you can run
cProfile from the command line like this:

python -m cProfile [-o output_file] [-s sort_order] (-m module |
myscript.py)

For example, to run a simple HTTP server, you can run the following command at the
prompt. It will wait until the program finishes, so when you’re done with it, you can
press Ctrl-C to kill it.

python3.7 -m cProfile -m http.server 8001

At another command prompt, make an HTTP call to the server to check that it works
and to generate some more interesting stats:

curl localhost:8001

When you press Ctrl-C in the first prompt, cProfile will print the statistics. You should
see a large amount of output, and among these lines, one line of particular interest.
This is where our program spent most of its time—waiting to accept new requests:

36 17.682 0.491 17.682 0.491 {method 'poll' of 'select.poll' objects}

Hopefully, this gives you a taste of how easy it is to get started profiling Python pro-
grams and the kind of information you can get out of the box, with just the Python
standard library. Other Python profilers (check https://github.com/benfred/py-spy,
for example) offer more ease of use and visualization capabilities. Unfortunately, we
don’t have space to cover these. Let’s take a quick look at another approach; let’s
leverage BPF.

3.4.2 BCC and Python

To use pythonstat and pythonflow, you’ll need a Python binary that was compiled
with --with-dtrace support to enable you to use the User Statically Defined Tracing
(USDT) probes (read more at https://lwn.net/Articles/753601/). These probes are

https://github.com/benfred/py-spy
https://lwn.net/Articles/753601/

78 CHAPTER 3 Observability
places in the code where authors of the software defined special endpoints to attach
to with DTrace, to debug and trace their applications.

 Many popular applications, like MySQL, Python, Java, PostgreSQL, Node.js, and
many more can be compiled with these probes. BPF (and BCC) can also use these
probes, and that’s how the two tools we’re going to use work.

 I’ve precompiled a suitable Python binary for you in ~/Python3.7.0/python. It was
built with --with-dtrace to enable support for the USDT probes. In a terminal win-
dow, run the following command to start a simple game:

~/Python-3.7.0/python -m freegames.life

It’s a Conway’s Game of Life implementation, which you can find at https://github
.com/grantjenks/free-python-games. Now, in another terminal, start pythonstat by
running this:

sudo pythonstat-bpfcc

You should see output similar to the following, showing the number of method invo-
cations, garbage collections, new objects, classes loaded, exceptions, and new threads
per second, respectively:

07:50:03 loadavg: 7.74 2.68 1.10 2/641 7492

PID CMDLINE METHOD/s GC/s OBJNEW/s CLOAD/s EXC/s THR/s
7139 /home/chaos/Python-3 480906 3 0 0 0 0
7485 python /usr/sbin/lib 0 0 0 0 0 0

pythonflow, on the other hand, allows you to trace the beginning and end of execu-
tion of various functions in Python. Try it by starting an interactive session in one ter-
minal by running this command:

~/Python-3.7.0/python

In another terminal, start pythonflow as follows:

sudo pythonflow-bpfcc $(pidof python)

Now, as you execute commands at the Python prompt, you will see the calls stack in
the pythonflow window. For example, try running this:

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.

https://github.com/grantjenks/free-python-games
https://github.com/grantjenks/free-python-games
https://github.com/grantjenks/free-python-games

79Automation: Using time series
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

In the pythonflow window, you will see the whole sequence needed to import that
module:

Tracing method calls in python process 7539... Ctrl-C to quit.
CPU PID TID TIME(us) METHOD
1 7539 7539 4.547 -> <stdin>.<module>
1 7539 7539 4.547 -> <frozen importlib._bootstrap>._find_and_load
1 7539 7539 4.547 -> <frozen importlib._bootstrap>.__init__
1 7539 7539 4.547 <- <frozen importlib._bootstrap>.__init__
1 7539 7539 4.547 -> <frozen importlib._bootstrap>.__enter__
(...)

Try running other code in Python and see all the method invocations appear on your
screen. Once again, when practicing chaos engineering, we will often work with other
people’s code, and being able to take a sneak peek into what it’s doing is going to
prove extremely valuable.

 I picked Python as an example, but each language ecosystem has its own equiva-
lent tools and methods. Each stack will let you profile and trace applications. We will
cover a few more examples in the later chapters of this book. Let’s move on to the last
piece of this chapter’s puzzle: the automation.

3.5 Automation: Using time series
All of the tools we’ve looked at so far are very useful. You’ve seen how to check which
system resources are saturated, how to see system errors, how to look into what’s going
on at the system level, and even how to get insight into how various runtimes behave.
But the tools also have one drawback: you need to sit down and execute each one. In
this section, I’ll discuss what you can do to automate getting this insight.

 Various monitoring systems are available on the market right now. Popular ones
include Datadog (www.datadoghq.com), New Relic (https://newrelic.com/), and Sys-
dig (https://sysdig.com/). They all provide some kind of agent you need to run on
each of the machines you want to gain insight for, and then give you a way to browse
through, visualize, and alert on the monitoring data. If you’d like to learn more about
these commercial offerings, I’m sure their sales people will be delighted to give you a

https://newrelic.com/
https://sysdig.com/
http://www.datadoghq.com

80 CHAPTER 3 Observability
demo. In the context of this book, on the other hand, I’d like to focus on open source
alternatives: Prometheus and Grafana.

3.5.1 Prometheus and Grafana

Prometheus (https://prometheus.io/) is an open source monitoring system and a time-
series database. It provides everything you need to gather, store, query, and alert on
monitoring data. Grafana (https://grafana.com/) is an analytics and visualization tool
that works with various data sources, including Prometheus. A subproject of Prometheus
called Node Exporter (https://github.com/prometheus/node_exporter) allows for expos-
ing a large set of system metrics.

 Together they make for a powerful monitoring stack. We won’t cover setting up
production Prometheus, but I want to show you how easily you can get the USE met-
rics into a time-series database by using this stack. To make things faster, we’ll use
Docker. Don’t worry if you’re not sure how it works; we’ll cover that in later chapters.
For now, just treat it as a program launcher.

 Let’s start by launching Node Exporter by executing this command at the prompt:

docker run -d \
 --net="host" \
 --pid="host" \
 -v "/:/host:ro,rslave" \
 quay.io/prometheus/node-exporter \
 --path.rootfs=/host

When it’s finished, let’s confirm it works by calling the default port, using the follow-
ing command:

curl http://localhost:9100/metrics

You should see output similar to the following. This is the Prometheus format—one
line per metric, in a simple, human-readable form:

promhttp_metric_handler_requests_total{code="200"} 0
promhttp_metric_handler_requests_total{code="500"} 0
promhttp_metric_handler_requests_total{code="503"} 0

Each line corresponds to a time series. In this example, the same name of the metric
(promhttp_metric_handler_requests_total) has three values (200, 500, and 503)
for the label code. That translates to three separate time series, each having some
value at any point in time.

 Now, Prometheus works by scraping metrics, which means making an HTTP call to
an endpoint like the one you just called, interpreting the time-series data, and storing
each value at the timestamp corresponding to the time of scraping. Let’s start an
instance of Prometheus and make it scrape the Node Exporter endpoint. You can do
this by first creating a configuration file in your home directory, called prom.yml
(/home/chaos/prom.yml) with the following content:

https://prometheus.io/
https://grafana.com/
https://github.com/prometheus/node_exporter

81Automation: Using time series
global:
 scrape_interval: 5s
scrape_configs:
- job_name: 'node'
 static_configs:
 - targets: ['localhost:9100']

Then start Prometheus and pass this configuration file to it by running this command
at your prompt:

docker run \
 -p 9090:9090 \
 --net="host" \
 -v /home/chaos/prom.yml:/etc/prometheus/prometheus.yml \
 prom/prometheus

When the container starts, open Firefox (or other browser) and navigate to http://
127.0.0.1:9090/. You will see the Prometheus user interface (UI). The UI lets you see
the configuration and status, and query various metrics. Go ahead and query for the
CPU metric node_cpu_seconds_total in the query window and click Execute. You
should see output similar to figure 3.10.

 Notice the various values for the label mode: idle, user, system, steal, nice, and
so on. These are the same categories you were looking at in top. But now, they are a
time series, and you can plot over time, aggregate them, and alert on them easily.

Sets scraping interval to 5 seconds
so you get the metrics more quickly

Tells Prometheus to scrape the
Node Exporter that runs on
port 9100 (default port)

Figure 3.10 Prometheus UI in action, showing the node_cpu_seconds_total metric

http://127.0.0.1:9090/
http://127.0.0.1:9090/
http://127.0.0.1:9090/

82 CHAPTER 3 Observability
We don’t have space to cover querying Prometheus or building Grafana dashboards,
so I leave that as an exercise for you. Go to http://mng.bz/go8V to learn more about
Prometheus query language. If you’d like an inspiration for a Grafana dashboard,
many are available at https://grafana.com/grafana/dashboards. Take a look at fig-
ure 3.11, which shows one of the dashboards available for download.

OK, hopefully it was as fun for you as it was for me. It’s about time to wrap it up, but
before we do, let’s look at where to find more information on this subject.

3.6 Further reading
This chapter has been tricky for me. On the one hand, I wanted to give you tools and
techniques you’ll need in the following chapters to practice chaos engineering, so this
section grew quickly. On the other hand, I wanted to keep the content to a minimum

Figure 3.11 An example of a Grafana dashboard available at https://grafana.com/grafana/dashboards/11074

http://mng.bz/go8V
https://grafana.com/grafana/dashboards
https://grafana.com/grafana/dashboards/11074

83Summary
because it’s not a system performance book. That means that I had to make some
choices and to skip some great tools. If you’d like to delve deeper into the subject, I
recommend the following books:

 Systems Performance: Enterprise and the Cloud by Brendan Gregg (Pearson, 2013),
www.brendangregg.com/sysperfbook.html

 BPF Performance Tools by Brendan Gregg (Addison-Wesley, 2019), www.brendan-
gregg.com/bpf-performance-tools-book.html

 Linux Kernel Development by Robert Love (Addison-Wesley Professional, 2010),
https://rlove.org/

And that’s a wrap!

Summary
 When debugging a slow application, you can use the USE method: check for

utilization, saturation, and errors.
 Resources to analyze include physical devices (CPU, RAM, disk, network) as

well as software resources (syscalls, file descriptors).
 Linux provides a rich ecosystem of tools available, including free, df, top, sar,

vmstat, iostat, mpstat, and BPF.
 BCC makes it easy to leverage BPF to gain deep insights into the system with

often negligible overheads.
 You can gain valuable insights at various levels: physical components, OS,

library/runtime, application.

https://rlove.org/
http://www.brendangregg.com/sysperfbook.html
http://www.brendangregg.com/bpf-performance-tools-book.html
http://www.brendangregg.com/bpf-performance-tools-book.html

Database trouble
and testing in production
In this chapter, you will apply everything you’ve learned about chaos engineering
so far in a real-world example of a common application you might be familiar with.
Have you heard of WordPress? It’s a popular blogging engine and content man-
agement system. According to some estimates, WordPress accounts for more than
a third of all pages on the internet, and for most CMS-backed websites (http://mng
.bz/e58Q). It’s typically paired with a MySQL database, another popular piece of
technology.

 Let’s take a vanilla instance of WordPress backed by MySQL and, using chaos
engineering, try to gain confidence in how reliably you can run it. You’ll try to pre-
emptively guess what conditions might disturb it and design experiments to verify
how it fares. Ready? Let’s see what our friends from Glanden are up to these days.

This chapter covers
 Designing chaos experiments for open source

software

 Adding network latency by using Traffic Control

 Understanding when testing in production might
make sense and how to approach it
84

http://mng.bz/e58Q
http://mng.bz/e58Q
http://mng.bz/e58Q

85We’re doing WordPress
4.1 We’re doing WordPress
It’s magical what VC dollars can do while they last. A lot has changed at our favorite
startup from Glanden since we last saw them some 30-odd pages ago. The CEO read
The Lean Startup by Eric Ries last weekend (http://theleanstartup.com/). That, cou-
pled with mediocre FizzBuzz-as-a-Service sales, resulted in pivoting, or changing direc-
tion in The Lean Startup lingo. In practice, apart from a lot of talking, pivoting meant a
personnel reshuffle (Alice is now leading a team of SREs, and engineering is led by a
newcomer, Charlie), a new logo (Meower), and a complete change of business model
(“Meower is like Uber for cats”). The details of the business model and demand for the
feline transportation service remain a little fuzzy.

 What’s not fuzzy at all is the direct recommendation from the CEO: “We’re doing
WordPress now.” Alice’s team was tasked to take all the wisdom about running applica-
tions reliably from FizzBuzz as a Service and apply it to the new, WordPress-based
Meower. No point arguing with the CEO, so let’s get straight to work!

 Here is where you come in. You will work with a vanilla installation of WordPress,
which comes preinstalled in your Ubuntu VM. Let’s take a look under the hood. Fig-
ure 4.1 shows an overview of the components of the system:

 Apache2 (a popular HTTP server) is used to handle the incoming traffic.
 WordPress, written in PHP, processes the requests and generates responses.
 MySQL is used to store the data for the blog.

HTTP

server

(Apache2)

WordPress

(PHP)

Database

(MySQL)

Apache2 handles
HTTP traffic.

WordPress processes
the requests and
produces responses.

MySQL stores the
data for the blog.

Figure 4.1 WordPress system setup

http://theleanstartup.com/

86 CHAPTER 4 Database trouble and testing in production
WordPress has packages readily available for a wide selection of Linux distributions.
In the VM provided with this book, the software comes preinstalled through the
default Ubuntu packages, and the remaining step is to start and configure it. You can
start it by running the following commands at the terminal command prompt inside
your VM. It will stop NGINX (if it is still running from previous chapters), and then
start the database and the HTTP server:

sudo systemctl stop nginx
sudo systemctl start mysql
sudo systemctl start apache2

The Apache2 web server should now be serving WordPress on http:/ /localhost/blog.
To confirm it’s working well, and to configure the WordPress application, open your
browser and go to http:/ /localhost/blog. You will see a configuration page. Please fill
in the details with whatever you like (just remember the password, as you’ll need it to
log into WordPress later) and click Install WordPress. When the installation is fin-
ished, WordPress will allow you to log in, and you can start using your WordPress blog.

 You should now be ready to roll! Time to put on your chaos engineer hat and gen-
erate ideas for a chaos experiment. In order to do that, let’s identify some weak points
of this simple setup.

4.2 Weak links
Let’s look at the system again from the perspective of a chaos engineer. How does it
work on a high level? Figure 4.2 provides an overview of the setup by showing what
happens when a client makes a request to Meower.

 Apache2 (a popular HTTP server) is used to handle the incoming HTTP traffic
(1). Behind the scenes, Apache2 decodes HTTP, extracts the request, and calls out to
the PHP interpreter running the WordPress application to generate the response (2).
WordPress (PHP) connects to a MySQL database to fetch the data it needs to produce
a response (3). The response is then fed back to Apache2 (4), which returns the data
to the client as a valid HTTP response (5).

 This is where the fun part of doing chaos engineering begins. With this high-level
idea of how the system works, you can start looking into how it breaks. Let’s try to pre-
dict the fragile points of the system, and how to experimentally test whether they are
resilient to the type of failure you expect to see. Where would you start?

 Finding weak links is often equal measures science and art. Based on an often-
incomplete mental picture of how a system works, the starting points for chaos experi-
ments are effectively educated guesses on where fragility might reside in a given sys-
tem. By leveraging past experience and employing various heuristics, you can make
guesses, which you’ll then turn into actual science through chaos experiments. One of
the heuristics is that often the parts of the system responsible for storing state are
the most fragile ones. If you apply that to our simple example, you can see that the

Stops NGINX if it is running
from previous chapters

87Weak links
database might be the weak link. With that, here are two examples of educated guesses
about a systemic weakness:

1 The database might require good disk I/O speeds. What happens when they
slow down?

2 How much slowness can you accept in networking between the app server and
the database?

They are both great learning opportunities, so let’s try to develop them into full-
featured chaos experiments, starting with the database disk I/O requirements.

4.2.1 Experiment 1: Slow disks

You suspect that disk I/O degradation might have a negative effect on your applica-
tion’s performance. Right now, it’s just an educated guess. To confirm or deny, like
any mad scientist, you turn to an experiment for answers! Luckily, by now you’re famil-
iar with the four steps to designing a chaos experiment introduced in chapter 1:

1 Ensure observability.
2 Define the steady state.
3 Form a hypothesis.
4 Run the experiment!

arrivingfluffy

4. WordPress generates response

1. Client sends an HTTP request

2. Apache2 calls PHP to serve
the request.

GET/hello?q=XYZ HTTP/1.1
Host: meower.com

hello?q=XYZ

Cat = fluffy

Your cat is
arrivingfluffy

HTTP/1.1 200 OK

Your cat is
Apache2

Database

(MySQL)

WordPress

(PHP) 3. WordPress gets
data from the
database.

5. Apache2 returns an HTTP response.

Figure 4.2 WordPress setup handling a user request

88 CHAPTER 4 Database trouble and testing in production
Let’s go through the steps and design a real experiment!
 First, you need to be able to reliably observe the results of the experiment. To do

that, you need a reliable metric. You are interested in your website’s performance, so
an example of a good metric to start with is the number of successful requests per sec-
ond (RPS). It’s easy to work with (a single number), and you can easily measure it with
the Apache Bench you saw in chapter 2—all of which makes it a good candidate for
starters.

 Second, you need to establish a steady state. You can do that by running Apache
Bench on the system without any modifications and reading the normal range of suc-
cessful requests per second.

 Third, the hypothesis. You’ve just started learning about this system at the begin-
ning of this chapter, so it’s OK to start with a simple hypothesis and then refine it as
you do the experiments and learn more about the characteristics of the system. One
example of a simple hypothesis could be, “If the disk I/O is 95% used, the successful
requests per second won’t drop by more than 50%.” It represents a potential real-
world situation, in which another process, let’s say a log cleaner/rotator, kicks in and
uses a lot of disk I/O for a period of time. The values I chose here (95% and 50%) are
completely arbitrary, just to get us started. In the real world, they would come from
the SLOs you are trying to satisfy. Right now, you know very little about the system, so
let’s start somewhere and refine it later.

 With these three elements, you’re ready to implement our experiment. I’m sure
you can’t wait, so let’s do this!

IMPLEMENTATION

Before making any change to the system, let’s measure our baseline—define the steady
state. The steady state is the value of your chosen metric during normal operation;
that is, when you don’t run any chaos experiments and the operation of the system is
representative of its usual behavior. With the metric of successful RPS, it’s simple to
measure that steady state with Apache Bench. You used Apache Bench before in chap-
ter 2, but if you need a refresher, you can run man ab at your command prompt.

 When measuring the baseline, it’s important to control all parameters so that later
you can compare apples to apples, but right now the values themselves are completely
arbitrary. Let’s start by calling ab with a concurrency of 1 (-c 1) for a max of 30 sec-
onds (-t 30), and let’s remember to ignore the variable length of the response (-l)
You can do that by running the following command at your command prompt. Be
careful to add the trailing slash, because otherwise you’ll get a redirect response, which
is not what you are trying to test!

ab -t 30 -c 1 -l http://localhost/blog/

You will see output similar to the following (abbreviated for clarity). If you run the
command multiple times, you will get slightly different values, but they should be sim-
ilar. This example output has no failed requests, and the RPS value is 86.33:

89Weak links
(...)
Concurrency Level: 1
Time taken for tests: 30.023 seconds
Complete requests: 2592
Failed requests: 0
Total transferred: 28843776 bytes
HTML transferred: 28206144 bytes
Requests per second: 86.33 [#/sec] (mean)
Time per request: 11.583 [ms] (mean)
Time per request: 11.583 [ms] (mean, across all concurrent requests)
Transfer rate: 938.19 [Kbytes/sec] received
(...)

When I ran the command a dozen times, I received similar values. Remember that the
output will depend entirely on your hardware and on how you configure your VM. In
this example output, you can take the value of 86 RPS as your steady state.

 Now, how do you implement the conditions for your hypothesis? In chapter 3, you
were tracking a mysterious process called stress. It’s a utility program designed to
stress test your system, capable of generating load for CPU, RAM, and disks. You can
use it to simulate a program hungry for disk I/O. The option --hdd n allows you to
create n workers, each of which writes files to the disk and then removes them.

 In our arbitrarily chosen value for the hypothesis, you used a percentage. To gen-
erate a load of 95%, you first need to see what your practical 100% is, so let’s see how
quickly you can write to disk. In one terminal window, start iostat by running the fol-
lowing command. You will use it to see the total throughput, updated every 3 seconds.
You will use that to monitor the disk write speed:

iostat 3

In a second terminal window, let’s run the stress command benchmarking disk with
the --hdd option and start with a single disk-writing worker. Run the following com-
mand in the second terminal window, which will run as specified for 35 seconds:

stress --timeout 35 --hdd 1

In the first window, you will see output similar to the following. Depending on your PC
configuration, the values will vary. In the following output, it tops at around 1 GB/s (in
bold), and for the sake of simplicity, we’ll assume that this is the practical 100% of our
available throughput:

Device tps kB_read/s kB_wrtn/s kB_read kB_wrtn
loop0 0.00 0.00 0.00 0 0
sda 1005.00 0.00 1017636.00 0 2035272

Depending on your setup, you might need to experiment with extra workers to see
what your 100% throughput is like. Don’t worry too much about the exact number,
though; you are running all of this inside a VM, so there are going to be multiple lev-
els of caches and platform-specific considerations to take into account that won’t be

Failed requests
is none

RPS is around 86

90 CHAPTER 4 Database trouble and testing in production
discussed in this chapter. The goal here is to teach you how to design and implement
your own experiments, but the low-level details need to be addressed case by case.

 To double-check your numbers, you can run another test. dd is a utility for copying
data from one source to another. If you copy enough data to stress test the system, it
will give you an indication of how quickly you can go. To copy data from /dev/zero to
a temporary file 15 times in blocks of 512 MB, run the following command at your
prompt:

dd if=/dev/zero of=/tmp/file1 bs=512M count=15

The output will look similar to the following (the average write speed is in bold font).
In this example, the speed was around 1 GB/s, similar to what you found with stress.
Once again, to simplify, let’s go with 1 GB/s write speed as our throughput:

15+0 records in
15+0 records out
8053063680 bytes (8.1 GB, 7.9 GiB) copied, 8.06192 s, 998 MB/s

Finally, you should compare your findings against the theoretical limits. Although
Apple doesn’t publish official numbers for its solid-state drives (SSDs), benchmarks
on the internet put the value at about 2.5 GB/s. Therefore, the results you found at
less than half that speed in your VM running with the default configuration sound
plausible. So far, so good.

 Now, in the initial hypothesis, you wanted to simulate 95% disk write utilization. As
you saw earlier, a stress command with a single worker consumes just about 95% of
that number. How convenient! It’s almost like someone chose that value on purpose!
Therefore, to generate the load you want, you can just reuse the same stress com-
mand as earlier. The scene is set!

 Let’s run the experiment. In one terminal window, start stress with a single
worker for 35 seconds (giving you the extra 5 seconds to start ab in the other termi-
nal), by running the following command:

stress --timeout 35 --hdd 1

In a second terminal window, rerun your initial benchmark with Apache Bench. Do
that by running the following command:

ab -t 30 -c 10 -l http://localhost/blog/

When ab is finished, you should see output similar to the following. There are still no
errors, and the RPS in this sample is 53.92, or a 38% decrease:

(...)
Concurrency Level: 1
Time taken for tests: 30.009 seconds
Complete requests: 1618
Failed requests: 0

Failed requests
is none

91Weak links
Total transferred: 18005104 bytes
HTML transferred: 17607076 bytes
Requests per second: 53.92 [#/sec] (mean)
Time per request: 18.547 [ms] (mean)
Time per request: 18.547 [ms] (mean, across all concurrent requests)
Transfer rate: 585.92 [Kbytes/sec] received
(...)

Conveniently, this value fits comfortably within the 50% slowdown that your initial
hypothesis allowed for and lets you conclude this experiment with success. Yes, if some
other process on the same host as your database suddenly starts writing to the disk,
taking 90% or more of the bandwidth, your blog continues working, and slows down
by less than 50%. In absolute terms, the average time per request went from 12 ms to
19 ms, which is unlikely to be noticed by any human.

Congrats, another chaos experiment under your belt! But before you pat yourself on
the back, let’s discuss the science.

DISCUSSION

One of the big limitations of this implementation is that all the processes involved—
the application server, the application, the database, the stress command, and the ab
command—run on the same host (and the same VM). While we were trying to simu-
late the disk writes, the action of writing to the disk requires CPU time, and that’s what
probably had a larger impact on the slowdown than the writing itself. And even if the
writing is the main factor, which component does it affect the most?

 These are all things we brushed aside here, but I want you to start being mindful of
them because they will become relevant in the more serious applications of chaos
engineering. When writing this book, I’ve tried to make following the examples as
simple as possible so you can see things for yourself. In this case, I chose to sacrifice
realism for ease of use to help the learning process. Please don’t petition to kick me
out of the Royal Society (I’m not a member) just yet!

 Another thing worth noting is that average RPS, while a good starting point, is not
a perfect metric, because like any average, it loses information about the distribution.
For example, if you average two requests, one that took 1 ms and another that took 1 s,
the average is ~0.5 s, but that doesn’t say anything about the distribution. A much
more useful metric would be a 90th, 95th, or 99th percentile. I chose the simple met-
ric for learning purposes, and in later chapters we will look at the percentiles.

Deus ex machina
In this example, it is indeed convenient that you don’t need to limit the writing speed
of your stress command to another value, like 50%. If you did, one way of achieving
the desired effect would be to calculate the maximum throughput that you want to
allow as a percentage of the total throughput you discovered (for example, 50% of
1 GB/s would be 512 MB/s) and then leverage cgroups v2 (http://mng.bz/pVoz) to
limit the stress command to that value.

RPS is around 54

http://mng.bz/pVoz

92 CHAPTER 4 Database trouble and testing in production
 Also, in this example we chose to simulate using up the disk’s throughput through
writing. What would happen if you chose to do a lot of reading instead? How would
the filesystem caching come into play? What filesystem should you use to optimize
your results? Would it be the same if you had NVMe disks instead of SATA, which can
do some of the reading and writing in parallel? What would happen if you did some
writing and then some reading to try to use up the disk-writing bandwidth?

 All of these are relevant questions, which you would need to consider when imple-
menting a serious chaos experiment. And much as in this example, often you will be
uncovering new layers as you implement the experiment and realize the importance
of other variables. You will not have time to drill into any of these questions right now,
but I do recommend that you try to research some of them as an exercise.

 Finally, in both cases, you were running with a single request at a time. This made
it easier to manage in your little VM, but in the real world, it’s an unlikely scenario.
Most traffic will be bursty. It’s possible that a different usage pattern would put more
stress on the disk and would yield different results.

 With all these caveats out of the way, let’s move on to the second experiment: What
happens when networking slows down?

4.2.2 Experiment 2: Slow connection

Our second idea of what could go wrong with our application involved the networking
being slow. How would that affect the end-user speed of the blog? To turn that idea
into a real chaos experiment, you need to define what being slow means and how you
expect it to affect your application. From there, you can follow the four steps to a
chaos experiment.

 The definition of being slow is wildly contextual. A person spending 45 minutes
picking something to watch on Netflix will likely get offended by an accusation of
being slow, but the same person waiting 45 minutes for a life-saving organ donation to
be delivered from a different hospital will have a very different experience of time
(unless they’re in anesthesia). Time truly is relative.

 Similarly, in the computer world, users of a high-frequency trading fund will care
about every millisecond of latency, but let’s be honest: the latest cat video on YouTube
taking an extra second to load is hardly a deal breaker. In our case, Meower needs to
become a commercial success, so you need the website to feel snappy for its users. Fol-
lowing the current best practices, it looks like the website needs to load for users in
less than 3 seconds, or the probability of users leaving increases significantly (http://
mng.bz/ZPAa). You will need to account for the actual time it takes for the user to
download your content, so let’s start with a goal of not going more than 2.5 seconds in
the average response time.

 With that goal in mind, let’s go through the steps of designing a chaos experiment:

1 Ensure observability.
2 Define the steady state.

http://mng.bz/ZPAa
http://mng.bz/ZPAa
http://mng.bz/ZPAa

93Weak links
3 Form a hypothesis.
4 Run the experiment!

First, observability. You care about the response time, so for your metric, you can stick
with the number of successful requests per second—the same metric used in the pre-
vious chaos experiment. RPS is easy to use, and you already have tools to measure it. I
mentioned the downsides of using averages in the previous section, but for our use in
this example, the successful RPS will do just fine.

 Second, the steady state. Because you’re using the same metric, you can reuse the
work you’ve done with ab to establish your baseline.

 Third, the actual hypothesis. You already observed in the previous experiment that
with a concurrency of 1, you were in double-digit milliseconds for average response
time. Remember that all of your components are running on the same host, so the
overhead of networking is much smaller than it would be if the traffic was going over
an actual network. Let’s see what happens if you add a 2-second delay in communicat-
ing to your database. Your hypothesis can therefore be, “If the networking between
WordPress and MySQL experiences a delay of 2 seconds, the average response time
remains less than 2.5 seconds.” Again, these initial values are pretty arbitrary. The goal
is to start somewhere and then refine as needed. With that, you can get your hands
dirty with the implementation!

INTRODUCING LATENCY

How can you introduce latency to communications? Fortunately, you don’t need to lay
extra miles of cable (which is a viable solution). I recommend reading Flash Boys by
Michael Lewis (W.W. Norton & Co., 2015) if you haven’t already, because Linux
comes with tools that can do that for you. One of the tools is tc.

 tc, which stands for Traffic Control, is a tool used to show and manipulate traffic-
control settings—to effectively change how the Linux kernel schedules packets. tc is
many things, but easy to use is not one of them. If you type man tc at your terminal
prompt inside the VM, you will be greeted with the output that follows (abbreviated).
Note that the mysterious-sounding qdisc is a queueing discipline (scheduler), which has
nothing to do with disks:

NAME
 tc - show / manipulate traffic control settings

SYNOPSIS
 tc [OPTIONS] qdisc [add | change | replace | link | delete] dev
DEV [parent qdisc-id | root] [handle qdisc-id] [
 ingress_block BLOCK_INDEX] [egress_block BLOCK_INDEX] qdisc [
qdisc specific parameters]

(...)

 OPTIONS := { [-force] -b[atch] [filename] | [-n[etns] name]
| [-nm | -nam[es]] | [{ -cf | -c[onf] } [filename
]] [-t[imestamp]] | [-t[short] | [-o[neline]] }

94 CHAPTER 4 Database trouble and testing in production
 FORMAT := { -s[tatistics] | -d[etails] | -r[aw] | -i[ec] | -g[raph]
| -j[json] | -p[retty] | -col[or] }

Let’s learn how to use tc by example and see how to add latency to something unre-
lated to our setup. Take a look at the ping command. ping is often used to see the
connectivity (whether a certain host is reachable) and quality (the speed) of a connec-
tion. It uses the Internet Control Message Protocol (ICMP) and works by sending an
ECHO_REQUEST datagram and expecting an ECHO_RESPONSE from a host or gateway in
response. It’s widely available in every Linux distro, as well as other operating systems.

 Let’s see how long it takes to ping google.com. Run the following command at your
terminal prompt. It will try to execute three pings and then print statistics and exit:

ping -c 3 google.com

You will see output similar to the following (times are in bold). In this example, for
the three pings, it took between 4.28 ms (minimum) and 28.263 ms (maximum), for an
average of 14.292 ms. That’s not too bad for free café Wi-Fi!

PING google.com (216.58.206.110) 56(84) bytes of data.
64 bytes from lhr25s14-in-f14.1e100.net (216.58.206.110):
icmp_seq=1 ttl=63 time=4.28 ms
64 bytes from lhr25s14-in-f14.1e100.net (216.58.206.110):
icmp_seq=2 ttl=63 time=28.3 ms
64 bytes from lhr25s14-in-f14.1e100.net (216.58.206.110):
icmp_seq=3 ttl=63 time=10.3 ms

--- google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 6ms
rtt min/avg/max/mdev = 4.281/14.292/28.263/10.183 ms

Now, let’s use tc to add a static 500 ms delay to all connections across the board. You
can do that by issuing the following command at the prompt. The command will add
the delay to the device eth0, the main interface in our VM:

sudo tc qdisc add dev eth0 root netem delay 500ms

To confirm that it worked, let’s rerun the ping command at the prompt:

ping -c 3 google.com

This time, the output looks different, similar to the following. Notice that the times
are all greater than 500 ms, confirming that the tc command did its job. Once again,
bold font highlights the times:

PING google.com (216.58.206.110) 56(84) bytes of data.
64 bytes from lhr25s14-in-f14.1e100.net (216.58.206.110):
icmp_seq=1 ttl=63 time=512 ms
64 bytes from lhr25s14-in-f14.1e100.net (216.58.206.110):
icmp_seq=2 ttl=63 time=528 ms

95Weak links
64 bytes from lhr25s14-in-f14.1e100.net (216.58.206.110):
icmp_seq=3 ttl=63 time=523 ms

--- google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 4ms
rtt min/avg/max/mdev = 512.369/521.219/527.814/6.503 ms

Finally, you can remove the latency by running the following command at the prompt:

sudo tc qdisc del dev eth0 root

Once that’s done, it’s worth confirming that it works as before by rerunning the ping
command and verifying that the times are back to normal. Good—you have a new tool
in the toolbox. Let’s use it to implement our chaos experiment!

IMPLEMENTATION

You should now be well equipped to implement our chaos experiment. Let’s start by
reestablishing our steady state. As in the previous experiment, you can do that by using
the ab command. Run the following command at the prompt:

ab -t 30 -c 1 -l http://localhost/blog/

You will see output similar to the following (again, abbreviated for clarity). The aver-
age time per request is 11.583 ms:

(...)
Time per request: 11.583 [ms] (mean, across all concurrent requests)
(...)

Let’s now use tc to introduce the delay of 2000 ms, in a similar fashion to the previ-
ous example. But this time, instead of applying the delay to a whole interface, you’ll
target only a single program—the MySQL database. How can you add the latency to
the database only? This is something that’s going to be much easier to deal with
after we cover Docker in chapter 5, but for now you’re going to have to solve that
manually.

 The syntax of tc looks obscure at first. I would like you to see it so you can appreci-
ate how much easier it will be when you use higher-level tools in later chapters. We

Pop quiz: What can Traffic Control (tc) not do for you?
Pick one:

1 Introduce all kinds of slowness on network devices
2 Introduce all kinds of failure on network devices
3 Give you permission for landing the aircraft

See appendix B for answers.

96 CHAPTER 4 Database trouble and testing in production

0ms
band
won’t go into much detail here (learn more at https://lartc.org/howto/lartc.qdisc
.classful.html), but tc lets you build tree-like hierarchies, where packets are matched
and routed using various queueing disciplines.

 To apply the delay to only your database, the idea is to match the packets going
there by destination port, and leave all others untouched. Figure 4.3 depicts the kind
of structure we’re going to build. The root (1:) is replaced with a prio qdisc, which
has three bands (think of them as three possible ways a packet can go from there): 1:1,
1:2, and 1:3. For the band 1:1, you match IP traffic with only destination port 3306
(MySQL), and you attach the delay of 2000 ms to it. For the band 1:2, you match
everything else. Finally, for the band 1:3, you completely ignore it.

To set up this configuration, run the following commands at your prompt:

sudo tc qdisc add dev lo root handle 1: prio
sudo tc filter add dev lo \
 protocol ip parent 1: prio 1 u32 \
 match ip dport 3306 0xffff flowid 1:1
sudo tc filter add dev lo \
 protocol all parent 1: prio 2 u32 \
 match ip dst 0.0.0.0/0 flowid 1:2
sudo tc qdisc add dev lo parent 1:1 handle 10: netem delay 2000ms
sudo tc qdisc add dev lo parent 1:2 handle 20: sfq

1:1 1:2

1:

1:3

u32 match ip

dport 3306 Oxffff

sfq
netem
delay

2000 ms

“Match

everything else”

Match IP traffic with
only destination
port 3306 (MySQL)

Adds 2000 ms
delay

Doesn’t shape the traffic
(noop for your usage)

You won’t route any
packets this way, so

Root uses prio qdisc,

which has three bands.

you don’t really care.

Figure 4.3 High-level hierarchy used to classify packets in tc

Adds a prio qdisc at the root to create
the three bands: 1:1, 1:2, and 1:3

For the band 1:1, matches
only IP traffic with port
3306 as the destination

For the band 1:2,
matches all other
traffic

Adds 200
delay to
1:1

Adds Stochastic Fairness Queueing (SFQ)
qdisc (noop for our purposes) to band 1:2

https://lartc.org/howto/lartc.qdisc.classful.html
https://lartc.org/howto/lartc.qdisc.classful.html
https://lartc.org/howto/lartc.qdisc.classful.html

97Weak links
That’s the “meat” of our experiment. To check that it works, you can now use telnet
to connect to localhost on port 80 (Apache2) by running the following command at
your prompt:

telnet 127.0.0.1 80

You will notice no delay in establishing the connection. Similarly, run the following
command at your prompt to test out connectivity to MySQL:

telnet 127.0.0.1 3306

You will notice that it takes 2 seconds to establish the connection. That’s good news.
You managed to successfully apply a selective delay to the database only. But if you try
to rerun your benchmark, the results are not what you expect. Run the ab command
again at the prompt to refresh your benchmark:

ab -t 30 -c 1 -l http://localhost/blog/

You will see an error message like the following. The program times out before it can
produce any statistics:

apr_pollset_poll: The timeout specified has expired (70007)

You asked ab for a 30-second test, so a time-out means that it took longer than that to
produce a response. Let’s go ahead and check how much time it actually takes to gen-
erate a response with that delay. You can achieve that by issuing a single request with
curl and timing it. Run the following command at the prompt:

time curl localhost/blog/

You should eventually get the response, and underneath see the output of the time
command, similar to the following. It took more than 54 seconds to produce a response
that used to take 11 ms on average without the delay!

(...)
real 0m54.330s
user 0m0.012s
sys 0m0.000s

To confirm that, let’s remove the delay and try the curl command again by running
the following in the terminal:

sudo tc qdisc del dev lo root
time curl localhost/blog/

The response will be immediate, similar to the times you were seeing before. What
does it say about our experiment? Well, our hypothesis was just proven wrong. Adding
a two-second delay in communications going to the database results in much more

98 CHAPTER 4 Database trouble and testing in production
than a 2.5-second total response time. This is because WordPress communicates with
the database multiple times, and with every communication, the delay is added. If
you’d like to confirm it for yourself, rerun the tc commands, changing the delay to
100 ms. You will see that the total delay is a multiple of the 100 ms you add.

 Don’t worry, though; being wrong is good. This experiment shows that our initial
conception of how the delay would work out was entirely wrong. And thanks to this
experiment, you can either find the value you can withstand by playing around with
different delays, or change the application to try to minimize the number of round
trips and make it less fragile in the presence of delays.

 I would like to plant one more thought in your head before we move on: that of
testing in production.

4.3 Testing in production
I’m expecting that when you saw the delay of 54 seconds caused by the chaos experi-
ment, you thought, “Fortunately, it’s not in production.” And that’s a fair reaction; in
many places, conducting an experiment like this in anything other than a test envi-
ronment would cause a lot of pain. In fact, testing in production sounds so wrong that
it’s become an internet meme.

 But the truth is that whatever testing we do outside the production environment is
by definition incomplete. Despite our best efforts, the production environment will
always differ from test environments:

 Data will almost always be different.
 Scale will almost invariably be different.
 User behavior will be different.
 Environment configurations will tend to drift away.

Therefore, we will never be able to produce 100% adequate tests outside production.
How can we do better? In the practice of chaos engineering, working on (testing) a
production system is a completely valid idea. In fact, we strive to do that. After all, it’s
the only place where the real system—with the real data and the real users—is. Of
course, whether that’s appropriate will depend on your use case, but it’s something
you should seriously consider. Let me show you why with an example.

 Imagine you’re running an internet bank and that you have an architecture con-
sisting of various services communicating with each other. Your software goes through
a simple software development life cycle:

1 Unit tests are written.
2 Feature code is written to comply with the unit tests.
3 Integration tests are run.
4 Code is deployed to a test stage.
5 More end-to-end testing is done by a QA team.
6 Code is promoted to production.

99Testing in production
7 Traffic is progressively routed to the new software in increments of 5% of total
traffic over a few days.

Now, imagine that a new release contains a bug that passes through all these stages,
but will start manifesting itself only in rare network slowness conditions. This sounds
like something chaos engineering was invented for, right? Yes, but if you do it only in
test stages, potential issues arise:

 Test-stage hardware is using a previous generation of servers, with a different
networking stack, so the same chaos experiment that would catch the bug in
production wouldn’t catch it in the test stage.

 Usage patterns in the test stage are different from the real user traffic, so the
same chaos experiment might pass in test and fail in production.

 And so on . . .

The only way to be 100% sure something works with production traffic is to use pro-
duction traffic. Should you test it in production? The decision boils down to whether
you prefer the risk of hurting a portion of production traffic now, or potentially run-
ning into the bug later. And the answer to that will depend on how you see your risks.
For example, it might be cheaper to uncover a problem sooner than later, even at the
expense of a percentage of your users running into an issue. But equally, it might be
unacceptable to fail on purpose for public image purposes. As with any sufficiently
complex question, the answer is, “It depends.”

 Just to be perfectly clear: None of this is to say that you should skip testing your
code and ship it directly in production. But with correct preemptive measures in place
(to limit the blast radius), running a chaos experiment in production is a real option
and can sometimes be tremendously beneficial. From now on, every time you design a
chaos experiment, I would like you to ask yourself a question: “Should I do that in the
production environment?”

Pop quiz: When should you test in production?
Pick one:

1 When you are short on time
2 When you want to get a promotion
3 When you’ve done your homework, tested in other stages, applied common

sense, and see the benefits outweighing the potential problems
4 When it’s failing in the test stages only intermittently, so it might just pass in pro-

duction

See appendix B for answers.

100 CHAPTER 4 Database trouble and testing in production
Summary
 The Linux tool tc can be used to add latency to network communications.
 Network latencies between components can compound and slow the whole sys-

tem significantly.
 A high-level understanding of a system is often enough to make educated guesses

about useful chaos experiments.
 Experimenting (testing) in production is a real part of chaos engineering.
 Chaos engineering is not only about breaking things in production; it can be

beneficial in every environment.

Pop quiz: Which statement is true?
Pick one:

1 Chaos engineering renders other testing methods useless.
2 Chaos engineering makes sense only in production.
3 Chaos engineering is about randomly breaking things.
4 Chaos engineering is a methodology to improve your software beyond the exist-

ing testing methodologies.

See appendix B for answers.

Part 2

Chaos engineering in action

This is where things really take off, and we start to have some real fun. Each
chapter in this part zooms in on a particular stack, technology, or technique
that’s interesting for a chaos engineering practitioner. The chapters are reason-
ably independent, so you should be able to jump around as you please.

 Chapter 5 takes you from a vague idea of what Docker is, to understanding
how it works under the hood and testing its limitations by using chaos engineer-
ing. If you’re new to Linux containers, brew double your usual amount of coffee,
because we’ll cover all you need to know. This is one of my favorite chapters of
the book.

 Chapter 6 demystifies system calls. It covers what they are, how to see applica-
tions make them, and how to block them to see how resistant to failure these
applications are. This information is pretty low level, which makes it very power-
ful; it can be universally applied to any process.

 Chapter 7 takes a stab at the Java Virtual Machine. With Java being one of the
most popular programming languages ever, it’s important for me to give you
tools to deal with it. You’ll learn how to inject code on the fly into the JVM, so
that you can test how a complex application handles the types of failure you’re
interested in. It should super-charge your testing toolkit for the JVM.

 Chapter 8 discusses when it’s a good idea to bake failure directly into your
application. We’ll illustrate that by applying it to a very simple Python application.

 Chapter 9 covers using the same chaos engineering principles at the top end
of the stack—in the browser, using JavaScript. You’ll take an existing open source
application (pgweb) and experiment on it to see how it handles failure.

Poking Docker
Oh, Docker! With its catchy name and lovely whale logo, Docker has become the
public face of Linux containers in just a few short years since its first release in
2013. I now routinely hear things like, “Have you Dockerized it?” and, “Just build
an image with that; I don’t want to install the dependencies.” And it’s for a good
reason. Docker capitalized on existing technology in the Linux kernel to offer a
convenient and easy-to-use tool, ready for everyone to adopt. It played an import-
ant role in taking container technology from the arcane to the mainstream.

 To be an effective chaos engineer in the containerized world, you need to
understand what containers are, how to peek under the hood, and what new chal-
lenges (and wins) they present. In this chapter, we will focus on Docker, as it’s the
most popular container technology.

This chapter covers
 What Docker is, how it works, and where it

came from

 Designing chaos experiments for software
running in Docker

 Performing chaos experiments on Docker itself

 Using tools like Pumba to implement chaos
experiments in Docker
103

104 CHAPTER 5 Poking Docker
DEFINITION What exactly is a container? I’ll define this term shortly, but for
now just know it’s a construct designed to limit the resources that a particular
program can access.

In this chapter, you will start by looking at a concrete example of an application run-
ning on Docker. I’ll then give a brief refresher on what Docker and Linux containers
are, where they came from, how to use them, and how to observe what’s going on.
Then you’ll get your hands dirty to see what containers really contain through a series
of experiments. Finally, armed with this knowledge, you’ll execute chaos experiments
on the application running in Docker to improve your grasp of how well it can with-
stand difficult conditions.

 My goal is to help you demystify Docker, peek under its hood, and know how it
might break. You’ll even go as far as to reimplement a container solution from scratch
by using what the kernel offers for free, because there is no better learning than
through doing.

 If this sounds exciting to you, that makes two of us! Let’s get the ball rolling by
looking at a concrete example of what an application running on Docker might
look like.

5.1 My (Dockerized) app is slow!
Do you remember Meower from chapter 4, the feline transportation service? Turns
out that it has been extremely successful and is now expanding to the United States,
first targeting Silicon Valley. The local engineering team has been given a green light
to redesign the product for US customers.

 The team members decided that they wanted nothing to do with the decades-old
WordPress and PHP, and decided to go down the fashionable route of Node.js. They
picked Ghost (https://ghost.org/) as their new blogging engine, and decided they
wanted to use Docker for its isolation properties and ease of use. Every developer can
now run a mini Meower on their laptop without installing any nasty dependencies
directly on the host (that’s as long as you don’t count Docker itself)—not even the
Mac version running a Linux VM under the hood (https://docs.docker.com/docker-
for-mac/docker-toolbox/)! After all, that’s the least you are going to expect from a
well-funded startup, now equipped with napping pods and serving free, organic, gluten-
free, personalized quinoa salads to its engineers daily.

 There is only one problem: just like the first version in chapter 4, the new and
shiny setup has customers occasionally complaining about slowness, although from
the engineering perspective, everything seems to be working fine! What’s going on?
Desperate for help, your manager offers you a bonus and a raise if you go to San Fran-
cisco to fix the slowness in Meower USA, just as you did in the previous chapter for
Meower Glanden. SFO, here we come!

 Upon arrival, having had an artisanal, responsibly sourced, quinoa sushi-burrito,
you start the conversation with the engineering team by asking two pressing questions.
First, how does all of it run?

https://ghost.org/
https://docs.docker.com/docker-for-mac/docker-toolbox/
https://docs.docker.com/docker-for-mac/docker-toolbox/

105My (Dockerized) app is slow!
5.1.1 Architecture

Ghost is a Node.js (https://nodejs.org/en/about/) application designed as a modern
blogging engine. It’s commonly published as a Docker image and accessible through
Docker hub (https://hub.docker.com/_/ghost). It supports MySQL (www.mysql.com),
as well as SQLite3 (www.sqlite.org) as the data backend.

 Figure 5.1 shows the simple architecture that the Meower USA team has put in
place. The team is using a third-party, enterprise-ready, cloud-certified load balancer,
which is configured to hit in round-robin fashion the Ghost instances, all running on
Docker. The MySQL database is also running on Docker and is used as the main data-
store for Ghost to write to and read from. As you can see, the architecture is similar to
the one covered in chapter 4, and in some ways simpler, because the load balancer has
been outsourced to another company. But one new element is introducing its own
complexity, and its name has been mentioned already multiple times in this short sec-
tion: Docker.

This brings to mind your second pressing question: What’s Docker again? To be able
to debug and reason about any slowness of the system, you need to build an under-
standing of what Docker is, how it works, and what underlying technologies it lever-
ages. So take a breath in and a step back, and let’s build that knowledge right here,
right now. You might want to refill your coffee first. And then let’s see where Docker
came from.

Docker Docker

Docker

GhostGhost

MySQL

Third-party load balancer

1. Meower client sends a request

2. Load balancer relays
the request to an
instance of Ghost

3. Ghost instance reads
and writes data to the
MySQL database

All components are running
as Docker containers.

Figure 5.1 High-level overview of Meower USA technical architecture

https://nodejs.org/en/about/
https://github.com/solo-io/unik
https://hub.docker.com/_/ghost
http://www.mysql.com
http://www.sqlite.org

106 CHAPTER 5 Poking Docker
5.2 A brief history of Docker
When talking about Docker and containers, a bunch of connected (and exciting) con-
cepts are useful to know. When speaking of them, a lot of information can get a bit
fuzzy, depending on the context, so I’d like to spend a moment to layer the concepts
in a logical order in your brain. Strap in; this is going to be fun. Let’s start with emula-
tion, simulation, and virtualization.

5.2.1 Emulation, simulation, and virtualization

An emulator is “hardware or software that enables one computer system (called the
host) to behave like another computer system (called the guest)” (https://en.wikipedia
.org/wiki/Emulator). Why would you want to do that? Well, as it turns out, it’s
extremely handy. Here are a few examples:

 Testing software designed for another platform without having to own the other
platform (potentially rare, fragile, or expensive)

 Leveraging existing software designed for a different platform to make prod-
ucts backward-compatible (think new printers leveraging existing firmware)

 Running software (games, anyone?) from platforms that are no longer pro-
duced or available at all

I suspect that at least the last point might be close to the heart to a lot of readers. Emu-
lators of consoles such as PlayStation, Game Boy, or operating systems like DOS help
preserve old games and bring back good memories. When pushed, emulation also
allows for more exotic applications, like emulating x86 architecture and running
Linux on it . . . in JavaScript . . . in a browser (https://bellard.org/jslinux/). Emula-
tion has a broad meaning, but without context people often mean “emulation done
entirely in software” when they use this term. Now, to make things more exciting, how
does emulation compare to simulation?

 A simulation is “an approximate imitation of the operation of a process or system
that represents its operation over time” (https://en.wikipedia.org/wiki/Simulation).
The keyword here is imitation. We’re interested in the behavior of the system we are
simulating, but not necessarily reproducing the internals themselves, as we often do in
emulation. Simulators are also typically designed to study and analyze, rather than
simply replicate the behavior of the simulated system. Typical examples include a
flight simulator, whereby the experience of flying a plane is approximated; or a phys-
ics simulation, in which the laws of physics are approximated to predict the way things
will behave in the real world. Simulation is now so mainstream that films (The Matrix,
anyone?) and even cartoons (Rick and Morty, episode 4—see http://mng.bz/YqzA)
talk about it.

 Finally, virtualization is defined as “the act of creating a virtual (rather than actual)
version of something, including virtual computer hardware platforms, storage devices,
and computer network resources” (https://en.wikipedia.org/wiki/Virtualization).
Therefore, technically speaking, both emulation and simulation can be considered a

https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Emulator
https://bellard.org/jslinux/
https://en.wikipedia.org/wiki/Simulation
http://mng.bz/YqzA
https://en.wikipedia.org/wiki/Virtualization

107A brief history of Docker
means of achieving virtualization. A lot of amazing work has been done in this domain
over the last few decades by companies such as Intel, VMware, Microsoft, Google, Sun
Microsystems (now Oracle), and many more, and it’s easily a topic for another book.

 In the context of Docker and containers, we are most interested in hardware virtual-
ization (or platform virtualization, which are often used interchangeably), wherein a
whole hardware platform (for example, an x86 architecture computer) is virtualized.
Of particular interest to us are the following two types of hardware virtualization:

 Full virtualization (virtual machines or VMs)—A complete simulation of the
underlying hardware, which results in the creation of a virtual machine that acts
like a real computer with an OS running on it.

 OS-level virtualization (containers)—The OS ensures isolation of various system
resources from the point of view of the software, but in reality they all share the
same kernel.

This is summarized by figure 5.2.

Sometimes full virtualization is also referred to as strong isolation, and the OS-level vir-
tualization as lightweight isolation. Let’s take a look at how they compare side by side.

5.2.2 Virtual machines and containers

The industry uses both VMs and containers for different use cases. Either approach
has its own pros and cons. For example, for a virtual machine, the pros are as follows:

 Fully isolated—more secure than containers.
 Can run a different operating system than the host.
 Can allow for better resource utilization. (The VM’s unused resources can be

given to another VM.)

Kernel

Physical machine Physical machine

Kernel Kernel

Virtual machine 1 Virtual machine 2 Container 1 Container 2

Full virtualization OS-level virtualization

Each virtual machine (VM)
has its own kernel.

All containers are sharing
the same kernel.

Figure 5.2 Full virtualization versus OS-level virtualization

108 CHAPTER 5 Poking Docker
The cons of a virtual machine include these:

 Higher overhead than a container because of operating systems running on top
of each other.

 Longer startup time, due to the operating system needing to boot up.
 Typically, running a VM for a single application will result in unused resources.

In the same way, here are the pros for a container:

 Lower overhead, better performance—the kernel is shared.
 Quicker startup time.

A container has these cons:

 Bigger blast radius for security issues due to shared kernel.
 Can’t run a different OS or even kernel version; it’s shared across all containers.
 Often not all of the OS is virtualized, potentially resulting in weird edge cases.

Typically, VMs are used to partition larger physical machines into smaller chunks, and
offer APIs to automatically create, resize, and delete VMs. The software running on
the actual physical host, responsible for managing VMs, is called a hypervisor. Popular
VM providers include the following:

 KVM (www.linux-kvm.org/page/Main_Page)
 Microsoft Hyper-V (http://mng.bz/DRD0)
 QEMU (www.qemu.org)
 VirtualBox (www.virtualbox.org)
 VMware vSphere (www.vmware.com/products/vsphere.html)
 Xen Project (www.xenproject.org)

Containers, on the other hand, thanks to their smaller overhead and quicker startup
time, offer one more crucial benefit: they allow you to package and release software in
a truly portable manner. Inside a container (we’ll get to the details in a minute), you
can add all the necessary dependencies to ensure that it runs well. And you can do
that without worrying about conflicting versions or paths on filesystems. It’s therefore
useful to think of containers as a means of packaging software with extra benefits
(we’ll cover them extensively in the next section). Popular container providers
include the following:

 Docker (www.docker.com)
 LXC (https://linuxcontainers.org/lxc/) and LXD (https://linuxcontainers.org/

lxd/)
 Microsoft Windows containers (http://mng.bz/l1Rz)

It’s worth noting that VMs and containers are not necessarily exclusive; it’s not unusual
to run containers inside VMs. As you will see in chapter 10, it’s a pretty common sight
right now. In fact, we’ll do exactly that later in this chapter!

http://mng.bz/DRD0
https://linuxcontainers.org/lxc/
https://linuxcontainers.org/lxd/
https://linuxcontainers.org/lxd/
https://linuxcontainers.org/lxd/
http://mng.bz/l1Rz
http://www.linux-kvm.org/page/Main_Page
http://www.virtualbox.org
http://www.qemu.org
http://www.docker.com
http://www.vmware.com/products/vsphere.html
http://www.xenproject.org

109A brief history of Docker
Finally, virtualization of computer hardware has been around for a while, and various
optimizations have been done. People now expect to have access to hardware-assisted
virtualization: the hardware is designed specifically for virtualization, and the software
executes approximately at the same speed as if it were run on the host directly.

Thanks to all these amazing technologies, we now live in a world where Windows ships
with a Linux kernel (http://mng.bz/BRZq), and no one bats an eye. I have to confess

Pop quiz: What’s an example of OS-level virtualization?
Pick one:

1 Docker container
2 VMware virtual machine

See appendix B for answers.

Pop quiz: Which statement is true?
Pick one:

1 Containers are more secure than VMs.
2 VMs typically offer better security than containers.
3 Containers are equally secure as VMs.

See appendix B for answers.

VM, container, and everything in between
I’ve been trying to neatly categorize things, but the reality is often more complex. To
quote a certain Jeff Goldblum in one of my favorite movies of all time, “Life finds a
way.” Here are some interesting projects on the verge of a VM and a container:

 Firecracker (https://firecracker-microvm.github.io/) used by Amazon, promises
fast startup times and strong isolation microVMs, which would mean the best
of both worlds.

 Kata Containers (https://github.com/kata-containers/runtime) offers hardware-
virtualized Linux containers, supporting VT-x (Intel), HYP mode (ARM), and
Power Systems and Z mainframes (IBM).

 UniK (https://github.com/solo-io/unik) builds applications into unikernels for
building microVMs that can then be booted up on traditional hypervisors, but
can boot quickly with low overhead.

 gVisor (https://github.com/google/gvisor) offers a user-space kernel, which
implements only a subset of the Linux system interface, as a way of increas-
ing the security level when running containers.

https://firecracker-microvm.github.io/
https://github.com/kata-containers/runtime
https://github.com/solo-io/unik
https://github.com/google/gvisor
http://mng.bz/BRZq

110 CHAPTER 5 Poking Docker
that I quite like this Inception-style reality, and I hope that I managed to get you excited
as well!

 Now, I’m sure you can’t wait to dive deeper into the actual focus of this chapter.
Time to sink our teeth into Docker.

5.3 Linux containers and Docker
Linux containers might look new and shiny, but the journey to where they are today
took a little while. I’ve prepared a handy table for you to track the important events on
the timeline (table 5.1). You don’t have to remember these events to use containers,
but it’s helpful to be aware of the milestones in the context of their time, as these
eventually led to (or inspired) what we call Linux containers today. Take a look.

Table 5.1 The chronology of events and ideas leading to the Linux containers we know today

Year Isolation Event

1979 Filesystem UNIX v7 includes the chroot system call, which allows changing the
root directory of a process and its children to a different location on
the filesystem. Often considered the first step toward containers.

2000 Files, processes,
users, networking

FreeBSD 4.0 introduces the jail system call, which allows for cre-
ation of mini-systems called jails that prevent processes from inter-
acting with processes outside the jail they’re in.

2001 Filesystems, net-
working, memory

Linux VServer offers a jail-like mechanism for Linux, through patch-
ing the kernel. Some system calls and parts of /proc and /sys
filesystems are left not virtualized.

2002 Namespaces Linux kernel 2.4.19 introduces namespaces, which control which
set of resources is visible to each process. Initially just for mounts,
other namespaces were gradually introduced in later versions (PID,
network, cgroups, time . . .).

2004 Sandbox Solaris releases Solaris Containers (also known as Solaris Zones),
which provide isolated environments for processes within them.

2006 CPU, memory, disk
I/O, network, . . .

Google launches process containers to limit, account for, and iso-
late the resource usage of groups of processes on Linux. These
containers were later renamed control groups (or cgroups for short)
and were merged into Linux kernel 2.6.24 in 2007.

2008 Containers LXC (Linux Containers) offers the first implementation of a container
manager for Linux, building on top of cgroups and namespaces.

2013 Containers Google shares lmctfy (Let Me Contain That For You), its container
abstraction through an API. Eventually parts of it end up being con-
tributed to the libcontainer project.

2013 Containers The first version of Docker is released, which builds on top of LXC
and offers tools to build, manage, and share containers. Later, lib-
container is implemented to replace LXC (using cgroups, name-
spaces, and Linux capabilities). Containers start exploding in
popularity as a convenient way of shipping software, with added
resource management (and limited security) benefits.

111Linux containers and Docker
Docker, through the use of libraries (previously LXC and now libcontainer), uses fea-
tures of the Linux kernel to implement containers (with additions we’ll look at later
in the chapter). These features are as follows:

 chroot—Changes the root of the filesystem for a particular process
 Namespaces—Isolate what a container can “see” in terms of PIDs, mounts, net-

working, and more
 cgroups—Control and limit access to resources, such as CPU and RAM
 Capabilities—Grant subsets of superuser privileges to users, such as killing other

users’ processes
 Networking—Manages container networking through various tools
 Filesystems—Use Unionfs to create filesystems for containers to use
 Security—Uses mechanisms such as seccomp, SELinux, and AppArmor to fur-

ther limit what a container can do

Figure 5.3 shows what happens when a user talks to Docker on a conceptual, simpli-
fied level.

Docker

LXC

Linux kernel

chroot namespaces cgroups

networking

filesystems

capabilities seccomp

libcontainer

User asks Docker to start a container

Docker leverages
libraries to talk
to the kernel.

Changing root of the
filesystem from a
process’s perspective

Various networking
solutions are available
for containers.

Unionfs is used to
provide containers with
their filesystems in an
efficient way (copy-on-
write, or COW).

Granting privileges to do
specific superuser tasks
on the system, like killing
other users’ processes

Can use security
mechanisms like
seccomp, SELinux, and
AppArmor to further limit
what a container can do

Limit access to a specific
set of resources. For
example, limit RAM
available to a container.

Isolation of what
processes can “see”
inside a container; for
example, PIDs or mounts

Figure 5.3 High-level overview of Docker interacting with the kernel

112 CHAPTER 5 Poking Docker
So if Docker relies on Linux kernel features for the heavy lifting, what does it actually
offer? A whole lot of convenience, like the following:

 Container runtime—Program making the system calls to implement, modify, and
delete containers, as well as creating filesystems and implementing networking
for the containers

 dockerd—Daemon providing an API for interacting with the container runtime
 docker—Command-line client of dockerd API used by the end users
 Dockerfile—Format for describing how to build a container
 Container image format—Describing an archive containing all the files and meta-

data necessary to start a container based off that image
 Docker Registry—Hosting solution for images
 A protocol—For exporting (packaging into an archive), importing (pulling), and

sharing (pushing) images to registries
 Docker Hub—Public registry where you can share your images for free

Basically, Docker made using Linux containers easy from the user’s perspective by
abstracting all the complicated bits away, smoothing out the rough edges, and offering
standardized ways of building, importing, and exporting container images.

 That’s a lot of Docker lingo, so I’ve prepared figure 5.4 to represent that process.
Let’s just repeat that to let it sink in:

 A Dockerfile (you’ll see some in just a minute) allows you to describe how to
build a container.

 The container then can be exported (all its contents and metadata stored in a
single archive) to an image, and pushed to the Docker Registry—for example, the
Docker Hub (https://hub.docker.com/)—from where other people can pull it.

 Once they pull an image, they can run it using the command-line docker utility.

If you haven’t used Docker before, don’t worry. We’re about to look into how all of
this works and we’ll also cover how to use it. And then break it. Ready to take a peek
under the hood?

Pop quiz: Which statement is true?
Pick one:

1 Docker invented containers for Linux.
2 Docker is built on top of existing Linux technologies to provide an accessible way

of using containers, rendering them much more popular.
3 Docker is the chosen one in The Matrix trilogy.

See appendix B for answers.

https://hub.docker.com/

113Peeking under Docker’s hood
5.4 Peeking under Docker’s hood
It’s time to get your hands dirty. In this section, you’ll start a container and see how
Docker implements the isolation and resource limits for the containers it runs. Using
Docker is simple, but understanding what it does under the hood is essential for
designing and executing meaningful chaos engineering experiments.

 Let’s begin by starting a Docker container! You can do that by running the follow-
ing command in a terminal inside your VM. If you’d like to run it on a different sys-
tem, you’ll most likely need to prepend the following commands with sudo, since
talking to the Docker daemon requires administrator privileges. The VM has been set
up to not require that to save you some typing. To make things more interesting, let’s
start a different Linux distribution—Alpine Linux:

docker run \
--name firstcontainer \
-ti \
--rm \
alpine:3.11 \
/bin/sh

Dockerfile

docker build

docker pull docker run

dockerd

Alice’s PC

Registry

Bob’s PC

dockerd container

imageA

docker push

imageA

imageA

imageB imageC

1. reads a Dockerfile and producesdocker build

an image (archive with files and metadata).

4. downloads a specific image from a registry.docker pull

2.
uploads the image to
docker push

a registry; for example,
hub.docker.com.

3. A registry holds
various images and
makes them available
for download.

5. starts adocker run

new container, based
on the image downloaded
from the registry.

Figure 5.4 Building, pushing, and pulling Docker images

Gives your container the name
“firstcontainer”

Keeps stdin open and
allocates a pseudo-TTY to
allow you to type commands
(note the single hyphen!)

Removes the container
after you’re done with it

Runs image “alpine” in version
(tag, in Docker parlance) 3.11

Executes /bin/sh
inside the container

114 CHAPTER 5 Poking Docker
You should see a simple prompt of your new container running. Congrats! When
you’re done and want to stop it, all you need to do is exit the shell session. You can
type exit or press Ctrl-D in this terminal. The --rm flag will take care of deleting the
container after exiting, so you can start another one with the same name by using the
exact same command later.

 For the rest of this section, I’ll refer to commands run in this terminal, inside the
container, as the first terminal. So far, so good. Let’s inspect what’s inside!

5.4.1 Uprooting processes with chroot

What’s Alpine, anyway? Alpine Linux (https://alpinelinux.org/) is a minimalistic Linux
distro, geared for minimal usage of resources and quite popular in the container
world. And I’m not joking when I say it’s small.

 Open a second terminal window and keep it open for a while; you’ll use it to look
at how things differ from the container’s perspective (first terminal) and on the host
(second terminal). In the second terminal, run the following command to list all
images available to Docker:

docker images

You will see output similar to the following (bold font shows the size of the alpine
image):

REPOSITORY TAG IMAGE ID CREATED SIZE
alpine 3.11 f70734b6a266 36 hours ago 5.61MB
(...)

As you can see, the alpine image is really small, clocking in at 5.6 MB. Now, don’t take
my word for it; let’s confirm what we’re running by checking how the distro identifies
itself. You can do that by running the following command in the first terminal:

head -n1 /etc/issue

You will see the following output:

Welcome to Alpine Linux 3.11

In the second terminal, run the same command:

head -n1 /etc/issue

This time, you will see different output:

Ubuntu 20.04.1 LTS \n \l

The content of the file at the same path in the two terminals (inside the container and
outside) is different. How come? In fact, the entire filesystem inside the container is

https://alpinelinux.org/

115Peeking under Docker’s hood
chroot’ed, which means that the forward slash (/) inside a container is a different loca-
tion on the host system.

 Let me explain what I mean. Take a look at figure 5.5, which shows an example of
a chroot’ed filesystem. On the left side is a host filesystem, with a folder called /fake-
root-dir. On the right is an example of what the filesystem might look like from the
perspective of a process chroot’ed to use /fake-root-dir as the root of its filesystem.
This is exactly what you are seeing happen in the container you just started!

Union filesystems, overlay2, layers, and Docker
An important part of implementing a container solution is to provide a robust mech-
anism for managing contents of the filesystems that the containers start with. One
such mechanism, used by Docker, is a union filesystem.

In a union filesystem, two or more folders on a host can be transparently presented
as a single, merged folder (called a union mount) for the user. These folders,
arranged in a particular order, are called layers. Upper layers can “hide” lower layers’
files by providing another file at the same path.

In a Docker container, by specifying the base image, you tell Docker to download all
the layers that the image is made of, make a union of them, and start a container
with a fresh layer on top of all of that. This allows for a reuse of these read-only layers
in an efficient way, by having only a single file that can be read by all containers using
that layer. Finally, if the process in the container needs to modify a file present on
one of the lower layers, it is first copied in its entirety into the current layer (via copy-
on-write, or COW).

Host filesystem Chroot’ed filesystem

chroot

/bin
ls
my-app
..

/some-other-dir

/bin
ls
my-app
..

/some-other-dir

..
/log

a-log-file

/bin
ls
touch
..

/fake-root-dirNote that there are
two copies of the
ls binary.

Only the contents of
/fake-root-dir (and its
subfolders) are available
on the chroot’ed filesystem.

The contents of /fake-root-dir
become the root of the chroot’ed
process’s filesystem.

Figure 5.5 Visual example of a chroot’ed filesystem

116 CHAPTER 5 Poking Docker
Where is the container, then? Depending on the storage settings of Docker, it might
end up in different places on the host filesystem. To find out where it is, you can use a
new command, docker inspect. It gives you all the information the Docker daemon
has about a particular container. To do that, run the following command in the sec-
ond terminal:

docker inspect firstcontainer

The output you’re going to see is pretty long, but for now we’re just interested in the
GraphDriver section of it. See the following, abbreviated output showing just that sec-
tion. The long IDs will be different in your case, but the structure and the Name mem-
ber (overlay2, the default on the Ubuntu installation in your VM) will be the same.
You will notice LowerDir, UpperDir, and MergedDir (bold font). These are, in respec-
tive order, the top layer of the image the container is based on, the read-write layer of
the container, and the merged (union) view of the two:

...
 "GraphDriver": {
 "Data": {
 "LowerDir": "/var/lib/docker/overlay2/dc2…-

init/diff:/var/lib/docker/overlay2/caf…/diff",
 "MergedDir": "/var/lib/docker/overlay2/dc2…9/merged",
 "UpperDir": "/var/lib/docker/overlay2/…/diff",
 "WorkDir": "/var/lib/docker/overlay2/dc2…/work"
 },
 "Name": "overlay2"
 },
...

In particular, we’re interested in the .GraphDriver.Data.MergedDir path, which
gives you the location of the container’s merged filesystem. To confirm that you’re
looking at the same actual file, let’s read the inode of the file from the outside.

 To do that, still in the second terminal, run the following command. It uses the -f
flag supported by Docker to access only a particular path in the output, as well as the
-i flag in ls to print the inode number:

export CONTAINER_ROOT=$(docker inspect -f '{{ .GraphDriver.Data.MergedDir }}'
firstcontainer)

sudo ls -i $CONTAINER_ROOT/etc/issue

You will see output similar to the following (bold font shows the inode number):

800436 /var/lib/docker/overlay2/dc2…/merged/etc/issue

(continued)

Overlay2 is a modern driver implementing this behavior. Learn more about how it
works at http://mng.bz/rynE.

http://mng.bz/rynE

117Peeking under Docker’s hood
Now, back in the first terminal, let’s see the inode of the file from the container’s per-
spective. Run the following command in the first terminal:

ls -i /etc/issue

The output will look similar to the following (again, bold font to show the inode):

800436 /etc/issue

As you can see, the inodes from the inside of the container and from the outside are
the same; it’s just that the file shows in different locations in the two scenarios. This is
telling of the container’s experience in general—the isolation is really thin. You’ll see
how that’s important from the perspective of a chaos engineer in just a minute, but
first, let’s solidify your new knowledge about chroot by implementing a simple version
of a container.

5.4.2 Implementing a simple container(-ish) part 1: Using chroot

I believe that there is no better way to really learn something than to try to build it
yourself. Let’s use what you learned about chroot and take a first step toward building
a simple DIY container. Take a look at figure 5.6, which shows the parts of Docker’s
underlying technologies we’re going to use.

As it turns out, changing the root of the filesystem for a new process is rather straightfor-
ward. In fact, you can do that with a single command, called—you guessed it— chroot.

Pop quiz: What does chroot do?
Pick one:

1 Change the root user of the machine
2 Change permissions to access the root filesystem on a machine
3 Change the root of the filesystem from the perspective of a process

See appendix B for answers.

chroot namespaces cgroups

networking

filesystems

capabilities seccomp

Linux kernel

You’ll use chroot to
change the root of the
filesystem from a
process’s perspective.

You’ll also prepare a
basic filesystem to
actually chroot into.

Figure 5.6 DIY container
part 1—chroot and
filesystems

118 CHAPTER 5 Poking Docker

I’ve prepared a simple script to demonstrate starting a process with the root of its
filesystem pointing to a location of your choice. In your VM, open a terminal and type
the following command to see the script:

cat ~/src/examples/poking-docker/new-filesystem.sh

You will see the following output. The command is creating a new folder, and copying
over some tools and their dependencies, so that you can use it as a root filesystem. It’s
a very crude way of preparing a filesystem structure to be usable for a chroot’ed pro-
cess. This is necessary so that you can execute something from inside the new filesys-
tem. The only thing that you might not be familiar with here is the use of the ldd
command, which prints shared object dependencies for binaries on Linux. These
shared objects are necessary for the commands you’re copying over to be able to start:

#! /bin/bash

export NEW_FILESYSTEM_ROOT=${1:-~/new_filesystem}
export TOOLS="bash ls pwd mkdir ps touch rm cat vim mount"

echo "Step 1. Create a new folder for our new root"
mkdir $NEW_FILESYSTEM_ROOT

echo "Step 2. Copy some (very) minimal binaries"
for tool in $TOOLS; do
 cp -v --parents `which $tool` $NEW_FILESYSTEM_ROOT;
done

echo "Step 3. Copy over their libs"
use ldd to find the dependencies of the tools we've just copied
echo -n > ~/.deps
for tool in $TOOLS; do
 ldd `which $tool` | egrep -o '(/usr)?/lib.*\.[0-9][0-9]?' >> ~/.deps
done
copy them over to our new filesystem
cp -v --parents `cat ~/.deps | sort | uniq | xargs` $NEW_FILESYSTEM_ROOT

echo "Step 4. Home, sweet home"
NEW_HOME=$NEW_FILESYSTEM_ROOT/home/chaos
mkdir -p $NEW_HOME && echo $NEW_HOME created!
cat <<EOF > $NEW_HOME/.bashrc
echo "Welcome to the kind-of-container!"
EOF

echo "Done."
echo "To start, run: sudo chroot" $NEW_FILESYSTEM_ROOT

Let’s go ahead and run this script, passing as an argument the name of the new folder to
create in your current working directory. Run the following command in your terminal:

bash ~/src/examples/poking-docker/new-filesystem.sh not-quite-docker

Lists some binaries
you’ll copy into the
new root

Copies the binaries,
maintaining their
relative paths with
--parents

Uses ldd to list shared libraries they need
and extract their locations to .deps

Copies the libraries,
maintaining their structure

Prints usage
instructions

119Peeking under Docker’s hood
After it’s done, you will see a new folder, not-quite-docker, with a minimal structure
inside it. You can now start a chroot’ed bash session by running the following com-
mand in your terminal (sudo is required by chroot):

sudo chroot not-quite-docker

You will see a short welcome message, and you’ll be in a new bash session. Go ahead
and explore; you will find you can create folders and files (you copied vim over), but if
you try to run ps, it will complain about the missing /proc. And it is right to complain;
it’s not there! The purpose here is to demonstrate to you the workings of chroot and
to make you comfortable designing chaos experiments. But for the curious, you can
go ahead and mount /proc inside your chrooted process by running the following
commands in your terminal (outside chroot):

mkdir not-quite-docker/proc
sudo mount -t proc /proc/ not-quite-docker/proc

In the context of isolating processes, this is something you might or might not want to
do. For now, treat this as an exercise or a party trick, whichever works best for you!

 Now, with this new piece of knowledge that takes away some of the magic of
Docker, you’re probably itching to probe it a bit. If the containers are all sharing the
same host filesystem and are just mounted in different locations, it should mean that
one container can fill in the disk and prevent another one from writing, right? Let’s
design an experiment to find out!

5.4.3 Experiment 1: Can one container prevent another one from
writing to disk?

Intuition hints that if all containers’ filesystems are just chroot’ed locations on the
host’s filesystem, then one busy container filling up the host’s storage can prevent all
the other containers from writing to disk. But human intuition is fallible, so it’s time
to invite some science and design a chaos experiment.

 First, you need to be able to observe a metric that quantifies “being able to write to
disk.” To keep it simple, I suggest you create a simple container that tries to write a
file, erases it, and retries again every few seconds. You’ll be able to see whether or not
it can still write. Let’s call that container control.

 Second, define your steady state. Using your container, you’ll first verify that it can
write to disk.

 Third, form your hypothesis. If another container (let’s call it failure) consumes
all available disk space until no more is left, then the control container will start fail-
ing to write.

 To recap, here are the four steps to your chaos experiment:

1 Observability: a control container printing whether it can write every few seconds.
2 Steady state: the control container can write to disk.

120 CHAPTER 5 Poking Docker
3 Hypothesis: if another failure container writes to disk until it can’t, the con-
trol container won’t be able to write to disk anymore.

4 Run the experiment!

Implementation time! Let’s start with the control container. I’ve prepared a small
script continuously creating a 50 MB file on the disk, sleeping some, and then re-creating
it indefinitely. To see it from your VM, run the following command in a terminal:

cat ~/src/examples/poking-docker/experiment1/control/run.sh

You will see the following content, a simple bash script calling out to fallocate to cre-
ate a file:

#! /bin/bash
FILESIZE=$((50*1024*1024))
FILENAME=testfile
echo "Press [CTRL+C] to stop.."
while :
do
 fallocate -l $FILESIZE $FILENAME \
 && echo "OK wrote the file" `ls -alhi $FILENAME` \
 || echo "Couldn't write the file"
 sleep 2
 rm $FILENAME || echo "Couldn't delete the file"
done

I’ve also prepared a sample Dockerfile to build that script into a container. You can
see it by running the following command in a terminal:

cat ~/src/examples/poking-docker/experiment1/control/Dockerfile

You will see the following content. This very simple image starts from a base image of
Ubuntu Focal, copies the script you’ve just seen, and sets that script as an entry point
of the container, so that when you start it later, that script is run:

FROM ubuntu:focal-20200423
COPY run.sh /run.sh
ENTRYPOINT ["/run.sh"]

The Dockerfile is a recipe for building a container. With just these two files, you can
now build your first image by running the following command. Docker uses the cur-
rent working directory to find files you point to in the Dockerfile, so you move to that
directory first:

cd ~/src/examples/poking-docker/experiment1/control/
docker build \

Sets the size of the file
to 50 MB in bytes

Gives the file you’ll
write a name

Uses fallocate to create
a new file of the desired
size, and prints success
or failure messages

Starts from base image
ubuntu:focal-20200423 Copies the script run.sh

from the current working
directory into the container

Sets our newly copied script as the
entry point of the container

121Peeking under Docker’s hood
-t experiment1-control \
.

When you run this command, you will see the characteristic logs from Docker, in
which it will pull the required base image from Docker Hub (separated in layers, the
type we discussed earlier), and then run each command from the Dockerfile. Each
command (or line in the Dockerfile) results in a new container. At the end, it will
mark the last container with the tag you specified. You will see output similar to the
following:

Sending build context to Docker daemon 4.608kB
Step 1/3 : FROM ubuntu:focal-20200423
focal-20200423: Pulling from library/ubuntu
d51af753c3d3: Pull complete
fc878cd0a91c: Pull complete
6154df8ff988: Pull complete
fee5db0ff82f: Pull complete
Digest:

sha256:238e696992ba9913d24cfc3727034985abd136e08ee3067982401acdc30cbf3f
Status: Downloaded newer image for ubuntu:focal-20200423
 ---> 1d622ef86b13
Step 2/3 : COPY run.sh /run.sh
 ---> 67549ea9de18
Step 3/3 : ENTRYPOINT ["/run.sh"]
 ---> Running in e9b0ac1e77b4
Removing intermediate container e9b0ac1e77b4
 ---> c2829a258a07
Successfully built c2829a258a07
Successfully tagged experiment1-control:latest

When that’s finished, let’s list the images available to Docker, which will now include
our newly built image. You can list all tagged Docker images by running the following
command in a terminal:

docker images

This will print output similar to the following (abbreviated to only show your new
image and its base):

REPOSITORY TAG IMAGE ID CREATED SIZE
(...)
experiment1-control latest c2829a258a07 6 seconds ago 73.9MB
ubuntu focal-20200423 1d622ef86b13 4 days ago 73.9MB

If this is the first Docker image you’ve built yourself, congratulations! Now, to our
failure container. In a similar fashion, I’ve prepared another script, which tries to
create as many 50 MB files as it can. You can see it by running the following command
in the terminal:

cat ~/src/examples/poking-docker/experiment1/failure/consume.sh

Gives the container you’ll build a
tag, “experiment1-control”Uses the Dockerfile in the

current working directory

Pulls the base image in
the version (tag) you
used as your base

Copies the script run.sh into
the container’s filesystem

Sets the newly copied script as
the entry point of the container

Tags the built
container

122 CHAPTER 5 Poking Docker

You will see the following content, very similar to our previous script:

#! /bin/bash
FILESIZE=$((50*1024*1024))
FILENAME=testfile
echo "Press [CTRL+C] to stop.."
count=0
while :
do
 new_name=$FILENAME.$count
 fallocate -l $FILESIZE $new_name \
 && echo "OK wrote the file" `ls -alhi $new_name` \
 || (echo "Couldn't write " $new_name "Sleeping"; sleep 5)
 ((count++))
done

Similarly, I’ve also prepared a Dockerfile for building the failure container in the
same folder (~/src/examples/poking-docker/experiment1/failure/) with the follow-
ing contents:

FROM ubuntu:focal-20200423
COPY consume.sh /consume.sh
ENTRYPOINT ["/consume.sh"]

With that, you can go ahead and build the failure container by running the follow-
ing command in a terminal window:

cd ~/src/examples/poking-docker/experiment1/failure/
docker build \
-t experiment1-failure \
.

When that’s done, let’s list the images available by running the following command
again in a terminal:

docker images

You will see output similar to the following, once again abbreviated to show only the
images relevant right now. Both our control and failure containers are present:

REPOSITORY TAG IMAGE ID CREATED SIZE
(...)
experiment1-failure latest 001d2f541fb5 5 seconds ago 73.9MB
experiment1-control latest c2829a258a07 28 minutes ago 73.9MB
ubuntu focal-20200423 1d622ef86b13 4 days ago 73.9MB

That’s all you need to conduct your experiment. Now, let’s prepare two terminal win-
dows, preferably side by side, so that you can see what’s happening in each window at

Tries to allocate
a new file with a
new name

On success prints a
message showing
the new file

On failure prints a failure message
and sleeps a few seconds

Starts from base image
ubuntu:focal-20200423

Copies the script
consume.sh from the
current working directory
into the container

Sets our newly copied script as
the entry point of the container

Gives the container you’ll build
a tag, “experiment1-failure”

Uses the Dockerfile in the
current working directory

123Peeking under Docker’s hood
the same time. In the first window, run your control container by issuing the follow-
ing command:

docker run --rm -ti experiment1-control

You should see the container starting and printing a message, confirming it’s able to
write every couple of seconds, just like the following:

Press [CTRL+C] to stop..
OK wrote the file 919053 -rw-r--r-- 1 root root 50M Apr 28 09:13 testfile
OK wrote the file 919053 -rw-r--r-- 1 root root 50M Apr 28 09:13 testfile
OK wrote the file 919053 -rw-r--r-- 1 root root 50M Apr 28 09:13 testfile
(...)

That confirms our steady state: you are able to continuously write a 50 MB file to disk.
Now, in the second window, start your failure container by running the following
command from the second terminal window:

docker run --rm -ti experiment1-failure

You will see output similar to the following. For a few seconds, the container will be
successful in writing the files, until it runs out of space and starts failing:

Press [CTRL+C] to stop..
OK wrote the file 919078 -rw-r--r-- 1 root root 50M Apr 28 09:21 testfile.0
OK wrote the file 919079 -rw-r--r-- 1 root root 50M Apr 28 09:21 testfile.1
(...)
OK wrote the file 919553 -rw-r--r-- 1 root root 50M Apr 28 09:21 testfile.475
fallocate: fallocate failed: No space left on device
Couldn't write the file testfile.476 Sleeping a bit

At the same time, in the first window, you will start seeing your control container fail-
ing with a message similar to the following:

(...)
OK wrote the file 919053 -rw-r--r-- 1 root root 50M Apr 28 09:21 testfile
OK wrote the file 919053 -rw-r--r-- 1 root root 50M Apr 28 09:21 testfile
fallocate: fallocate failed: No space left on device
Couldn't write the file

This confirms our hypothesis: one container can use up the space that another con-
tainer would like to use in our environment. In fact, if you investigate the disk
usage in your VM while the two containers are still running, you will see that the
main disk is now 100% full. You can do that by running the following command in
another terminal:

df -h

124 CHAPTER 5 Poking Docker
You will see output similar to the following (utilization of your main disk in bold):

Filesystem Size Used Avail Use% Mounted on
udev 2.0G 0 2.0G 0% /dev
tmpfs 395M 7.8M 387M 2% /run
/dev/sda1 32G 32G 0 100% /
(...)

If you now stop the failure container by pressing Ctrl-C in its window, you will see its
storage removed (thanks to the --rm option), and in the first window, the control
container will resume happily rewriting its file.

 The takeaway here is that running programs in containers doesn’t automatically
prevent one process from stealing disk space from another. Fortunately, the authors of
Docker thought about that, and exposed a flag called --storage-opt size=X. Unfor-
tunately, when using the overlay2 storage driver, this option requires using an xfs
filesystem with pquota option as the host filesystem (at least for the location where
Docker stores its container data, which defaults to /var/lib/docker), which our VM
running on default settings is not doing.

 Therefore, allowing Docker containers to be limited in storage requires extra
effort, which means that there is a good chance that many systems will not limit it at
all. The storage driver setup requires careful consideration and will be important to
the overall health of your systems.

 Keeping that in mind, let’s take a look at the next building block of a Docker con-
tainer: the Linux namespaces.

5.4.4 Isolating processes with Linux namespaces

Namespaces, a feature of the Linux kernel, control which subset of resources is visible
to certain processes. You can think of namespaces as filters, which control what a pro-
cess can see. For example, as figure 5.7 illustrates, a resource can be visible to zero or
more namespaces. But if it’s not visible to the namespace, the kernel will make it look
like it doesn’t exist from the perspective of a process in that namespace.

Resource A

Namespace 1

Namespace 2

Resource B Resource C

Resource A is
visible to only
namespace .1

Resource B is shared across
namespaces and 2.1

Resource C is visible to
only namespace 2.

Figure 5.7 High-level idea of namespaces

125Peeking under Docker’s hood
Namespaces are a crucial part of the Linux container solutions, including Docker. Dif-
ferent types of namespaces deal with different resources. At the time of writing, the
following namespaces are available:

 Mounts (mnt)—Controls which mounts are accessible within the namespace
 Process ID (pid)—Creates an independent set of PIDs for processes within the

namespace
 Network (net)—Virtualizes the network stack, allows for network interfaces (phys-

ical or virtual) to be attached to network namespaces
 Interprocess Communication (ipc)—Isolates objects used for interprocess commu-

nication, System V IPC, and POSIX message queues (http://mng.bz/GxBO)
 UTS (uts)—Allows for different host and domain names in different name-

spaces
 User ID (user)—User identification and privilege isolation per namespace
 Control group (cname)—Hides the real identity of the control group the pro-

cesses are a member of
 Time (time)—Shows different times for different namespaces

NOTE The Time namespace was introduced in version 5.6 of the Linux ker-
nel in March 2020. Our VM, running kernel 4.18, doesn’t have it yet.

By default, Linux starts with a single namespace of each type, and new namespaces
can be created on the fly. You can list existing namespaces by typing the command
lsns in a terminal window:

lsns

You will see output similar to the following. The command column, as well as PID, applies
to the lowest PID that was started in that namespace. NPROCS shows the number of pro-
cesses currently running in the namespace (from the current user perspective):

 NS TYPE NPROCS PID USER COMMAND
4026531835 cgroup 69 2217 chaos /lib/systemd/systemd --user
4026531836 pid 69 2217 chaos /lib/systemd/systemd --user
4026531837 user 69 2217 chaos /lib/systemd/systemd --user
4026531838 uts 69 2217 chaos /lib/systemd/systemd --user
4026531839 ipc 69 2217 chaos /lib/systemd/systemd --user
4026531840 mnt 69 2217 chaos /lib/systemd/systemd --user
4026531993 net 69 2217 chaos /lib/systemd/systemd --user

If you rerun the same command as the root user, you will see a larger set of name-
spaces, which are created by various components of the system. You can do that by
running the following command in a terminal window:

sudo lsns

http://mng.bz/GxBO

126 CHAPTER 5 Poking Docker
You will see output similar to the following. The important thing to note is that while
there are other namespaces, the ones you saw previously are the same (they have a
matching number in the column NS), although the number of processes and the low-
est PID are different. In fact, you can see the PID of 1, the first process started on the
host. By default, all users are sharing the same namespaces. I used bold font to point
out the repeated ones.

 NS TYPE NPROCS PID USER COMMAND
4026531835 cgroup 211 1 root /sbin/init
4026531836 pid 210 1 root /sbin/init
4026531837 user 211 1 root /sbin/init
4026531838 uts 210 1 root /sbin/init
4026531839 ipc 210 1 root /sbin/init
4026531840 mnt 200 1 root /sbin/init
4026531861 mnt 1 19 root kdevtmpfs
4026531993 net 209 1 root /sbin/init
4026532148 mnt 1 253 root /lib/systemd/systemd-udevd
4026532158 mnt 1 343 systemd-resolve /lib/systemd/systemd-resolved
4026532170 mnt 1 461 root /usr/sbin/ModemManager…
4026532171 mnt 2 534 root /usr/sbin/…
4026532238 net 1 1936 rtkit /usr/lib/rtkit/rtkit-daemon
4026532292 mnt 1 1936 rtkit /usr/lib/rtkit/rtkit-daemon
4026532349 mnt 1 2043 root /usr/lib/x86_64-linux…
4026532350 mnt 1 2148 colord /usr/lib/colord/colord
4026532351 mnt 1 3061 root /usr/lib/fwupd/fwupd

lsns is pretty neat. It can do things like print out JSON (--json flag, good for con-
sumption in scripts), look into only a particular type of namespace (--type flag),
or give you the namespaces for a particular PID (--task flag). Under the hood, it
reads from the /proc filesystem exposed by the Linux kernel—in particular, from
/proc/<pid>/ns, a location that’s good to know your way around.

 To see what namespaces a particular process is in, you just need its PID. For the
current bash session, you can access it via $$. You can check the namespaces that our
bash session is in by running the following command in a terminal window:

ls -l /proc/$$/ns

You will see output similar to the following. For each type of namespace we just cov-
ered, you will see a symbolic link:

total 0
lrwxrwxrwx 1 chaos chaos 0 May 1 09:38 cgroup -> 'cgroup:[4026531835]'
lrwxrwxrwx 1 chaos chaos 0 May 1 09:38 ipc -> 'ipc:[4026531839]'
lrwxrwxrwx 1 chaos chaos 0 May 1 09:38 mnt -> 'mnt:[4026531840]'
lrwxrwxrwx 1 chaos chaos 0 May 1 09:38 net -> 'net:[4026531993]'
lrwxrwxrwx 1 chaos chaos 0 May 1 09:38 pid -> 'pid:[4026531836]'
lrwxrwxrwx 1 chaos chaos 0 May 1 10:11 pid_for_children -> 'pid:[…]'
lrwxrwxrwx 1 chaos chaos 0 May 1 09:38 user -> 'user:[4026531837]'
lrwxrwxrwx 1 chaos chaos 0 May 1 09:38 uts -> 'uts:[4026531838]'

127Peeking under Docker’s hood
These symbolic links are special. Try to probe them with the file utility by running
the following command in your terminal:

file /proc/$$/ns/pid

You will see output similar to the following; it will complain that the symbolic link is
broken:

/proc/3391/ns/pid: broken symbolic link to pid:[4026531836]

That’s because the links have a special format: <namespace type>:[<namespace
number>]. You can read the value of the link by running the readlink command in
the terminal:

readlink /proc/$$/ns/pid

You will see output similar to the following. It’s a namespace of type pid with the num-
ber 4026531836. It’s the same one you saw in the output of lsns earlier:

pid:[4026531836]

Now you know what namespaces are, what kinds are available, and how to see what
processes belong to which namespaces. Let’s take a look at how Docker uses them.

5.4.5 Docker and namespaces

To see how Docker manages container namespaces, let’s start a fresh container. You
can do that by running the following command in a terminal window. Note that I’m
again using a particular tag of the Ubuntu Focal image so that we use the exact same
environment:

docker run \
--name probe \
-ti \
--rm \
ubuntu:focal-20200423

Pop quiz: What do namespaces do?
Pick one:

1 Limit what a process can see and access for a particular type of resource
2 Limit the resources that a process can consume (CPU, memory, and so forth)
3 Enforce naming conventions to avoid name clashes

See appendix B for answers.

Gives our container a name Keeps stdin open and allocates a pseudo-
TTY to allow you to type commands

Removes the container after
you’re done with it

Runs the same Ubuntu
image you used earlier

128 CHAPTER 5 Poking Docker
You will enter into an interactive bash session in a new container. You can confirm that
by checking the contents of /etc/issue as you did earlier in the chapter.

 Now, let’s see what namespaces Docker created for you. Open a second terminal
window and inspect your Docker container. First, let’s see the list of running contain-
ers by executing the following command in the second terminal:

docker ps

You will see output similar to the following. You are interested in the container ID (in
bold font) of the container you just started (you name it probe):

CONTAINER ID IMAGE COMMAND

91d17914dd23 ubuntu:focal-20200423 "/bin/bash"
CREATED STATUS PORTS NAMES
48 seconds ago Up 47 seconds probe

Knowing its ID, let’s inspect that container. Run the following command, still in the
second terminal window, replacing the ID with the one you saw:

docker inspect 91d17914dd23

The output you see will be pretty long, but for now I’d like you to just focus on the
State part, which will look similar to the following output. In particular, note the Pid
(in bold font):

(...)
 "State": {
 "Status": "running",
 "Running": true,
 "Paused": false,
 "Restarting": false,
 "OOMKilled": false,
 "Dead": false,
 "Pid": 3603,
 "ExitCode": 0,
 "Error": "",
 "StartedAt": "2020-05-01T09:38:03.245673144Z",
 "FinishedAt": "0001-01-01T00:00:00Z"
 },
(...)

With that PID, you can list the namespaces the container is in by running the follow-
ing command in the second terminal, replacing the PID with the value from your sys-
tem (in bold). You are going to need to use sudo to access namespace data for a
process the current user doesn’t own:

sudo ls -l /proc/3603/ns

129Experiment 2: Killing processes in a different PID namespace
In the following output, you will see a few new namespaces, but not all of them:

total 0
lrwxrwxrwx 1 root root 0 May 1 09:38 cgroup -> 'cgroup:[4026531835]'
lrwxrwxrwx 1 root root 0 May 1 09:38 ipc -> 'ipc:[4026532357]'
lrwxrwxrwx 1 root root 0 May 1 09:38 mnt -> 'mnt:[4026532355]'
lrwxrwxrwx 1 root root 0 May 1 09:38 net -> 'net:[4026532360]'
lrwxrwxrwx 1 root root 0 May 1 09:38 pid -> 'pid:[4026532358]'
lrwxrwxrwx 1 root root 0 May 1 10:04 pid_for_children -> 'pid:[4026532358]'
lrwxrwxrwx 1 root root 0 May 1 09:38 user -> 'user:[4026531837]'
lrwxrwxrwx 1 root root 0 May 1 09:38 uts -> 'uts:[4026532356]'

You can match this output to the previous one to see which namespaces were created
for the process, but that sounds laborious to me. Alternatively, you can also leverage
the lsns command to give you output that’s easier to read. Run the following com-
mand in the same terminal window (again, changing the value of the PID):

sudo lsns --task 3603

You can clearly see the new namespaces in the output, emphasized here in bold (the
lowest PID is the one you are looking for):

 NS TYPE NPROCS PID USER COMMAND
4026531835 cgroup 210 1 root /sbin/init
4026531837 user 210 1 root /sbin/init
4026532355 mnt 1 3603 root /bin/bash
4026532356 uts 1 3603 root /bin/bash
4026532357 ipc 1 3603 root /bin/bash
4026532358 pid 1 3603 root /bin/bash
4026532360 net 1 3603 root /bin/bash

You can now kill that container (for example, by pressing Ctrl-D in the first window)
because you won’t be needing it anymore.

 So Docker created a new namespace of each type, except for cgroup and user
(we’ll cover the former later in this chapter). In theory, then, from inside the con-
tainer, you should be isolated from the host system in all aspects covered by the new
namespaces. However, theory is often different from practice, so let’s do what any self-
proclaimed scientist should do; let’s experiment and see how isolated we really are.
Since we spoke a bit about PIDs, let’s pick the pid namespace for the experiment.

5.5 Experiment 2: Killing processes in a different PID
namespace
A fun experiment to confirm that the pid namespaces work (and that you understand
how they’re supposed to work!) is to start a container and try to kill a PID from out-
side its namespace. Observing it will be trivial (the process either gets killed or not),
and our expectation is that it should not work. The whole experiment can be summa-
rized in the following four steps:

130 CHAPTER 5 Poking Docker
1 Observability: checking whether the process is still running.
2 Steady state: the process is running.
3 Hypothesis: if we issue a kill command from inside the container, for a process

outside the container, it should fail.
4 Run the experiment!

Easy peasy. To implement that, you’ll need a practice target to kill. I’ve prepared one
for you. You can see it by running the following command in a terminal window of
your VM:

cat ~/src/examples/poking-docker/experiment2/pid-printer.sh

You will see the following output. It doesn’t get much more basic than this:

#! /bin/bash
echo "Press [CTRL+C] to stop.."
while :
do
 echo `date` "Hi, I'm PID $$ and I'm feeling sleeeeeepy..." && sleep 2
done

To run our experiment, you will use two terminal windows. In the first one, you’ll run
the target you’re trying to kill, and in the second one, the container from which you’ll
issue the kill command. Let’s start this script by running the following command in
the first terminal window:

bash ~/src/examples/poking-docker/experiment2/pid-printer.sh

You will see output similar to the following, with the process printing its PID every few
seconds. I used bold for the PID; copy it:

Press [CTRL+C] to stop..
Fri May 1 06:15:22 UTC 2020 Hi, I'm PID 9000 and I'm feeling sleeeeeepy...
Fri May 1 06:15:24 UTC 2020 Hi, I'm PID 9000 and I'm feeling sleeeeeepy...
Fri May 1 06:15:26 UTC 2020 Hi, I'm PID 9000 and I'm feeling sleeeeeepy...

Now, let’s start a new container in a second terminal window. Start a new window and
run the following command:

docker run \
--name experiment2 \
-ti \
--rm \
ubuntu:focal-20200423

Prints a message, includes its
PID number, and sleeps

Gives our container a name
Keeps stdin open and allocates
a pseudo-TTY to allow you to
type commands

Removes the container after
you’re done with it

Runs the same Ubuntu
image you used earlier

131Experiment 2: Killing processes in a different PID namespace

Enters
names

It looks like we’re all set! From inside the container (the second terminal window),
let’s try to kill the PID that our target keeps printing. Run the following command
(replace the PID with your value):

kill -9 9000

You will see in the output that the command did not find such a process:

bash: kill: (9000) - No such process

You can confirm that in the first window, your target is still running, which means that
the experiment confirmed our hypothesis: trying to kill a process running outside a
container’s PID namespace did not work. But the error message you saw indicated
that from inside the container, there was no process with a PID like that. Let’s see what
processes are listed from inside the container by running the following command
from the second terminal window:

ps a

You will see output like the following. Only two processes are listed:

 PID TTY STAT TIME COMMAND
 1 pts/0 Ss 0:00 /bin/bash
 10 pts/0 R+ 0:00 ps a

So as far as processes inside this container are concerned, there is no PID 9000. Or
anything greater than 9000. You are done with the experiment, but I’m sure you’re
now curious about whether you could somehow enter the namespace of the container
and start a process in there. The answer is yes.

 To start a new process inside the existing container’s namespace, you can use the
nsenter command. It allows you to start a new process inside any of the namespaces
on the host. Let’s use that to attach to your container’s PID namespace. I’ve prepared
a little script for you. You can see it by running the following command inside a new
terminal window (a third one):

cat ~/src/examples/poking-docker/experiment2/attach-pid-namespace.sh

You will see the following output, showcasing how to use the nsenter command:

#! /bin/bash
CONTAINER_PID=$(docker inspect -f '{{ .State.Pid }}' experiment2)
sudo nsenter \
 --pid \
 --target $CONTAINER_PID \
 /bin/bash /home/chaos/src/examples/poking-docker/experiment2/pid-

printer.sh

Gets the PID of your container
from ‘docker inspect’

the pid
pace ...

... of the specified process
with the given PID

Executes the same bash script you previously
ran from the common namespace

132 CHAPTER 5 Poking Docker
Run the script with the following command:

bash ~/src/examples/poking-docker/experiment2/attach-pid-namespace.sh

You will see familiar output, similar to the following:

Press [CTRL+C] to stop..
Fri May 1 12:02:04 UTC 2020 Hi, I'm PID 15 and I'm feeling sleeeeeepy...

To confirm that you’re in the same namespace, run ps again from inside the con-
tainer (second terminal window):

ps a

You will now see output similar to the following, including your newly started script:

PID TTY STAT TIME COMMAND
1 pts/0 Ss 0:00 /bin/bash
15 ? S+ 0:00 /bin/bash /…/poking-docker/experiment2/pid-printer.sh
165 ? S+ 0:00 sleep 2
166 pts/0 R+ 0:00 ps a

Finally, it’s useful to know that the ps command supports printing namespaces too.
You can add them by listing the desired namespaces in the -o flag. For example, to
show the PID namespaces for processes on the host, run the following command from
the first terminal window (from the host, not the container):

ps ao pid,pidns,command

You will see the PID namespaces along with the PID and command, similar to the fol-
lowing output:

PID PIDNS COMMAND
(...)
3505 4026531836 docker run --name experiment2 -ti --rm ubuntu:focal-20200423
4012 4026531836 bash /…/poking-docker/experiment2/attach-pid-namespace.sh
4039 4026531836 bash
4087 4026531836 ps o pid,pidns,command

NOTE If you’d like to learn how to see the other namespaces a process
belongs to, run the command man ps. For those of you not on Linux, man
stands for manual and is a Linux command displaying help for different com-
mands and system components. To use it, simply type man followed by the
name of the item you’re interested in (like man ps) to display help directly
from the terminal. You can learn more at www.kernel.org/doc/man-pages/.

As you can see, PID namespaces are an efficient and simple-to-use way of tricking an
application into thinking that it’s the only thing running on the host and isolating it

http://www.kernel.org/doc/man-pages/

133Experiment 2: Killing processes in a different PID namespace
from seeing other processes at all. You’re probably itching now to play around with it.
And because I strongly believe playing is the best way to learn, let’s add namespaces to
our simple container(-ish) we started in section 5.4.2.

5.5.1 Implementing a simple container(-ish) part 2: Namespaces

It’s time to upgrade your DIY container by leveraging what you’ve just learned—the
Linux kernel namespaces. To refresh your memory on where namespaces fit, take a
look at figure 5.8. We’ll pick a single namespace, PID, to keep things simple and to
make for nice demos.

In section 5.4.2, you used chroot to change the root mount from a process’s perspec-
tive to a subfolder you’ve prepared that contained a basic structure of a Linux system.
Let’s leverage that script now and add a separate PID namespace. To create new
namespaces and start processes in them, you can use the command unshare.

 The syntax of unshare is straightforward: unshare [options] [program [argu-
ments]]. It even comes with a useful example in its man pages (run man unshare in a
terminal to display it), which shows you how to start a process in a new PID name-
space. For example, if you want to start a new bash session, you can run the following
command in a new terminal window:

sudo unshare --fork --pid --mount-proc /bin/bash

You will see a new bash session in a new PID namespace. To see what PID your bash
(thinks it) has, run the following command in that new bash session:

ps

You will see output similar to the following. The bash command displays a PID of 1:

 PID TTY TIME CMD
 1 pts/3 00:00:00 bash
 18 pts/3 00:00:00 ps

chroot namespaces cgroups

networking

filesystems

capabilities seccomp

Linux kernel

You’ll use namespaces to control what
PIDs your container can see and access.

Figure 5.8 DIY container
part 2—namespaces

134 CHAPTER 5 Poking Docker

T

p

F
require

na
change

Cre
pid
Now, you can put together unshare and chroot (from section 5.4.2) to get closer to a
real Linux container. I’ve prepared a script that does that for your convenience. You
can see it by running the following command in a terminal window of your VM:

cat ~/src/examples/poking-docker/container-ish.sh

You will see the following output. It’s a very basic script with essentially two important
steps:

1 Call the previous new-filesystem.sh script to create your structure and copy
some tools over to it.

2 Call the unshare command with the --pid flag, which calls chroot, which in
turn calls bash. The bash program starts by mounting /proc from inside the
container and then starts an interactive session.

#! /bin/bash
CURRENT_DIRECTORY="$(dirname "${0}")"
FILESYSTEM_NAME=${1:-container-attempt-2}

Step 1: execute our familiar new-filesystem script
bash $CURRENT_DIRECTORY/new-filesystem.sh $FILESYSTEM_NAME
cd $FILESYSTEM_NAME

Step 2: create a new pid namespace, and start a chrooted bash session
sudo unshare \
 --fork \
 --pid \
 chroot . \
 /bin/bash -c "mkdir -p /proc && /bin/mount -t proc proc /proc &&

exec /bin/bash"

Let’s use that script by running the following command in a new terminal window.
The command will create a folder for the container(-ish) in the current directory:

bash ~/src/examples/poking-docker/container-ish.sh a-bit-closer-to-docker

You will see the greetings and a new bash session. To confirm that you successfully cre-
ated a new namespace, let’s see the output of ps. Run the following command from
inside your new bash session:

ps aux

It will print the following list. Note that your bash claims to have the PID of 1 (bold).

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
0 1 0.0 0.0 10052 3272 ? S 11:54 0:00 /bin/bash
0 4 0.0 0.0 25948 2568 ? R+ 11:55 0:00 ps aux

Runs the new-filesystem.sh
script, which copies some

basic binaries and their
libraries

he unshare
command

starts a
rocess in a

different
namespace.

orking is
d for pid
mespace
 to work.

ates a new
namespace
for the new

process

Calls chroot to change the
root of the filesystem for
the new process you start

Mounts /proc from inside the container (for
example, to make ps work) and runs bash

135Experiment 2: Killing processes in a different PID namespace
Finally, while your kind-of-container is still running, open another terminal window
and confirm that you can see the new namespace of type PID by running the follow-
ing command:

sudo lsns -t pid

You will see output similar to the following (the new namespace is in bold font):

 NS TYPE NPROCS PID USER COMMAND
4026531836 pid 211 1 root /sbin/init
4026532173 pid 1 24935 root /bin/bash

As you’ve seen before, Docker creates other types of namespaces for its containers, not
just PID. In this example, we focus on the PID, because it’s easy to demonstrate and
helps with learning. I’m leaving tinkering with the other ones as an exercise for you.

 Having demystified namespaces, let’s now move on to the next piece of the puzzle.
Let’s take a look at how Docker restricts the amount of resources containers can use
through cgroups.

5.5.2 Limiting resource use of a process with cgroups

Control groups, or cgroups for short, are a feature of the Linux kernel that allows for
organizing processes into hierarchical groups and then limiting and monitoring their
usage of various types of resources, such as CPU and RAM. Using cgroups allows you,
for example, to tell the Linux kernel to give only a certain percentage of CPU to a par-
ticular process.

 Figure 5.9 illustrates what limiting a process to 50% of a core looks like visually. On
the left side, the process is allowed to use as much CPU as there is available. On the
right side, a limit of 50% is enforced, and the process is throttled if it ever tries to use
more than 50%.

 How do you interact with cgroups? Kernel exposes a pseudo-filesystem called
cgroupfs for managing the cgroups hierarchy, usually mounted at /sys/fs/cgroup.

NOTE Two versions of cgroups are available, v1 and v2. V1 evolved over the
years in a mostly uncoordinated, organic fashion, and v2 was introduced to
reorganize, simplify, and remove some of the inconsistencies in v1. At the
time of writing, most of the ecosystem still uses v1, or at least defaults to it,
while support for v2 is being worked on (for example, the work for Docker via
runc is tracked in this issue https://github.com/opencontainers/runc/issues/
2315). You can read more about the differences between the two versions at
http://mng.bz/zxeQ. We’ll stick to v1 for the time being.

Cgroups have the concept of a controller for each type of supported resource. To
check the currently mounted and available types of controllers, run the following
command in a terminal inside your VM:

ls -al /sys/fs/cgroup/

https://github.com/opencontainers/runc/issues/2315
https://github.com/opencontainers/runc/issues/2315
https://github.com/opencontainers/runc/issues/2315
http://mng.bz/zxeQ

136 CHAPTER 5 Poking Docker
You will see output similar to the following. We are going to cover two controllers: cpu
and memory (in bold). Note that cpu is actually a link to cpu,cpuacct, a controller
responsible for both limiting and accounting for CPU usage. Also, unified is where
groups v2 are mounted, if you’re curious to play with that as an exercise:

total 0
drwxr-xr-x 15 root root 380 May 2 14:23 .
drwxr-xr-x 9 root root 0 May 3 12:26 ..
dr-xr-xr-x 5 root root 0 May 3 12:26 blkio
lrwxrwxrwx 1 root root 11 May 2 14:23 cpu -> cpu,cpuacct
lrwxrwxrwx 1 root root 11 May 2 14:23 cpuacct -> cpu,cpuacct
dr-xr-xr-x 5 root root 0 May 3 12:26 cpu,cpuacct
dr-xr-xr-x 3 root root 0 May 3 12:26 cpuset
dr-xr-xr-x 5 root root 0 May 3 12:26 devices
dr-xr-xr-x 3 root root 0 May 3 12:26 freezer
dr-xr-xr-x 3 root root 0 May 3 12:26 hugetlb
dr-xr-xr-x 5 root root 0 May 3 12:26 memory
lrwxrwxrwx 1 root root 16 May 2 14:23 net_cls -> net_cls,net_prio
dr-xr-xr-x 3 root root 0 May 3 12:26 net_cls,net_prio
lrwxrwxrwx 1 root root 16 May 2 14:23 net_prio -> net_cls,net_prio
dr-xr-xr-x 3 root root 0 May 3 12:26 perf_event
dr-xr-xr-x 5 root root 0 May 3 12:26 pids
dr-xr-xr-x 2 root root 0 May 3 12:26 rdma
dr-xr-xr-x 6 root root 0 May 3 12:26 systemd
dr-xr-xr-x 5 root root 0 May 3 12:26 unified

You might recall two tools from chapter 3 that you can use to create cgroups and run
programs within them: cgcreate and cgexec. These are convenient to use, but I’d

C
P

U
 u

s
a

g
e

1
0
0
%

5
0
%

C
P

U
 u

s
a

g
e

1
0
0
%

5
0
%

CPU limited to 50%
Time Time

No CPU limits

Without CPU limits, the process
is allowed to use any available
CPU cycles.

With a CPU limit set to 50%,
the process is allowed to reach
only 50% utilization.

Figure 5.9 An example of CPU limiting possible with cgroups

137Experiment 2: Killing processes in a different PID namespace
like to show you how to interact with cgroupfs directly. When practicing chaos engi-
neering on systems leveraging Docker, you must understand and be able to observe
the limits that your applications are running with.

 Creating a new cgroup of a particular type consists of creating a folder (or sub-
folder for nested cgroups) under /sys/fs/cgroup/<type of the resource>/. For exam-
ple, Docker creates its parent cgroup, under which the containers are then nested.
Let’s take a look at the contents of the CPU cgroup. You can do that by running the
following command in a terminal window:

ls -l /sys/fs/cgroup/cpu/docker

You will see a list just like the following one. For our needs, we’ll pay attention to
cpu.cfs_period_us, cpu.cfs_quota_us, and cpu.shares, which represent two ways
cgroups offer to restrict CPU utilization of a process:

-rw-r--r-- 1 root root 0 May 3 12:44 cgroup.clone_children
-rw-r--r-- 1 root root 0 May 3 12:44 cgroup.procs
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.stat
-rw-r--r-- 1 root root 0 May 3 12:44 cpuacct.usage
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.usage_all
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.usage_percpu
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.usage_percpu_sys
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.usage_percpu_user
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.usage_sys
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.usage_user
-rw-r--r-- 1 root root 0 May 3 12:44 cpu.cfs_period_us
-rw-r--r-- 1 root root 0 May 3 12:44 cpu.cfs_quota_us
-rw-r--r-- 1 root root 0 May 3 12:44 cpu.shares
-r--r--r-- 1 root root 0 May 3 12:44 cpu.stat
-rw-r--r-- 1 root root 0 May 3 12:44 notify_on_release
-rw-r--r-- 1 root root 0 May 3 12:44 tasks

The first way is to set exactly the ceiling for the number of microseconds of CPU time
that a particular process can get within a particular period of time. This is done by
specifying the values for cpu.cfs_period_us (the period in microseconds) and cpu
.cfs_quota_us (the number of microseconds within that period that the process can
consume). For example, to allow a particular process to consume 50% of a CPU, you
could give cpu.cfs_period_us a value of 1000, and cpu.cfs_quota_us a value of 500.
A value of -1, which means no limitation, is the default. It’s a hard limit.

 The other way is through CPU shares (cpu.shares). The shares are arbitrary val-
ues representing a relative weight of the process. Thus, the same value means the
same amount of CPU for every process, a higher value will increase the percentage of
available time a process is allowed, and a lower value will decrease it. The value
defaults to a rather arbitrary, round number of 1024. It’s worth noting that the setting
is enforced only when there isn’t enough CPU time for everyone; otherwise, it has no
effect. It’s essentially a soft limit.

138 CHAPTER 5 Poking Docker
 Now, let’s see what Docker sets up for a new container. Start a container by run-
ning the following command in a terminal window:

docker run -ti --rm ubuntu:focal-20200423

Once inside the container, start a long-running process so that you can identify it eas-
ily later. Run the following command from inside the container to start a sleep pro-
cess (doing nothing but existing) for 3600 seconds:

sleep 3600

While that container is running, let’s use another terminal window to again check the
cgroupfs folder that Docker maintains. Run the following command in that second
terminal window:

ls -l /sys/fs/cgroup/cpu/docker

You will see familiar output, just like the following. Note that there is a new folder with
a name corresponding to the container ID (in bold):

total 0
drwxr-xr-x 2 root root 0 May 3 22:21

87a692e9f2b3bac1514428954fd2b8b80c681012d92d5ae095a10f81fb010450
-rw-r--r-- 1 root root 0 May 3 12:44 cgroup.clone_children
-rw-r--r-- 1 root root 0 May 3 12:44 cgroup.procs
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.stat
-rw-r--r-- 1 root root 0 May 3 12:44 cpuacct.usage
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.usage_all
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.usage_percpu
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.usage_percpu_sys
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.usage_percpu_user
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.usage_sys
-r--r--r-- 1 root root 0 May 3 12:44 cpuacct.usage_user
-rw-r--r-- 1 root root 0 May 3 12:44 cpu.cfs_period_us
-rw-r--r-- 1 root root 0 May 3 12:44 cpu.cfs_quota_us
-rw-r--r-- 1 root root 0 May 3 12:44 cpu.shares
-r--r--r-- 1 root root 0 May 3 12:44 cpu.stat
-rw-r--r-- 1 root root 0 May 3 12:44 notify_on_release
-rw-r--r-- 1 root root 0 May 3 12:44 tasks

To make things easier, let’s just store that long container ID in an environment vari-
able. Do that by running the following command:

export
CONTAINER_ID=87a692e9f2b3bac1514428954fd2b8b80c681012d92d5ae095a10f81fb010450

Now, list the contents of that new folder by running the following command:

ls -l /sys/fs/cgroup/cpu/docker/$CONTAINER_ID

139Experiment 2: Killing processes in a different PID namespace
You will see output similar to the following, with the now familiar structure. This time,
I would like you to pay attention to cgroup.procs (in bold), which holds a list of PIDs
of processes within this cgroup:

total 0
-rw-r--r-- 1 root root 0 May 3 22:43 cgroup.clone_children
-rw-r--r-- 1 root root 0 May 3 22:21 cgroup.procs
-r--r--r-- 1 root root 0 May 3 22:43 cpuacct.stat
-rw-r--r-- 1 root root 0 May 3 22:43 cpuacct.usage
-r--r--r-- 1 root root 0 May 3 22:43 cpuacct.usage_all
-r--r--r-- 1 root root 0 May 3 22:43 cpuacct.usage_percpu
-r--r--r-- 1 root root 0 May 3 22:43 cpuacct.usage_percpu_sys
-r--r--r-- 1 root root 0 May 3 22:43 cpuacct.usage_percpu_user
-r--r--r-- 1 root root 0 May 3 22:43 cpuacct.usage_sys
-r--r--r-- 1 root root 0 May 3 22:43 cpuacct.usage_user
-rw-r--r-- 1 root root 0 May 3 22:43 cpu.cfs_period_us
-rw-r--r-- 1 root root 0 May 3 22:43 cpu.cfs_quota_us
-rw-r--r-- 1 root root 0 May 3 22:43 cpu.shares
-r--r--r-- 1 root root 0 May 3 22:43 cpu.stat
-rw-r--r-- 1 root root 0 May 3 22:43 notify_on_release
-rw-r--r-- 1 root root 0 May 3 22:43 tasks

Let’s investigate the processes contained in that cgroup.procs file. You can do that by
running the following command in a terminal window:

ps -p $(cat /sys/fs/cgroup/cpu/docker/$CONTAINER_ID/cgroup.procs)

You will see the container’s bash session, as well as the sleep you started earlier, just
like the following:

 PID TTY STAT TIME COMMAND
28960 pts/0 Ss 0:00 /bin/bash
29199 pts/0 S+ 0:00 sleep 3600

Let’s also check the default values our container started with. In the same subdirec-
tory, you will see the following default values. They indicate no hard limit and the
default weight:

 cpu.cfs_period_us—Set to 100000.
 cpu.cfs_quota_us—Set to -1.
 cpu.shares—Set to 1024.

Similarly, you can peek into the default values set for memory usage. To do that, let’s
explore the memory part of the tree by running the following command:

ls -l /sys/fs/cgroup/memory/docker/$CONTAINER_ID/

This will print a list similar to the following. Note the memory.limit_in_bytes (which
sets the hard limit of RAM accessible to the process) and memory.usage_in_bytes
(which shows the current RAM utilization):

140 CHAPTER 5 Poking Docker
total 0
-rw-r--r-- 1 root root 0 May 3 23:04 cgroup.clone_children
--w--w--w- 1 root root 0 May 3 23:04 cgroup.event_control
-rw-r--r-- 1 root root 0 May 3 22:21 cgroup.procs
-rw-r--r-- 1 root root 0 May 3 23:04 memory.failcnt
--w------- 1 root root 0 May 3 23:04 memory.force_empty
-rw-r--r-- 1 root root 0 May 3 23:04 memory.kmem.failcnt
-rw-r--r-- 1 root root 0 May 3 23:04 memory.kmem.limit_in_bytes
-rw-r--r-- 1 root root 0 May 3 23:04 memory.kmem.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 3 23:04 memory.kmem.slabinfo
-rw-r--r-- 1 root root 0 May 3 23:04 memory.kmem.tcp.failcnt
-rw-r--r-- 1 root root 0 May 3 23:04 memory.kmem.tcp.limit_in_bytes
-rw-r--r-- 1 root root 0 May 3 23:04 memory.kmem.tcp.max_usage_in_bytes
-r--r--r-- 1 root root 0 May 3 23:04 memory.kmem.tcp.usage_in_bytes
-r--r--r-- 1 root root 0 May 3 23:04 memory.kmem.usage_in_bytes
-rw-r--r-- 1 root root 0 May 3 23:04 memory.limit_in_bytes
-rw-r--r-- 1 root root 0 May 3 23:04 memory.max_usage_in_bytes
-rw-r--r-- 1 root root 0 May 3 23:04 memory.move_charge_at_immigrate
-r--r--r-- 1 root root 0 May 3 23:04 memory.numa_stat
-rw-r--r-- 1 root root 0 May 3 23:04 memory.oom_control
---------- 1 root root 0 May 3 23:04 memory.pressure_level
-rw-r--r-- 1 root root 0 May 3 23:04 memory.soft_limit_in_bytes
-r--r--r-- 1 root root 0 May 3 23:04 memory.stat
-rw-r--r-- 1 root root 0 May 3 23:04 memory.swappiness
-r--r--r-- 1 root root 0 May 3 23:04 memory.usage_in_bytes
-rw-r--r-- 1 root root 0 May 3 23:04 memory.use_hierarchy
-rw-r--r-- 1 root root 0 May 3 23:04 notify_on_release
-rw-r--r-- 1 root root 0 May 3 23:04 tasks

If you check the contents of these two files, you will see the following values:

 memory.limit_in_bytes set to 9223372036854771712, which seems to be a max
number for a 64-bit int, minus a page size, or effectively representing infinity

 memory.usage_in_bytes, which happens to read 1445888 for me (or ~1.4 MB)

Although memory.usage_in_bytes is read-only, you can modify memory.limit_in_
bytes by simply writing to it. For example, to impose a 20 MB memory limit on your
container, run the following command:

echo 20971520 | sudo tee
/sys/fs/cgroup/memory/docker/$CONTAINER_ID/memory.limit_in_bytes

This covers what you need to know about cgroups for now. You can exit the container
you were running by pressing Ctrl-D. For more detailed information about cgroups,
you can always run man cgroups. Let’s put this new knowledge to use and run some
experiments!

141Experiment 3: Using all the CPU you can find!
5.6 Experiment 3: Using all the CPU you can find!
Docker offers two ways of controlling the amount of CPU a container gets to use,
which are analogous to the approaches covered in the previous section. First, the --cpus
flag controls the hard limit. Setting it to --cpus=1.5 is equivalent to setting the period
to 100,000 and the quota to 150,000. Second, through the --cpu-shares, we can give
our process a relative weight.

 Let’s test the first one with the following experiment:

1 Observability: observe the amount of CPU used by the stress command, using
top or mpstat.

2 Steady state: CPU utilization close to 0.
3 Hypothesis: if we run stress in CPU mode, in a container started with --cpus

=0.5, it will use no more than 0.5 processor on average.
4 Run the experiment!

Let’s start by building a container with the stress command inside it. I’ve prepared
a simple Dockerfile for you that you can see by running the following command in a
terminal window:

cat ~/src/examples/poking-docker/experiment3/Dockerfile

You will see the following output, a very basic Dockerfile containing a single command:

FROM ubuntu:focal-20200423

RUN apt-get update && apt-get install -y stress

Let’s build a new image called stressful by using that Dockerfile. Run the following
command in a terminal window:

cd ~/src/examples/poking-docker/experiment3/
docker build -t stressful .

After a few seconds, you should be able to see the new image in the list of Docker
images. You can see it by running the following command:

docker images

Pop quiz: What do cgroups do?
Pick one:

1 Give extra control powers to groups of users
2 Limit what a process can see and access for a particular type of resource
3 Limit the resources that a process can consume (CPU, memory, and so forth)

See appendix B for answers.

142 CHAPTER 5 Poking Docker
You will see the new image (in bold) in the output, similar to the following:

REPOSITORY AG IMAGE ID CREATED SIZE
stressful latest 9853a9f38f1c 5 seconds ago 95.9MB
(...)

Now, let’s set up our working space. To make things easy, try to have two terminal win-
dows open side by side. In the first one, start the container in which to use the stress
command, as follows:

docker run \
--cpus=0.5 \
-ti \
--rm \
--name experiment3 \
stressful

In the second terminal window, let’s start monitoring the CPU usage of the system.
Run the following command in the second window:

mpstat -u -P ALL 2

You should start seeing updates similar to the following, every 2 seconds. My VM is
running with two CPUs, and so should yours if you’re running the default values. Also,
%idle is around 99.75%:

Linux 4.15.0-99-generic (linux) 05/04/2020 _x86_64_ (2 CPU)

12:22:22 AM CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
12:22:24 AM all 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.75
12:22:24 AM 0 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.50
12:22:24 AM 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Showtime! In the first terminal, start the stress command:

stress --cpu 1 --timeout 30

In the second window running mpstat, you should start seeing one CPU at about 50%
and the other one close to 0, resulting in total utilization of about 24.5%, similar to
the following output:

12:27:21 AM CPU %usr %nice %sys %iowait %irq %soft %steal %guest %gnice %idle
12:27:23 AM all 24.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 75.44
12:27:23 AM 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
12:27:23 AM 1 48.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 51.02

Limits the container
to use half a CPU

Keeps stdin open and
allocates a pseudo-TTY to
allow you to type commands

Removes the container after
you’re done with it

Names the container
experiment3 so it’s
easier to find laterRuns the new image you just built,

with the stress command in it

143Experiment 4: Using too much RAM
To confirm it in a different way, you can inspect the contents of the cpu.stat file in
cgroupfs for that particular container:

CONTAINER_ID=$(docker inspect -f '{{ .Id }}' experiment3)
cat /sys/fs/cgroup/cpu/docker/$CONTAINER_ID/cpu.stat

You will see output similar to the following. Of particular interest, you will see an
increasing throttled_time, which is the number of microseconds that processes in
the cgroup were throttled, and nr_throttled, which is the number of periods in which
throttling took place:

nr_periods 311
nr_throttled 304
throttled_time 15096182921

That’s another way of verifying that our setup worked. And work it did! Congratulations!
The experiment worked; Docker did its job. If you used a higher value for the --cpu flag
of the stress command, you would see the load spread across both CPUs, while still
resulting in the same overall average. And if you check the cgroupfs metadata, you will
see that Docker did indeed result in setting the cpu.cfs_period_us to 100000, cpu.cfs
_quota_us to 50000, and cpu.shares to 1024. When you’re done, you can exit the con-
tainer by pressing Ctrl-D.

 I wonder if it’ll go as smoothly with limiting the RAM. Shall we find out?

5.7 Experiment 4: Using too much RAM
To limit the amount of RAM a container is allowed to use, you can use Docker’s --memory
flag. It accepts b (bytes), k (kilobytes), m (megabytes), and g (gigabytes) as suffixes. As
an effective chaos engineering practitioner, you want to know what happens when a
process reaches that limit.

 Let’s test it with the following experiment:

1 Observability: observe the amount of RAM used by the stress command, using
top; monitor for OOM Killer logs in dmesg.

2 Steady state: no logs of killing in dmesg.
3 Hypothesis: if we run stress in RAM mode, trying to consume 512 MB, in a

container started with --memory=128m, it will use no more than 128 MB of RAM.
4 Run the experiment!

Let’s set up our working space again with two terminal windows open side by side. In
the first one, start a container with the same image as for the previous experiment, but
this time limiting the memory, not the CPU. Here is the command:

docker run \
--memory=128m \
-ti \

Number of elapsed CPU time periods Number of periods during which
throttling took place (period size
set with cpu.cfs_period_us)

Total number of nanoseconds
of CPU time throttled

Limits the container to a
max of 128 MB of RAM Keeps stdin open and allocates

a pseudo-TTY to allow you to
type commands

144 CHAPTER 5 Poking Docker
--name experiment4 \
--rm \
stressful

In the second terminal window, let’s first check the dmesg logs to see that there is
nothing about OOM killing (if you’ve forgotten all about the OOM Killer, it’s the
Linux kernel feature that kills processes to recover RAM, covered in chapter 2). Run
the following command in the second terminal window:

dmesg | egrep "Kill|oom"

Depending on the state of your VM machine, you might not get any results, but if you
do, mark the timestamp, so that you can differentiate them from fresher logs. Now,
let’s start monitoring the RAM usage of the system. Run the following command in
the second window:

top

You will start seeing updates of the top command. Observe and note the steady state
levels of RAM utilization.

 With that, the scene is set! Let’s start the experiment by running the following
command in the first terminal window, from within the container. It will run RAM
workers, each allocating 512 MB of memory (bold):

stress \
--vm 1 \
--vm-bytes 512M \
--timeout 30

While that’s running, you will see something interesting from the top command, simi-
lar to the following output. Notice that the container is using 528,152 KiB of virtual
memory, and 127,400 KB of reserved memory, just under the 128 MB limit you gave to
the container:

Tasks: 211 total, 1 running, 173 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.2 us, 0.1 sy, 0.0 ni, 99.6 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 4039228 total, 1235760 free, 1216416 used, 1587052 buff/cache
KiB Swap: 1539924 total, 1014380 free, 525544 used. 2526044 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
32012 root 20 0 528152 127400 336 D 25.0 3.2 0:05.28 stress
(...)

After 30 seconds, the stress command will finish and print the following output. It
happily concluded its run:

Names the container
experiment 4

Removes the container
after you’re done with itRuns the same stress image

you built for experiment 3

Runs one worker
allocating memory

Allocates 512 MB

Runs for 30 seconds

145Experiment 4: Using too much RAM
stress: info: [537] dispatching hogs: 0 cpu, 0 io, 1 vm, 0 hdd
stress: info: [537] successful run completed in 30s

Well, that’s a fail for our experiment—and a learning opportunity! Things get even
weirder if you rerun the stress command, but this time with --vm 3, to run three
workers, each trying to allocate 512 MB. In the output of top (the second window),
you will notice that all three workers have 512 MB of virtual memory allocated, but
their total reserved memory adds up to about 115 MB, below our limit:

Tasks: 211 total, 1 running, 175 sleeping, 0 stopped, 0 zombie
%Cpu(s): 0.2 us, 0.1 sy, 0.0 ni, 99.6 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 4039228 total, 1224208 free, 1227832 used, 1587188 buff/cache
KiB Swap: 1539924 total, 80468 free, 1459456 used. 2514632 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
32040 root 20 0 528152 32432 336 D 6.2 0.8 0:02.22 stress
32041 root 20 0 528152 23556 336 D 6.2 0.6 0:02.40 stress
32042 root 20 0 528152 59480 336 D 6.2 1.5 0:02.25 stress

It looks like the kernel is doing something smart, because stress doesn’t actually do
anything with the allocated memory, so our initial idea for the experiment won’t work.
What can we do instead to see the kernel limit the amount of memory our container
can use? Well, we could always use a good old fork bomb. It’s for science!

 Let’s monitor the memory usage of the container. To do this, leverage the cgroupfs
once again, this time to read the number of bytes of used memory, by running in a
third terminal window the following command:

export CONTAINER_ID=$(docker inspect -f '{{ .Id }}' experiment4)
watch -n 1 sudo cat

/sys/fs/cgroup/memory/docker/$CONTAINER_ID/memory.usage_in_bytes

And in the first terminal (inside your container) let’s drop the fork bomb by running
the following command. All it’s doing is calling itself recursively to exhaust the avail-
able resources:

boom () {
 boom | boom &
}; boom

Now, in the third terminal, you will see that the number of bytes used is oscillating
somewhere just above 128 MB, slightly more than the limit that you gave to the con-
tainer. In the second window, running top, you’re likely to see something similar to
the following output. Note the very high CPU system time percentage (in bold).

Tasks: 1173 total, 131 running, 746 sleeping, 0 stopped, 260 zombie
%Cpu(s): 6.3 us, 89.3 sy, 0.0 ni, 0.0 id, 0.8 wa, 0.0 hi, 3.6 si, 0.0 st

In the first window, inside the container, you will see bash failing to allocate memory:

bash: fork: Cannot allocate memory

146 CHAPTER 5 Poking Docker
If the container hasn’t been killed by the OOM Killer, you can stop it by running the
following command in a terminal window:

docker stop experiment4

Finally, let’s check the dmesg for OOM logs by running the following command:

dmesg | grep Kill

You will see output similar to the following. The kernel notices the cgroup is out of
memory, and kicks in to kill some of the processes within it. But because our fork
bomb managed to start a few thousand processes, it actually takes a non-negligible
amount of CPU power for the OOM Killer to do its thing:

[133039.835606] Memory cgroup out of memory: Kill process 1929 (bash) score 2
or sacrifice child

[133039.835700] Killed process 10298 (bash) total-vm:4244kB, anon-rss:0kB,
file-rss:1596kB, shmem-rss:0kB

Once again a failed experiment teaches us more than a successful one. What did you
learn? A few interesting bits of information:

 Just allocating the memory doesn’t trigger the OOM Killer, and you can success-
fully allocate much more memory than the cgroup allows for.

 When using a fork bomb, the total of the memory used by your forks was
slightly higher than the limit allocated to the container, which is useful when
doing capacity planning.

 The cost of running the OOM Killer when dealing with a fork bomb is non-
negligeable and can actually be pretty high. If you’ve done your math when
allocating resources, it might be worth considering disabling OOM Killer for
the container through the --oom-kill-disable flag.

Now, armed with that new knowledge, let’s revisit for the third—and final—time our
bare-bones container(-ish) implementation.

5.7.1 Implementing a simple container(-ish) part 3: Cgroups

In part 2 of the miniseries on a DIY container, you reused the script that prepared a
filesystem, and you started chroot from within a new namespace. Now, to limit the
amount of resources your container-ish can use, you can leverage the cgroups you just
learned about.

 To keep things simple, let’s focus on just two cgroup types: memory and CPU. To
refresh your memory on how this fits in the big picture, take a look at figure 5.10. It
shows where cgroups fit with the other underlying technology in the Linux kernel
that Docker leverages.

 Now, let’s put to use everything you’ve learned in the previous section. To create a
new cgroup, all you need to do is create a new folder in the corresponding cgroupfs

147Experiment 4: Using too much RAM

Prepar
filesyste

chroot

filesystem. To configure the cgroup, you’ll put the values you want in the files you’ve
looked at in the previous section. And to add a new process to that filesystem, you’ll
add your bash process to it by writing to the tasks file. All the children of that process
will then automatically be included in there. And voilà!

 I’ve prepared a script that does that. You can see it by running the following com-
mand in a terminal window inside your VM:

cat ~/src/examples/poking-docker/container-ish-2.sh

You will see the following output. You reuse, once again, the filesystem prep script
from part 1 of this series, and create and configure two new cgroups of type cpu and
memory. Finally, we start the new process by using unshare and chroot, exactly the
same way as in part 2:

#! /bin/bash
set +x

CURRENT_DIRECTORY="$(dirname "${0}")"
CPU_LIMIT=${1:-50000}
RAM_LIMIT=${2:-5242880}

echo "Step A: generate a unique ID (uuid)"
UUID=$(date | sha256sum | cut -f1 -d" ")

echo "Step B: create cpu and memory cgroups"
sudo mkdir /sys/fs/cgroup/{cpu,memory}/$UUID
echo $RAM_LIMIT | sudo tee /sys/fs/cgroup/memory/$UUID/memory.limit_in_bytes
echo 100000 | sudo tee /sys/fs/cgroup/cpu/$UUID/cpu.cfs_period_us
echo $CPU_LIMIT | sudo tee /sys/fs/cgroup/cpu/$UUID/cpu.cfs_quota_us

echo "Step C: prepare the folder structure to be our chroot"
bash $CURRENT_DIRECTORY/new-filesystem.sh $UUID > /dev/null && cd $UUID

echo "Step D: put the current process (PID $$) into the cgroups"
echo $$ | sudo tee /sys/fs/cgroup/{cpu,memory}/$UUID/tasks

chroot namespaces cgroups

networking

filesystems

capabilities seccomp

Linux kernel

You’ll use cgroups to limit the
amount of CPU and RAM that
your DIY container can use.

Figure 5.10 DIY container
part 3—cgroups

Generates a
nice-looking
UUID

Creates cpu and
memory cgroups using
the UUID as the name

Writes the
values you want

to limit RAM
and CPU usage

es a
m to
 into

Adds the
current process
to the cgroup

148 CHAPTER 5 Poking Docker
echo "Step E: start our namespaced chroot container-ish: $UUID"
sudo unshare \
 --fork \
 --pid \
 chroot . \
 /bin/bash -c "mkdir -p /proc && /bin/mount -t proc proc /proc && exec

/bin/bash"

You can now start your container-ish by running the following command in a terminal
window:

~/src/examples/poking-docker/container-ish-2.sh

You will see the following output, and will be presented with an interactive bash ses-
sion; note the container UUID (in bold):

Step A: generate a unique ID (uuid)
Step B: create cpu and memory cgroups
5242880
100000
50000
Step C: prepare the folder structure to be our chroot
Step D: put the current process (PID 10568) into the cgroups
10568
Step E: start our namespaced chroot container-ish:
169f4eb0dbd1c45fb2d353122431823f5b7b82795d06db0acf51ec476ff8b52d
Welcome to the kind-of-container!
bash-4.4#

Leave this session running and open another terminal window. In that window, let’s
investigate the cgroups our processes are running in:

ps -ao pid,command -f

You will see output similar to the following (I abbreviated it to show only the part
we’re interested in). Note the PID of the bash session “inside” your container(-ish):

 PID COMMAND
(...)
 4628 bash
10568 _ /bin/bash /home/chaos/src/examples/poking-docker/container-ish-2.sh
10709 _ sudo unshare --fork --pid chroot . /bin/bash -c mkdir -p /proc

&& /bin/mount -t
10717 _ unshare --fork --pid chroot . /bin/bash -c mkdir -p /proc

&& /bin/mount -t
10718 _ /bin/bash

With that PID, you can finally confirm the cgroups that processes ended up in. To do
that, run the good old ps command in the second terminal window:

ps \
-p 10718 \

Starts a bash session using a new
pid namespace and chroot

Shows the process with
the requested PID

149Experiment 4: Using too much RAM
-o pid,cgroup \
-ww

You will see output just like the following. Note the cpu,cpuacct and memory cgroups (in
bold), which should match the UUID you saw in the output when your container(-ish)
started. In other aspects, it’s using the default cgroups:

 PID CGROUP
10718 12:pids:/user.slice/user-
1000.slice/user@1000.service,10:blkio:/user.slice,9:memory:/169f4eb0dbd1c45fb
2d353122431823f5b7b82795d06db0acf51ec476ff8b52d,6:devices:/user.slice,4:cpu,c
puacct:/169f4eb0dbd1c45fb2d353122431823f5b7b82795d06db0acf51ec476ff8b52d,1:na
me=systemd:/user.slice/user-1000.slice/user@1000.service/gnome-terminal-
server.service,0::/user.slice/user-1000.slice/user@1000.service/gnome-
terminal-server.service

I invite you to play around with the container and see for yourself how well the pro-
cess is contained. With this short script slowly built over three parts of the series,
you’ve contained the process in a few important aspects:

 The filesystem access
 PID namespace separation
 CPU and RAM limits

To aid visual memory, take a look at figure 5.11. It shows the elements we have covered
(chroot, filesystems, namespaces, cgroups) and underlines the ones that remain to be
covered (networking, capabilities, and seccomp).

It’s beginning to look more like a real container, but with one large caveat: its net-
working access is still exactly the same as for any other process running on the host,
and we haven’t covered any security features at all. Let’s look into how Docker does
networking next.

Prints pid and cgroups

Doesn’t shorten the output to fit the
width of the terminal; prints all

chroot namespaces cgroups

networking

filesystems

capabilities seccomp

Linux kernel

This group remains
to be covered.

Figure 5.11 Coverage status after the DIY container part 3

150 CHAPTER 5 Poking Docker
5.8 Docker and networking
Docker allows you to explicitly manage networking through the use of the docker
network subcommand. By default, Docker comes with three networking options for
you to choose from when you’re starting a container. Let’s list the existing networks by
running the following command in a terminal window:

docker network ls

As you can see, the output lists three options: bridge, host, and none (in bold). For
now, you can safely ignore the SCOPE column:

NETWORK ID NAME DRIVER SCOPE
130e904f5364 bridge bridge local
2ac4140a7b9d host host local
278d7624eb4b none null local

Let’s start with the easy one: none. If you start a container with --network none, no
networking will be set up. This is useful if you want to isolate your container from the
network and make sure it can’t be contacted. This is a runtime option; it doesn’t affect
how an image is built. You can build an image by downloading packages from the
internet, but then run the finished product without access to any network. It uses a
null driver.

 The second option is also straightforward: host. If you start a container with
--network host, the container will use the host’s networking setup directly, without
any special treatment or isolation. The ports you try to use from inside the container
will be the same as if you did it from the outside. The driver for this mode is also
called host.

 Finally, the bridge mode is where it gets interesting. In networking, a bridge is an
interface that connects multiple networks and forwards traffic between the interfaces
it’s connected to. You can think of it as a network switch. Docker leverages a bridge
interface to provide network connectivity to containers through the use of virtual
interfaces. It works like this:

1 Docker creates a bridge interface called docker0 and connects it to the host’s
logical interface.

2 For each container, Docker creates a net namespace, which allows it to create
network interfaces accessible to only processes in that namespace.

3 Inside that namespace, Docker creates the following:
– A virtual interface connected to the docker0 bridge
– A local loopback device

When a process from within a container tries to connect to the outside world, the
packets go through its virtual network interface and then the bridge, which routes it
to where it should go. Figure 5.12 summarizes this architecture.

151Docker and networking
You can see the default Docker bridge device in your VM by running the following
command in a terminal window:

ip addr

You will see output similar to the following (abbreviated for clarity). Note the local
loopback device (lo), the ethernet device (eth0), and the Docker bridge (docker0):

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
(...)
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP
group default qlen 1000
 link/ether 08:00:27:bd:ac:bf brd ff:ff:ff:ff:ff:ff
 inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic noprefixroute eth0
 valid_lft 84320sec preferred_lft 84320sec
(...)
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state
DOWN group default
 link/ether 02:42:cd:4c:98:33 brd ff:ff:ff:ff:ff:ff
 inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
 valid_lft forever preferred_lft forever

So far, all of the containers you have started were running on the default network set-
tings. Let’s now go ahead and create a new network and inspect what happens. Creat-
ing a new Docker network is simple. To create a funky new network, run the following
command in a terminal window:

Container A

Virtual interface A Virtual interface B

bridge interfacedocker0

Host logical interface

Physical network interface

Physical network

Private
interface

Loopback
interface

Private
interface

Loopback
interface

Container B

1. Container A
sends a packet.

2. routes thedockerO

package to either
container B’s
virtual interface,
or the host’s logical
interface to be
transmitted onto
the network.

Figure 5.12 Docker networking running two containers in bridge mode

152 CHAPTER 5 Poking Docker
docker network create \
 --driver bridge \
 --attachable \
 --subnet 10.123.123.0/24 \
 --ip-range 10.123.123.0/25 \
 chaos

Once that’s done, you can confirm the new network is there by running the following
command again:

docker network ls

You will see output just like the following, including your new network called chaos
(bold):

NETWORK ID NAME DRIVER SCOPE
130e904f5364 bridge bridge local
b1ac9b3f5294 chaos bridge local
2ac4140a7b9d host host local
278d7624eb4b none null local

Let’s now rerun the ip command to list all available network interfaces:

ip addr

In the following abbreviated output, you’ll notice the new interface br-b1ac9b3f5294
(bold), which has your funky IP range configured:

(...)
4: br-b1ac9b3f5294: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc
noqueue state DOWN group default
 link/ether 02:42:d8:f2:62:fb brd ff:ff:ff:ff:ff:ff
 inet 10.123.123.1/24 brd 10.123.123.255 scope global br-b1ac9b3f5294
 valid_lft forever preferred_lft forever

Let’s now start a container using that new network by running the following com-
mand in a terminal window:

docker run \
 --name explorer \
 -ti \
 --rm \
 --network chaos \
 ubuntu:focal-20200423

The image you’re running is pretty slim, so in order to look inside, you need to install
the ip command. Run the following command from inside that container:

Uses the bridge driver to allow
connectivity to the host’s network

Allows for containers
to manually attach to
this network

Picks a
funky

subnet

Gives only container IP
from this subrange of
that funky subnet

Gives it a name

Uses your brand-new
network

153Docker and networking
apt-get update
apt install -y iproute2

Now, let’s investigate! From inside the container, run the following ip command to
see what interfaces are available:

ip addr

You will see output just like the following. Note the interface with your funky range
(in bold):

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
5: eth0@if6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UP group default
 link/ether 02:42:0a:7b:7b:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 10.123.123.2/24 brd 10.123.123.255 scope global eth0
 valid_lft forever preferred_lft forever

You can confirm you’ve gotten an IP address from within that funky range by running
the following command inside the container:

hostname -I

Sure enough, it’s what you’d expect it to be, just like the following:

10.123.123.2

Now, let’s see how that plays with the net namespaces. You will remember from the
previous sections that you can list namespaces by using lsns. Let’s list the net name-
spaces by running the following command in a second terminal window on the host
(not in the container you’re running):

sudo lsns -t net

You will see the following output; I happen to have three net namespaces running:

 NS TYPE NPROCS PID USER COMMAND
4026531993 net 208 1 root /sbin/init
4026532172 net 1 12543 rtkit /usr/lib/rtkit/rtkit-daemon
4026532245 net 1 20829 root /bin/bash

But which one is your container’s? Let’s leverage what you learned about the name-
spaces to track your container’s net namespace by its PID. Run the following com-
mand in the second terminal window (not inside the container):

CONTAINER_PID=$(docker inspect -f '{{ .State.Pid }}' explorer)
sudo readlink /proc/$CONTAINER_PID/ns/net

154 CHAPTER 5 Poking Docker
You will see output similar to the following. In this example, the namespace is
4026532245:

net:[4026532245]

Now, for the grand finale, let’s enter that namespace. In section 5.5, you used nsenter
with the --target flag using a process’s PID. You could do that here, but I’d like to
show you another way of targeting a namespace. To directly use the namespace file,
run the following command in the second terminal window (outside the container):

CONTAINER_PID=$(docker inspect -f '{{ .State.Pid }}' explorer)
sudo nsenter --net=/proc/$CONTAINER_PID/ns/net

You will notice that your prompt has changed: you are now root inside the net name-
space 4026532245. Let’s confirm that you are seeing the same set of network devices
you saw from inside the container. Run the following command at this new prompt:

ip addr

You will see the same output you saw from inside the container, just as in the following
output:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
5: eth0@if6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UP group default
 link/ether 02:42:0a:7b:7b:02 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 10.123.123.2/24 brd 10.123.123.255 scope global eth0
 valid_lft forever preferred_lft forever

When you’re done playing, you can type exit or press Ctrl-D to exit the shell session
and therefore the namespace. Well done; we’ve just covered the basics you need to
know about networking—the fourth pillar of how Docker implements the containers.
Now for the last stop on this journey: capabilities and other security mechanisms.

5.8.1 Capabilities and seccomp

The final pillar of Docker is the use of capabilities and seccomp. For the final time, let
me refresh your memory of where they fit in figure 5.13.

 We’ll cover capabilities and seccomp briefly, because they’re necessary for the com-
plete image of how Linux containers are implemented with Docker, but I couldn’t do
the content justice by trying to get into how they work under the hood in a single sec-
tion. I’ll leave that part as an exercise for you.

155Docker and networking
CAPABILITIES

Let’s start with capabilities. This Linux kernel feature splits superuser privileges (which
skip all checks) into smaller, more granular units of permissions, with each unit
called—you guessed it—a capability. So instead of a binary “all” or “nothing,” you can
grant users permissions to do specific tasks. For example, any user with the capability
CAP_KILL bypasses permission checks for sending signals to processes. In the same
way, any user with CAP_SYS_TIME can change the system clock.

 By default, Docker grants every container a default set of capabilities. To find out
what they are, let’s start a container and use the getpcaps command to list its capabil-
ities. Run the following command in a terminal window to start a fresh container with
all the default settings:

docker run \
 --name cap_explorer \
 -ti --rm \
 ubuntu:focal-20200423

While that container is running, you can check its capabilities in another window by
finding out its PID and using the getpcaps command:

CONTAINER_PID=$(docker inspect -f '{{ .State.Pid }}' cap_explorer)
getpcaps $CONTAINER_PID

You will see output similar to the following, listing all the capabilities a Docker con-
tainer gets by default. Notice the cap_sys_chroot capability (bold font):

Capabilities for `4380': =
cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,
cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,
cap_mknod,cap_audit_write,cap_setfcap+eip

chroot namespaces cgroups

networking

filesystems

capabilities seccomp

Linux kernel

Seccomp allows you
to limit the system
calls (syscalls) a process
can make.

Capabilities allow you to grant privileges
to do specific superuser tasks on the
system, like killing other users’ processes.

Figure 5.13 Capabilities and seccomp

156 CHAPTER 5 Poking Docker

r
To verify it works, let’s have some Inception-style fun by chroot’ing inside the container’s
chroot! You can do that by running the following commands inside your container:

NEW_FS_FOLDER=new_fs
mkdir $NEW_FS_FOLDER
cp -v --parents `which bash` $NEW_FS_FOLDER
ldd `which bash` | egrep -o '(/usr)?/lib.*\.[0-9][0-9]?' \
| xargs -I {} cp -v --parents {} $NEW_FS_FOLDER
chroot $NEW_FS_FOLDER `which bash`

You will land in a new bash session (with not much to do, because you’ve copied only
the bash binary itself). Now, to the twist: when starting a new container with docker
run, you can use --cap-add and --cap-drop flags to add or remove any particular
capability, respectively. A special keyword ALL allows for adding or dropping all avail-
able privileges.

 Let’s now kill the container (press Ctrl-D) and restart it with the --cap-drop ALL
flag, using the following command:

docker run \
 --name cap_explorer \
 -ti --rm \
 --cap-drop ALL \
 ubuntu:focal-20200423

While that container is running, you can check its capabilities in another window by
finding out its PID and using the getpcaps command. You can do that by running the
following command:

CONTAINER_PID=$(docker inspect -f '{{ .State.Pid }}' cap_explorer)
getpcaps $CONTAINER_PID

You will see output similar to the following, this time listing no capabilities at all:

Capabilities for `4813': =

From inside the new container, retry the chroot snippet by running the following
commands again:

NEW_FS_FOLDER=new_fs
mkdir $NEW_FS_FOLDER
cp -v --parents `which bash` $NEW_FS_FOLDER
ldd `which bash` | egrep -o '(/usr)?/lib.*\.[0-9][0-9]?' | xargs -I {} cp -v

--parents {} $NEW_FS_FOLDER
chroot $NEW_FS_FOLDER `which bash`

This time you will see the following error:

chroot: cannot change root directory to 'new_fs': Operation not permitted

Copies bash binary
to the subfolder

Finds out all
the libraries
bash needs Copies the

libraries ove
into their
respective
locationsRuns the actual chroot

from the new subfolder
and start bash

157Docker demystified
Docker leverages that (and so should you) to limit the actions the container can per-
form. It’s always a good idea to give the container only what it really needs in terms of
capabilities. And you have to admit that Docker makes it pretty easy. Now, let’s take a
look at seccomp.

SECCOMP

Seccomp is a Linux kernel feature that allows you to filter which syscalls a process can
make. Interestingly, under the hood, seccomp uses Berkeley Packet Filter (BPF; for
more information, see chapter 3) to implement the filtering. Docker leverages sec-
comp to limit the default set of syscalls that are allowed for containers (see more
details about that set at https://docs.docker.com/engine/security/seccomp/).

 Docker’s seccomp profiles are stored in JSON files, which describe a series of rules
to evaluate which syscalls to allow. You can see Docker’s default profile at http://mng
.bz/0mO6. To give you a preview of what a profile looks like, here’s an extract from
Docker’s default:

{
 "defaultAction": "SCMP_ACT_ERRNO",
...
 "syscalls": [
 {
 "names": [
 "accept",
 "accept4",
...
 "write",
 "writev"
],
 "action": "SCMP_ACT_ALLOW",
...
 },
...
]
}

To use a different profile than the default, use the --security-opt seccomp=/my/
profile.json flag when starting a new container. That’s all we’re going to cover
about seccomp in the context of Docker. Right now, I just need you to know that it
exists, that it limits the syscalls that are allowed, and that you can leverage that without
using Docker because it’s a Linux kernel feature. Let’s go ahead and review what
you’ve seen under Docker’s hood.

5.9 Docker demystified
By now, you understand that containers are implemented with a collection of loosely
connected technologies and that in order to know what to expect from a dish, you
need to know the ingredients. We’ve covered chroot, namespaces, cgroups, networking,
and briefly, capabilities, seccomp, and filesystems. Figure 5.14 shows once again what
each of these technologies are for to drive the point home.

By default,
blocks all calls

For the syscalls with the
following list of names

Allows them
to proceed

https://docs.docker.com/engine/security/seccomp/
http://mng.bz/0mO6
http://mng.bz/0mO6
http://mng.bz/0mO6

158 CHAPTER 5 Poking Docker
This section showed you that Docker, as well as the Linux features that do the heavy
lifting, are not that scary once you’ve checked what’s under the hood. They are useful
technologies and are fun to use! Understanding them is crucial to designing chaos
engineering experiments in any system involving Linux containers.

 Given the current state of the ecosystem, containers seem to be here to stay. To
learn more about these technologies, I suggest starting with the man pages. Both man
namespaces and man cgroups are pretty well written and accessible. Online documen-
tation of Docker (https://docs.docker.com/) also provides a lot of useful information
on Docker as well as the underlying kernel features.

 I’m confident that you will be able to face whatever containerized challenges life
throws at you when practicing chaos engineering. Now we’re ready to fix our Docker-
ized Meower USA app that’s being slow.

5.10 Fixing my (Dockerized) app that’s being slow
Let’s refresh your memory on how the app is deployed. Figure 5.15 shows a simplified
overview of the app’s architecture, from which I’ve removed the third-party load bal-
ancer; I’m showing only a single instance of Ghost, connecting to the MySQL database.

 It’s a simple setup—purposefully so, so that you can focus on the new element in
the equation: Docker. Let’s bring this up in your VM.

5.10.1 Booting up Meower

Now that you’re comfortable running Docker commands, let’s start up the Meower stack
in the VM. You are going to use the functionality of Docker that allows you to describe
a set of containers that need to be deployed together: docker stack deploy (see
http://mng.bz/Vdyr for more information.) This command uses simple-to-understand

chroot namespaces cgroups

networking

filesystems

capabilities seccomp

Linux kernel

Can use security
mechanisms like
seccomp, SELinux, and
AppArmor to further limit
what a container can do

Limit access to a specific
set of resources. For
example, limit RAM
available to a container.

Isolation of what
processes can “see”
inside a container; for
example, PIDs or mounts

Granting privileges to do
specific superuser tasks
on the system, like killing
other users’ processes

Changing root of the
filesystem from a
process’s perspective

Various networking
solutions are available
for containers.

Unionfs is used to
provide containers with
their filesystems in an
efficient way (copy-on-
write, or COW).

Figure 5.14 High-level overview of Docker interacting with the kernel

https://docs.docker.com/
http://mng.bz/Vdyr

159Fixing my (Dockerized) app that’s being slow
YAML files to describe sets of containers. This allows for a portable description of an
application. You can see the description for the Meower stack by running the follow-
ing command in a terminal in your VM:

cat ~/src/examples/poking-docker/meower-stack.yml

You will see the following output. It describes two containers, one for MySQL, and
another one for Ghost. It also configures Ghost to use the MySQL database and takes
care of things such as (very insecure) passwords:

version: '3.1'
services:
 ghost:
 image: ghost:3.14.0-alpine
 ports:
 - 8368:2368
 environment:
 database__client: mysql
 database__connection__host: db
 database__connection__user: root
 database__connection__password: notverysafe
 database__connection__database: ghost
 server__host: "0.0.0.0"
 server__port: "2368"
 db:
 image: mysql:5.7
 environment:
 MYSQL_ROOT_PASSWORD: notverysafe

Let’s start it! Run the following commands in a terminal window:

docker swarm init
docker stack deploy \

Docker

Ghost

MySQL

Docker

2. Ghost instance connects
to the MySQL database
to read and write data

1. Meower client sends a request
through a load balancer
(outside our scope)

All components
are running as
Docker containers.

Figure 5.15 Simplified overview of Meower USA technical architecture

Runs the ghost container
in a specific version

Exposes port 8368 on the
host to route to port 2368
in the ghost container

Specifies the
database password
for ghost to use

Runs the mysql container

Specifies the same password
for the mysql container to use

You need to initialize your host to be
able to run docker stack commands.

160 CHAPTER 5 Poking Docker
-c ~/src/examples/poking-docker/meower-stack.yml \
meower

When that’s done, you can confirm that the stack was created by running the follow-
ing command in a terminal window:

docker stack ls

You will see the following output, showing a single stack, meower, with two services in it:

NAME SERVICES ORCHESTRATOR
meower 2 Swarm

To confirm what Docker containers it started, run the following command in a termi-
nal window:

docker ps

You will see output similar to the following. As expected, you can see two containers,
one for MySQL and one for the Ghost application. If you’re not seeing the containers
start, you might want to wait a minute. The ghost container will crash and restart until
the mysql container is actually ready, and that one takes longer to start:

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
72535692a9d7 ghost:3.14.0-alpine "docker-entrypoint.s…" 39 seconds ago
Up 32 seconds 2368/tcp meower_ghost.1.4me3qjpcks6o8hvc19yp26svi
7d32d97aad37 mysql:5.7 "docker-entrypoint.s…" 51 seconds ago
Up 48 seconds 3306/tcp, 33060/tcp meower_db.1.ol7vjhnnwhdx34ihpx54sfuia

To confirm that it worked, browse to http://127.0.0.1:8080/. If you feel like configur-
ing the Ghost instance, feel free to go to http://127.0.0.1:8080/ghost/, but for our
purposes it’s fine to leave it unconfigured.

 With the setup out of the way, we can now focus on the question that brought us
here in the first place: Why is the app slow?

5.10.2 Why is the app slow?

So why might the app be slow? Given what you’ve learned so far in this chapter, there
are at least two plausible explanations for the slowness of the Meower application.

 One of the reasons might be that the process is starved for CPU time. It sounds
obvious, but I’ve seen it happen a lot, when someone . . . else . . . typed one zero too
few or too many. Fortunately, you now know that it’s easy to check the cpu.stat of the
underlying cgroup to see if any throttling took place at all, and take it from there.

 Another reason, which we explored in chapter 4 with WordPress, is that the appli-
cation is more fragile to the networking slowness of its database than we expected.
It’s a common gotcha to make assumptions based on the information from test

Uses the stack file
you saw earlierGives the stack a name

http://127.0.0.1:8080/
http://127.0.0.1:8080/ghost/

161Experiment 5: Network slowness for containers with Pumba
environments and local databases, and then be surprised when networking slows
down in the real world.

 I’m confident that you can handle the first possibility with ease. I suggest, then,
that we explore the second one now in the context of Docker, and using a more mod-
ern stack than that of chapter 4. Hakuna Matata!

5.11 Experiment 5: Network slowness for containers
with Pumba
Let’s conduct an experiment in which you add a certain amount of latency to the com-
munications between Ghost and MySQL, and see how that affects the response time of
the website. To do that, you can once again rely on ab to generate traffic and produce
metrics about the website response time and error rate. Here are the four steps to one
such experiment:

1 Observability: use ab to generate a certain amount of load; monitor for average
response time and error rate.

2 Steady state: no errors arise, and you average X ms per request.
3 Hypothesis: if you introduce 100 ms latency to network connectivity between

Ghost and MySQL, you should see the average website latency go up by 100 ms.
4 Run the experiment!

So the only question remaining now is this: What’s the easiest way to inject latency into
Docker containers?

5.11.1 Pumba: Docker chaos engineering tool

Pumba (https://github.com/alexei-led/pumba) is a really neat tool that helps con-
duct chaos experiments on Docker containers. It can kill containers, emulate network
failures (using tc under the hood), and run stress tests (using Stress-ng, https://kernel
.ubuntu.com/~cking/stress-ng/) from inside a particular container’s cgroup.

NOTE Pumba is preinstalled in the VM; for installation on your host, see
appendix A.

Pumba is really convenient to use, because it operates on container names and saves a
lot of typing. The syntax is straightforward. Take a look at this excerpt from running
pumba help in a terminal window:

USAGE:
 pumba [global options] command [command options] containers (name, list
of names, RE2 regex)

COMMANDS:
 kill kill specified containers
 netem emulate the properties of wide area networks
 pause pause all processes
 stop stop containers

https://github.com/alexei-led/pumba
https://kernel.ubuntu.com/~cking/stress-ng/
https://kernel.ubuntu.com/~cking/stress-ng/
https://kernel.ubuntu.com/~cking/stress-ng/

162 CHAPTER 5 Poking Docker
 rm remove containers
 help, h Shows a list of commands or help for one command

To introduce latency to a container’s egress, you’re interested in the netem subcom-
mand. Under the hood, it uses the same tc command you used in chapter 4, section
4.2.2, but netem is much easier to use. There is one gotcha, though: the way it works by
default is through executing a tc command from inside a container. That means that
tc needs to be available, which is unlikely for anything other than a testing container.

 Fortunately, there is a convenient workaround. Docker allows you to start a con-
tainer in such a way that the networking configuration is shared with another, pre-
existing container. By doing that, it is possible to start a container that has the tc
command available, run it from there, and affect both containers’ networking. Pumba
conveniently allows for that through the --tc-image flag, which allows you to specify
the image to use to create a new container (you can use gaiadocker/iproute2 as an
example container that has tc installed). Putting it all together, you can add latency to
a specific container called my_container by running the following command in the
terminal:

pumba netem \
--duration 60s \
--tc-image gaiadocker/iproute2 \
delay \
--time 100 \
"my_container"

Armed with that, you are ready to run the experiment!

5.11.2 Chaos experiment implementation

First things first: let’s establish the steady state. To do that, let’s run ab. You will need
to be careful to run with the same settings later to compare apples to apples. Let’s run
for 30 seconds to give the command long enough to produce a meaningful number of
responses, but not long enough to waste time. And let’s start with a concurrency of 1,
because in this setting, you’re using the same CPUs to produce and serve the traffic,
so it’s a good idea to keep the number of variables to a minimum. Run the following
command in your terminal:

ab -t 30 -c 1 -l http://127.0.0.1:8080/

You will see output similar to the following. I abbreviated it for clarity. Note the time
per request at around 26 ms (in bold font) and failed requests at 0 (also bold font):

(...)
Complete requests: 1140
Failed requests: 0
(...)

Duration of the experiment—
how long the delay should be
in there

Specifies the image to run that
has the tc command available

Uses the delay subcommand

Specifies the delay (ms)Specifies the name of the
container to affect

163Experiment 5: Network slowness for containers with Pumba
Time per request: 26.328 [ms] (mean)
(...)

Now, let’s run the actual experiment. Open another terminal window. Let’s find the
name of the Docker container running MySQL by running the following command in
this second terminal window:

docker ps

You will see output similar to the following. Note the name of the MySQL container
(bold font):

docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
394666793a39 ghost:3.14.0-alpine "docker-entrypoint.s…" 2 hours ago Up 2
hours 2368/tcp meower_ghost.1.svumole20gz4bkt7iccnbj8hn
a0b83af5b4f5 mysql:5.7 "docker-entrypoint.s…" 2 hours ago Up 2
hours 3306/tcp, 33060/tcp meower_db.1.v3jamilxm6wmptphbgqb8bung

Conveniently, Pumba allows you to use regular expressions by prepending the expres-
sion with re2:. So, to add 100 ms of latency to your MySQL container for 60 sec-
onds, let’s run the following command, still in the second terminal window (bold
font for the regular expression prefix). Note that to simplify the analysis, you’re dis-
abling both random jitter and correlation between the events, to add the same delay
to each call:

pumba netem \
--duration 60s \
--tc-image gaiadocker/iproute2 \
delay \
--time 100 \
--jitter 0 \
--correlation 0 \
"re2:meower_db"

Now, while the delay is in place (you have 60 seconds!) switch back to the first termi-
nal window, and rerun the same ab command as before:

ab -t 30 -c 1 -l http://127.0.0.1:8080/

The output you’ll see will be rather different from the previous output and similar to
the following (abbreviated for brevity, failed requests and time per request in bold font):

(...)
Complete requests: 62

Duration of the experiment—how
long the delay should be in there Specifies the image to run that

has the tc command available

Uses the delay subcommand

Specifies the delay (ms)

Disables random jitter

Disables correlation between the events

Specifies the name of the container
to affect using regular expressions

164 CHAPTER 5 Poking Docker
Failed requests: 0
(...)
Time per request: 490.128 [ms] (mean)
(...)

Ouch. A “mere” 100 ms added latency to the MySQL database changes the average
response time of Meower USA from 26 ms to 490 ms, or a factor of more than 18. If
this sounds suspicious to you, that’s the reaction I’m hoping for!. To confirm our find-
ings, let’s rerun the same experiment, but this time let’s use 1 ms as the delay, the low-
est that the tool will allow. To add the delay, run the following command in the second
terminal window:

pumba netem \
--duration 60s \
--tc-image gaiadocker/iproute2 \
delay \
--time 1 \
--jitter 0 \
--correlation 0 \
"re2:meower_db"

In the first terminal, while that’s running, rerun the ab command once again with the
following command:

ab -t 30 -c 1 -l http://127.0.0.1:8080/

It will print the output you’re pretty familiar with by now, just like the following (once
again, abbreviated). Notice that the result is a few milliseconds greater than our steady
state:

(...)
Complete requests: 830
Failed requests: 0
(...)
Time per request: 36.212 [ms] (mean)
(...)

Back-of-a-napkin math warning: That result effectively puts an upper bound on the
average amount of overhead your delay injector adds itself (36 ms – 26 ms = 10 ms per
request). Assuming the worst-case scenario, in which the database sends a single
packet delayed by 1 ms, that’s a theoretical average overhead of 9 ms. The average
time per request during the experiment was 490 ms, or 464 ms (490 – 26) larger than
the steady state. Even assuming that worst-case scenario, 9 ms overhead, the result
would not be significantly different (9 / 490 ~= 2%).

 Long story short: these results are plausible, and that concludes our chaos experi-
ment with a failure. The initial hypothesis was way off. Now, with the data, you have a
much better idea of where the slowness might be coming from, and you can debug
this further and hopefully fix the issue.

This time use a
delay of just 1 ms.

165Experiment 5: Network slowness for containers with Pumba
 Just one last hint before we leave. List all containers, including the ones that are
finished, by running the following command in a terminal window:

docker ps --all

You will see output similar to the following. Notice the pairs of containers started with
the image gaiadocker/iproute2 you specified earlier with the --tc-image flag:

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
9544354cdf9c gaiadocker/iproute2 "tc qdisc del dev et…" 26 minutes ago
Exited (0) 26 minutes ago stoic_wozniak
8c975f610a29 gaiadocker/iproute2 "tc qdisc add dev et…" 27 minutes ago
Exited (0) 27 minutes ago quirky_shtern
(...)

These are the short-lived containers, which executed the tc command from inside the
same networking configuration as your target container. You can even inspect one of
them by running a command similar to the following:

docker inspect 9544354cdf9c

You will see a long JSON file, similar to the following output (abbreviated). Within
this file, notice two members, Entrypoint and Cmd. They list the entry point binary
and its arguments, respectively:

(...)
 "Cmd": [
 "qdisc",
 "del",
 "dev",
 "eth0",
 "root",
 "netem"
],
(...)
 "Entrypoint": [
 "tc"
],
(...)

So there you go, another chaos experiment under your belt and another tool in your
toolbox. Let’s finish by taking a tour of other mention-worthy aspects of chaos engi-
neering relevant to Docker that we haven’t covered.

166 CHAPTER 5 Poking Docker
5.12 Other parts of the puzzle
I want to mention other topics that we haven’t covered in detail in this chapter that
are worth considering when designing your own chaos experiments. The list is poten-
tially infinite, but let me present just a few common issues.

5.12.1 Docker daemon restarts

In its current model, a restart of the Docker daemon means a restart of all applica-
tions running on Docker on that host. This might sound obvious and trivial, but it can
be a very real problem. Imagine a host running a few hundred containers and Docker
crashing:

 How long is it going to take for all the applications to get started again?
 Do some containers depend on others, so the order of them starting is import-

ant?
 How do containers react to this situation, in which resources are used to start

other containers (thundering herd problem)?
 Are you running infrastructure processes (say, an overlay network) on Docker?

What happens if that container doesn’t start before the other ones?
 If Docker crashes at the wrong moment, can it recover from any inconsistent

state? Does any state get corrupted?
 Does your load balancer know when a service is really ready, rather than just

starting, to know when to serve it traffic?

A simple chaos experiment restarting Docker mid-flight might help you answer all of
these questions and many more.

5.12.2 Storage for image layers

Similarly, storage problems have a much larger scope for failure than we’ve covered.
You saw earlier that a simple experiment showed that a default Docker installation on
Ubuntu 18.04 doesn’t allow for restricting the storage size that a container can use.

Pop quiz: What is Pumba?
Pick one:

1 A really likable character from a movie
2 A handy wrapper around namespaces that facilitates working with Docker

containers
3 A handy wrapper around cgroups that facilitates working with Docker containers
4 A handy wrapper around tc that facilitates working with Docker containers, and

that also lets you kill containers

See appendix B for answers.

167Other parts of the puzzle
But in real life, a lot more can go wrong than a single container being unable to write
to disk. For example, consider the following:

 What happens if an application doesn’t know how to handle lack of space and
crashes, and Docker is unable to restart it because of the lack of space?

 Will Docker have enough storage to download the layers necessary to start a
new container you need to start? (It’s difficult to predict the total amount of
decompressed storage needed.)

 How much storage does Docker itself need to start if it crashes when a disk is
full?

Again, this might sound basic, but a lot of damage can be caused by a single faulty
loop writing too much data to the disk, and running processes in containers might
give a false sense of safety in this respect.

5.12.3 Advanced networking

We covered the basics of Docker networking, as well using Pumba to issue tc com-
mands to add delays to interfaces inside containers, but that’s just the tip of the ice-
berg of what can go wrong. Although the defaults are not hard to wrap your head
around, the complexity can grow quickly.

 Docker is often used in conjunction with other networking elements such as over-
lay networks (for example, Flannel, https://github.com/coreos/flannel), cloud-aware
networking solutions (such as Calico, www.projectcalico.org), and service meshes
(such as Istio, https://istio.io/docs/concepts/what-is-istio/). These further add to the
standard tools (for example, iptables, https://en.wikipedia.org/wiki/Iptables and IP
Virtual Server, or IPVS, https://en.wikipedia.org/wiki/IP_Virtual_Server) to further
increase the complexity.

 We will touch upon some of these in the context of Kubernetes in chapter 12, but
understanding how your networking stack works (and breaks) will always be import-
ant to anyone practicing chaos engineering.

5.12.4 Security

Finally, let’s consider the security aspect of things. While security is typically the job of
a dedicated team, using chaos engineering techniques to explore security problems is
worthwhile. I briefly mentioned seccomp, SELinux, and AppArmor. Each provides lay-
ers of security, which can be tested against with an experiment.

 Unfortunately, these are beyond the scope of this chapter, but a lot of low-hanging
fruit still remains to look into. For example, all of the following situations can (and
do) lead to security issues, and can usually be easily fixed:

 Containers running with the --privileged flag, often without a good reason
 Running as root inside the container (the default pretty much everywhere)
 Unused capabilities given to containers
 Using random Docker images from the internet, often without peeking inside

https://github.com/coreos/flannel
https://istio.io/docs/concepts/what-is-istio/
https://en.wikipedia.org/wiki/Iptables
https://en.wikipedia.org/wiki/IP_Virtual_Server
http://www.projectcalico.org

168 CHAPTER 5 Poking Docker
 Running ancient versions of Docker images containing known security flaws
 Running ancient versions of Docker itself containing known security flaws

Chaos engineering can help design and run experiments that reveal your level of
exposure to the numerous threats out there. And if you tune in, you will notice that
exploits do appear on a more or less regular basis (for example, see “Understanding
Docker Container Escapes” at the Trail of Bits blog at http://mng.bz/xmMq).

Summary
 Docker builds on several decades of technology and leverages various Linux

kernel functionalities (like chroot, namespaces, cgroups, and others) to make
for a simple user experience.

 The same tools designed to operate on namespaces and cgroups apply equally
to Docker containers.

 For effective chaos engineering in a containerized world, you need an under-
standing of how they work (and they’re not that scary after you’ve seen them up
close).

 Pumba is a convenient tool for injecting network problems, running stress tests
from within a cgroup, and killing containers.

 Chaos engineering should be applied to applications running on Docker as well
as to Docker itself to make both more resilient to failures.

http://mng.bz/xmMq

Who you gonna call?
Syscall-busters!
It’s time to take a deep dive—all the way to the OS—to learn how to do chaos engi-
neering at the syscall level. I want to show you that even in a simple system, like a
single process running on a host, you can create plenty of value by applying chaos
engineering and learning just how resilient that system is to failure. And, oh, it’s
good fun too!

 This chapter starts with a brief refresher on syscalls. You’ll then see how to do
the following:

 Understand what a process does without looking at its source code
 List and block the syscalls that a process can make
 Experimentally test your assumptions about how a process deals with failure

This chapter covers
 Observing syscalls of a running process by using

strace and BPF

 Working with black-box software

 Designing chaos experiments at the syscall level

 Blocking syscalls by using strace and seccomp
169

170 CHAPTER 6 Who you gonna call? Syscall-busters!
If I do my job well, you’ll finish this chapter with a realization that it’s hard to find a
piece of software that can’t benefit from chaos engineering, even if it’s closed source.
Whoa, did I just say closed source? The same guy who always goes on about how great
open source software is and who maintains some himself? Why would you do closed
source? Well, sometimes it all starts with a promotion.

6.1 Scenario: Congratulations on your promotion!
Do you remember your last promotion? Perhaps a few nice words, some handshakes,
and ego-friendly emails from your boss. And then, invariably, a bunch of surprises you
hadn’t thought of when you agreed to take on the new opportunity. A certain some-
thing somehow always appears in these conversations, but only after the deal is done:
the maintenance of legacy systems.

 Legacy systems, like potatoes, come in all shapes and sizes. And just as with pota-
toes, you often won’t realize just how convoluted their shape really is until you dig
them out of the ground. Things can get messy if you don’t know what you’re doing!
What counts as legacy in one company might be considered pretty progressive in a dif-
ferent setting.

 Sometimes there are good reasons to keep the same codebase for a long time (for
example, the requirements haven’t changed, it runs fine on modern hardware, and
there is a talent pool), and other times software is kept in an archaic state for all the
wrong reasons (sunk-cost fallacy, vendor lockdown, good old bad planning, and so
on). Even modern code can be considered legacy if it’s not well maintained.

 But in this chapter, I’d like you to look at a particular type of legacy system—the
kind that works, but no one really knows how. Let’s take a look at an example of such
a system.

6.1.1 System X: If everyone is using it, but no one maintains it,
is it abandonware?

If you’ve been around for a while, you can probably name a few legacy systems that
only certain people really understood inside out, but a lot of people use. Well, let’s
imagine that the last person knowing a certain system quits, and your promotion
includes figuring out what to do with that system to maintain it. It’s officially your
problem now. Let’s call that problem System X.

 First things first—you check the documentation. Oops, there isn’t any! Through a
series of interviews of the more senior people in the organization, you find the execut-
able binary and the source code. And thanks to tribal knowledge, you know that the
binary provides an HTTP interface that everyone is using. Figure 6.1 summarizes this
rather enigmatic description of the system.

 Let’s take a glance at the source code structure. If you’re working inside the VM
shipped with this book, you can find the source code by going to the following folder
in a terminal window:

cd ~/src/examples/who-you-gonna-call/src/

171Scenario: Congratulations on your promotion!
(Alternatively you can browse the code online on GitHub at http://mng.bz/A0VE).
It’s a simulated legacy application, written in C. To keep this as realistic as possible,
don’t dig too deep into how the application is written (it should appear to you to be
awfully complicated for what it’s doing). If you’re really curious, this source code is
generated through the generate_legacy.py script in the same folder, but I recom-
mend you read it only after you’re finished with this chapter.

 I’m not going to walk you through what the code is doing, but let’s just get a rough
idea of how much code goes into the final product. To find all the files and sum up
the lines of code, run the following command in a terminal window:

find ~/src/examples/who-you-gonna-call/src/ \
 -name "*.c" -o -name "*.h" \
 | sort | xargs wc -l

You will see output similar to the following (abbreviated). Note the total of 3128 lines
of code (bold font):

 26 ./legacy/abandonware_0.c
 (...)
 26 ./legacy/web_scale_0.c
(...)
 79 ./main.c
 3128 total

Fortunately, the source code also comes with a Makefile, which allows you to build the
binary. Run the following command in a terminal window, from the same directory, to
build the binary called legacy_server. It will compile the application for you:

make

1. User sends an HTTP request
(format undocumented)

2. Server responds with an HTTP
response (format undocumented)

There be dragons.

System X

Figure 6.1 The (known part of the) architecture of the legacy System X

http://mng.bz/A0VE

172 CHAPTER 6 Who you gonna call? Syscall-busters!
After it’s done compiling, you will be left with a new executable file, legacy_server (if
you’re using the VM, the application will already be precompiled, so it won’t do any-
thing). You can now start the file by running the following command in a terminal
window:

./legacy_server

It will print a single line to inform you that it started listening on port 8080:

Listening on port 8080, PID: 1649

You can now confirm that the server is working by opening a browser and going to
http://127.0.0.1:8080/. You will see the web interface of the legacy System X. It doesn’t
keep the world spinning, but it’s definitely an important aspect of the company cul-
ture. Make sure you investigate it thoroughly.

 Now, this is the big question: Given that the legacy System X is a big, black box,
how can you sleep well at night, not knowing how it might break? Well, as the title of
this book might give away, a little bit of chaos engineering can help!

 The purpose of this chapter is to show you how to inject failure on the boundary
between the application and the system (something even the most basic of programs
will need to do) and see how the application copes when it receives errors from the
system. That boundary is defined by a set of syscalls. To make sure we’re all on the
same page, let’s start with a quick refresher on syscalls.

6.2 A brief refresher on syscalls
System calls (more commonly abbreviated to syscalls) are the APIs of an OS, such as
UNIX, Linux, or Windows. For a program running on an OS, syscalls are the way of
communicating with the kernel of that OS. If you’ve ever written so much as a Hello
World program, that program is using a syscall to print the message to your console.

 What do syscalls do? They give programs access to resources managed by the ker-
nel. Here are a few basic examples:

 open—Opens a file
 read—Reads from a file (or something file-like; for instance, a socket)
 write—Writes to a file (or something file-like)
 exec—Replaces the currently running process with another one, read from an

executable file
 kill—Sends a signal to a running process

In a typical modern operating system like Linux, any code executed on a machine
runs in either of the following:

 Kernel space
 User space (also called userland)

http://127.0.0.1:8080/

173A brief refresher on syscalls
Inside the kernel space, as the name suggests, only the kernel code (with its subsystems
and most drivers) is allowed, and access to the underlying hardware is granted. Any-
thing else runs inside the user space, without direct access to the hardware.

 So if you run a program as a user, it will be executed inside the user space; when it
needs to access the hardware, it will make a syscall, which will be interpreted, vali-
dated, and executed by the kernel. The actual hardware access will be done by the ker-
nel, and the results made available to the program in the user space. Figure 6.2 sums
up this process.

Why can’t you write a program that directly uses the hardware? Well, nothing is stop-
ping you from writing code directly for particular hardware, but in these modern
times, it’s not practical. Apart from specialized use cases, like embedded systems or
unikernels (https://en.wikipedia.org/wiki/Unikernel; we touched upon this in chap-
ter 5), it just makes more sense to program against a well-defined and documented
API, like the Linux syscalls. All the usual arguments in favor of a well-defined API
apply here. Here are a few advantages to this setup:

 Portability—An application written against the Linux kernel API will run on any
hardware architecture supported by Linux.

 Security—The kernel will verify that the syscalls are legal and will prevent acci-
dental damage to the hardware.

 Not reinventing the wheel—A lot of solutions to common problems (for example,
virtual memory and filesystems) have already been implemented and thoroughly
tested.

User space

Program

Kernel API (syscalls)

Kernel implementation

Kernel

Hardware

1. User runs a program

2. Program executes
a syscall

3. Kernel implementation
validates and executes
the requested syscall

4. Kernel can access
the underlying
hardware

Figure 6.2 Division between kernel space, userland, and hardware

https://en.wikipedia.org/wiki/Unikernel

174 CHAPTER 6 Who you gonna call? Syscall-busters!
 Rich features—Linux comes with plenty of advanced features, which let the
application developer focus on the application itself, rather than having to
worry about the low-level, mundane stuff. These features include user manage-
ment and privileges, and drivers for a lot of common hardware or advanced
memory management.

 Speed and reliability—Chances are that the Linux kernel implementation of a
particular feature, tested daily on millions of machines all over the world, will
be of better quality than one that you’d need to write yourself to support your
program.

NOTE Linux is POSIX-compliant (Portable Operating System Interface,
https://en.wikipedia.org/wiki/POSIX). Therefore, a lot of its API is standard-
ized, so you will find the same (or similar) syscalls in other UNIX-like operat-
ing systems; for example, the BSD family. This chapter focuses on Linux, the
most popular representative of this group.

The downside is more overhead, compared with directly accessing the hardware,
which is easily outweighed by the upsides for the majority of use cases. Now that you
have a high-level idea of what syscalls are for, let’s find out which ones are available
to you!

6.2.1 Finding out about syscalls

To find out about all the syscalls available in your Linux distribution, you’ll use the
man command. This command has the concept of sections, numbered from 1 to 9; dif-
ferent sections can cover items with the same name. To see the sections, run the fol-
lowing command in a terminal window:

man man

You will see output similar to the following (abbreviated). Note that section 2 covers
syscalls (bold font):

(...) A section, if provided, will direct man to look only in that section
of the manual. The default action is to search in all of the available
sections following a pre-defined order ("1 n l 8 3 2 3posix 3pm 3perl
3am 5 4 9 6 7" by default, unless overridden by the SECTION directive in
/etc/manpath.config), and to show only the first page found, even if page
exists in several sections.

 The table below shows the section numbers of the manual followed by
the types of pages they contain.

1 Executable programs or shell commands
2 System calls (functions provided by the kernel)
3 Library calls (functions within program libraries)
4 Special files (usually found in /dev)
5 File formats and conventions eg /etc/passwd
6 Games

https://en.wikipedia.org/wiki/POSIX

175A brief refresher on syscalls
7 Miscellaneous (including macro packages and conventions)
8 System administration commands (usually only for root)
9 Kernel routines [Non standard]

Therefore, to list the available syscalls, run the following command:

man 2 syscalls

You will see a list of syscalls, along with the version of kernel they were introduced in,
and notes, just like the following (abbreviated). The numbers in parentheses are the
section numbers you can use with man:

 System call Kernel Notes
───
(...)
 chroot(2) 1.0
(...)
 read(2) 1.0
(...)
 write(2) 1.0

Let’s pick the read syscall as an example. To get more information about that syscall,
run the man command in a terminal window, using section 2 (as instructed by the
number in parentheses):

man 2 read

You will see the following output (abbreviated again for brevity). The synopsis con-
tains a code sample in C (bold font), as well as a description of what the arguments
and return values mean. This code sample (in C) describes the signature of the syscall
in question, and you’ll learn more about that later:

READ(2) Linux Programmer's Manual READ(2)

NAME
 read - read from a file descriptor

SYNOPSIS
 #include <unistd.h>

 ssize_t read(int fd, void *buf, size_t count);

DESCRIPTION
 read() attempts to read up to count bytes from file descriptor fd
into the buffer starting at buf.

Using the man command in section 2, you can learn about any and every syscall avail-
able on your machine. It will show you the signature, a description, possible error val-
ues, and any interesting caveats.

176 CHAPTER 6 Who you gonna call? Syscall-busters!
 From the perspective of chaos engineering, if you want to inject failure into the
syscalls a program is making, you first need to build a reasonable understanding of
the purpose they serve. So now you know how to look them up. But how would you go
about actually making a syscall? The answer to that question is most commonly glibc
(www.gnu.org/software/libc/libc.html), and using one of the function-wrappers it
provides for almost every syscall. Let’s take a closer look at how it works.

6.2.2 Using the standard C library and glibc

A standard C library provides (among other things) an implementation of all the
functions whose signatures you can see in section 2 of the man pages. These signa-
tures are stored in unistd.h, which you have seen before. Let’s look at a man page of
read(2) once again, by running the following command:

man 2 read

You will see the following output in the synopsis section. Notice that the code sample
in the synopsis includes a header file called unistd.h, as in the following output (in
bold font):

 #include <unistd.h>

 ssize_t read(int fd, void *buf, size_t count);

How do you learn more about it? Once again, man pages to the rescue. Run the fol-
lowing statement in a terminal window:

man unistd.h

In the output of that command, you will learn about all of the functions that should
be implemented by a standard C library. Note the signature of the read function
(bold font):

(...)
NAME
 unistd.h — standard symbolic constants and types
(...)
 Declarations
 The following shall be declared as functions and may also be defined
as macros. Function prototypes shall be provided.
(...)
 ssize_t read(int, void *, size_t);
(...)

This is the POSIX standard of what the signature of the syscall wrapper for read
should look like. This begs the question: When you write a C program and use one of
the wrappers, where is the implementation coming from? glibc (www.gnu.org/software/
libc/libc.html) stands for the GNU C Library and is the most common C library

http://www.gnu.org/software/libc/libc.html
http://www.gnu.org/software/libc/libc.html
http://www.gnu.org/software/libc/libc.html
http://www.gnu.org/software/libc/libc.html

177A brief refresher on syscalls
implementation for Linux. It’s been around for more than three decades, and a lot of
software relies on it, despite being criticized for being bloated (http://mng.bz/ZPpj).
Noteworthy alternatives include musl libc (https://musl.libc.org/) and diet libc (www
.fefe.de/dietlibc/), both of which focus on reducing the footprint. To learn more,
check out libc(7) man pages.

 In theory, these wrappers provided by glibc invoke the syscall in question in the
kernel and call it a day. In practice, a sizable portion of the wrappers adds code to
make the syscalls easier to use. In fact, this is easy to check. The glibc source code
includes a list of pass-through syscalls, for which the C code is automatically generated
using a script. For example, for version 2.23, you can see the list at http://mng.bz/
RXvn. This list contains only 100 of the 380 or so, meaning that almost three-quarters
of them contain auxiliary code.

 A common example is the exit(3) glibc syscall, which adds the possibility to call
any functions preregistered using atexit(3) before executing the actual _exit(2)
syscall to terminate the process. So it’s worth remembering that a one-to-one mapping
doesn’t necessarily exist between the functions in the C library and the syscalls they
implement.

 Finally, notice that the argument names might differ between the documentation
of glibc and man pages in section 2. That doesn’t matter in C, but you can use section 3
of the man pages (for example, man 3 read) to display the signatures from the C library,
instead of unistd.h.

 With this new information, it’s time to upgrade figure 6.2. Figure 6.3 contains the
updated version, with the addition of libc for a more complete image. The user runs a
program, and the program executes a libc syscall wrapper, which in turns makes the
syscall. The kernel then executes the requested syscall and accesses the hardware.

User space

Program

libc (glibc, musl, ...)

Kernel API (syscalls)

Kernel implementation

Kernel

Hardware

1. User runs a program

2. Program executes
a syscall wrapper
from libc

3. Libc wrapper
executes the syscall

4. Kernel implementation
validates and executes
the requested syscall

5. Kernel can access
the underlying
hardware

Figure 6.3 User space, libc, kernel space, and hardware

http://mng.bz/RXvn
http://mng.bz/RXvn
http://mng.bz/RXvn
http://mng.bz/ZPpj
https://musl.libc.org/
http://www.fefe.de/dietlibc/
http://www.fefe.de/dietlibc/
http://www.fefe.de/dietlibc/

178 CHAPTER 6 Who you gonna call? Syscall-busters!
A final thought I’d like to plant in your brain is that libc isn’t relevant only when writ-
ing software in C. In fact, it’s likely to be relevant to you regardless of the program-
ming language you use, and that’s why using a Linux distribution relying on musl libc
(like Alpine Linux) might sometimes bite you in the neck when you least expect it
(for example, see http://mng.bz/opDp).

 With that, I think that we’ve covered all the necessary theory, and it’s time to get
our chaos-engineering-wielding hands dirty! You know what syscalls are, how to look
up their documentation, and what happens when a program makes one. The next
question becomes, apart from reading through the entirety of the source code, how
you know what syscalls a process is making. Let’s cover two ways of achieving that:
strace and BPF.

6.3 How to observe a process’s syscalls
For the purpose of chaos engineering, you need to first build a good understanding of
what a process does before you can go and design experiments around it. Let’s dive in
and see what syscalls are being made by using the strace command (https://strace.io/).
We’ll go through a concrete example of what strace output looks like.

6.3.1 strace and sleep

Let’s start with the simplest example I can think of; let’s trace the syscalls that are
made when you run sleep 1, a command that does nothing but sleep for 1 second. To
do that, you can just prepend strace to the command you want to run. Run the fol-
lowing command in a terminal window (note that you’ll need sudo privileges to use
strace):

sudo strace sleep 1

The command you’ve just run starts a program you requested (sleep) and prints a
line per syscall that is made by that program. In each line, the program prints the
syscall name, the arguments, and the returned value after the equals sign (=). There

Pop quiz: What are syscalls?
Pick one:

1 A way for a process to request actions on physical devices, such as writing to
disk or sending data on a network

2 A way for a process to communicate with the kernel of the operating system it
runs on

3 A universal angle of attack for chaos experiments, because virtually every piece
of software relies on syscalls

4 All of the above

See appendix B for answers.

http://mng.bz/opDp
https://strace.io/

179How to observe a process’s syscalls
are 12 unique syscalls executed, and nanosleep (providing the actual sleep) is the last
one on the list. Let’s walk through this output bit by bit (I used bold font for the
first instance of a syscall in the output to make it easier to focus on the new syscalls
each time).

 You start with execve, which replaces the current process with another process
from an executable file. Its three arguments are the path to the new binary, a list of
command-line arguments, and the process environment, respectively. This is how
the new program is started. It’s then followed by the brk syscall, which reads (when
the argument is NULL, as it is in this example) or sets the end of the process’s data
segment:

execve("/usr/bin/sleep", ["sleep", "1"], 0x7ffd215ca378 /* 16 vars */) = 0
brk(NULL) = 0x557cd8060000

To check user permissions to a file, you use the access syscall. If present, /etc/ld.so
.preload is used to read the list of shared libraries to preload. Use man 8 ld.so for
more details on these files. In this case, both calls return a value of -1, meaning that
the files don’t exist:

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)

Next, you use openat to open a file (the at postfix indicates a variant that handles rel-
ative paths, which the regular open doesn’t do) and return a file descriptor number 3.
fstat is then used to get the file status, using that same file descriptor:

openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=69934, ...}) = 0

Next, the mmap syscall creates a map of the same file descriptor 3 into virtual memory
of the process, and the file descriptor is closed using the close syscall. mmap is an
advanced topic that is not relevant to our goal here; you can read more about how it
works at https://en.wikipedia.org/wiki/Mmap:

mmap(NULL, 80887, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7ffb65187000
close(3) = 0

Next, the program opens the libc shared object file at /lib/x86_64-linux-gnu/libc.so.6,
with file descriptor 3 being reused:

openat(AT_FDCWD, "/lib/x86_64-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

It then reads from the libc shared object file (file descriptor 3) to a buffer using a read
syscall. The display here is a bit confusing, because the second parameter is the buffer
to which the read syscall will write, so displaying its contents doesn’t make much
sense. The returned value is the number of bytes read, in this case 832. fstat is used
once again to get the file status:

https://en.wikipedia.org/wiki/Mmap

180 CHAPTER 6 Who you gonna call? Syscall-busters!
read(3, "\177ELF\2\1\1\3\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\260\34\2\0\0\0\0\0"...,
832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=2030544, ...}) = 0

Then the code gets a little fuzzy. mmap is used again to map some virtual memory,
including some of the libc shared object file (file descriptor 3). The mprotect syscall is
used to protect a portion of that mapped memory from reading. The PROT_NONE flag
means that the program can’t access that memory at all. Finally, file descriptor 3 is
closed with a close syscall. For our purposes, you can consider this boilerplate:

mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) =
0x7ffb65185000

mmap(NULL, 4131552, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) =
0x7ffb64b83000

mprotect(0x7ffb64d6a000, 2097152, PROT_NONE) = 0
mmap(0x7ffb64f6a000, 24576, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1e7000) = 0x7ffb64f6a000
mmap(0x7ffb64f70000, 15072, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x7ffb64f70000
close(3) = 0

Next, arch_prctl is used to set an architecture-specific process state (you can ignore
it), mprotect is used to make some virtual memory read-only (via the flag PROT_READ),
and munmap is used to remove the mapping of the address 0x7ffb65187000, which
was mapped to the file /etc/ld.so.cache earlier. All of these operations return value 0
(success):

arch_prctl(ARCH_SET_FS, 0x7ffb65186540) = 0
mprotect(0x7ffb64f6a000, 16384, PROT_READ) = 0
mprotect(0x557cd6c5e000, 4096, PROT_READ) = 0
mprotect(0x7ffb6519b000, 4096, PROT_READ) = 0
munmap(0x7ffb65187000, 80887) = 0

The program first reads, and then tries to move, the end of the process’s data seg-
ment, effectively increasing the memory allocated to the process, using brk:

brk(NULL) = 0x557cd8060000
brk(0x557cd8081000) = 0x557cd8081000

Next, it opens /usr/lib/locale/locale-archive, checks its stats, maps it to the virtual
memory, and closes it:

openat(AT_FDCWD, "/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=3004464, ...}) = 0
mmap(NULL, 3004464, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7ffb648a5000
close(3) = 0

Then (finally!) you get to the actual meat of things, which is a single clock_nanosleep
syscall, passing 1 second as an argument (tv_sec):

clock_nanosleep(CLOCK_REALTIME, 0, {tv_sec=1, tv_nsec=0}, NULL) = 0

181How to observe a process’s syscalls
Eventually, it closes file descriptors 1 (standard output, or stdout) and 2 (standard
error, or stderr), just before the program terminates, specifying the exit code 0 (suc-
cess) through exit_group:

close(1) = 0
close(2) = 0
exit_group(0) = ?

And you’re through! As you can see, this simple program spent much longer doing
things you didn’t explicitly ask it to do, rather than what you asked (sleep). If you want
to learn more about any of these syscalls, remember that you can run man 2 syscall-
name in a terminal window.

 One more thing I want to show you is the count summary that strace can pro-
duce. If you rerun the strace command, but this time add -C and -S count flags, it
will produce a summary sorted by the count of each syscall. Run the following com-
mand in a terminal window:

sudo strace \
-C \
-S calls \
sleep 1

After the previous output, you will see a summary similar to the following (your single
call to clock_nanosleep in bold):

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 0.00 0.000000 0 8 mmap
 0.00 0.000000 0 6 pread64
 0.00 0.000000 0 5 close
 0.00 0.000000 0 4 mprotect
 0.00 0.000000 0 3 fstat
 0.00 0.000000 0 3 brk
 0.00 0.000000 0 3 openat
 0.00 0.000000 0 2 1 arch_prctl
 0.00 0.000000 0 1 read
 0.00 0.000000 0 1 munmap
 0.00 0.000000 0 1 1 access
 0.00 0.000000 0 1 execve
 0.00 0.000000 0 1 clock_nanosleep
------ ----------- ----------- --------- --------- ----------------
100.00 0.000000 39 2 total

This once again shows that the syscall you actually cared about is only 1 of 32. Equipped
with this new toy, let’s take a look at what our legacy System X does under the hood!

Produces a summary
of syscalls

Sorts that summary
by the count

182 CHAPTER 6 Who you gonna call? Syscall-busters!
6.3.2 strace and System X

Let’s use strace on the legacy System X binary to see what syscalls it makes. You know
how to start a new process with strace; now you’ll also learn how to attach to a pro-
cess that’s already running. You’re going to use two terminal windows. In the first win-
dow, start the legacy_server binary you compiled earlier:

 ~/src/examples/who-you-gonna-call/src/legacy_server

You will see output similar to the following, printing the port number it listens on and
its PID. Note the PID; you can use it to attach to the process with strace (bold font):

Listening on port 8080, PID: 6757

In a second terminal window, let’s use strace to attach to that PID. Run the following
command to attach to the legacy system:

sudo strace -C \
-p $(pidof legacy_server)

Now, back in the browser, go to (or refresh) http://127.0.0.1:8080/. Then go back to
the second terminal window (the one with strace) and look at the output. You will
see something similar to the following (abbreviated). This gives you a pretty good idea
of what the program is doing. It accepts a connection with accept, writes a bunch of
data with write, and closes the connection with close (all three in bold font):

accept(3, {sa_family=AF_INET, sin_port=htons(53698),
sin_addr=inet_addr("127.0.0.1")}, [16]) = 4

read(4, "GET / HTTP/1.1\r\nHost: 127.0.0.1:"..., 2048) = 333
write(4, "HTTP/1.0 200 OK\r\nContent-Type: t"..., 122) = 122
write(4, "<", 1) = 1
write(4, "!", 1) = 1
write(4, "d", 1)
(...)
fsync(4) = -1 EINVAL (Invalid argument)
close(4) = 0

Pop quiz: What can strace do for you?
Pick one:

1 Show you what syscalls a process is making in real time
2 Show you what syscalls a process is making in real time, without incurring a per-

formance penalty
3 List all the places in the source code of the application where a certain action,

like reading from disk, is performed

See appendix B for answers.

Flag -p attaches to an existing
process with the given PID

http://127.0.0.1:8080/

183How to observe a process’s syscalls
You might have noticed that this code has a bug: it tries to fsync a file (synchronize
the file’s in-core state with the storage device), and it gets back the error EINVAL
(Invalid argument). You can now press Ctrl-C to detach strace, and print the sum-
mary, like the following one. You can also see that it does a whole lot of writes (292 to
be precise), almost all of which write only a single character. More than 98% of the
time is spent writing data (in bold font):

 <detached ...>
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 98.34 0.002903 10 292 write
 0.68 0.000020 20 1 close
 0.61 0.000018 18 1 accept
 0.34 0.000010 10 1 read
 0.03 0.000001 1 1 1 fsync
------ ----------- ----------- --------- --------- ----------------
100.00 0.002952 296 1 total

Notice that by attaching strace to a running process, you’re sampling the syscalls that
process made only while you were attached to it. This makes the method easier to
work through, but will miss any potentially important initial setup the program might
have done.

 So far, so good! Using strace has been straightforward. Unfortunately, it also has
its downsides, and the biggest one is overhead. Let’s zoom in on that.

6.3.3 strace’s problem: Overhead

The dark side of strace is the performance hit that it adds to the traced process. It’s
not really a secret—this comes directly from man strace(1) pages:

BUGS
 A traced process runs slowly.

Here’s a good example I’m borrowing from Brendan Gregg’s blog post that I recom-
mend reading (it comes with a bunch of useful, accurately titled one-liners and it’s over-
all hilarious): www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html.

 dd is a simple Linux utility that copies a certain number of bytes from one file to
another, using chunks of desired size. Its simplicity makes it a good candidate for test-
ing the speed of syscalls; it does very little other than make read syscalls followed by
write syscalls. Thus, by reading from an infinite source, like /dev/zero (returns zeros
for every read) and writing to /dev/null (discards the written bytes), you can stress
test the speed of read and write syscalls.

 Let’s do just that. First, let’s see how quickly the program can go without strace
attached to it. Let’s make 500,000 operations (an arbitrary number that should be big
enough to last a few hundred milliseconds, but small enough to not bore you to

http://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html

184 CHAPTER 6 Who you gonna call? Syscall-busters!
death) and writes of size 1 byte (the smallest amount we can write, for a maximum
number of operations), by running the following command in a terminal window:

dd if=/dev/zero of=/dev/null bs=1 count=500k

You will see output similar to the following, taking about half a second (bold font) to
perform that operation:

512000+0 records in
512000+0 records out
512000 bytes (512 kB, 500 KiB) copied, 0.509962 s, 1.0 MB/s

Now, let’s rerun the same command, but trace it with strace. And let’s use the -e flag
to filter only the accept syscall, which dd doesn’t even use (to show that just the action
of attaching strace is already adding the overhead, even if it’s on an unrelated
syscall). Run the following command in a terminal window:

strace \
-e accept \
dd if=/dev/zero of=/dev/null bs=1 count=500k

You will see output similar to the following. In my example, it took 58.5 seconds (bold
font), or a more than 100-fold slowdown, compared to the values without strace:

512000+0 records in
512000+0 records out
512000 bytes (512 kB, 500 KiB) copied, 58.4923 s, 8.8 kB/s
+++ exited with 0 +++

This means that it might be fine to use strace in a test environment, as you’re doing
now, but attaching it to a process running in production can have serious conse-
quences. It also means that if you were looking into the performance of a program
traced with strace, all your numbers would be off.

 All of that limits the use cases for strace, but fortunately there are other options.
Let’s look at an alternative: the Berkeley Packet Filter.

ptrace syscall
I bet you’re wondering about the underlying mechanism that allows strace to control
and manipulate other processes. The answer is the ptrace syscall. You don’t need
to know how it works to get value out of using strace, but for those of you who are
curious, check out the man page of ptrace(2). Wikipedia also has a good intro:
https://en.wikipedia.org/wiki/Ptrace.

Prints only the accept syscalls
(which dd doesn’t make)

https://en.wikipedia.org/wiki/Ptrace

185How to observe a process’s syscalls
6.3.4 BPF

The Berkeley Packet Filter (BPF) was initially designed to filter network packets. It has
since been extended (extended Berkeley Packet Filter, or eBPF) to become a generic Linux
kernel execution engine, which allows for writing programs with guarantees of safety
and performance. When talking about BPF, most people refer to the extended ver-
sion. In the context of chaos engineering, BPF will often come in handy to produce
metrics for our experiments.

 One of the most exciting things about BPF is that it allows for writing very efficient
programs executed during certain events in the Linux kernel. Together with the limits
enforced on the time these programs can take and the memory they can access, as
well as built-in efficient aggregation primitives, BPF is an amazing tool to gain visibility
into what’s going on at the kernel level. What is exciting for our chaos engineering
needs is that unlike with strace, it is often possible to achieve that insight (for exam-
ple, trace all the syscalls) with minimal overhead.

 The downside of BPF is that the learning curve is pretty steep. To write a meaning-
ful program looking into the Linux kernel internals, it’s routinely necessary to look
into how things are implemented in the kernel itself. Although the time investment
pays off, it can be a little daunting at first. Fortunately, a few projects make that intro-
duction much easier. Let’s take a look at how one of those projects can help in the
practice of chaos engineering.

BPF AND BCC
BPF Compiler Collection, or BCC (https://github.com/iovisor/bcc), is a framework that
makes it easier to write and run BPF programs, providing wrappers in Python and Lua
and many useful tools and examples. Reading through these tools and examples is
currently the best way of starting with BPF that I can think of.

 Chapter 3 covered a few of the BCC tools (biotop, tcptop, oomkill), and now I’d
like to bring another one to your attention: syscount. Your VM comes with the tools
preinstalled, but installing them on Ubuntu is as easy as running the following com-
mand from a terminal (check appendix A for more information):

sudo apt-get install bpfcc-tools linux-headers-$(uname -r)

In the previous section, you used strace to produce a list of syscalls made by a program.
That approach worked well but had one serious problem: strace introduced a large
amount of overhead to the program it was tracing. Let me show you how to get the same
list without the overhead, by leveraging BPF and BCC through the tool syscount.

 Let’s start by getting used to using syscount. In its simplest form, it will count all
syscalls of all the processes currently running and then print the top 10. Run the fol-
lowing command in a terminal window to count the syscalls (remember that on
Ubuntu, the BCC tools are postfixed with -bpfcc):

sudo syscount-bpfcc

https://github.com/iovisor/bcc

186 CHAPTER 6 Who you gonna call? Syscall-busters!
After a few seconds, press Ctrl-C to stop the process, and you will see output just like
the following. You will recognize some of the syscalls on the list, like write and read
(bold font). It’s a list counting all syscalls made by all the processes on the host during
the time syscount was running:

Tracing syscalls, printing top 10... Ctrl+C to quit.
^C[20:12:40]
SYSCALL COUNT
recvmsg 42057
futex 35200
poll 12730
epoll_wait 6816
write 6005
read 5971
writev 4200
setitimer 2957
mprotect 2748
sendmsg 2631

Now, let’s verify this claim about low overhead. Remember that in the previous sec-
tion, just using strace on the process slowed it down by a factor of 100, even though
you were targeting a syscall that the program wasn’t making? Let’s compare how BPF
fares. To do that, let’s open two terminals. In the first one, you’ll run the syscount
command again, and in the other one, you’ll rerun the same dd one-liner used earlier.
Ready? Start by running the syscount in the first terminal:

sudo syscount-bpfcc

Then, from a second terminal window, run dd again:

dd if=/dev/zero of=/dev/null bs=1 count=500k

When the command is done, you will see output like the following in the second ter-
minal. Notice that the total time of executing the half-million read and write syscalls
took slightly longer than previously (0.509 seconds), 0.54 seconds in my example:

512000+0 records in
512000+0 records out
512000 bytes (512 kB, 500 KiB) copied, 0.541597 s, 945 kB/s

0.541597 seconds versus 0.509962 seconds is about 6% overhead, and that’s for a
close-to-worst-case scenario, where dd doesn’t do much more than read and write.
And you’ve been tracing everything that’s happening on the kernel, not just a sin-
gle PID.

 Now that you’ve confirmed that the overhead is much more acceptable for BPF,
compared to strace, let’s go back to our chaos engineering use case: learning how to
get a list of syscalls made by a process. Let’s see how to use syscount to show the top

187How to observe a process’s syscalls
syscalls for a specific PID, using the -p flag. To do that, let’s once again use two termi-
nal windows. In the first one, start legacy_server by running the following command:

~/src/examples/who-you-gonna-call/src/legacy_server

In a second terminal window, start the syscount command, but this time with the -p
flag:

sudo syscount-bpfcc \
-p $(pidof legacy_server)

You will see output like that shown in table 6.1. Note that it matches the summary of
the output you’ve gotten from strace, with 292 calls to write, although it provides
fewer details.

And voilà! Using this technique, you can now list syscalls that a process makes, without
the overhead that strace introduces. Note that syscount-bpfcc gives you only a
count, without the details that strace was printing for each syscall, but this will be suf-
ficient if you need only a rough idea of what a process is doing. As always, when
designing your chaos experiment, pick the right tool for the job.

 I’d love to talk to you more about BPF (and I’m sure we will, if we bump into each
other at the next conference), but it’s time to move on. If you feel like you need more
BPF in your life, read through the source code of syscount. It’s only a single less
$(which syscount-bpfcc) (or http://mng.bz/2erN) away! In the meantime, let’s
make a few other honorable mentions of alternative tools you might be able to use to
get similar results.

6.3.5 Other options

I want to make you aware of other related technologies that are available to use to
gain a similar level of visibility. Unfortunately, we won’t get into the details, but having
them on your radar is worthwhile. Let’s take a look.

Table 6.1 Output of syscount-bpfcc side by side with the output of strace

syscount-bpfcc strace

Tracing syscalls, printing
top 10... Ctrl+C to quit.
^C[20:39:19]
SYSCALL COUNT
write 292
accept 1
read 1
close 1
fsync 1

% time seconds usecs/call calls errors syscall
------ --------- -------- ------- ------- -----
98.34 0.002903 10 29 write
0.68 0.000020 20 close
0.61 0.000018 18 accept
0.34 0.000010 10 read
0.03 0.000001 1 1 1 fsync
------ ---------- --------- ------ ------------
100.00 0.002952 296 1 total

Traces only the calls for
pid of our legacy server

http://mng.bz/2erN

188 CHAPTER 6 Who you gonna call? Syscall-busters!
SYSTEMTAP

SystemTap (https://sourceware.org/systemtap/) is a tool for dynamically instrument-
ing running Linux systems. It uses a domain-specific language (which looks much like
AWK or C; read more at https://sourceware.org/systemtap/man/stap.1.html) to
describe various kinds of probes. The probes are then compiled and inserted into a
running kernel. The original paper describing the motivations and architecture can
be found at https://sourceware.org/systemtap/archpaper.pdf. SystemTap and BPF
overlap, and there is even a BPF backend for SystemTap, called stapbpf.

FTRACE

Ftrace (www.kernel.org/doc/Documentation/trace/ftrace.txt) is another framework
for tracing the Linux kernel. It allows for tracing many events happening in the ker-
nel, both statically and dynamically defined. It requires a kernel built with ftracer sup-
port and has been part of the kernel codebase since 2008.

 With that, we’re ready to design some chaos experiments!

6.4 Blocking syscalls for fun and profit part 1: strace
Let’s put our chaos engineering hats on and design an experiment that will tell you how
your legacy application fares when it gets errors while trying to make syscalls. So far
you’ve looked under the hood to see what the black-box System X binary is doing, all

Pop quiz: What’s BPF?
Pick one:

1 Berkeley Performance Filters: an arcane technology designed to limit the amount
of resources a process can use, to avoid one client using all available resources

2 A part of the Linux kernel that allows you to filter network traffic
3 A part of the Linux kernel that allows you to execute special code directly inside

the kernel to gain visibility into various kernel events
4 Options 2, 3, and much more!

See appendix B for answers.

Pop quiz: Is investing time into understanding BPF worthwhile if you’re
interested in system performance?
Pick one:

1 Yes
2 Definitely
3 Absolutely
4 Positively

See appendix B for answers.

https://sourceware.org/systemtap/
https://sourceware.org/systemtap/man/stap.1.html
https://sourceware.org/systemtap/archpaper.pdf
http://www.kernel.org/doc/Documentation/trace/ftrace.txt

189Blocking syscalls for fun and profit part 1: strace
without reading the source code. You’ve established that during an HTTP request
from a browser, the binary makes a small number of syscalls, as in the following output:

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 98.34 0.002903 10 292 write
 0.68 0.000020 20 1 close
 0.61 0.000018 18 1 accept
 0.34 0.000010 10 1 read
 0.03 0.000001 1 1 1 fsync
------ ----------- ----------- --------- --------- ----------------
100.00 0.002952 296 1 total

To warm up, let’s start with something simple: pick the close syscall, which is called
only a single time in our initial research, and see whether System X handles a situation
in which close returns an error. What could possibly go wrong? Let’s find out.

6.4.1 Experiment 1: Breaking the close syscall

As always, you’ll start with the observability. Luckily, you can once again use the ab
command, which will allow you to generate traffic and summarize statistics about the
latencies, throughput, and number of failed requests. And because you have no infor-
mation about it, except that the system has been running live for years, let’s assume
there will be no requests if you introduce failure on the close syscall. Therefore, you
can devise the following four simple steps to run a chaos experiment:

1 Observability: use ab to generate traffic, read the number of failures and
latencies.

2 Steady state: read ab numbers for System X under normal conditions.
3 Hypothesis: if you make calls to close fail for the System X binary, it will handle

it gracefully, and transparently to the end user.
4 Run the experiment!

You’re familiar with the ab command, and you know how to trace a process with
strace, so the question now becomes how you introduce failure into a syscall for the
System X binary. Fortunately, strace makes it easy through the use of the -e flag. Let’s
learn how to use the -e flag, by looking into the help of strace. To do that, run the
strace command with the -h flag:

strace -h

You will see the following output (abbreviated); in particular, notice the fault option
(bold font):

(...)
 -e expr a qualifying expression: option=[!]all or option=[!]val1[,val2]...
 options: trace, abbrev, verbose, raw, signal, read, write, fault
(...)

190 CHAPTER 6 Who you gonna call? Syscall-busters!
By default, running with the flag -e fault=<syscall name> returns an error (-1) on
every call to the desired syscall. To inject failure into the close syscall, you can use the
-e fault=close flag. This is the most popular form. But you can use another, more
flexible flag (although, weirdly, it’s not mentioned by strace -h), and that’s -e inject.
To learn about it, you need to read the man pages for strace by running the follow-
ing command:

man strace

You will see much more detail on how to use strace. In particular, note the section
describing the -e inject option (in bold font) and its syntax:

(...)
 -e inject=set[:error=errno|:retval=value][:signal=sig][:when=expr]
 Perform syscall tampering for the specified set of syscalls.

(...)

In fact, the flag is pretty powerful and supports the following arguments:

 fault=<syscall>—Injects a fault into a particular syscall
 error=<error name>—Specifies a particular error to return
 retval=<return code>—Overrides the actual syscall return value and sends the

specified one instead
 signal=sig—Sends a particular signal to the traced process
 when=<expression>—Controls which calls are affected, and can take three

forms:
– when=<n>—Tampers with only the nth syscall
– when=<n>+—Tampers with only the nth and all subsequent calls
– when=<n>+<step>—Tampers with the nth, and every one in step occurrences

after that

For example, the following flag fails every write syscall, starting with the second one,
by injecting an EACCES error (permission denied) as the return value:

-e inject=write:error=EACCES:when=2+

The following flag, on the other hand, overrides the result of the first syscall to fsync
(even if it is an error response) and returns a value of 0 instead:

-e inject=fsync:retval=0:when=1

All of this together gives you fairly fine-grained control over what happens to the pro-
cess on the syscall level. The price? Well, once again, the overhead. You need to keep
in mind that to compare apples to apples, you’ll also need to establish your steady
state, including the overhead of strace. But as long as you do that, you should be
ready to implement the experiment. Let’s do it!

191Blocking syscalls for fun and profit part 1: strace
EXPERIMENT 1 STEADY STATE

First, let’s establish the steady state. You’ll use three terminal windows: System X in the
first one, strace in the second, and ab in the third. Let’s start legacy_server (the Sys-
tem X binary) in the first window:

~/src/examples/who-you-gonna-call/src/legacy_server

Next, let’s attach strace to legacy_server in the second terminal window, for now
without any failures, and tracing only the close syscalls. Run the following command:

sudo strace \
-p $(pidof legacy_server) \
-e close

Finally, let’s start ab in the third window. You’ll use a concurrency of 1 to keep things
simple, and run for up to 30 seconds:

ab -c1 -t30 http://127.0.0.1:8080/

In the same third window, you will see results similar to the following. Of the ~3000
complete requests, none failed, and you achieve about 101 requests per second (all
three in bold font):

(...)
Time taken for tests: 30.003 seconds
Complete requests: 3042
Failed requests: 0
(...)
Requests per second: 101.39 [#/sec] (mean)
(...)

So that’s our steady state: no failures and about 100 requests per second. To be sure,
you could run ab a few times and see how much the values vary between runs. Now, to
the fun part: implementation time!

EXPERIMENT 1 IMPLEMENTATION

Let’s see what happens when the legacy System X gets errors on the close syscall. To
do that, let’s keep the same setup with three terminal windows, but in the second one,
close strace (press Ctrl-C) and restart it with -e inject option:

sudo strace \
-p $(pidof legacy_server) \
-e close \
-e inject=close:error=EIO

Now, in the third terminal window, start ab again with the same command:

ab -c1 -t30 http://127.0.0.1:8080/

Displays only the
close syscall

Adds failure to the close
syscall, uses error EIO

192 CHAPTER 6 Who you gonna call? Syscall-busters!
This time, the output will be different. Your ab isn’t even able to finish its run; it’s get-
ting an error (bold font):

(...)
Benchmarking 127.0.0.1 (be patient)
apr_socket_recv: Connection refused (111)
Total of 1 requests completed

If you switch back to the second window with strace, you will see that it injected the
error you asked for, and that the application then exited with error code 1, just as in
the following output. It also exited at the very first call to close (number of calls and
errors in bold font):

close(4) = -1 EIO (Input/output error) (INJECTED)
+++ exited with 1 +++
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 0.00 0.000000 0 1 1 close
------ ----------- ----------- --------- --------- ----------------
100.00 0.000000 1 1 total

And back in the first window, the application printed an error message and crashed
with the following output:

legacy_server: error closing socket: Input/output error

What does it mean? Well, our experiment hypothesis was wrong. Let’s analyze these
findings.

EXPERIMENT 1 ANALYSIS

You’ve learned that the application doesn’t handle failure gracefully when making the
close syscall; it exits with an error code of 1, signaling a generic error. You still haven’t
looked into the source code, so you can’t be sure why its authors decided to imple-
ment it that way, but using this simple experiment, you have already found a fragile
point. How fragile? Let’s see what the man pages tell us about the close syscall by run-
ning the following command in a terminal:

man 2 close

If you scroll to the ERRORS section, you will see the following output:

ERRORS
 EBADF fd isn't a valid open file descriptor.

 EINTR The close() call was interrupted by a signal; see signal(7).

 EIO An I/O error occurred.

 ENOSPC, EDQUOT
 On NFS, these errors are not normally reported against the

193Blocking syscalls for fun and profit part 1: strace
first write which exceeds the available storage space, but instead against
 a subsequent write(2), fsync(2), or close(2).

This information can be summarized as four possibilities:

1 The argument is not an open file descriptor.
2 The call was interrupted by a signal.
3 An I/O error occurred
4 A Network File System (NFS) write error is reported against a subsequent close,

instead of a write.

Again, without even reading through the source code, you can make an educated
guess that at least option 2 is possible, because any process could be interrupted by a
signal. And now you know that this kind of interruption might cause the legacy System
X to go down. Fortunately, you can test it by injecting that specific error code to see if
the program handles it correctly.

 Now that you know about this, you could try to find the place in the source code that
handles this part and make it more resilient to failure. That would definitely help the
newly promoted you sleep better. But let’s not elect to rest on our laurels quite yet. I won-
der what happens when failure occurs on one of the busier syscalls—for example, write?

6.4.2 Experiment 2: Breaking the write syscall

Recalling our handy table of syscalls, the legacy System X spent most of its time mak-
ing write syscalls (in bold font), as shown in the following output:

% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 98.34 0.002903 10 292 write
 0.68 0.000020 20 1 close
 0.61 0.000018 18 1 accept
 0.34 0.000010 10 1 read
 0.03 0.000001 1 1 1 fsync
------ ----------- ----------- --------- --------- ----------------
100.00 0.002952 296 1 total

Surely, for a piece of software that might predate our tenure at the company, some
kind of resilience and fault tolerance must be built in, right? Well, let’s find out! Much
as in the previous experiment, let’s use ab and strace, but let’s fail only every other
call to write. Our experiment then becomes as follows:

1 Observability: use ab to generate traffic, and read the number of failures and
latencies for System X.

2 Steady state: read ab numbers under normal conditions.
3 Hypothesis: if you make every other call to write fail for the System X binary, it

will handle it gracefully, and transparently to the end user.
4 Run the experiment!

If this sounds like a plan, let’s go and do it.

194 CHAPTER 6 Who you gonna call? Syscall-busters!
EXPERIMENT 2 STEADY STATE

Again, let’s start by establishing the steady state. You’ll use three terminal windows
again: System X in the first one, strace in the second, and ab in the third. Let’s start
legacy_server (System X binary) in the first window by running the following com-
mand:

~/src/examples/who-you-gonna-call/src/legacy_server

Next, let’s attach strace to legacy_server in the second terminal window, for now
without any failures, and tracing only the write syscalls. Do that by running the fol-
lowing command:

sudo strace \
-p $(pidof legacy_server) \
-e write

Finally, let’s start ab in the third window. We’ll use a concurrency of 1 to keep things
simple, and run for up to 30 seconds:

ab -c1 -t30 http://127.0.0.1:8080/

In the same third window, you will see results similar to the following. Similar to the
previous experiment, there should be no failures, but the throughput will be lower
(bold font), due to more print operations at the terminal:

(...)
Complete requests: 1587
Failed requests: 0
(...)

Your steady state is similar to the one from the previous experiment; that shouldn’t be
a surprise. Let’s now get to the fun part—the actual implementation of the failure
injection for experiment 2.

EXPERIMENT 2 IMPLEMENTATION

The fun should start when the legacy System X gets errors on the write syscall. To do
that, let’s keep the same setup with three terminal windows. And just like the last time,
in the second window, close strace (press Ctrl-C) and restart it with the -e inject
option to add the failure you designed (fail every other write syscall):

sudo strace \
-p $(pidof legacy_server) \
 -C \
-e inject=write:error=EIO:when=1+2

Now, in the third terminal window, let’s start ab again with the same command:

ab -c1 -t10 http://127.0.0.1:8080/

Displays only the
write syscall

Displays a
summary at the
end of the session

Adds failure to the close
syscall, uses error EIO, fails
on every other call starting
with the first one

195Blocking syscalls for fun and profit part 2: Seccomp
This time, you’re in for a pleasant surprise. You will see output similar to the follow-
ing. Despite every other syscall failing, overall there are still no failed requests (bold
font). But the throughput is roughly halved, at 570 requests in this example (also
bold font):

(...)
Time taken for tests: 30.034 seconds
Complete requests: 570
Failed requests: 0
(...)

In the second window, you can now kill strace by pressing Ctrl-C. Take a look at the
output. You will see a lot of lines similar to the following. You can clearly see that the
program retries failed writes, because each write is done twice, first receiving the error
you inject, and then succeeding:

(...)
write(4, "l", 1) = -1 EIO (Input/output error) (INJECTED)
write(4, "l", 1) = 1
write(4, ">", 1) = -1 EIO (Input/output error) (INJECTED)
write(4, ">", 1) = 1
(...)

The program implements some kind of algorithm to account for failed write syscalls,
which is good news—one step closer to getting paged less at night. You can also see
the cost of the additional operations: the throughput is roughly 50% of what it was
without the retries. In real life, it’s unlikely that every other write would fail, but even
in this nightmarish scenario, System X turns out to not be as easy to break as it was
with the close syscall.

 And that concludes experiment 2. This time our hypothesis was correct. High
five! You’ve learned how to discover which syscalls are made by a process and how to
tamper with them to implement experiments using strace. And in this case, focus-
ing on whether System X keeps working, rather than on how quickly it responds, it
all worked out.

 But we still have one skeleton in the closet: the overhead of strace. What can we
do if we want to block some syscalls but can’t accept the massive slowdown while doing
the experiment? Before we wrap up this chapter, I’d like to point out an alternative
solution for syscalls blocking: using seccomp.

6.5 Blocking syscalls for fun and profit part 2: Seccomp
You’ll remember seccomp from chapter 5 as a way to harden containers by restricting
the syscalls that they can make. I would like to show you how to use seccomp to imple-
ment experiments similar to what we’ve done with strace by blocking certain syscalls.
You’ll do it the easy way and the hard way, each covering a different use case. The easy
way is quick but not very flexible. The hard way is more flexible but requires more
work. Let’s start with the easy way.

196 CHAPTER 6 Who you gonna call? Syscall-busters!
6.5.1 Seccomp the easy way with Docker

An easy way to block syscalls is to leverage a custom seccomp profile when starting a
container. Probably the easiest way of achieving this is to download the default sec-
comp policy (http://mng.bz/1r9Z) and remove the syscall that you’d like to disable.

 The profile has the following structure. It’s a list of allowed calls; by default, all
calls are blocked and return an error when called (the SCMP_ACT_ERRNO default
action). Then a long list of names is explicitly allowed:

{
 "defaultAction": "SCMP_ACT_ERRNO",
...
 "syscalls": [
 {
 "names": [
 "accept",
 "accept4",
...
 "write",
 "writev"
],
 "action": "SCMP_ACT_ALLOW",
...
 },
...
]
}

Your System X binary uses the getpid syscall; let’s try to block that. To construct a pro-
file with getpid excluded, run the following commands in a terminal window. This
will store the new profile in profile.json (or if you don’t have internet access right now,
you can find it in ~/src/examples/who-you-gonna-call/profile.json in the VM):

cd ~/src/examples/who-you-gonna-call/src
curl
https://raw.githubusercontent.com/moby/moby/master/profiles/seccomp/default.j
son \
| grep -v getpid > profile.json

I have also prepared a simple Dockerfile for you to package the System X binary into a
container. You can see it by running the following command in the terminal:

cat ~/src/examples/who-you-gonna-call/src/Dockerfile

You will see the following output. You use the latest Ubuntu base image and just copy
the binary from the host:

FROM ubuntu:focal-20200423
COPY ./legacy_server /legacy_server
ENTRYPOINT ["/legacy_server"]

By default,
blocks all calls

For the syscalls with the
following list of names

Allows them
to proceed

http://mng.bz/1r9Z

197Blocking syscalls for fun and profit part 2: Seccomp
With that, you can build a Docker image with your legacy software and start it. Do that
by running the following commands from the same terminal window. The commands
will build and run a new image called legacy, use the profile you just created, and
expose port 8080 on the host:

cd ~/src/examples/who-you-gonna-call/src
make
docker build -t legacy .
docker run \
--rm \
-ti \
--name legacy \
--security-opt seccomp=./profile.json \
-p 8080:8080 \
legacy

You will see the process starting, but notice the PID equal to -1 (bold font). This is the
seccomp blocking the getpid syscall, and returning an error code -1, just as you asked
it to do:

Listening on port 8080, PID: -1

And voilà! You achieved blocking a particular syscall. That’s the easy way! Unfortu-
nately, doing it this way provides less flexibility than strace; you can’t pick every other
call and can’t attach to a running process. You also need Docker to actually run it,
which further limits suitable use cases.

 On the bright side, you achieved blocking the syscall without incurring the harsh
penalty introduced by strace. But don’t just take my word for it; let’s find out how it
compares. While the container is running, let’s rerun the same ab one-liner used to
establish the steady state in our previous experiments:

ab -c1 -t30 http://127.0.0.1:8080/

You will see much more pleasant output, similar to the following. At 36,000 requests
(bold font), you are at least 10 times faster than when tracing the close syscall (when
you achieved 3042 requests per second):

(...)
Time taken for tests: 30.001 seconds
Complete requests: 36107
Failed requests: 0
Total transferred: 14912191 bytes
HTML transferred: 10507137 bytes
Requests per second: 1203.53 [#/sec] (mean)
Time per request: 0.831 [ms] (mean)
(...)

So there you have it: seccomp the easy way, leveraging Docker. But what if the easy way
is not flexible enough? Or you can’t or don’t want to use Docker? If you need more
flexibility, let’s look at the level below—libseccomp, or seccomp the hard way.

Uses the seccomp
profile just created

Exposes the container’s
port 8080 on the host

198 CHAPTER 6 Who you gonna call? Syscall-busters!
6.5.2 Seccomp the hard way with libseccomp

Libseccomp (https://github.com/seccomp/libseccomp) is a higher-level, platform-
independent library for managing seccomp in the Linux kernel that abstracts away
the low-level syscalls and exposes easy-to-use functions for developers. It is leveraged
by Docker to implement its seccomp profiles. The best place to start to learn how to
use it is the tests (http://mng.bz/vzD4) and man pages, such as seccomp_init(3),
seccomp_rule_add(3), and seccomp_load(3). In this section, I’ll show you a brief
example of how you too can leverage libseccomp with just a few lines of C.

 First, you need to install the dependencies from the package libseccomp-dev on
Ubuntu/Debian or libseccomp-devel on RHEL/Centos. On Ubuntu, you can do
that by running the following command (this step is already done for you if you’re
using the VM that comes with this book):

sudo apt-get install libseccomp-dev

This will allow you to include the <seccomp.h> header in your programs to link against
the seccomp library (you’ll do both in a second). Let me show you how to use libsec-
comp to limit the syscalls your program can make. I prepared a small example, which
does a minimal amount of setup to change its permissions during the execution time
to allow only a small number of syscalls to go through. To see the example, run the fol-
lowing command from a terminal window:

cat ~/src/examples/who-you-gonna-call/seccomp.c

You will see a simple C program. It uses four functions from libseccomp to limit the
syscalls you’re allowed to make:

 seccomp_init—Initializes the seccomp state and prepares it for usage; returns
a context

 seccomp_rule_add—Adds a new filtering rule to the context
 seccomp_load—Loads the actual context into the kernel
 seccomp_release—Releases the filter context and frees memory when you’re

done with the context

You will see the following output (the four functions are in bold font). You start by ini-
tializing the context to block all syscalls and then explicitly allow two of them: write
and exit. Then you load the context, execute one getpid syscall and one write, and
release the context:

#include <stdio.h>
#include <unistd.h>
#include <seccomp.h>
#include <errno.h>

https://github.com/seccomp/libseccomp
http://mng.bz/vzD4

199Blocking syscalls for fun and profit part 2: Seccomp
int main(void)
{
 scmp_filter_ctx ctx;
 int rc; // note that we totally avoid any error handling here...

 // disable everything by default, by returning EPERM (not allowed)
 ctx = seccomp_init(SCMP_ACT_ERRNO(EPERM));
 // allow write...
 rc = seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(write), 0);
 // and exit - otherwise it would segfault on exit
 rc = seccomp_rule_add(ctx, SCMP_ACT_ALLOW, SCMP_SYS(exit), 0);
 // load the profile
 rc = seccomp_load(ctx);

 // write should succeed, but the pid will not
 fprintf(stdout, "getpid() == %d\n", getpid());

 // release the seccomp context
 seccomp_release(ctx);
}

Let’s compile and start the program by running the following commands in the same
terminal window:

cd ~/src/examples/who-you-gonna-call
cc seccomp.c \
-lseccomp \
-o seccomp-example
./seccomp-example

You will see the following output. The fact that you see the output at all proves that
the write syscall was allowed. The program also finished without crashing, meaning
that exit worked too. But as you can see, the result of getpid was -1 (bold font), just
as you wanted:

getpid() == -1

And that’s the hard way, which—thanks to libseccomp—is not that hard after all. You
can now leverage this mechanism to block or allow syscalls as you see fit, and you can
use it to implement chaos experiments. If you’d like to dig deeper into seccomp, I
suggest checking the following resources:

 “A seccomp Overview,” by Jake Edge, https://lwn.net/Articles/656307/
 “Using seccomp to Limit the Kernel Attack Surface” by Michael Kerrisk, http://

mng.bz/4ZEj
 “Syscall Filtering and You” by Paul Moore, https://www.paul-moore.com/docs/

devconf-syscall_filtering-pmoore-012014-r1.pdf

And with that, it’s time to wrap it up!

Initializes the context by defaulting
to returning the EPERM error

Allows
write

Allows
exit Loads the context just

configured into the kernel

Releases the
context

You need to include the
seccomp library, using
the -l flag.

Calls the output executable
“seccomp-example”

https://lwn.net/Articles/656307/
http://mng.bz/4ZEj
http://mng.bz/4ZEj
http://mng.bz/4ZEj
https://www.paul-moore.com/docs/devconf-syscall_filtering-pmoore-012014-r1.pdf
https://www.paul-moore.com/docs/devconf-syscall_filtering-pmoore-012014-r1.pdf
https://www.paul-moore.com/docs/devconf-syscall_filtering-pmoore-012014-r1.pdf

200 CHAPTER 6 Who you gonna call? Syscall-busters!
Summary
 System calls (syscalls) are a way of communicating between userland programs

and the operating system, allowing the programs to indirectly access system
resources.

 Chaos engineering can produce value even for simple systems consisting of a
single process, by testing their resilience to errors when making syscalls.

 strace is a flexible and easy-to-use tool that allows for detecting and manipu-
lating syscalls made by any program on the host, but it incurs non-negligible
overhead.

 BPF, made easier to use by projects like BCC, allows for much-lower-overhead
insight into the running system, including listing syscalls made by processes.

 Seccomp can be leveraged to implement chaos experiments designed to block
processes from making syscalls, and libseccomp makes it much easier to use
seccomp.

Injecting failure
into the JVM
Java is one of the most popular programming languages on planet Earth; in fact, it
is consistently placed in the top two or three of many popularity rankings.1 When
practicing chaos engineering, you are likely to work with systems written in Java. In
this chapter, I’m going to focus on preparing you for that moment.

 You’ll start by looking at an existing Java application to come up with ideas for
chaos experiments. Then you’ll leverage a unique feature of the Java Virtual Machine
(JVM) to inject failure into an existing codebase (without modifying the source
code) to implement our experiments. Finally, you’ll cover some existing tools that
will allow you to make the whole process easier, as well as some further reading.

This chapter covers
 Designing chaos experiments for applications

written in Java

 Injecting failure into a JVM using the
java.lang.instrument interface (javaagent)

 Using free, open source tools to implement chaos
experiments

1 Take, for example, the 2020 State of the Octoverse at https://octoverse.github.com/#top-languages or the
Tiobe Index at www.tiobe.com/tiobe-index/, two popular rankings.
201

https://octoverse.github.com/#top-languages
http://www.tiobe.com/tiobe-index/

202 CHAPTER 7 Injecting failure into the JVM
 By the end of this chapter, you will have learned how to apply chaos engineering
practices to any Java program you run into and understand the underlying mecha-
nisms that make it possible to rewrite Java code on the fly. First stop: a scenario to put
things in context.

7.1 Scenario
Your previous chapter’s success in rendering the legacy System X less scary and more
maintainable hasn’t gone unnoticed. In fact, it’s been the subject of many watercooler
chats on every floor of the office and a source of many approving nods from strangers
in the elevator. One interesting side effect is that people have started reaching out,
asking for your help to make their projects more resilient to failure. Charming at first,
it quickly turned into a “please pick a number and wait in the waiting room until your
number appears on the screen” situation. Inevitably, a priority queue had to be intro-
duced for the most important projects to be handled quickly.

 One of these high-profile projects was called FBEE. At this stage, no one knew for
sure what the acronym stood for, but everyone understood it was an enterprise-grade
software solution, very expensive, and perhaps a tad overengineered. Helping make
FBEE more resilient felt like the right thing to do, so you accepted the challenge.
Let’s see what’s what.

7.1.1 Introducing FizzBuzzEnterpriseEdition

With a little bit of digging, you find out that FBEE stands for FizzBuzzEnterpriseEdition,
and it certainly lives up to its name. It started as a simple programming game used to
interview developer candidates and has evolved over time. The game itself is simple
and goes like this—for each number between 1 and 100, do the following:

 If the number is divisible by 3, print Fizz.
 If the number if divisible by 5, print Buzz.
 If the number is divisible by both 3 and 5, print FizzBuzz.
 Otherwise, print the number itself.

Over time, however, some people felt that this simple algorithm wasn’t enough to test
enterprise-level programming skills, and decided to provide a reference implementa-
tion that was really solid. Hence, FizzBuzzEnterpriseEdition in its current form started
to exist! Let’s have a closer look at the application and how it works.

7.1.2 Looking around FizzBuzzEnterpriseEdition

If you’re following along with the VM provided with this book, a Java Development Kit
or JDK (OpenJDK) is preinstalled, and the FizzBuzzEnterpriseEdition source code, as
well as JAR files, are ready to use (otherwise, refer to appendix A for installation
instructions). In the VM, open a terminal window, and type the following command
to go to the directory that contains the application:

cd ~/src/examples/jvm

203Scenario
In that directory, you’ll see the FizzBuzzEnterpriseEdition/lib subfolder that contains
a bunch of JAR files that together make the program. You can see the JAR files by run-
ning the following command from the same directory:

ls -al ./FizzBuzzEnterpriseEdition/lib/

You will see the following output. The main JAR file, called FizzBuzzEnterpriseEdi-
tion.jar, contains the FizzBuzzEnterpriseEdition main function (bold font), as well
as some dependencies:

-rw-r--r-- 1 chaos chaos 4467 Jun 2 08:01 aopalliance-1.0.jar
-rw-r--r-- 1 chaos chaos 62050 Jun 2 08:01 commons-logging-1.1.3.jar
-rw-r--r-- 1 chaos chaos 76724 Jun 2 08:01 FizzBuzzEnterpriseEdition.jar
-rw-r--r-- 1 chaos chaos 338500 Jun 2 08:01 spring-aop-3.2.13.RELEASE.jar
-rw-r--r-- 1 chaos chaos 614483 Jun 2 08:01 spring-beans-3.2.13.RELEASE.jar
-rw-r--r-- 1 chaos chaos 868187 Jun 2 08:01 spring-context-3.2.13.RELEASE.jar
-rw-r--r-- 1 chaos chaos 885410 Jun 2 08:01 spring-core-3.2.13.RELEASE.jar
-rw-r--r-- 1 chaos chaos 196545 Jun 2 08:01 spring-expression-3.2.13.RELEASE.jar

If you’re curious about how it works, you can browse through the source code, but
that’s not necessary. In fact, in the practice of chaos engineering, you’re most likely to
be working with someone else’s code, and because it’s often not feasible to become inti-
mate with the entire codebase due to its size, it would be more realistic if you didn’t look
into that quite yet. The main function of the application is in com.seriouscompany
.business.java.fizzbuzz.packagenamingpackage.impl.Main. With that information, you
can now go ahead and start the application. Run the following command in a termi-
nal window, still from the same directory:

java \
-classpath "./FizzBuzzEnterpriseEdition/lib/*" \
com.seriouscompany.business.java.fizzbuzz.packagenamingpackage.impl.Main

After a moment, you will see the following output (abbreviated). Apart from the
expected lines with numbers and words Fizz and Buzz, you’ll also notice a few ver-
bose log messages (they’re safe to ignore):

(...)
1
2
Fizz
4
Buzz
Fizz
7
8
Fizz
Buzz
11
Fizz

Allows java to find the JAR files of the application
by passing the directory with * wildcard Specifies the path of

the main function

204 CHAPTER 7 Injecting failure into the JVM
13
14
FizzBuzz
(...)

That’s great news, because it looks like FizzBuzzEnterpriseEdition is working as
expected! It appears to correctly solve the problem at hand, and it would surely con-
vey the message that we’re doing serious business here to any new hires, killing two
birds with one stone.

 But the fact that it works in one use case doesn’t tell you anything about how resil-
ient the application is to failure, which is the very reason you agreed to look at this to
begin with. You guessed it—chaos engineering to the rescue! Let’s take a look at how
to design an experiment that exposes this piece of software to failure to test how well
it handles it.

7.2 Chaos engineering and Java
To design a meaningful chaos experiment, you need to start by making an educated
guess about the kind of failure that might affect your application. Fortunately, over
the course of the previous chapters, you’ve built a little arsenal of tools and tech-
niques that can help. For example, you could treat this program as a black box, and
apply the techniques you covered in chapter 6 to see what syscalls it’s making, and
then design experiments around blocking some of these syscalls.

 You could also leverage the tools from the BCC project you saw earlier (https://
github.com/iovisor/bcc), like javacalls, to gain insight into which methods are
being called and devise an experiment around the most prominent ones. Or you
could package the application in a Docker container and leverage what you learned in
chapter 5. The point is that for the most part, the things you learned before will be
applicable to a Java application as well.

 But there is more, because Java and the JVM offer unique and interesting features
that you can leverage for the practice of chaos engineering. I’ll focus on those in this
chapter. So instead of using one of the techniques you’ve learned before, let’s approach
the problem differently. Let’s modify an existing method on the fly to throw an excep-
tion so that you can verify your assumptions about what happens to the system as a
whole. Let me show you what I mean by that.

7.2.1 Experiment idea

The technique I want to teach you in this chapter boils down to these three steps:

1 Identify the class and method that might throw an exception in a real-world
scenario.

2 Design an experiment that modifies that method on the fly to actually throw
the exception in question.

3 Verify that the application behaves the way you expect it to behave (handles the
exception) in the presence of the exception.

https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc

205Chaos engineering and Java
Steps 2 and 3 both depend on where you decide to inject the exception, so you’re
going to need to address that first. Let’s find a good spot for the exception in the Fizz-
BuzzEnterpriseEdition code now.

FINDING THE RIGHT EXCEPTION TO THROW

Finding the right place to inject failure requires building an understanding of how (a
subset) of the application works. This is one of the things that makes chaos engineer-
ing both exciting (you get to learn about a lot of different software) and challenging
(you get to learn about a lot of different software) at the same time.

 It is possible to automate some of this discovery (see section 7.4), but the reality is
that you will need to (quickly) build understanding of how things work. You learned
techniques that can help with that in the previous chapters (for example, looking
under the hood by observing syscalls, or the BCC tools that can give you visibility into
methods being called). The right tool for the job will depend on the application itself,
its complexity level, and the sheer amount of code it’s built from. One simple yet use-
ful technique is to search for the exceptions thrown.

 As a reminder, in Java, every method needs to declare any exceptions that its code
might throw through the use of the throws keyword. For example, a made-up method
that might throw an IOException could look like the following:

public static void mightThrow(String someArgument) throws IOException {
 // definition here
}

You can find all the places in the source code where an exception might be thrown by
simply searching for that keyword. From inside the VM, run the following commands
in a terminal window to do just that:

cd ~/src/examples/jvm/src/src/main/java/com/seriouscompany/business/java/
fizzbuzz/packagenamingpackage/
grep \
 -n \
 -r \
 ") throws" .

You will see the following output, listing three locations with the throws keyword (in
bold font). The last one is an interface, so let’s ignore that one for now. Let’s focus on
the first two locations:

./impl/strategies/SystemOutFizzBuzzOutputStrategy.java:21:
public void output(final String output) throws IOException {

./impl/ApplicationContextHolder.java:41:
public void setApplicationContext(final ApplicationContext
applicationContext) throws BeansException {

./interfaces/strategies/FizzBuzzOutputStrategy.java:14:
public void output(String output) throws IOException;

Navigates to the folder to
avoid dealing with super-
long paths in the output

Prints the line
numbers

Recursively searches
in subfolders

206 CHAPTER 7 Injecting failure into the JVM
Let’s take a look at the first file from that list, SystemOutFizzBuzzOutputStrategy.java,
by running the following command in a terminal window:

cat ~/src/examples/jvm/src/src/main/java/com/seriouscompany/business/java/
fizzbuzz/packagenamingpackage/impl/strategies/SystemOutFizzBuzzOutputStrategy
.java

You will see the following output (abbreviated), with a single method called output,
capable of throwing IOException. The method is simple, printing to and flushing the
standard output. This is the class and method that was used internally when you ran
the application and saw all of the output in the console:

(...)
public class SystemOutFizzBuzzOutputStrategy implements

FizzBuzzOutputStrategy {
(...)
 @Override
 public void output(final String output) throws IOException {
 System.out.write(output.getBytes());
 System.out.flush();
 }
}

This looks like a good starting point for an educational experiment:

 It’s reasonably uncomplicated.
 It’s used when you simply run the program.
 It has the potential to crash the program if the error handling is not done

properly.

It’s a decent candidate, so let’s use it as a target for the experiment. You can go ahead
and design the experiment. Let’s do just that.

7.2.2 Experiment plan

Without looking at the rest of the source code, you can design a chaos experiment
that injects an IOException into the output method of the SystemOutFizzBuzzOutput-
Strategy class, to verify that the application as a whole can withstand that. If the
error-handling logic is on point, it wouldn’t be unreasonable to expect it to retry the
failed write and at the very least to log an error message and signal a failed run. You
can leverage the return code to know whether the application finished successfully.

 Putting this all together into our usual four-step template, this is the plan of the
experiment:

1 Observability: the return code and the standard output of the application.
2 Steady state: the application runs successfully and prints the correct output.
3 Hypothesis: if an IOException exception is thrown in the output method of the

SystemOutFizzBuzzOutputStrategy class, the application returns an error code
after its run.

4 Run the experiment!

207Chaos engineering and Java
The plan sounds straightforward, but to implement it, you need to know how to mod-
ify a method on the fly. This is made possible by a feature of the JVM often referred to
as javaagent, which allows us to write a class that can rewrite the bytecode of any
other Java class that is being loaded into the JVM. Bytecode? Don’t worry, we’ll cover
that in a moment.

 Modifying bytecode on the fly is an advanced topic that might be new to even a sea-
soned Java developer. It is of particular interest in the practice of chaos engineering; it
allows you to inject failure into someone else’s code to implement various chaos
experiments. It’s also easy to mess things up, because this technique gives you access
to pretty much any and all code executed in the JVM, including built-in classes. It is
therefore important to make sure that you understand what you’re doing, and I’m
going to take my time to guide you through this.

 I want to give you all the tools you need in order to be able to implement this
experiment:

 A quick refresher of what bytecode is, and how to peek into it, before you start
modifying it

 An easy way to see the bytecode generated from Java code
 An overview of the java.lang.instrument interface, and how to use it to imple-

ment a class that can modify other classes
 A walk-through of how to implement our experiment with no external

dependencies
 Finally, once you understand how modifying code on the fly works under the

hood, some higher-level tools that can do some of the work for you

Let’s start at the beginning by acquainting you with the bytecode.

7.2.3 Brief introduction to JVM bytecode

One of the key design goals of Java was to make it portable—the write once, run any-
where (WORA) principle. To that end, Java applications run inside a JVM. When you
run an application, it’s first compiled from the source code (.java) into Java bytecode
(.class), which can then be executed by any compatible implementation of the JVM,
on any platform that supports it. The bytecode is independent of the underlying hard-
ware. This process is summed up in figure 7.1.

 What does a JVM look like? You can see the formal specs for all Java versions for
free at https://docs.oracle.com/javase/specs/, and they are pretty good. Take a look
at the Java 8 JVM specification (that’s the version you’re running in the VM shipped
with this book) at http://mng.bz/q9oK. It describes the format of a .class file, the
instruction set of the VM (similar to an instruction set of a physical processor), and
the structure of the JVM itself.

 It’s good to know that you can always look things up in the formal specification.
But nothing teaches better than doing things ourselves, so let’s get our hands dirty
and look at what this process is like in practice. You want to modify other people’s
bytecode, so before you do that, let’s peek into what the bytecode looks like.

https://docs.oracle.com/javase/specs/
http://mng.bz/q9oK

208 CHAPTER 7 Injecting failure into the JVM
READING THE BYTECODE

OK, so you want to modify someone else’s code on the fly to inject failure for our
chaos experiment. If you’re serious about it (and want to be responsible), you need to
become familiar with what bytecode actually looks like. Let’s go through the whole
process of compiling, running, and looking into the bytecode of a simple class.

 To make things easy to start, I prepared a little sample application that you can
work on. Let’s start by opening a terminal window in your VM, and going to the loca-
tion of the example by running the following command:

cd ~/src/examples/jvm/

From within that directory, you will find a subfolder structure (./org/my) with an
example program (Example1.java). The directory structure is important, as this needs
to match the package name, so let’s stick to the same folder for the rest of this chapter.
You can see the contents of the example program by running this command:

cat ./org/my/Example1.java

You will see the following Hello World program, a class called Example1. Note that it
contains a main method that does a single call to println (both in bold font) to print
a simple message to the standard output:

package org.my;

class Example1
{
 public static void main(String[] args)
 {
 System.out.println("Hello chaos!");
 }
}

JVM

MyClass()

Compile

Load

MyClass.java

MyClass.class

1. The source files (.java) are compiled
into bytecode files (.class).

2. Bytecode files are
loaded by the JVM.

3. The JVM instantiates and
runs the desired class.

Figure 7.1 High-level overview of running Java code

209Chaos engineering and Java
Before you can run the program, it needs to be compiled into bytecode. You can do
that using the javac command-line tool. In our simple example, you just need to spec-
ify the file path. Compile it by running the following command:

javac ./org/my/Example1.java

No output means that there were no errors.

TIP If you’d like to learn more about what the compiler did there, run the
same command with the -verbose flag added. Where did the bytecode file
go? It will be sitting next to the source file, with the filename corresponding
to the name of the class itself.

Let’s take a look at that subfolder again by running the following command:

ls -l ./org/my/

You will see output just like the following; note the new file, Example1.class, the result
of you compiling the java file (bold font):

(...)
-rw-r--r-- 1 chaos chaos 422 Jun 4 08:44 Example1.class
-rw-r--r-- 1 chaos chaos 128 Jun 3 10:43 Example1.java
(...)

To run it, you can use the java command and specify the fully qualified class name
(with the package prefix); remember, you still need to be in the same directory:

java org.my.Example1

You will see output of the Hello World program:

Hello chaos!

The program runs, which is nice, but I bet this is all old news to you. Even if you are
not very familiar with Java, the steps you took look pretty much like any other com-
piled language. What you might have not seen before is the bytecode it produces. For-
tunately, JDK ships with another tool, javap, which allows us to print the bytecode
contents of the class in a human-readable form. To do it to our org.my.Example1
class, run the following command:

javap -c org.my.Example1

You will see output like the following (abbreviated to show just the main method),
describing what JVM machine instructions were generated for our Example1 class. You
will see four instructions:

Compiled from "Example1.java"
class org.my.Example1 {
(...)

210 CHAPTER 7 Injecting failure into the JVM
 public static void main(java.lang.String[]);
 Code:
 0: getstatic #2 // Field

java/lang/System.out:Ljava/io/PrintStream;
 3: ldc #3 // String Hello chaos!
 5: invokevirtual #4 // Method

java/io/PrintStream.println:(Ljava/lang/String;)V
 8: return
}

Let’s take a look at a single instruction to understand its format. For example, this
one:

3: ldc #3 // String Hello chaos!

The format is as follows:

 Relative address
 Colon
 Name of the instruction (you can look it up in the JVM spec document)
 Argument
 Comment describing the argument (human-readable format)

Translating the instructions making up the main method into English, you have a
getstatic instruction that gets a static field out of type java.io.PrintStream from
class java.lang.System,2 and then an ldc instruction that loads a constant string
“Hello chaos!” and pushes it onto what’s called the operand stack. This is followed by
the invokevirtual instruction, which invokes instance method .println and pops the
value previously pushed to the operand stack. Finally, the return instruction ends
the function call. And voilà! That’s what is written in the Example1.java file, as far as
the JVM is concerned.

 This might feel a bit dry. Why is it important from the perspective of chaos engi-
neering? Because this is what you’re going to be modifying to inject failure in our
chaos experiments.

 You can look up all the details about these instructions from the docs I mentioned
earlier (http://mng.bz/q9oK) but that’s not necessary right now. As a practitioner of
chaos engineering, I want you to know that you can easily access the bytecode, see it in
a human-readable(-ish) form, and look up any definitions you might want to under-
stand in more detail.

 There are plenty of other interesting things about the JVM, but for this chapter, I
just need to make you feel comfortable with some basic bytecode. This sneak peek of
the JVM bytecode gives just enough of the information you need to understand the
next step: instrumenting the bytecode on the fly. Let’s take a look at that now.

2 For documentation on out, see http://mng.bz/PPo2. For documentation on java.io.Printstream, see
http://mng.bz/JDVp. For documentation on java.lang.System, see http://mng.bz./w9y7.

http://mng.bz/PPo2
http://mng.bz/JDVp
http://mng.bz./w9y7
http://mng.bz/q9oK

211Chaos engineering and Java
USING -JAVAAGENT TO INSTRUMENT THE JVM
OK, so you’re on a quest to implement the chaos experiment you’ve designed, and to
do that, you need to know how to modify the code on the fly. You can do that by lever-
aging a mechanism directly provided by the JVM.

 This is going to get a little technical, so let me just say this: you will learn about higher-
level tools that make it easier in section 7.3, but first it’s important to learn what the JVM
actually offers, in order to understand the limitations of this approach. Skipping straight
to the higher-level stuff would be a little bit like driving a car without understanding how
the gearbox works. It might be fine for most people, but it won’t cut it for a race-car
driver. When doing chaos engineering, I need you to be a race-car driver.

 With that preamble out of the way, let’s dive in and take a look at what the JVM has
to offer. Java comes with instrumentation and code transformation capabilities built
in, by means of the java.lang.instrument package that has been available since
JDK version 1.5 (http://mng.bz/7VZx). People often refer to it as javaagent, because
that’s the name of the command-line argument that you use to attach the instrumen-
tation. The package defines two interfaces, both of which are needed for you to inject
failure into a class:

 ClassFileTransformer—Classes implementing this interface can be registered
to transform class files of a JVM; it requires a single method called transform.

 Instrumentation—Allows for registering instances implementing the Class-
FileTransformer interface with the JVM to receive classes for modification
before they’re used.

Together, they make it possible to inject code into the class, just as you need for the
experiment. This setup allows you to register a class (implementing ClassFile-
Transformer) that will receive the bytecode of all other classes before they are used,
and will be able to transform them. This is summarized in figure 7.2.

transformer.java

Transformer()

MyClass.class .transform()
MyClass.class

(transformed)

JVM

3. Modified class is used in the JVM2. The JVM passes the required
classes’ bytecode to the
transformer instance.

1. A class implementing the

interface can be registered to
ClassFileTransformer

transform the bytecode of all
other classes.

Figure 7.2 Instrumenting JVM with the java.lang.instrument package

http://mng.bz/7VZx

212 CHAPTER 7 Injecting failure into the JVM
Now, I know that this is a lot of new information, so I suggest absorbing that informa-
tion in two steps:

1 Let’s go through setting everything up with javaagent, but hold off from modi-
fying any code.

2 Add the actual code to modify the bytecode of the classes you’re interested in
separately.

To implement the first part, you just need to follow the steps that the architects of the
java.lang.instrument package came up with. To make your life easier, let me sum-
marize it for you. It all boils down to these four steps:

1 Write a class implementing the ClassFileTransformer interface; let’s call it
ClassPrinter.

2 Implement another class with the special method called premain that will
register an instance of ClassPrinter, so that the JVM knows to use it; let’s
call it Agent.

3 Package the Agent and ClassPrinter classes into a JAR file with an extra attri-
bute, Premain-Class, pointing to the class with the premain method (Agent).

4 Run Java with an extra argument, -javaagent:/path/to/agent.jar, pointing
to the JAR file created in the previous step.

Let’s do that! I’ve prepared for you the three files that you need. First, you need the
ClassPrinter class, which you can see by running the following command in a termi-
nal window:

cat ~/src/examples/jvm/org/agent/ClassPrinter.java

You will see the contents of a class with a single method, transform, that is needed to
satisfy the ClassFileTransformer interface (both in bold font). You’ll notice that the
method has a bunch of arguments that are required by the interface. In the use case
of our chaos experiment, you’ll need only two of them (both in bold font):

 className—The name of the class to transform
 classfileBuffer—The actual binary content of the class file

Pop quiz: What’s javaagent?
Pick one:

1 A secret service agent from Indonesia from a famous movie series
2 A flag used to specify a JAR that contains code to inspect and modify the code

loaded into the JVM on the fly
3 Archnemesis of the main protagonist in a knockoff version of the movie The Matrix

See appendix B for answers.

213Chaos engineering and Java
For now, as I suggested earlier, let’s skip the modification part and instead just print
the name and size for each class that the JVM will call the agent with, and return the
class file buffer unchanged. This will effectively list all of the classes loaded by the
JVM, in the order that they are loaded, showing you that the javaagent mechanism
worked:

package org.agent;
import java.lang.instrument.ClassFileTransformer;
import java.lang.instrument.IllegalClassFormatException;
import java.security.ProtectionDomain;
class ClassPrinter implements ClassFileTransformer {
 public byte[] transform(ClassLoader loader,
 String className,
 Class<?> classBeingRedefined,
 ProtectionDomain protectionDomain,
 byte[] classfileBuffer)
 throws IllegalClassFormatException {
 System.out.println("Found class: " + className
 + " (" + classfileBuffer.length + " bytes)");
 return classfileBuffer;
 }
}

Now, you need to actually register that class so that the JVM uses it for instrumenta-
tion. This is straightforward too, and I prepared a sample class that does that for you.
You can see it by running the following command in a terminal window:

cat ~/src/examples/jvm/org/agent/Agent.java

You will see the following Java class. It imports the Instrumentation package, and
implements the special premain method (in bold font), which will be called by the
JVM before the main method is executed. It uses the addTransformer method to regis-
ter an instance of the ClassPrinter class (also in bold font). This is how you actually
make the JVM take an instance of your class and allow it to modify the bytecode of all
other classes:

package org.agent;

import java.lang.instrument.Instrumentation;

class Agent {
 public static void premain(String args,
 Instrumentation instrumentation){
 ClassPrinter transformer = new ClassPrinter();
 instrumentation.addTransformer(transformer);
 }
}

And finally, the pièce de résistance is a special attribute, Premain-Class, that needs to
be set when packaging these two classes into a JAR file. The value of the attribute

The name of the class
brought by the JVM for
transformation

The binary content
of the class file for
the class

Prints just the name of the
class and its binary size

Returns the class
unchanged

The premain method needs to
have this special signature.

An object implementing
the Instrumentation

interface will be passed
by the JVM when the

method is called.

Uses addTransformer method to register
an instance of your ClassPrinter class

214 CHAPTER 7 Injecting failure into the JVM
needs to point to the name of the class with the premain method (org.agent.Agent
in this case) so that the JVM knows which class to call. The easiest way to do that is to
create a manifest file. I prepared one for you. To see it, run the following command in
a terminal window:

cat ~/src/examples/jvm/org/agent/manifest.mf

You will see the following output. Note the Premain-Class attribute, specifying the
fully qualified class name of our Agent class, the one with the premain method.
Once again, this is how you tell the JVM to use this particular class to attach the
instrumentation.

Manifest-Version: 1.0
Premain-Class: org.agent.Agent

And that’s all the ingredients you need. The last step is to package it all together in
a format that’s required by the JVM as the -javaagent argument, a simple JAR file
with all the necessary classes and the special attribute you just covered. Let’s now
compile the two classes and build our JAR file into agent1.jar by running the follow-
ing commands:

cd ~/src/examples/jvm
javac org/agent/Agent.java
javac org/agent/ClassPrinter.java
jar vcmf org/agent/manifest.mf agent1.jar org/agent
Once that’s ready, you’re all done. You can go ahead and leverage the
-javaagent argument of the java command, to use our new instrumentation.
Do that by running the following command in a terminal window:
cd ~/src/examples/jvm
java \
 -javaagent:./agent1.jar \
 org.my.Example1

You will see the following output (abbreviated), with your instrumentation listing all
the classes passed to it. There are a bunch of built-in classes, and then the name of
your target class, org/my/Example1 (bold font). Eventually, you can see the familiar
Hello chaos! output of the main method of that target class (also bold font):

(...)
Found class: sun/launcher/LauncherHelper (14761 bytes)
Found class: java/util/concurrent/ConcurrentHashMap$ForwardingNode (1618 bytes)
Found class: org/my/Example1 (429 bytes)
Found class: sun/launcher/LauncherHelper$FXHelper (3224 bytes)
Found class: java/lang/Class$MethodArray (3642 bytes)
Found class: java/lang/Void (454 bytes)
Hello chaos!
(...)

Uses the -javaagent argument to specify
the path to your instrumentation JAR file

Runs the Example1 class
you had looked at before

215Chaos engineering and Java
So it worked; very nice! You have just instrumented your JVM and didn’t even break a
sweat in the process. You’re getting really close to being able to implement our chaos
experiment now, and I’m sure you can’t wait to finish the job. Let’s do it!

7.2.4 Experiment implementation

You are one step away from being able to implement our chaos experiment. You know
how to attach your instrumentation to a JVM and get all the classes with their byte-
code passed to you. Now you just need to figure out how to modify the bytecode to
include the failure you need for the experiment. You want to inject code automatically
into the class you’re targeting, to simulate it throwing an exception. As a reminder,
this is the class:

(...)
public class SystemOutFizzBuzzOutputStrategy implements

FizzBuzzOutputStrategy {
(...)
 @Override
 public void output(final String output) throws IOException {
 System.out.write(output.getBytes());
 System.out.flush();
 }
}

For this experiment, it doesn’t really matter where the exception is thrown in the
body of this method, so you may as well add it at the beginning. But how do you know
what bytecode instructions to add? Well, a simple way to figure that out is to copy
some existing bytecode. Let’s take a look at how to do that now.

WHAT INSTRUCTIONS SHOULD YOU INJECT?
Because the javaagent mechanism operates on bytecode, you need to know what
bytecode instructions you want to inject. Fortunately, you now know how to look
under the hood of a .class file, and you can leverage that to write the code you want to
inject in Java, and then see what bytecode it produces. To do that, I prepared a simple
class throwing an exception. Run the following command inside a terminal window in
your VM to see it:

cat ~/src/examples/jvm/org/my/Example2.java

You will see the following code. It has two methods—a static throwIOException that does
nothing but throw an IOException, and main that calls that same throwIOException
method (both in bold font):

package org.my;
import java.io.IOException;
class Example2
{
 public static void main(String[] args) throws IOException

216 CHAPTER 7 Injecting failure into the JVM
 {
 Example2.throwIOException();
 }

 public static void throwIOException() throws IOException
 {
 throw new IOException("Oops");
 }
}

I added this extra method to make things easier; calling a static method with no argu-
ments is really simple in the bytecode. But don’t take my word for it. You can check
that by compiling the class and printing its bytecode. Run the following commands in
the same terminal:

cd ~/src/examples/jvm/
javac org/my/Example2.java
javap -c org.my.Example2

You will see the following bytecode (abbreviated to show only the main method).
Notice that it’s a single invokestatic JVM instruction, specifying the method to call,
as well as no arguments and no return value (which is represented by ()V in the com-
ment). This is good news, because you’re going to need to add only a single instruc-
tion injected into your target method:

(...)
 public static void main(java.lang.String[]) throws java.io.IOException;
 Code:
 0: invokestatic #2 // Method throwIOException:()V
 3: return
(...)

To make your target method SystemOutFizzBuzzOutputStrategy.output throw an
exception, you can add a single invokestatic instruction to the beginning of it, point-
ing to any static method throwing the exception you want, and you’re done! Let’s
finally take a look at how to put all of this together.

INJECTING CODE INTO JVM ON THE FLY

You know what instructions you want to inject, where to inject them, and how to use
the instrumentation to achieve that. The last question is how to actually modify that
bytecode that the JVM will pass to your class. You could go back to the JVM specs,
open the chapter on the class file format, and implement code to parse and modify
the instructions. Fortunately, you don’t need to reinvent the wheel. The following are
a few frameworks and libraries that you can use:

 ASM, https://asm.ow2.io/
 Javassist, www.javassist.org
 Byte Buddy, https://bytebuddy.net/

https://asm.ow2.io/
https://bytebuddy.net/
http://www.javassist.org

217Chaos engineering and Java
 The Byte Code Engineering Library, https://commons.apache.org/proper/
commons-bcel/

 cglib, https://github.com/cglib/cglib

In the spirit of simplicity, I’ll show you how to rewrite a method by using the ASM
library, but you could probably pick any one of these frameworks. The point here is
not to teach you how to become an expert at modifying Java classes. It’s to give you
just enough understanding of how that process works so you can design meaningful
chaos experiments.

 In your real-life experiments, you’re probably going to use one of the higher-level
tools detailed in section 7.3, but it is important to understand how to implement a
complete example from scratch. Do you remember the race-car driver and gearbox
analogy? When doing chaos engineering, you need to know the limitations of your
methods, and that’s harder to do when using tools that do things you don’t under-
stand. Let’s dig in.

Remember that earlier I suggested splitting the implementation into two steps, the
first being the org.agent package you used for printing classes passed to your instru-
mentation by the JVM? Let’s take the second step now and build on top of that to add
the bytecode-rewriting part.

 I prepared another package, org.agent2, that implements the modification that
you want to make using ASM. Note that ASM already ships with OpenJDK, so there is
no need to install it. ASM is a large library with good documentation, but for our pur-
poses you will use a very small subset of what it can do. To see it, run the following
command from the terminal inside the VM:

cd ~/src/examples/jvm/
cat org/agent2/ClassInjector.java

You will see the following class, org.agent2.ClassInjector. It is Java, after all, so it’s a
little bit verbose. It implements the same transform method that needs to be regis-
tered for instrumenting the bytecode of classes inside the JVM, just as you saw before.
It also implements another method, a static throwIOException, that prints a message
to stderr and throws an exception. The transform method looks for the (very long)
name of the class, and does any rewriting only if the class name matches. The method
uses an ASM library ClassReader instance to read the bytecode of the class into an

Groovy and Kotlin
If you’ve ever wondered how Apache Groovy (www.groovy-lang.org/) and Kotlin
(https://kotlinlang.org/) languages were implemented to run in the JVM, the answer
is that they use ASM to generate the bytecode. So do the higher-level libraries like
Byte Buddy (https://bytebuddy.net/).

https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/
https://github.com/cglib/cglib
http://www.groovy-lang.org/
https://kotlinlang.org/
https://bytebuddy.net/

218 CHAPTER 7 Injecting failure into the JVM
internal representation as an instance of the ClassNode class. That ClassNode instance
allows you to do the following:

1 Iterate through the methods.
2 Select the one called output.
3 Inject a single invokestatic instruction as the first instruction, calling to your

throwIOException static method.

This is depicted in figure 7.3.

Take a look at the ClassInjector class in the following listing.

package org.agent2;

import java.io.IOException;
import java.util.List;
import java.lang.instrument.ClassFileTransformer;
import java.lang.instrument.IllegalClassFormatException;
import java.security.ProtectionDomain;

import jdk.internal.org.objectweb.asm.ClassReader;
import jdk.internal.org.objectweb.asm.ClassWriter;

Listing 7.1 ClassInjector.java

class_injector.java

Classlnjector()

JVM

.transform()

SystemOutFizzBuzzOutput

Strategy.class

SystemOutFizzBuzzOutput

Strategy.class

public void (...)output
throws 10Exception {

. . .
}

public void (...)output
throws IOException {
Classinjector.

throwIOException();
. . .

}

1. A implementingClasslnjector

the ClassFileTransformer

interface can be registered to
perform class transformations.

3. A new call to Classlnjector.throwIOException()

is added in order to implement the chaos experiment.
2. modifies the output method ofClasslnjector

class.SystemOutFizzBuzzOutputStrategy

Figure 7.3 Instrumenting the JVM with the java.lang.instrument package

219Chaos engineering and Java

t
metho

to im
the
Tra

s
o

f

T
in
st

import jdk.internal.org.objectweb.asm.tree.*;
import jdk.internal.org.objectweb.asm.Opcodes;
public class ClassInjector implements ClassFileTransformer {
 public String targetClassName =

"com/seriouscompany/business/java/fizzbuzz/packagenamingpackage/impl/
strategies/SystemOutFizzBuzzOutputStrategy";

 public byte[] transform(ClassLoader loader, String className,
 Class<?> classBeingRedefined, ProtectionDomain protectionDomain,
 byte[] classfileBuffer) throws IllegalClassFormatException {

 if (className.equals(this.targetClassName)){

 ClassNode classNode = new ClassNode();
 new ClassReader(classfileBuffer).accept(classNode, 0);
 classNode.methods.stream()
 .filter(method -> method.name.equals("output"))
 .forEach(method -> {
 InsnList instructions = new InsnList();
 instructions.add(new MethodInsnNode(
 Opcodes.INVOKESTATIC,
 "org/agent2/ClassInjector",
 "throwIOException",
 "()V",
 false // not a method
));
 method.maxStack += 1;
 method.instructions.insertBefore(
 method.instructions.getFirst(), instructions);
 });
 final ClassWriter classWriter = new ClassWriter(0);
 classNode.accept(classWriter);
 return classWriter.toByteArray();
 }
 return classfileBuffer;
 }
 public static void throwIOException() throws IOException
 {
 System.err.println("[CHAOS] BOOM! Throwing");
 throw new IOException("CHAOS");
 }
}

Once again, to satisfy the requirements of the format accepted by the javaagent argu-
ment in order for the JVM to use this class as instrumentation, you need the following:

 A class with a method called premain that creates and registers an instance of
the ClassInjector class

 A manifest including the special attribute Premain-Class, pointing to the class
with the premain method

 A JAR file packaging it all together, so you can pass in the javaagent argument

The same
ransform
d needed
plement

ClassFile-
nsformer
interface

ClassReader
reads and parse
the bytecode int
an internal
representation o
type ClassNode.

Filters only
the method

called
“output”

Creates a new instruction of type
invokestatic, calling a static
method throwIOException on
the org/agent2/ClassInjector
class with no arguments and
no return value

o allow an extra
struction on the
ack, you need to
increase its size.

Inserts the
instructions at the
beginning of the
method

Generates the
resulting bytecode by
using a ClassWriter
class

220 CHAPTER 7 Injecting failure into the JVM
I wrote the simple premain class org.agent2.Agent for you, which you can see by run-
ning the following command from the same folder:

cat org/agent2/Agent.java

You will see the following class, implementing the premain method and using the
same addTransformer method you used earlier to register an instance of the Class-
Injector class with the JVM. Once again, this is how you tell the JVM to pass all the
classes being loaded to ClassInjector for modifications:

package org.agent2;
import java.lang.instrument.Instrumentation;
class Agent {
 public static void premain(String args, Instrumentation instrumentation){
 ClassInjector transformer = new ClassInjector();
 instrumentation.addTransformer(transformer);
 }
}

I also prepared a manifest, very similar to the previous one, so that you can build the
JAR the way it’s required by the javaagent argument. You can see it by running the fol-
lowing command from the same directory:

cat org/agent2/manifest.mf

You’ll see the following output. The only difference from the previous manifest is that
it points to the new agent class (bold font):

Manifest-Version: 1.0
Premain-Class: org.agent2.Agent

The last part of the puzzle is that in order to have access to the internal.jdk pack-
ages, you need to add the -XDignore.symbol.file flag when compiling your classes.
With that, you’re ready to prepare a new agent JAR; let’s call it agent2.jar. Create it by
running the following commands, still from the same directory:

cd ~/src/examples/jvm/
javac -XDignore.symbol.file org/agent2/Agent.java
javac -XDignore.symbol.file org/agent2/ClassInjector.java
jar vcmf org/agent2/manifest.mf agent2.jar org/agent2

The resulting agent2.jar file will be created in the current directory and can be used
to implement our experiment. Ready? Let’s run it.

RUNNING THE EXPERIMENT

Finally, you have everything set up to run the experiment and see what happens. As a
reminder, this is our experiment plan:

1 Observability: the return code and the standard output of the application.
2 Steady state: the application runs successfully and prints the correct output.

221Chaos engineering and Java
3 Hypothesis: if an IOException exception is thrown in the output method of the
SystemOutFizzBuzzOutputStrategy class, the application returns an error code
after it’s run.

4 Run the experiment!

First, let’s establish the steady state by running the application unmodified and inspect-
ing the output and the return code. You can do that by running the following com-
mand in a terminal window:

java \
-classpath "./FizzBuzzEnterpriseEdition/lib/*" \
com.seriouscompany.business.java.fizzbuzz.packagenamingpackage.impl.Main \
2> /dev/null

After a few seconds, you will see the following output (abbreviated). The output is cor-
rect:

1
2
Fizz
4
Buzz
(...)

Let’s verify the return code, by running the following command in the same terminal
window:

echo $?

The output will be 0, indicating a successful run. So the steady state is satisfied: you have
the correct output and a successful run. Let’s now run the experiment! To run the same
application, but this time using your instrumentation, run the following command:

java \
-javaagent:./agent2.jar
-classpath "./FizzBuzzEnterpriseEdition/lib/*" \
com.seriouscompany.business.java.fizzbuzz.packagenamingpackage.impl.Main \
2> /dev/null

This time, there will be no output, which is understandable, because you modified the
function doing the printing to always throw an exception. Let’s verify the other
assumption of our hypothesis—namely, that the application handles it well by indicat-
ing an error as a return value. To check the return code, rerun the same command in
the same terminal:

echo $?

Allows java to find the JAR files of the application,
by passing the directory with * wildcard Specifies the path of

the main function

Removes the noisy logging messages

Adds the java agent instrumentation
JAR you’ve just built

222 CHAPTER 7 Injecting failure into the JVM
The output is still 0, failing our experiment and showing a problem with the applica-
tion. Turns out that the hypothesis about FizzBuzzEnterpriseEdition was wrong.
Despite not printing anything, it doesn’t indicate an error as its return code. Houston,
we have a problem!

 This has been a lot of learning, so I’d like you to appreciate what you just did:

 You started with an existing application you weren’t familiar with.
 You found a place that throws an exception and designed a chaos experiment

to test whether an exception thrown in that place is handled by the application
in a reasonable way.

 You prepared and applied JVM instrumentation, with no magical tools and
external dependencies.

 You prepared and applied automatic bytecode modifications, with no external
dependencies other than the ASM library already provided by the OpenJDK.

 You ran the experiment, modified the code on the fly, and demonstrated scien-
tifically that the application was not handling the failure well.

But once again, it’s OK to be wrong. Experiments like this are supposed to help you
find problems with software, as you just did. And it would make for a pretty boring
chapter if you did all that work, and it turned out to be working just fine, wouldn’t it?

 The important thing here is that you added another tool to your toolbox and
demystified another technology stack. Hopefully, this will come in handy sooner rather
than later.

 Now that you understand how the underlying mechanisms work, you’re allowed to
cheat a little bit—to take shortcuts. Let’s take a look at some useful tools you can lever-
age to avoid doing so much typing in your next experiments to achieve the same effect.

7.3 Existing tools
Although it’s important to understand how the JVM java.lang.instrument package
works in order to design meaningful chaos experiments, you don’t need to reinvent
the wheel every time. In this section, I’ll show you a few free, open source tools that
you can use to make your life easier. Let’s start with Byteman.

Pop quiz: Which of the following is not built into the JVM?
Pick one:

1 A mechanism for inspecting classes as they are loaded
2 A mechanism for modifying classes as they are loaded
3 A mechanism for seeing performance metrics
4 A mechanism for generating enterprise-ready names from regular, boring names.

For example: “butter knife” -> “professional, stainless-steel-enforced, dishwasher-
safe, ethically sourced, low-maintenance butter-spreading device”

See appendix B for answers.

223Existing tools
7.3.1 Byteman

Byteman (https://byteman.jboss.org/) is a versatile tool that allows for modifying the
bytecode of JVM classes on the fly (using the same instrumentation you learned in
this chapter) to trace, monitor, and overall mess around with the behavior of your
Java code.

 Its differentiating factor is that it comes with a simple domain-specific language
(DSL) that’s very expressive and allows you to describe how you’d modify the source
code of the Java class, mostly forgetting about the actual bytecode structure (you can
afford to do that, because you already know how it works under the hood). Let’s look
at how to use it, starting by installing it.

INSTALLING BYTEMAN

You can get the binary releases, source code, and documentation for all versions of
Byteman at https://byteman.jboss.org/downloads.html. At the time of writing, the lat-
est version is 4.0.11. Inside your VM, that version is downloaded and unzipped to
~/src/examples/jvm/byteman-download-4.0.11. If you’d like to download it on a dif-
ferent host, you can do that by running the following command in a terminal:

wget https://downloads.jboss.org/byteman/4.0.11/byteman-download-4.0.11-bin.zip
unzip byteman-download-4.0.11-bin.zip

This will create a new folder called byteman-download-4.0.11, which contains Byteman
and its docs. You’re going to need the byteman.jar file, which can be found in the lib
subfolder. To see it, run the following command in the same terminal:

ls -l byteman-download-4.0.11/lib/

You will see three JAR files, and you’re interested in the byteman.jar (bold font),
which you can use as a -javaagent argument:

-rw-rw-r-- 1 chaos chaos 10772 Feb 24 15:32 byteman-install.jar
-rw-rw-r-- 1 chaos chaos 848044 Feb 24 15:31 byteman.jar
-rw-rw-r-- 1 chaos chaos 15540 Feb 24 15:29 byteman-submit.jar

That’s it. You’re good to go. Let’s use it.

USING BYTEMAN

To illustrate how much easier it is to use Byteman, let’s reimplement the same modifi-
cation you did for the chaos experiment from section 7.2.4. To do that, you need to
follow three steps:

1 Prepare a Byteman script that throws an exception in the targeted method (let’s
call it throw.btm).

2 Run Java using byteman.jar as the -javaagent argument.
3 Point byteman.jar to use your throw.btm script.

https://byteman.jboss.org/
https://byteman.jboss.org/downloads.html

224 CHAPTER 7 Injecting failure into the JVM

Th

exce
Let’s start with the first point. A Byteman script is a flat text file, with any number of
rules, each of which follows this format (the programmer’s guide is available at http://
mng.bz/mg2n):

 # rule skeleton
 RULE <rule name>
 CLASS <class name>
 METHOD <method name>
 BIND <bindings>
 IF <condition>
 DO <actions>
 ENDRULE

I prepared a script that does exactly what the chaos experiment you implemented ear-
lier does. You can see it by running the following command in a terminal window:

cd ~/src/examples/jvm/
cat throw.btm

You will see the following rule. It does exactly what you did before: it changes the method
output in class SystemOutFizzBuzzOutputStrategy to throw a java.io.IOException
exception at the entry into the method:

RULE throw an exception at output
CLASS SystemOutFizzBuzzOutputStrategy
METHOD output
AT ENTRY
IF true
DO
 throw new java.io.IOException("BOOM");
ENDRULE

With that in place, let’s handle steps 2 and 3. When using the -javaagent parameter
with Java, it is possible to pass extra arguments after the equals sign (=). With Byteman,
the only parameter supported is script=<location of the script to execute>.
Therefore, to run the same FizzBuzzEnterpriseEdition class you did before, but
have Byteman execute your script (bold font), all you need to do is run the following
command:

cd ~/src/examples/jvm/
java \
 -javaagent:./byteman-download-4.0.11/lib/byteman.jar=script:throw.btm \
 -classpath "./FizzBuzzEnterpriseEdition/lib/*" \
 com.seriouscompany.business.java.fizzbuzz.packagenamingpackage.impl.Main \
 2>/dev/null

You will see no output at all, just as in the experiment you ran before. You achieved the
same result without writing or compiling any Java code or dealing with any bytecode.

Modifies the class
SystemOutFizzBuzzOutputStrategy

Modifies the method output

At the entry into the method

Always executes (it’s possible to add
conditions here for the rule to trigger).

rows
a new
ption

Uses Byteman JAR file as a javaagent, and
specifies your script after the “=” sign

Discards the stderr to avoid
looking at the logging noise

http://mng.bz/mg2n
http://mng.bz/mg2n
http://mng.bz/mg2n

225Existing tools
 Compared to writing your own instrumentation, using Byteman is simple, and the
DSL makes it easy to quickly write rules, without having to worry about bytecode
instructions at all. It also offers other advanced features, like attaching to a running
JVM, triggering rules based on complex conditions, adding code at various points in
methods, and much more.

 It’s definitely worth knowing about Byteman, but there are some other interesting
alternatives. One of them is Byte-Monkey; let’s take a closer look.

7.3.2 Byte-Monkey

Although not as versatile as Byteman, Byte-Monkey (https://github.com/mrwilson/byte
-monkey) deserves a mention. It also works by leveraging the -javaagent option of
the JVM and uses the ASM library to modify the bytecode. The unique proposition
of Byte-Monkey is that it offers only actions useful for chaos engineering; namely,
there are four modes you can use (verbatim from the README):

Fault: Throw exceptions from methods that declare those exceptions
Latency: Introduce latency on method-calls
Nullify: Replace the first non-primitive argument to the method with null
Short-circuit: Throw corresponding exceptions at the very beginning of try blocks

I’ll show you how to use Byte-Monkey to achieve the same effect you did for the chaos
experiment. But first, let’s install it.

INSTALLING BYTE-MONKEY

You can get the binary releases and the Byte-Monkey source code from https://github
.com/mrwilson/byte-monkey/releases. At the time of writing, the only version avail-
able is 1.0.0. Inside your VM, that version is downloaded to ~/src/examples/jvm/
byte-monkey.jar. If you’d like to download it on a different host, you can do that by
running the following command in a terminal:

wget https://github.com/mrwilson/byte-monkey/releases/download/1.0.0/byte-
monkey.jar

That single file, byte-monkey.jar, is all you need. Let’s see how to use it.

USING BYTE-MONKEY

Now, for the fun part. Let’s reimplement the experiment once again, but this time
with a small twist! Byte-Monkey makes it easy to throw the exceptions at only a particu-
lar rate, so to make things more interesting, let’s modify the method to throw an excep-
tion only 50% of the time. This can be achieved by passing the rate argument when
specifying the -javaagent JAR for the JVM.

 Run the following command to use the byte-monkey.jar file as your javaagent, use
the fault mode, rate of 0.5, and filter to only your fully qualified (and very long)
name of the class and the method (all in bold font):

https://github.com/mrwilson/byte-monkey/releases
https://github.com/mrwilson/byte-monkey/releases
https://github.com/mrwilson/byte-monkey/releases
https://github.com/mrwilson/byte-monkey
https://github.com/mrwilson/byte-monkey
https://github.com/mrwilson/byte-monkey

226 CHAPTER 7 Injecting failure into the JVM
java \
-javaagent:byte-monkey.jar=mode:fault,rate:0.5,filter:com/seriouscompany/
business/java/fizzbuzz/packagenamingpackage/impl/strategies/SystemOutFizzBuzz
OutputStrategy/output \
-classpath "./FizzBuzzEnterpriseEdition/lib/*" \
com.seriouscompany.business.java.fizzbuzz.packagenamingpackage.impl.Main \
2>/dev/null

You will see output similar to the following, with about 50% of the lines printed, and
the other 50% skipped:

(...)
1314FizzBuzz1619
Buzz
22Fizz29Buzz

FizzBuzzFizz

38Buzz41Fizz43
FizzBuzz
4749
(...)

And voilà! Another day, another tool in your awesome toolbox. Give it a star on
GitHub (https://github.com/mrwilson/byte-monkey); it deserves one! When you’re
back, let’s take a look at Chaos Monkey for Spring Boot.

7.3.3 Chaos Monkey for Spring Boot

The final mention in this section goes to Chaos Monkey for Spring Boot (http://mng.bz/
5j14). I won’t get into many details here, but if your application uses Spring Boot, you
might be interested in it. The documentation is pretty good and gives you a decent over-
view of how to get started (for the latest version 2.2.0, it’s at http://mng.bz/6g1G).

 In my opinion, the differentiating feature here is that it understands Spring Boot,
and offers failure (called assaults) on the high-level abstractions. It can also expose an
API, which allows you to add, remove, and reconfigure these assaults on the fly
through HTTP or Java Management Extensions (JMX). Currently supported are the
following:

 Latency assault—Injects latency to a request
 Exception assault—Throws exceptions at runtime
 AppKiller assault—Shuts down the app on a call to a particular method
 Memory assault—Uses up memory

If you’re using Spring Boot, I recommend that you take a good look at this frame-
work. That’s the third and final tool I wanted to show you. Let’s take a look at some
further reading.

Uses the fault mode (throwing exceptions), at a rate of 50%, and filters once again
to affect only the very long name of the class and method you’re targeting.

https://github.com/mrwilson/byte-monkey
http://mng.bz/5j14
http://mng.bz/5j14
http://mng.bz/5j14
http://mng.bz/6g1G

227Summary
7.4 Further reading
If you’d like to learn more about chaos engineering and JVM, I recommend a few
pieces of further reading. First, two papers from the KTH Royal Institute of Technol-
ogy in Stockholm. You can find them both, along with the source code, at https://
github.com/KTH/royal-chaos:

 ChaosMachine (https://arxiv.org/pdf/1805.05246.pdf)—Analyzes the exception-
handling hypotheses of three popular pieces of software written in Java (tTorrent,
BroadleafCommerce, and XWiki) and produces actionable reports for the devel-
opers automatically. It leverages the same -javaagent mechanism you learned
about in this chapter.

 TripleAgent (https://arxiv.org/pdf/1812.10706.pdf)—A system that automati-
cally monitors, injects failure, and improves resilience of existing software
running in the JVM. The paper evaluates BitTorrent and HedWig projects to
demonstrate the feasibility of automatic resilience improvements.

Second, from the University of Lille and the National Institute for Research in Digital
Science and Technology (INRIA) in Lille, the paper “Exception Handling Analysis
and Transformation Using Fault Injection: Study of Resilience Against Unanticipated
Exceptions” (https://hal.inria.fr/hal-01062969/document) analyzes nine open source
projects and shows that 39% of catch blocks executed during test suite execution can
be made more resilient.

 Finally, I want to mention that when we covered the java.lang.instrument pack-
age (http://mng.bz/7VZx), I spoke only about instrumenting the classes when start-
ing a JVM. It is also possible to attach to a running JVM and instrument classes that
have already been loaded. Doing so involves implementing the agentmain method,
and you can find all the details in the mentioned documentation page.

Summary
 The JVM allows you to instrument and modify code on the fly through the use

of the java.lang.instrument package (part of the JDK).
 In Java programs, exception handling is often a weak spot, and it’s a good start-

ing point for chaos engineering experiments, even on a source codebase you’re
not very familiar with.

 Open source tools like Byteman, Byte-Monkey, and Chaos Monkey for Spring
Boot make it easier to inject failure for your chaos experiments, and they run
on top of the same java.lang.instrument package to achieve that.

https://github.com/KTH/royal-chaos
https://github.com/KTH/royal-chaos
https://github.com/KTH/royal-chaos
https://arxiv.org/pdf/1805.05246.pdf
https://arxiv.org/pdf/1812.10706.pdf
https://hal.inria.fr/hal-01062969/document
http://mng.bz/7VZx

Application-level
fault injection
So far, you’ve learned a variety of ways to apply chaos engineering to a selection of dif-
ferent systems. The languages, tools, and approaches varied, but they all had one
thing in common: working with source code outside your control. If you’re in a role
like SRE or platform engineer, that’s going to be your bread and butter. But some-
times you will have the luxury of applying chaos engineering to your own code.

 This chapter focuses on baking chaos engineering options directly into your
application for a quick, easy, and—dare I say it—fun way of increasing your confi-
dence in the overall stability of the system as a whole. I’ll guide you through design-
ing and running two experiments: one injecting latency into functions responsible
for communicating with an external cache, and another injecting intermittent fail-
ure through the simple means of raising an exception. The example code is written
in Python, but don’t worry if it’s not your forte; I promise to keep it basic.

This chapter covers
 Building chaos engineering capabilities directly

into your application

 Ensuring that the extra code doesn’t affect the
application’s performance

 More advanced usage of Apache Bench
228

229Scenario
NOTE I chose Python for this chapter because it hovers at the top of the list
in terms of popularity, and it allows for short, expressive examples. But what
you learn here is universal and can be leveraged in any language. Yes, even
Node.js.

If you like the sound of it, let’s go for it. First things first: a scenario.

8.1 Scenario
Let’s say that you work for an e-commerce company and you’re designing a system for
recommending new products to your customers, based on their previous queries. As a
practitioner of chaos engineering, you’re excited: this might be a perfect opportunity
to add features allowing you to inject failure directly into the codebase.

 To generate recommendations, you need to be able to track the queries your cus-
tomers make, even if they are not logged in. The e-commerce store is a website, so you
decide to simply use a cookie (https://en.wikipedia.org/wiki/HTTP_cookie) to store
a session ID for each new user. This allows you to distinguish between the requests and
attribute each search query to a particular session.

 In your line of work, latency is important; if the website doesn’t feel quick and
responsive to customers, they will buy from your competitors. The latency therefore
influences some of the implementation choices and becomes one of the targets for
chaos experiments. To minimize the latency added by your system, you decide to use
an in-memory key-value store, Redis (https://redis.io/), as your session cache and
store only the last three queries the user made. These previous queries are then fed
to the recommendation engine every time the user searches for a product, and
come back with potentially interesting products to display in a You Might Be Inter-
ested In box.

 So here’s how it all works together. When a customer visits your e-commerce web-
site, the system checks whether a session ID is already stored in a cookie in the
browser. If it’s not, a random session ID is generated and stored. As the customer
searches through the website, the last three queries are saved in the session cache, and
are used to generate a list of recommended products that is then presented to the
user in the search results.

 For example, after the first search query of “apple,” the system might recommend
“apple juice.” After the second query for “laptop,” given that the two consecutive queries
were “apple” and “laptop,” the system might recommend a “macbook pro.” If you’ve
worked in e-commerce before, you know this is a form of cross-selling (https://en
.wikipedia.org/wiki/Cross-selling), a serious and powerful technique used by most
online stores and beyond. Figure 8.1 summarizes this process.

 Learning how to implement this system is not the point of this chapter. What I’m
aiming at here is to show you a concrete, realistic example of how you can add mini-
mal code directly into the application to make running chaos experiments on it easy.
To do that, let me first walk you through a simple implementation of this system, for

https://en.wikipedia.org/wiki/HTTP_cookie
https://redis.io/
https://en.wikipedia.org/wiki/Cross-selling
https://en.wikipedia.org/wiki/Cross-selling
https://en.wikipedia.org/wiki/Cross-selling

230 CHAPTER 8 Application-level fault injection
now without any chaos engineering changes, and then, once you’re comfortable with
it, I’ll walk you through the process of building two chaos experiments into it.

8.1.1 Implementation details: Before chaos

I’m providing you with a bare-bones implementation of the relevant parts of this website,
written in Python and using the Flask HTTP framework (https://flask.palletsprojects
.com/). If you don’t know Flask, don’t worry; we’ll walk through the implementation
to make sure everything is clear.

 Inside your VM, the source code can be found in ~/src/examples/app (for instal-
lation instructions outside the VM, refer to appendix A). The code doesn’t implement
any chaos experiments quite yet; we’ll add that together. The main file, app.py, pro-
vides a single HTTP server, exposing three endpoints:

 Index page (at /) that displays the search form and sets the session ID cookie.
 Search page (at /search) that stores the queries in the session cache and dis-

plays the recommendations.
 Reset page (at /reset) that replaces the session ID cookie with a new one to

make testing easier for you. (This endpoint is for your convenience only.)

Let’s start with the index page route, the first one any customer will see. It’s imple-
mented in the index function and does exactly two things: returns some static HTML to
render the search form, and sets a new session ID cookie, through the set_session_id
function. The latter is made easy through Flask’s built-in method of accessing cookies

1. Customer visits the website; their browser
is instructed to store a session ID (SID)
in a cookie.

2. Customer searches for “apple;” the
browser sends the SID from the cookie.
The previous queries list is now [“apple”]
and it’s stored in the session cache.
System recommends “apple juice.”

3. Customer searches for “laptop.” The previous
queries list is now [“apple,” “laptop”].
System recommends “macbook pro.”

SID

SID

SID
Home page

Search “apple”

Search “laptop”

Recommend:
macbook pro

Recommend:
apple juice

Figure 8.1 High-level overview of the session-tracking system

https://flask.palletsprojects.com/
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/

231Scenario
(flask.request.cookies.get) as well as setting new ones (response.set_cookie).
After visiting this endpoint, the browser stores the random unique ID (UID) value in
the sessionID cookie, and it sends that value with every subsequent request to the
same host. That’s how the system is able to attribute the further actions to a session ID.
If you’re not familiar with Flask, the @app.route("/") decorator tells Flask to serve
the decorated function (in this case index) under the / endpoint.

 Next, the search page is where the magic happens. It’s implemented in the search
function, decorated with @app.route("/search", methods=["POST", "GET"]), mean-
ing that both GET and POST requests to /search will be routed to it. It reads the ses-
sion ID from the cookie, the query sent from the search form on the home page (if
any), and stores the query for that session by using the store_interests function.
store_interests reads the previous queries from Redis, appends the new one, stores
it back, and returns the new list of interests. Using that new list of interests, it calls the
recommend_other_products function, that—for simplicity—returns a hardcoded list
of products. Figure 8.2 summarizes this process.

When that’s done, the search function renders an HTML page presenting the search
results as well as the recommended items. Finally, the third endpoint, implemented in
the reset function, replaces the session ID cookie with a new, random one and redi-
rects the user to the home page.

 The following listing provides the full source code for this application. For now,
ignore the commented out section on chaos experiments.

1. Customer searches for “laptop”; the
browser sends the SID from the cookie

2. The server queries
session cache for the
previous interests

3. The server appends
new interests, and stores
them in session cache

SID

Search page

get_interests

store_interests

HTTP server

Session

cache

(Redis)SET SID

[“apple,” “laptop”]

GET SID

[“apple”]

Figure 8.2 Search page and
session cache interactions

232 CHAPTER 8 Application-level fault injection
import uuid, json, redis, flask

COOKIE_NAME = "sessionID"

def get_session_id():
 """ Read session id from cookies, if present """
 return flask.request.cookies.get(COOKIE_NAME)

def set_session_id(response, override=False):
 """ Store session id in a cookie """
 session_id = get_session_id()
 if not session_id or override:
 session_id = uuid.uuid4()
 response.set_cookie(COOKIE_NAME, str(session_id))

CACHE_CLIENT = redis.Redis(host="localhost", port=6379, db=0)

Chaos experiment 1 - uncomment this to add latency to Redis access
#import chaos
#CACHE_CLIENT = chaos.attach_chaos_if_enabled(CACHE_CLIENT)

Chaos experiment 2 - uncomment this to raise an exception every other call
#import chaos2
#@chaos2.raise_rediserror_every_other_time_if_enabled
def get_interests(session):
 """ Retrieve interests stored in the cache for the session id """
 return json.loads(CACHE_CLIENT.get(session) or "[]")

def store_interests(session, query):
 """ Store last three queries in the cache backend """
 stored = get_interests(session)
 if query and query not in stored:
 stored.append(query)
 stored = stored[-3:]
 CACHE_CLIENT.set(session, json.dumps(stored))
 return stored

def recommend_other_products(query, interests):
 """ Return a list of recommended products for a user,
 based on interests """
 if interests:
 return {"this amazing product":

"https://youtube.com/watch?v=dQw4w9WgXcQ"}
 return {}

app = flask.Flask(__name__)

@app.route("/")
def index():
 """ Handle the home page, search form """

Listing 8.1 app.py

233Scenario
 resp = flask.make_response("""
 <html><body>
 <form action="/search" method="POST">
 <p><h3>What would you like to buy today?</h3></p>
 <p><input type='text' name='query'/>
 <input type='submit' value='Search'/></p>
 </form>
 <p>Recommendations. Reset.

</p>
 </body></html>
 """)
 set_session_id(resp)
 return resp

@app.route("/search", methods=["POST", "GET"])
def search():
 """ Handle search, suggest other products """
 session_id = get_session_id()
 query = flask.request.form.get("query")
 try:
 new_interests = store_interests(session_id, query)
 except redis.exceptions.RedisError as exc:
 print("LOG: redis error %s", str(exc))
 new_interests = None
 recommendations = recommend_other_products(query, new_interests)
 return flask.make_response(flask.render_template_string("""
 <html><body>
 {% if query %}<h3>I didn't find anything for "{{ query }}"</h3>{%

endif %}
 <p>Since you're interested in {{ new_interests }}, why don't you

try...
 {% for k, v in recommendations.items() %} {{ k

}}{% endfor %}!</p>
 <p>Session ID: {{ session_id }}. Go back.</p>
 </body></html>
 """,
 session_id=session_id,
 query=query,
 new_interests=new_interests,
 recommendations=recommendations,
))

@app.route("/reset")
def reset():
 """ Reset the session ID cookie """
 resp = flask.make_response(flask.redirect("/"))
 set_session_id(resp, override=True)
 return resp

Let’s now see how to start the application. It has two external dependencies:

 Flask (https://flask.palletsprojects.com/)
 redis-py (https://github.com/andymccurdy/redis-py)

https://flask.palletsprojects.com/
https://github.com/andymccurdy/redis-py

234 CHAPTER 8 Application-level fault injection
You can install both in the versions that were tested with this book by running the fol-
lowing command in your terminal window:

sudo pip3 install redis==3.5.3 Flask==1.1.2

You also need an actual instance of Redis running on the same host, listening for new
connections on the default port 6379. If you’re using the VM, Redis is preinstalled
(consult appendix A for installation instructions if you’re not using the VM). Open
another terminal window, and start a Redis server by running the following command:

redis-server

You will see the characteristic output of Redis, similar to the following:

54608:C 28 Jun 2020 18:32:12.616 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
54608:C 28 Jun 2020 18:32:12.616 # Redis version=6.0.5, bits=64,

commit=00000000, modified=0, pid=54608, just started
54608:C 28 Jun 2020 18:32:12.616 # Warning: no config file specified, using the

default config. In order to specify a config file use ./redis-server
/path/to/redis.conf

54608:M 28 Jun 2020 18:32:12.618 * Increased maximum number of open files to
10032 (it was originally set to 8192).

 .
 _.-``__ ''-._
 .-`` `. `. ''-._ Redis 6.0.5 (00000000/0) 64 bit
 .-`` .-```. ```\/ _.,_ ''-._
 (' , .-` | `,) Running in standalone mode
 |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379
 | `-._ `._ / _.-' | PID: 54608
 `-._ `-._ `-./ _.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' | http://redis.io
 `-._ `-._`-.__.-'_.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' |
 `-._ `-._`-.__.-'_.-' _.-'
 `-._ `-.__.-' _.-'
 `-._ _.-'
 `-.__.-'

With that, you are ready to start the application! While Redis is running in the second
terminal window, go back to the first one and run the following command, still from
~/src/examples/app. It will start the application in development mode, with detailed
error stacktraces and automatic reload on changes to the source code:

cd ~/src/examples/app
FLASK_ENV=development \
FLASK_APP=app.py \
 python3 -m flask run

Goes to the location with the
source code of the application

Specifies development environment
for easier debugging and auto-reload

Specifies FLASK_APP environment variable,
which points Flask to run the application

Runs the flask module, specifying
run command to start a web server

235Experiment 1: Redis latency
The application will start, and you’ll see output just like the following, specifying the
app it’s running, the host and port where the application is accessible, and the envi-
ronment (all in bold font):

 * Serving Flask app "app.py" (lazy loading)
 * Environment: development
 * Debug mode: on
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 289-495-131

You can now browse to http://127.0.0.1:5000/ to confirm it’s working. You will see a
simple search form, asking you to type the name of the product you’re interested in.
Try searching for “apple.” You are taken to a second page, where you will be able to
see your previous queries as well as the recommendations. Be absolutely sure to click
the recommendations; they are great! If you repeat this process a few times, you will
notice that the page retains the last three search queries. Finally, note that the page
also prints the session ID, and if you’re curious, you can see it in the cookies section in
your browser.

 OK, so now you have a simple, yet functional application that we’ll pretend you
wrote. Time to have some fun with it! Let’s do some chaos engineering.

8.2 Experiment 1: Redis latency
In the e-commerce store scenario I described at the beginning of the chapter, the
overall latency of the website is paramount: you know that if you slow the system down
too much, customers will start leaving the website and buying from your competitors.
It’s therefore important that you understand how the latency communicating with the
session cache (Redis) affects the overall speed of the website. And that’s where chaos
engineering shines: we can simulate some latency and measure how much it affects
the system as a whole.

 You have injected latency before in different ways. In chapter 4, you used Traffic
Control (tc) to add latency to a database, and in chapter 5 you leveraged Docker and
Pumba to do the same. So how is this different this time? In the previous scenarios, we
tried hard to modify the behavior of the system without modifying the source code. This
time, I want to add to that by showing you how easy it is to add chaos engineering when
you are in control of the application’s design. Everyone can do that—you just need to
have a little bit of imagination! Let’s design a simple experiment around the latency.

8.2.1 Experiment 1 plan

In the example application, it’s easy to establish that for each request, the session
cache is accessed twice: first to read the previous queries, and second to store the new
set. You can therefore hypothesize that you will see a double of any latency added to
the Redis calls in the overall latency figure for the website.

http://127.0.0.1:5000/

236 CHAPTER 8 Application-level fault injection

 Let’s find out whether that’s true. By now, you’re well versed in using Apache Bench
(ab) for generating traffic and observing latencies, so let’s leverage that once again.
Here’s one possible version of a chaos experiment that will help test that theory:

1 Observability: generate traffic and observe the latency by using ab.
2 Steady state: observe latency without any chaos changes.
3 Hypothesis: if you add a 100 ms latency to each interaction with the session

cache (reads and writes), the overall latency of the /search page should increase
by 200 ms.

4 Run the experiment!

That’s it! Now, all you need to do is follow this plan, starting with the steady state.

8.2.2 Experiment 1 steady state

So far, you’ve used ab to generate GET requests. This time, you have a good opportu-
nity to learn how to use it to send POST requests, like the ones sent from the search
form on the index page that the browser sends to the /search page. To do that, you
need to do the following:

1 Use the POST method, instead of GET.
2 Use the Content-type header to specify the value used by the browser when

sending an HTML form (application/x-www-form-urlencoded).
3 Pass the actual form data as the body of the request to simulate the value from

a form.
4 Pass the session ID (you can make it up) in a cookie in another header, just as

the browser does with every request.

Fortunately, this all can be done with ab by using the following arguments:

 -H "Header: value" to set custom headers, one for the cookie with the session
ID and one for the content type. This flag can be used multiple times to set mul-
tiple headers.

 -p post-file to send the contents of the specified file as the body of the
request. It also automatically assumes the POST method. That file needs to fol-
low the HTML form format, but don’t worry if you don’t know it. In this simple
use case, I’ll show you a body you can use: query=TEST to query for “TEST.” The
actual query in this case doesn’t matter.

Putting this all together, and using our typical concurrency of 1 (-c 1) and runtime of
10 seconds (-t 10), you end up with the following command. Assuming that the
server is still running, open another terminal window and run the following:

echo "query=Apples" > query.txt
ab -c 1 -t 10 \
 -H "Cookie: sessionID=something" \
 -H "Content-type: application/x-www-form-urlencoded" \

Creates a simple file with the query content
Sends a header with
the cookie specifying
the sessionID

Sends a header
specifying the
content type to a
simple HTML form

237Experiment 1: Redis latency
 -p query.txt \
 http://127.0.0.1:5000/search

You will see the familiar output of ab, similar to the following (abbreviated). My VM
managed to do 1673 requests, or about 167 requests per second (5.98 ms per request)
with no errors (all four in bold font):

Server Software: Werkzeug/1.0.1
Server Hostname: 127.0.0.1
Server Port: 5000
(...)
Complete requests: 1673
Failed requests: 0
(...)
Requests per second: 167.27 [#/sec] (mean)
Time per request: 5.978 [ms] (mean)

So far, so good. These numbers represent your steady state, the baseline. Let’s imple-
ment some actual chaos and see how these change.

8.2.3 Experiment 1 implementation

It’s time to implement the core of your experiment. This is the cool part: because you
own the code, there are a million and one ways of implementing the chaos experi-
ment, and you’re free to pick whichever works best for you! I’m going to guide you
through just one example of what that could look like, focusing on three things:

 Keep it simple.
 Make the chaos experiment parts optional for your application and disabled by

default.
 Be mindful of the performance impact the extra code has on the whole

application.

These are good guidelines for any chaos experiments, but as I said before, you will
pick the right implementation based on the actual application you’re working on.
This example application relies on a Redis client accessible through the CACHE_CLIENT
variable, and then the two functions using it, get_interests and store_interest,
use the get and set methods on that cache client, respectively (all in bold font):

CACHE_CLIENT = redis.Redis(host="localhost", port=6379, db=0)

def get_interests(session):
 """ Retrieve interests stored in the cache for the session id """
 return json.loads(CACHE_CLIENT.get(session) or "[]")

def store_interests(session, query):
 """ Store last three queries in the cache backend """
 stored = get_interests(session)

Uses the previously created file
with the simple query in it

An instance of Redis client is created and
accessible through the CACHE_CLIENT variable.

get_interests is
using the get
method of
CACHE_CLIENT.

238 CHAPTER 8 Application-level fault injection
 if query and query not in stored:
 stored.append(query)
 stored = stored[-3:]
 CACHE_CLIENT.set(session, json.dumps(stored))
 return stored

All you need to do to implement the experiment is to modify CACHE_CLIENT to inject
latency into both of the get and set methods. There are plenty of ways of doing that,
but the one I suggest is to write a simple wrapper class.

 The wrapper class would have the two required methods (get and set) and rely on
the wrapped class for the actual logic. Before calling the wrapped class, it would sleep
for the desired time. And then, based on an environment variable, you’d need to
optionally replace CACHE_CLIENT with an instance of the wrapper class.

 Still with me? I prepared a simple wrapper class for you (ChaosClient), along with
a function to attach it (attach_chaos_if_enabled) in another file called chaos.py, in
the same folder (~/src/examples/app). The attach_chaos_if_enabled function
is written in a way so as to inject the experiment only if an environment variable
called CHAOS is set. That’s to satisfy the “disabled by default” expectation. The
amount of time to inject is controlled by another environment variable called
CHAOS_DELAY_SECONDS and defaults to 750 ms. The following listing is an example
implementation.

import time
import os

class ChaosClient:
 def __init__(self, client, delay):
 self.client = client
 self.delay = delay
 def get(self, *args, **kwargs):
 time.sleep(self.delay)
 return self.client.get(*args, **kwargs)
 def set(self, *args, **kwargs):
 time.sleep(self.delay)
 return self.client.set(*args, **kwargs)

def attach_chaos_if_enabled(cache_client):
 """ creates a wrapper class that delays calls to get and set methods """
 if os.environ.get("CHAOS"):
 return ChaosClient(cache_client,

float(os.environ.get("CHAOS_DELAY_SECONDS", 0.75)))
 return cache_client

Now, equipped with this, you can modify the application (app.py) to make use of this
new functionality. You can import it and use it to conditionally replace CACHE_CLIENT,

Listing 8.2 chaos.py

stores_interests is using
the set method of
CACHE_CLIENT (and get
by transition, through
the call to get_interests).

The wrapper class stores
a reference to the
original cache client.

The wrapper class provides the get
method, expected on the cache
client, that wraps the client’s
method of the same name.

Before the method relays to the
original get method, it waits for
a certain amount of time.

The wrapper class also provides
the set method, exactly like the
get method.

Returns the wrapper
class only if the CHAOS
environment variable
is set

239Experiment 1: Redis latency
provided that the right environment is set. All you need to do is find the line where
you instantiate the cache client inside the app.py file:

CACHE_CLIENT = redis.Redis(host="localhost", port=6379, db=0)

Add two lines after it, importing and calling the attach_chaos_if_enabled function,
passing the CACHE_CLIENT variable as an argument. Together, they will look like the
following:

CACHE_CLIENT = redis.Redis(host="localhost", port=6379, db=0)
import chaos
CACHE_CLIENT = chaos.attach_chaos_if_enabled(CACHE_CLIENT)

With that, the scene is set and ready for the grand finale. Let’s run the experiment!

8.2.4 Experiment 1 execution

To activate the chaos experiment, you need to restart the application with the new
environment variables. You can do that by stopping the previously run instance (press
Ctrl-C) and running the following command:

CHAOS=true \
CHAOS_DELAY_SECONDS=0.1 \
FLASK_ENV=development \
FLASK_APP=app.py \
python3 -m flask run

Once the application is up and running, you’re good to go to rerun the same ab com-
mand you used to establish the steady state once again. To do that, run the following
command in another terminal window:

echo "query=Apples" > query.txt && \
ab -c 1 -t 10 \
 -H "Cookie: sessionID=something" \
 -H "Content-type: application/x-www-form-urlencoded" \
 -p query.txt \
 http://127.0.0.1:5000/search

After the 10-second wait, when the dust settles, you will see the ab output, much like
the following. This time, my setup managed to complete only 48 requests (208 ms per
request), still without errors (all three in bold font):

(...)
Complete requests: 48
Failed requests: 0

Activates the conditional chaos
experiment code by setting the

CHAOS environment variable

Specifies chaos delay injected
as 0.1 second, or 100 ms

Specifies the Flask
development env for
better error messages

Specifies the same
app.py application

Runs Flask

Creates a simple
file with the query
content

Sends a header with
the cookie specifying
the sessionID

Sends a header
specifying the
content type to a
simple HTML form

Uses the previously
created file with the
simple query in it

240 CHAPTER 8 Application-level fault injection
(...)
Requests per second: 4.80 [#/sec] (mean)
Time per request: 208.395 [ms] (mean)
(...)

That’s consistent with our expectations. The initial hypothesis was that adding 100 ms
to every interaction with the session cache should result in an extra 200 ms additional
latency overall. And as it turns out, for once, our hypothesis was correct! It took a few
chapters, but that’s a bucket list item checked off! Now, before we get too narcissistic,
let’s discuss a few pros and cons of running chaos experiments this way.

8.2.5 Experiment 1 discussion

Adding chaos engineering code directly to the source code of the application is a
double-edged sword: it’s often easier to do, but it also increases the scope of things
that can go wrong. For example, if your code introduces a bug that breaks your pro-
gram, instead of increasing the confidence in the system, you’ve decreased it. Or, if
you added latency to the wrong part of the codebase, your experiments might yield
results that don’t match reality, giving you false confidence (which is arguably even
worse).

 You might also think, “Duh, I added code to sleep for X seconds; of course it’s
slowed down by that amount.” And yes, you’re right. But now imagine that this appli-
cation is larger than the few dozen lines we looked at. It might be much harder to be
sure about how latencies in different components affect the system as a whole. But if
the argument of human fallibility doesn’t convince you, here’s a more pragmatic one:
doing an experiment and confirming even the simple assumptions is often quicker
than analyzing the results and reaching meaningful conclusions.

 I’m also sure you noticed that reading and writing to Redis in two separate actions
is not going to work with any kind of concurrent access and can lose writes. Instead, it
could be implemented using a Redis set and atomic add operation, fixing this prob-
lem as well as the double penalty for any network latency. My focus here was to keep it
as simple as possible, but thanks for pointing that out!

 Finally, there is always the question of performance: if you add extra code to the
application, you might make it slower. Fortunately, because you are free to write the
code whatever way you please, there are ways around that. In the preceding example,
the extra code is applied only if the corresponding environment variables are set
during startup. Apart from the extra if statement, there is no overhead when running
the application without the chaos experiment. And when it’s on, the penalty is the
cost of an extra function call to our wrapper class. Given that we’re waiting for times at
a scale of milliseconds, that overhead is negligible.

 That’s what my lawyers advised me to tell you, anyway. With all these caveats out of
the way, let’s do another experiment, this time injecting failure, rather than slowness.

241Experiment 2: Failing requests
8.3 Experiment 2: Failing requests
Let’s focus on what happens when things fail rather than slow down. Let’s take a look
at the function get_interests again. As a reminder, it looks like the following. (Note
that there is no exception handling whatsoever.) If the CACHE_CLIENT throws any
exceptions (bold font), they will just bubble up further up the stack:

def get_interests(session):
 """ Retrieve interests stored in the cache for the session id """
 return json.loads(CACHE_CLIENT.get(session) or "[]")

To test the exception handling of this function, you’d typically write unit tests and aim
to cover all legal exceptions that can be thrown. That will cover this bit, but will tell
you little about how the entire application behaves when these exceptions arise. To
test the whole application, you’d need to set up some kind of integration or end-to-end
(e2e) tests, whereby an instance of the application is stood up along with its dependen-
cies, and some client traffic is created. By working on that level, you can verify things
from the user’s perspective (what error will the user see, as opposed to what kind of
exception some underlying function returns), test for regressions, and more. It’s
another step toward reliable software.

 And this is where applying chaos engineering can create even more value. You can
think of it as the next step in that evolution—a kind of end-to-end testing, while inject-
ing failure into the system to verify that the whole reacts the way you expect. Let me
show you what I mean: let’s design another experiment to test whether an exception
in the get_interests function is handled in a reasonable manner.

8.3.1 Experiment 2 plan

What should happen if get_interests receives an exception when trying to read from
the session store? That depends on the type of page you’re serving. For example, if
you’re using that session date to list recommendations in a sidebar to the results of a
search query, it might make more economic sense to skip the sidebar and allow the user
to at least click on other products. If, on the other hand, we are talking about the check-
out page, then not being able to access the session data might make it impossible to fin-
ish the transaction, so it makes sense to return an error and ask the user to try again.

 In our case, we don’t even have a buy page, so let’s focus on the first type of sce-
nario: if the get_interests function throws an exception, it will bubble up in the
store_interests function, which is called from our search website with the following
code. Note the except block, which catches RedisError, the type of error that might
be thrown by our session cache client (in bold font):

 try:
 new_interests = store_interests(session_id, query)
 except redis.exceptions.RedisError:
 print("LOG: redis error %s", str(exc))
 new_interests = None

The type of exception thrown
by the Redis client you use is
caught and logged here.

242 CHAPTER 8 Application-level fault injection
That error handling should result in the exception in get_interests being transpar-
ent to the user; they just won’t see any recommendations. You can create a simple
experiment to test that out:

1 Observability: browse to the application and see the recommended products.
2 Steady state: the recommended products are displayed in the search results.
3 Hypothesis: if you add a redis.exceptions.RedisError exception every other

time get_interests is called, you should see the recommended products every
other time you refresh the page.

4 Run the experiment!

You’ve already seen that the recommended products are there, so you can jump
directly to the implementation!

8.3.2 Experiment 2 implementation

Similar to the first experiment, there are plenty of ways to implement this. And just as in
the first experiment, let me suggest a simple example. Since we’re using Python, let’s
write a simple decorator that we can apply to the get_interests function. As before,
you want to activate this behavior only when the CHAOS environment variable is set.

 I prepared another file in the same folder, called chaos2.py, that implements a sin-
gle function, raise_rediserror_every_other_time_if_enabled, that’s designed to
be used as a Python decorator (https://wiki.python.org/moin/PythonDecorators).
This rather verbosely named function takes another function as a parameter and
implements the desired logic: return the function if the chaos experiment is not
active, and return a wrapper function if it is active. The wrapper function tracks the
number of times it’s called and raises an exception on every other call. On the other
calls, it relays to the original function with no modifications. The following listing pro-
vides the source code of one possible implementation.

import os
import redis

def raise_rediserror_every_other_time_if_enabled(func):
 """ Decorator, raises an exception every other call to the wrapped

function """
 if not os.environ.get("CHAOS"):
 return func
 counter = 0
 def wrapped(*args, **kwargs):
 nonlocal counter
 counter += 1
 if counter % 2 == 0:
 raise redis.exceptions.RedisError("CHAOS")
 return func(*args, **kwargs)
 return wrapped

Listing 8.3 chaos2.py

If the special environment
variable CHAOS is not set,
returns the original function

Raises an exception
on every other call
to this method

Relays the call to the
original function

https://wiki.python.org/moin/PythonDecorators

243Application vs. infrastructure
Now you just need to actually use it. Similar to the first experiment, you’ll modify the
app.py file to add the call to this new function. Find the definition of the get_inster-
ests function, and prepend it with a call to the decorator you just saw. It should look
like the following (the decorator is in bold font):

import chaos2
@chaos2.raise_rediserror_every_other_time_if_enabled
def get_interests(session):
 """ Retrieve interests stored in the cache for the session id """
 return json.loads(CACHE_CLIENT.get(session) or "[]")

Also, make sure that you undid the previous changes, or you’ll be running two experi-
ments at the same time! If you did, then that’s all you need to implement for exper-
iment 2. You’re ready to roll. Let’s run the experiment!

8.3.3 Experiment 2 execution

Let’s make sure the application is running. If you still have it running from the previ-
ous sections, you can keep it; otherwise, start it by running the following command:

CHAOS=true \
FLASK_ENV=development \
FLASK_APP=app.py \
python3 -m flask run

This time, the actual experiment execution step is really simple: browse to the applica-
tion (http://127.0.0.1:5000/) and refresh it a few times. You will see the recommenda-
tions every other time, and no recommendations the other times, just as we predicted,
proving our hypothesis! Also, in the terminal window running the application, you
will see logs similar to the following, showing an error on every other call. That’s
another confirmation that what you did worked:

127.0.0.1 - - [07/Jul/2020 22:06:16] "POST /search HTTP/1.0" 200 -
127.0.0.1 - - [07/Jul/2020 22:06:16] "POST /search HTTP/1.0" 200 -
LOG: redis error CHAOS

And that’s a wrap. Two more experiments under your belt. Pat yourself on the back,
and let’s take a look at some pros and cons of the approach presented in this chapter.

8.4 Application vs. infrastructure
When should you bake the chaos engineering directly into your application, as
opposed to doing that on the underlying layers? Like most things in life, that choice is
a trade-off.

Activates the conditional chaos experiment code
by setting the CHAOS environment variable Specifies the Flask

development env for
better error messages

Specifies the same
app.py application

Runs Flask

http://127.0.0.1:5000/

244 CHAPTER 8 Application-level fault injection
 Incorporating chaos engineering directly in your application can be much easier
and has the advantage of using the same tools that you’re already familiar with. You
can also get creative about the way you structure the code for the experiments, and
implementing sophisticated scenarios tends to not be a problem.

 The flip side is that since you’re writing code, all the problems you have writing
any code apply: you can introduce bugs, you can test something other than what you
intend, or you can break the application altogether. In some cases (for example, if you
wanted to restrict all outbound traffic from your application), a lot of places in your
code might need changes, so a platform-level approach might be more suitable.

 The goal of this chapter is to show you that both approaches can be useful and to
demonstrate that chaos engineering is not only for SREs; everyone can do chaos engi-
neering, even if it’s only on a single application

Summary
 Building fault injection directly into an application can be an easy way of prac-

ticing chaos engineering.
 Working on an application, rather than at the infrastructure level, can be a good

first step into chaos engineering, because it often requires no extra tooling.

Pop quiz: When is it a good idea to build chaos engineering into the
application?
Pick one:

1 When you can’t get it right on the lower levels, such as infrastructure or syscalls
2 When it’s more convenient, easier, safer, or you have access to only the applica-

tion level
3 When you haven’t been certified as a chaos engineer yet
4 When you downloaded only this chapter instead of getting the full book!

See appendix B for answers.

Pop quiz: What is not that important when building chaos experiments into
the application itself?
Pick one:

1 Making sure the code implementing the experiment is executed only when
switched on

2 Following the best practices of software deployment to roll out your changes
3 Rubbing the ingenuity of your design into everyone else’s faces
4 Making sure you can reliably measure the effects of your changes

See appendix B for answers.

245Summary
 Although applying chaos engineering at the application level might require less
work to set up, it also carries higher risks; the added code might contain bugs or
introduce unexpected changes in behavior.

 With great power comes great responsibility—the Peter Parker principle (http://mng
.bz/Xdya).

http://mng.bz/Xdya
http://mng.bz/Xdya
http://mng.bz/Xdya

There’s a monkey
in my browser!
The time has come for us to visit the weird and wonderful world of JavaScript (JS).
Regardless of what stage of the love-hate relationship you two are at right now,
there is no escaping JavaScript in one form or another. If you’re part of the 4.5 bil-
lion people using the internet, you’re almost certainly running JS, and the applica-
tions keep getting more and more sophisticated. If the recent explosion in popularity
of frameworks for building rich frontends, like React (https://github.com/facebook/
react) and Vue.js (https://github.com/vuejs/vue) is anything to go by, it doesn’t
look like that situation is about to change.

 The ubiquitous nature of JavaScript makes for an interesting angle for chaos
engineering experiments. On top of the layers covered in the previous chapters
(from the infrastructure level to the application level), there is another layer where
failure can occur (and therefore can be injected): the frontend JavaScript. It’s the
proverbial cherry on the equally proverbial cake.

 In this chapter, you’ll take a real, open source application and learn to inject
slowness and failure into it with just a few lines of extra code that can be added to a

This chapter covers
 Applying chaos engineering to frontend code

 Overriding browser JavaScript requests to inject
failure, with no source code changes
246

https://github.com/facebook/react
https://github.com/facebook/react
https://github.com/facebook/react
https://github.com/vuejs/vue

247Scenario
running application on the fly. If you love JavaScript, come and learn new ways it can
be awesome. If you hate it, come and see how it can be used as a force for good. And
to make it more real, let’s start with a scenario.

9.1 Scenario
One of the neighboring teams is looking for a better way of managing its PostgreSQL
(www.postgresql.org) databases. The team evaluated a bunch of free, open source
options, and suggested a PostgreSQL database UI called pgweb (https://github.com/
sosedoff/pgweb) as the way forward. The only problem is that the manager of that
team is pretty old-school. He reads Hacker News (https://news.ycombinator.com/
news) through a plugin in his Emacs, programs his microwave directly in Assembly,
has JavaScript disabled on all his kids’ browsers, and uses a Nokia 3310 (2000 was the
last year they made a proper phone) to avoid being hacked.

 To resolve the conflict between the team members and their manager, both par--
ties turn to you, asking you to take a look at pgweb from the chaos engineering perspec-
tive and see how reliable it is—and in particular, at the JavaScript that the manager
is so distrustful of. Not too sure what you’re getting yourself into, you accept, of
course.

 To help them, you’ll need to understand what pgweb is doing, and then design and
run meaningful experiments. Let’s start by looking into how pgweb actually works.

9.1.1 Pgweb

Pgweb, which is written in Go, lets you connect to any PostgreSQL 9.1+ database and
manage all the usual aspects of it, such as browsing and exporting data, executing
queries, and inserting new data.

 It’s distributed as a simple binary, and it’s preinstalled, ready to use inside the VM
shipped with this book. The same goes for an example PostgreSQL installation, with-
out which you wouldn’t have anything to browse (as always, refer to appendix A for
installation instructions if you don’t want to use the VM). Let’s bring it all up.

 First, start the database by running the following command:

sudo service postgresql start

The database is prepopulated with example data. The credentials and data needed for
this installation are the following:

 User: chaos
 Password: chaos
 Some example data in a database called booktown

To start pgweb using these credentials, all you need to do is run the following command:

pgweb --user=chaos --pass=chaos --db=booktown

https://github.com/sosedoff/pgweb
https://github.com/sosedoff/pgweb
https://github.com/sosedoff/pgweb
https://news.ycombinator.com/news
https://news.ycombinator.com/news
https://news.ycombinator.com/news
http://www.postgresql.org

248 CHAPTER 9 There’s a monkey in my browser!
And voilà! You will see output similar to the following, inviting you to open a browser
(bold font):

Pgweb v0.11.6 (git: 3e4e9c30c947ce1384c49e4257c9a3cc9dc97876)
(go: go1.13.7)
Connecting to server…
Connected to PostgreSQL 10.12
Checking database objects…
Starting server…
To view database open http://localhost:8081/ in browser

Go ahead and browse to http:/ /localhost:8081. You will see the neat pgweb UI. On the
left are the available tables that you can click to start browsing the data. The UI will
look similar to figure 9.1.

As you click around the website, you will see new data being loaded. From the chaos
engineering perspective, every time data is being loaded, it means an opportunity for
failure. Let’s see what is happening behind the scenes to populate the screen with that
new data.

1. Click a table name to display its contents.

2. The contents will be displayed in the main table.

Figure 9.1 The UI of pgweb in action, displaying example data

249Scenario
9.1.2 Pgweb implementation details

To design a chaos experiment, you first need to understand how the data is loaded.
Let’s see how it is populated. Modern browsers make it easy to look at what’s going on
under the hood. I’m going to use Firefox, which is open source and accessible in your
VM, but the same thing can be done in all major browsers.

 While browsing the pgweb UI, open the Web Developer tools on the Network tab
by pressing Ctrl-Shift-E (or choosing Tools > Web Developer > Network from the Fire-
fox menu). You will see a new pane open at the bottom of the screen. It will initially
be empty.

 Now, click to select another table on the pgweb menu on the left. You will see the
Network pane populate with three requests. For each request, you will see the status
(HTTP response code), method (GET), domain (localhost:8081), the file requested
(endpoint), a link to the code that made the request, and other details. Figure 9.2
shows what it looks like in my VM.

The cool stuff doesn’t end here, either: you can now click any of these three requests,
and an extra pane, this time on the right, shows more details about it. Click the
request to the info endpoint. A new pane opens, with extra details, just as in figure 9.3.
You can see the headers sent and received, cookies, the parameters sent, response
received, and more.

 Looking at these three requests gives you a lot of information about how the UI is
implemented. For every action the user takes, you can see in the Initiator column that

All requests are shown in the table in the Network pane of
the developer tools (Tools > Web Developer in Firefox).

Figure 9.2 Network view in
Firefox, showing requests
made by pgweb from
JavaScript

250 CHAPTER 9 There’s a monkey in my browser!
the UI leverages jQuery (https://jquery.com/), a popular JavaScript library, to make
requests to the backend. And you can see all of that before you even look at any source
code. The browsers we have today have sure come a long way from the days of IE6!

 So let’s put all of this together:

1 When you browse to see the pgweb UI, your browser connects to the HTTP
server built into the pgweb application. It sends back the basic web page, and
the JavaScript code that together make the UI.

2 When you click something in the UI, the JavaScript code makes a request to the
pgweb HTTP server to load the new data, like the contents of a table, and dis-
plays the data it receives in the browser, by rendering it as part of the web page.

3 To return that data to the UI, the pgweb HTTP server reads the data from the
PostgreSQL database.

4 Finally, the browser receives and displays the new data.

Figure 9.4 summarizes this process. This is a pretty common sight among recent web
applications, and it’s often referred to as a single-page application, or SPA (http://mng
.bz/yYDd), because only the initial “traditional” web page is served, and all the content
is then displayed through JavaScript code manipulating it.

 Feel free to poke around some more. When you’re done, let’s design a chaos
experiment.

The details of each request can be seen, including
request, response, headers, times, and more.

Figure 9.3 Request details
view in Network tab of Web
Developer tools in Firefox,
displaying a request made by
pgweb UI

https://jquery.com/
http://mng.bz/yYDd
http://mng.bz/yYDd
http://mng.bz/yYDd

251Experiment 1: Adding latency
9.2 Experiment 1: Adding latency
You’re running pgweb and PostgreSQL locally, so you’re not exposed to any network-
ing latencies while using it. The first idea you might have is to check how the applica-
tion copes with such latencies. Let’s explore that idea.

 In the previous chapters, you saw how to introduce latencies on various levels, and
you could use that knowledge to add latency between the pgweb server and the data-
base. But you’re here to learn, so this time, let’s focus on how to do that in the JavaS-
cript application itself. This way, you add yet another tool to your chaos engineering
toolbox.

 You saw that three requests were made when you clicked a table to display. They
were all made in quick succession, so it’s not clear whether they’re prone to cascading
delays (whereby requests are made in a sequence, so all the delays add up), and that’s
something that’s probably worth investigating. And as usual, the chaos engineering
way to do that is to add the latency and see what happens. Let’s turn this idea into a
chaos experiment.

9.2.1 Experiment 1 plan

Let’s say that you would like to add a 1-second delay to all the requests that are made
by the JavaScript code of the application, when the user selects a new table to dis-
play. An educated guess is that all three requests you saw earlier were done in parallel,
rather than sequentially, because there don’t seem to be any dependencies between
them. Therefore, you expect the overall action to take about 1 second longer than
before. In terms of observability, you should be able to leverage the built-in timers

2. User clicks on a table
to display its contents,
and JavaScript issues a
new request to load
rows from the backend

3. Pgweb server loads the rows
data from the database

4. Browser displays the
rows data to the user

PostgreSQL

database

SELECT * FROM table

rows data

Browser pgweb

GET/

GET /api/.../rows

JSON data

index.html + *.js

1. User browses to pgweb Ul

Figure 9.4 Events that happen when users browse the pgweb UI to display table contents

252 CHAPTER 9 There’s a monkey in my browser!
that the browser offers to see how long each request takes. So the plan for the exper-
iment is as follows:

1 Observability: use the timer built into the browser to read the time taken to exe-
cute all three requests made by the JavaScript code.

2 Steady state: read the measurements from the browser before you implement
the experiment.

3 Hypothesis: if you add a 1-second delay to all requests made from the JavaScript
code of the application, the overall time it takes to display the new table will
increase by 1 second.

4 Run the experiment!

As always, let’s start with the steady state.

9.2.2 Experiment 1 steady state

Let me show you how to use the timeline built into Firefox to establish how long the
requests made by clicking a table name really take. In the browser with the pgweb UI,
with the Network tab still open (press Ctrl-Shift-E to reopen it, if you closed it before),
let’s clean the inputs. You can do that by clicking the trashcan icon in the top-left cor-
ner of the Network pane. It should wipe the list.

 With this clean slate, select a table in the left menu of the UI by clicking its name.
You will see another three requests made, just as you did before. But this time, I’d like
to focus your attention on two things. First, the rightmost columns in the list display a
timeline; each request is represented by a bar, starting at the time the request was
issued, and ending when it was resolved. The longer the request takes, the longer the
bar. The timeline looks like figure 9.5.

Second, at the bottom of the page is a line saying “Finish” that displays the total time
between the first request started and the last event finished, within the ones you cap-
tured. In my test runs, the number seemed to hover around the 25 ms mark.

 So there’s your steady state. You don’t have an exact number from between the
user click action and the data being visible, but you have the time from the beginning
of the first request to the end of the last one, and that number is around 25 ms. That
should be good enough for our use. Let’s see how to add the actual implementation!

Each of these bars represents a duration of the
request on the timeline. The longer the bar,
the longer the request took to execute.

Figure 9.5 Firefox’s timeline showing
three requests issued and the times they
took to complete

253Experiment 1: Adding latency
9.2.3 Experiment 1 implementation

One of the reasons people dislike JavaScript is that it’s really easy to shoot yourself in
the foot; for example, by accidentally overriding a method or using an undefined vari-
able. Very few things are prohibited. And while that is a valid criticism, it also makes it
fun to implement chaos experiments.

 You want to add latency to requests, so you need to find the place in the code that
makes the requests. As it turns out, JavaScript can make requests in two main ways:

 XMLHttpRequest built-in class (http://mng.bz/opJN)
 Fetch API (http://mng.bz/nMJv)

jQuery (and therefore by extension pgweb, which uses jQuery) uses XMLHttpRequest, so
we’ll focus on it here (don’t worry—we’ll look into the Fetch API later in this chapter).

 To avoid disturbing the learning flow from the chaos engineering perspective, I’m
going to make an exception here, skip directly to the code snippet, and add the expla-
nation in the sidebar. If you’re interested in JavaScript, read the sidebar now, but if
you’re here for chaos engineering, let’s get straight to the point.

Overriding XMLHttpRequest.send()
To make a request, you first create an instance of the XMLHttpRequest class, set
all the parameters you care about, and then call the parameterless send method that
does the actual sending of the request. The documentation referenced earlier gives
the following description of send:

XMLHttpRequest.send()
Sends the request. If the request is asynchronous (which is the default),
this method returns as soon as the request is sent.

This means that if you can find a way to somehow modify that method, you can add
an artificial 1-second delay. If only JavaScript was permissive enough to do that, and
preferably do that on the fly, after all the other code was already set up, so that you
could conveniently affect only the part of the execution flow you care about. But
surely, something this fundamental to the correct functioning of the application must
not be easily changeable, right? Any serious language would try to protect it from acci-
dental overwriting, and so would JavaScript.

Just kidding! JavaScript won’t bat an eye at you doing that. Let me show you how.

Back in the pgweb UI, open a console (in Firefox press Ctrl-Shift-K or choose Tools
>Web Developer >Web Console from the menu). For those of you unfamiliar with the
console, it lets you execute arbitrary JavaScript. You can execute any valid code you
want at any time in the console, and if you break something, you can just refresh the
page and all changes will be gone. That’s going to be the injection mechanism: just
copy and paste the code that you want to inject in the console.

What would the code look like? If you’re not familiar with JavaScript, you’re going to
have to trust me that this is not straying too far out of the ordinary. Strap in.

http://mng.bz/opJN
http://mng.bz/nMJv

254 CHAPTER 9 There’s a monkey in my browser!

set
to

the
afte

l
Listing 9.1 contains a snippet of code that you can copy and paste directly into the
console (to open it in Firefox, press Ctrl-Shift-K or choose Tools >Web Developer
>Web Console from the menu) to add a 1-second delay to the send method of
XMLHttpRequest.

const originalSend = window.XMLHttpRequest.prototype.send;
window.XMLHttpRequest.prototype.send = function(){
 console.log("Chaos calling", new Date());
 let that = this;
 setTimeout(function() {
 return originalSend.apply(that);
 }, 1000);
}

(continued)

First, you need to access the XMLHttpRequest object. In the browser, the global
scope is called window, so to access XMLHttpRequest, you’ll write window.XML-
HttpRequest. OK, makes sense.

Next, JavaScript is a prototype-based language (http://mng.bz/vz1x), which means that
for an object A to inherit a method from another object B, object A can set object B
as its prototype. The send method is not defined on the XMLHttpRequest object
itself, but on its prototype. So to access the method, you need to use the following
mouthful: window.XMLHttpRequest.prototype.send. With this, you can store a
reference to the original method as well as replace the original method with a brand-
new function. This way, the next time the pgweb UI code creates an instance of XML-
HttpRequest and calls its send method, it’s the overwritten function that will get
called. A bit weirder, but JavaScript is still only warming up.

Now, what would that new function look like? To make sure that things continue work-
ing, it’ll need to call the original send method after the 1-second delay. The mechan-
ics of calling a method with the right context are a bit colorful (http://mng .bz/4Z1B),
but for the purposes of this experiment, just know that any function can be invoked
with the .apply(this, arguments) method, which takes a reference to the object
to call the function as a method of, and a list of arguments to pass to it. And to
make it easy to observe that the overwritten function was actually called, let’s use a
console.log statement to print a message to the console.

Finally, to introduce an artificial delay, you can use a built-in setTimeout function that
takes two arguments: a function to call and a time-out to wait before doing that (in
milliseconds). Note that setTimeout isn’t accessed through the window variable.
Well, JavaScript is like that.

Putting this all together, you can construct the seven lines of weird that make up list-
ing 9.1, which is ready to be copied and pasted into the console window.

Listing 9.1 XMLHttpRequest-3.js

Stores a reference to the original
send method for later use

Overrides the send method in
XMLHttpRequest's prototype with a new function Prints a message

to show that the
function was called

Stores the context of the original call to
later use when calling the original send

Timeout
 execute
function
r a delay

Returns the result of the call to the origina
send method, with the stored context

Uses the delay of
1000 ms

http://mng.bz/vz1x
http://mng.bz/4Z1B

255Experiment 1: Adding latency
If this is your first encounter with JavaScript, I apologize. You might want to take a
walk, but make it quick, because we’re ready to run the experiment!

9.2.4 Experiment 1 run

Showtime! Go back to the pgweb UI, refresh it if you’ve made any changes in the con-
sole, and wait for it to load. Select a table from the menu on the left. Make sure the
Network tab is open (Ctrl-Shift-E on Firefox) and empty (use the trash bin icon to
clean it up). You’re ready to go:

1 Copy the code from listing 9.1.
2 Go back to the browser, open the console (Ctrl-Shift-K), paste the snippet, and

press Enter.
3 Now go back to the Network tab and select another table. It will take a bit lon-

ger this time, and you will see the familiar three requests made.
4 Focus on the timeline, on the rightmost column of the Network tab. You will

notice that the spacing (time) between the three requests is similar to what you
observed in our steady state. It will look something like figure 9.6.

What does this timeline mean? You added the same 1-second delay to each call of the
send method. Because the requests on the timeline are not spaced by 1 second, you
can conclude that they’re not made in a sequence, but rather all in parallel. This is
good news, because it means that with a slower connection, the overall application
should slow down in a linear fashion. In other words, there doesn’t seem to be a bot-
tleneck in this part of the application.

Pop quiz: What is XMLHttpRequest?
Pick one:

1 A JavaScript class that generates XML code that can be sent in HTTP requests
2 An acronym standing for Xeno-Morph! Little Help to them please Request, which

is horribly inconsistent with the timeline in the original movie Alien
3 One of the two main ways for JavaScript code to make requests, along with the

Fetch API

See appendix B for answers.

Note that the requests are not
spaced out by second, meaning1
that they are done in parallel.

Figure 9.6 Firefox’s timeline
showing three requests made
from JavaScript

256 CHAPTER 9 There’s a monkey in my browser!
 But the hypothesis was about the entire time it takes to execute the three requests,
so let’s confirm whether that’s the case. We can’t read it directly from the timeline,
because we added the artificial delay before the request is issued, and the timeline
begins only at the time the first request actually starts. If we wanted to go deep down
the rabbit hole, we could override more functions to print different times and calcu-
late the overall time it took.

 But because our main goal here is just to confirm that the requests aren’t waiting
for one another without actually reading the source code, we can do something much
simpler. Go back to the console. You will see three lines starting with Chaos calling,
printed by the snippet of code you used to inject the delay. They also print the time of
the call. Now, back in the Network tab, select the last request, and look at the response
headers. One of them will have the date of the request. Compare the two and note
that they are 1 second apart. In fact, you can compare the other requests, and they’ll
all be 1 second apart from the time our overwritten function was called. The hypothe-
sis was correct; case closed!

 This was fun. Ready for another experiment?

9.3 Experiment 2: Adding failure
Since we’re at it, let’s do another experiment, this time focusing on the error han-
dling that pgweb implements. Running pgweb locally, you’re not going to experience
any connectivity issues, but in the real world you definitely will. How do you expect the
application to behave in face of such networking issues? Ideally, it would have a retry
mechanism where applicable, and if that fails, it would present the user with a clear
error message and avoid showing stale or inconsistent data. A simple experiment basi-
cally designs itself:

1 Observability: observe whether the UI shows any errors or stale data.
2 Steady state: no errors or stale data.
3 Hypothesis: if we add an error on every other request that the JavaScript UI is

making, you should see an error and no inconsistent data every time you select
a new table.

4 Run the experiment!

You have already clicked around and confirmed the steady state (no errors), so let’s
jump directly to the implementation.

9.3.1 Experiment 2 implementation

To implement this experiment, you can use the same injection mechanism from
experiment 1 (paste a code snippet in the browser console) and even override the
same method (send). The only new piece of information you need is this: How does
XMLHttpRequest fail in normal conditions?

 To find out, you need to look up XMLHttpRequest in the documentation at
http://mng.bz/opJN. As it turns out, it uses events. For those of you unfamiliar with

http://mng.bz/opJN

257Experiment 2: Adding failure
events in JavaScript, they provide a simple but flexible mechanism for communicating
between objects. An object can emit (dispatch) events (simple objects with a name
and optionally a payload with extra data). When that happens, the dispatching object
checks whether functions are registered to receive that name, and if there are, they’re
all called with the event. Any function can be registered to receive (listen to) any
events on an object emitting objects. Figure 9.7 presents a visual summary. This para-
digm is used extensively in web applications to handle asynchronous events; for exam-
ple, those generated by user interaction (click, keypress, and so forth).

The Events section of the XMLHttpRequest documentation lists all the events that an
instance of XMLHttpRequest can dispatch. One event looks particularly promising—
the error event, which is described like this:

error
Fired when the request encountered an error.
Also available via the onerror property.

It’s a legal event that can be emitted by an instance of XMLHttpRequest, and it’s one
that should be handled gracefully by the pgweb application, which makes it a good
candidate for our experiment!

 Now that you have all the elements, let’s assemble them into a code snippet. Just as
before, you need to override the window.XMLHttpRequest.prototype.send but keep
a reference to the original method. You need a counter to keep track of which call is
“every other one.” And you can use the dispatchEvent method directly on the XML-
HttpRequest instance to dispatch a new event that you can create with a simple new
Event('timeout'). Finally, you want to either dispatch the event or do nothing (just

1. User registers function
myFunction to be
called for events of
type timeout

2. An event of the matching
type () is dispatched.timeout

Event emitter

.addEventListener(“timeout”, myFunction);

.dispatchEvent(new Event(‘timeout’));

myFunction(event);
3. The registered function

myFunction is called
with the dispatched event.
If there were no functions
registered, the event
would be discarded.

Figure 9.7 High-level overview of events in JavaScript

258 CHAPTER 9 There’s a monkey in my browser!

s
nal
call the original method), based on the value of the counter. You can see a snippet
doing just that in the following listing.

const originalSend = window.XMLHttpRequest.prototype.send;
var counter = 0;
window.XMLHttpRequest.prototype.send = function(){
 counter++;
 if (counter % 2 == 1){
 return originalSend.apply(this, [...arguments]);
 }
 console.log("Unlucky " + counter + "!", new Date());
 this.dispatchEvent(new Event(‘error’));
}

With that, you’re all set to run the experiment. The suspense is unbearable, so let’s
not waste any more time and do it!

9.3.2 Experiment 2 run

Go back to the pgweb UI and refresh (F5, Ctrl-R, or Cmd-R) to erase any artifacts of
the previous experiments. Select a table from the menu on the left. Make sure the
Network tab is open (Ctrl-Shift-E on Firefox) and empty (use the trash bin icon to
clean it up). Copy the code from listing 9.2, go back to the browser, open the console
(Ctrl-Shift-K), paste the snippet, and hit Enter.

 Now, try selecting three different tables in a row by clicking their names in the
pgweb menu on the left. What do you notice? You will see that rows of data, as well as
the table information, are not refreshed every time you click, but only every other
time. What’s worse, no visual error message pops up to tell you there was an error. So
you can select a table, see incorrect data, and not know that anything went wrong.

 Fortunately, if you look into the console, you’re going to see an error message like
the following for every other request:

Uncaught SyntaxError: JSON.parse:
unexpected character at line 1 column 1 of the JSON data

Although you didn’t get a visual presentation of the error in the UI, you can still use
the information from the console to dig down and uncover the underlying issue. If
you’re curious, this is because the error handler used in the pgweb UI for all the
requests accesses a property that is not available when there was an error before the
response was received. It tries to parse it as JSON, which results in an exception being
thrown and the user getting stale data and no visible mention of the error, as in the
following line:

parseJSON(xhr.responseText)

Listing 9.2 XMLHttpRequest-4.js

Stores a reference to the original
send method for later use

Keeps a counter to act
on only every other call

Overrides the send method in XMLHttpRequest's
prototype with a new function

On even calls, relay
directly to the origi
method, noop

On odd calls, instead of
calling the original method,
dispatches an “error” event

259Other good-to-know topics
NOTE Thanks to the open source nature of the project, you can see the line
in the project’s repo on GitHub: http://mng.bz/Xd5Y. Technically, with a
GUI implemented in JavaScript, you could always take a peek into what’s
running in the browser, but having it out in the open for everyone to see is
pretty neat.

So there you have it. With a grand total of 10 lines of (verbose) code and about 1 min-
ute of testing, you were able to find issues with the error handling of a popular, good-
quality open source project. It goes without saying that it doesn’t take away from the
awesomeness of the project itself. Rather, this is an illustration of how little effort it
sometimes takes to benefit from doing chaos engineering.

 JavaScript overdose can have a lot of serious side effects, so I’m going to keep the
remaining content short. One last pit stop to show you two more neat tricks, and
we’re done.

9.4 Other good-to-know topics
Before we wrap up the chapter, I want to give you a bit more information on two more
things that might be useful for implementing your JavaScript-based chaos experi-
ments. Let’s start with the Fetch API.

9.4.1 Fetch API

The Fetch API (http://mng.bz/nMJv) is a more modern replacement for XMLHttp-
Request. Like XMLHttpRequest, it allows you to send requests and fetch resources.
The main interaction point is through the function fetch accessible in the global
scope. Unlike XMLHttpRequest, it returns a Promise object (http://mng.bz/MXl2). In
its basic form, you can just call fetch with a URL, and then attach the .then and
.catch handlers, as you would with any other promise. To try this, go back to the
pgweb UI, open a console, and run the following snippet (fetch, then, and catch
methods in bold) to try to fetch a nonexistent endpoint, /api/does-not-exist:

fetch("/api/does-not-exist").then(function(resp) {
 // deal with the fetched data
 console.log(resp);
}).catch(function(error) {
 // do something on failure
 console.error(error);
});

It will print the response as expected, complaining about the status code 404 (Not
Found). Now, you must be thinking, “Surely, this time, with a modern codebase, the
authors of the API designed it to be harder to override.” Nope. You can use the exact
same technique from the previous experiments to override it. The following listing
puts it all together.

http://mng.bz/Xd5Y
http://mng.bz/nMJv
http://mng.bz/MXl2

260 CHAPTER 9 There’s a monkey in my browser!
const original = window.fetch;
window.fetch = function(){
 console.log("Hello chaos");
 return original.apply(this, [...arguments]);
}

To test it, copy the code from listing 9.3, paste it in the console, and press Enter. Then
paste the previous snippet once again. It will run the same way it did before, but this
time it will print the Hello chaos message.

 That’s it. Worth knowing, in case the application you work with is using this API,
rather than XMLHttpRequest, which is increasingly more likely every day. OK, one last
step and we’re done. Let’s take a look at the built-in throttling.

9.4.2 Throttling

One last tidbit I want to leave you with is the built-in throttling capacity that browsers
like Firefox and Chrome offer these days. If you’ve worked with frontend code before,
you’re definitely familiar with it, but if you’re coming from a more low-level back-
ground, it might be a neat surprise to you!

 Go back to the pgweb UI in the browser. When you open the Web Developer tools
on the Network tab by pressing Ctrl-Shift-E (or choosing Tools > Web Developer >
Network), on the right side, just above the list of calls is a little drop-down menu that
defaults to No Throttling. You can change that to the various presets listed, like GPRS,
Good 2G, or DSL, which emulate the networking speed that these connections offer
(figure 9.8).

Listing 9.3 fetch.js

Stores a reference to the
original fetch function Overrides the

fetch function in
the global scope Calls the original fetch

function after printing
something

By clicking on the drop-down menu, you can pick
throttling options from a variety of presets.

Figure 9.8 Networking throttling
options built into Firefox

261Summary
If you want to inspect how the application performs on a slower connection, try set-
ting this to GPRS! It’s a neat trick to know and might come in handy during your
chaos engineering adventures. And that’s a JavaScript wrap!

9.4.3 Tooling: Greasemonkey and Tampermonkey

Just before you wrap up this chapter, I want to mention two tools that you might find
convenient. So far, you’ve been pasting scripts directly into the console, which is nice,
because it has no dependencies. But it might get tedious if you do a lot of it.

 If that’s the case, check out Greasemonkey (https://github.com/greasemonkey/
greasemonkey) or Tampermonkey (https://www.tampermonkey.net/). Both offer a
similar feature, allowing you to inject scripts to specific websites more easily.

Summary
 JavaScript’s malleable nature makes it easy to inject code into applications run-

ning in the browser.
 There are currently two main ways of making requests (XMLHttpRequest and

the Fetch API), and both lend themselves well to code injection in order to
introduce failure.

Pop quiz: To simulate a frontend application loading slowly, which one of
the following is the best option?
Pick one:

1 Expensive, patented software from a large vendor
2 An extensive, two-week-long training session
3 A modern browser, like Firefox or Chrome

See appendix B for answers.

Pop quiz: Pick the true statement
Pick one:

1 JavaScript is a widely respected programming language, famous for its consis-
tency and intuitive design that allows even beginner programmers to avoid
pitfalls.

2 Chaos engineering applies to only the backend code.
3 JavaScript’s ubiquitous nature combined with its lack of safeguards makes it

very easy to inject code to implement chaos experiments on the fly into existing
applications.

See appendix B for answers.

https://github.com/greasemonkey/greasemonkey
https://github.com/greasemonkey/greasemonkey
https://github.com/greasemonkey/greasemonkey
https://www.tampermonkey.net/

262 CHAPTER 9 There’s a monkey in my browser!
 Modern browsers offer a lot of useful tools through their Developer Tools,
including insight into the requests made to the backend, as well as the console,
which allows for executing arbitrary code.

Part 3

Chaos engineering
in Kubernetes

Kubernetes has taken the deployment world by storm. If you’re reading
this online, chances are that this text is sent to you from a Kubernetes cluster. It’s
so significant that it gets its own part in the book!

 Chapter 10 introduces Kubernetes, where it came from, and what it can do
for you. If you’re not familiar with Kubernetes, this introduction should give you
enough information to benefit from the following two chapters. It also covers
setting two chaos experiments (crashing and network latency) manually.

 Chapter 11 speeds things up a notch by introducing you to some higher-level
tools (PowerfulSeal) that let you implement sophisticated chaos engineering
experiments with simple YAML files. We also cover testing SLOs and chaos engi-
neering at the cloud provider level.

 Chapter 12 takes you deep down the rabbit hole of Kubernetes under the
hood. To understand its weak points, you need to know how it works. This chap-
ter covers all the components that together make Kubernetes tick, along with
ideas on how to identify resiliency problems by using chaos engineering.

 Finally, chapter 13 wraps up the book by showing you that the same princi-
ples also apply to the other complex distributed systems that you deal with on a
daily basis—human teams. It covers the chaos engineering mindset, gives you
ideas for games you can use to make your teams more reliable, and discusses
how to get buy-in from stakeholders.

Chaos in Kubernetes
It’s time to cover Kubernetes (https://kubernetes.io/). Anyone working in software
engineering would have a hard time not hearing it mentioned, at the very least. I
have never seen an open source project become so popular so quickly. I remember
going to one of the first editions of KubeCon in London in 2016 to try to evaluate
whether investing any time into this entire Kubernetes thing was worth it. Fast-
forward to 2020, and Kubernetes expertise is now one of the most demanded skills!

 Kubernetes solves (or at least makes it easier to solve) a lot of problems that
arise when running software across a fleet of machines. Its wide adoption indicates
that it might be doing something right. But, like everything else, it’s not perfect,
and it adds its own complexity to the system—complexity that needs to be managed
and understood, and that lends well to the practices of chaos engineering.

This chapter covers
 Quick introduction to Kubernetes

 Designing chaos experiments for software
running on Kubernetes

 Killing subsets of applications running on
Kubernetes to test their resilience

 Injecting network slowness using a proxy
265

https://kubernetes.io/

266 CHAPTER 10 Chaos in Kubernetes
 Kubernetes is a big topic, so I’ve split it into three chapters:

1 This chapter: Chaos in Kubernetes
– Quick introduction to Kubernetes, where it came from, and what it does.
– Setting up a test Kubernetes cluster. We’ll cover getting a mini cluster up and

running because there is nothing like working on the real thing. If you have
your own clusters you want to use, that’s perfectly fine too.

– Testing a real project’s resilience to failure. We’ll first apply chaos engineer-
ing to the application itself to see how it copes with the basic types of failure
we expect it to handle. We’ll set things up manually.

2 Chapter 11: Automating Kubernetes experiments
– Introducing a high-level tool for chaos engineering on Kubernetes.
– Using that tool to reimplement the experiments we set up manually in chap-

ter 10 to teach you how to do it more easily.
– Designing experiments for an ongoing verification of SLOs. You’ll see how

to set up experiments to automatically detect problems on live systems—for
example, when an SLO is breached.

– Designing experiments for the cloud layer. You’ll see how to use cloud APIs
to test systems’ behavior when machines go down.

3 Chapter 12: Under the hood of Kubernetes
– Understanding how Kubernetes works and how to break it. This is where we

dig deeper and test the actual Kubernetes components. We’ll cover the anat-
omy of a Kubernetes cluster and discuss various ideas for chaos experiments
to verify our assumptions about how it handles failure.

My goal with these three chapters is to take you from a basic understanding of what
Kubernetes is and how it works, all the way to knowing how things tick under the
hood, where the fragile points are, and how chaos engineering can help with under-
standing and managing the way the system handles failure.

NOTE The point of this trio is not to teach you how to use Kubernetes. I’ll
cover all you need to follow, but if you’re looking for a more comprehensive
Kubernetes learning experience, check out Kubernetes in Action by Marko
Luksa (Manning, 2018, www.manning.com/books/kubernetes-in-action).

This is pretty exciting stuff, and I can’t wait to show you around! Like every good jour-
ney, let’s start ours with a story.

10.1 Porting things onto Kubernetes
“It’s technically a promotion, and Kubernetes is really hot right now, so that’s going to
be great for your career! So you’re in, right?” said Alice as she walked out of the room.
As the door closed, it finally hit you that even though what she said was phrased as a
question, in her mind, there wasn’t much uncertainty about the outcome: you must
save that High-Profile Project, period.

http://www.manning.com/books/kubernetes-in-action

267Porting things onto Kubernetes
 The project was weird from the beginning. Upper management announced it to a
lot of fanfare and red-ribbon cutting, but never made quite clear the function it was
supposed to serve—apart from “solving a lot of problems” by doing things like “get-
ting rid of the monolith” and leveraging “the power of microservices” and the “amaz-
ing features of Kubernetes.” And—as if this wasn’t mysterious enough—the previous
technical lead of the team just left the company. He really left. The last time someone
was in contact with him, he was on his way to the Himalayas to start a new life as a
llama breeder.

 Truth be told, you are the person for this job. People know you’re into chaos engi-
neering, and they’ve heard about the problems you’ve uncovered with your experi-
ments. If anyone can pick up where the llama-breeder-to-be left off and turn the
existing system into a reliable system, it’s you! You just need to learn how this entire
Kubernetes thing works and what the High-Profile Project is supposed to do, and then
come up with a plan of attack. Lucky for you, this chapter will teach you exactly that.
What a coincidence! Also, the documentation you inherited reveals some useful details.
Let’s take a look at it.

10.1.1 High-Profile Project documentation

There is little documentation for the High-Profile Project, so I’ll just paste it verbatim
for you to get the full experience. Turns out that, rather suitably, the project is called
ICANT. Here’s how the document describes this acronym:

ICANT: International, Crypto-fueled, AI-powered, Next-generation market
Tracking

A little cryptic, isn’t it? It’s almost like someone designed it to be confusing to raise
more funds. Something to do with AI and cryptocurrencies. But wait, there is a mis-
sion statement too; maybe this clears things up a little bit:

Build a massively scalable, distributed system for tracking cryptocurrency flows
with cutting-edge AI for technologically advanced clients all over the world.

No, not really; that doesn’t help much. Fortunately, there is more. The section on cur-
rent status reveals that you don’t need to worry about the AI, crypto, or market stuff—
that’s all on the to-do list. This is what it says:

Current status: First we approached the “distributed” part. We’re running
Kubernetes, so we set up Goldpinger, which makes connections between all
the nodes to simulate the crypto traffic.

To do: The AI stuff, the crypto stuff, and market stuff.

All of a sudden, starting a new life in the Himalayas makes much more sense! The pre-
vious technical lead took the network diagnostic tool Goldpinger (https://github.com/
bloomberg/goldpinger), by yours truly, deployed it on their Kubernetes cluster, put
all the actual work in the to-do, and left the company. And now it’s your problem!

https://github.com/bloomberg/goldpinger
https://github.com/bloomberg/goldpinger
https://github.com/bloomberg/goldpinger

268 CHAPTER 10 Chaos in Kubernetes
10.1.2 What’s Goldpinger?

What does Goldpinger actually do? It produces a full graph of Kubernetes cluster con-
nectivity by calling all instances of itself, measuring the times, and producing reports
based on that data. Typically, you’d run an instance of Goldpinger per node in the
cluster to detect any networking issues across nodes.

 Figure 10.1 shows an example of a graph of a single node having connectivity
issues. The Goldpinger UI uses colors (green for OK, red for trouble), and I marked
the affected link in the screenshot.

For any crypto-AI-market-tracking enthusiast, this is going to be an anticlimax. But
from our point of view, it makes the job easier: we have a single component to work
with that doesn’t require any buzzword knowledge. We can do it. First stop: a quick
intro to Kubernetes. Start your stopwatch.

10.2 What’s Kubernetes (in 7 minutes)?
Kubernetes (K8s for short) describes itself as “an open source system for automating
deployment, scaling, and management of containerized applications” (https://
kubernetes.io/). That sounds great, but what does that really mean?

This link represents a broken
connection between the two nodes.

Figure 10.1 Goldpinger graph showing connectivity between nodes in a Kubernetes cluster

https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/

269What’s Kubernetes (in 7 minutes)?
 Let’s start simple. Let’s say you have a piece of software that you need to run on
your computer. You can start your laptop, log in, and run the program. Congratula-
tions, you just did a manual deployment of your software! So far, so good.

 Now imagine that you need the same piece of software to run not on 1, but on 10
computers. All of a sudden, logging into 10 computers doesn’t sound so attractive, so
you begin to think about automating that deployment. You could hack together a
script that uses Secure Shell (SSH) to remotely log in to the 10 computers and start
your program. Or you could use one of the many existing configuration management
tools, like Ansible (https://github.com/ansible/ansible) or Chef (www.chef.io/). With
10 computers to take care of, it might just work.

 Unfortunately, it turns out that the program you started on these machines some-
times crashes. The problem might not even be a bug, but something else—for exam-
ple, insufficient disk storage. So you need something to supervise the process and to
try to bring it back up when it crashes. You could achieve that by making your configu-
ration management tool configure a systemd service (http://mng.bz/BRlq) so that
the process gets restarted automatically every time it dies.

 The software also needs to be upgraded. Every time you want to deploy a new version,
you need to rerun your configuration management solution to stop and uninstall the
previous version, and then install and start the new one. Also, the new version has differ-
ent dependencies, so you need to take care of that too, during the update. Oh, and now
your cluster contains 200 machines, because other people like your program and want
you to run their software too (no need to reinvent the wheel for each piece of software
you want to deploy, right?), so it’s beginning to take a long time to roll out a new version.

 Every machine has limited resources (CPU, RAM, disk space), so you now have this
massive spreadsheet to keep track of what software should run on which machine, so
that the machines don’t run out of resources. When you onboard a new project, you
allocate resources to it and mark where it should run in the spreadsheet. And when
one of the machines goes down, you look for available room elsewhere and migrate
the software from the affected machine onto another one. It’s hard work, but people
keep coming, so you must be doing something right!

 Wouldn’t it be great if a program could do all this for you? Well, yes, you guessed it,
it’s called Kubernetes; it does all this and more. Where did it come from?

10.2.1 A very brief history of Kubernetes

Kubernetes, from a Greek word meaning helmsman or governor, is an open source project
released by Google in 2015 as a reimplementation of its internal scheduler system
called Borg (https://research.google/pubs/pub43438/). Google donated Kubernetes
to a newly formed foundation called Cloud Native Computing Foundation (or CNCF
for short; www.cncf.io), which created a neutral home for the project and encouraged
a massive influx of investment from other companies.

 It worked. In the short five years since the project’s creation, it has become a de
facto API for scheduling containers. As companies adopted the open source project,

https://github.com/ansible/ansible
http://mng.bz/BRlq
https://research.google/pubs/pub43438/
http://www.chef.io/
http://www.chef.io/
http://www.chef.io/
http://www.cncf.io

270 CHAPTER 10 Chaos in Kubernetes
Google managed to pull people away from investing more into solutions specific to
Amazon Web Services (AWS), and its cloud offering has gained more clout.

 Along the way, the CNCF also gained many auxiliary projects that work with Kuber-
netes, like the monitoring system Prometheus (https://prometheus.io/), container
runtime containerd (https://containerd.io/) and figuratively tons more.

 It all sounds great, but the real question that leads to a wide adoption is this: What
can it do for you? Let me show you.

10.2.2 What can Kubernetes do for you?

Kubernetes works declaratively, rather than imperatively. What I mean by that is that it
lets you describe the software you want to run on your cluster, and it continuously tries
to converge the current cluster state into the one you requested. It also lets you read
the current state at any given time. Conceptually, it’s an API for herding cats (https://
en.wiktionary.org/wiki/herd_cats).

 To use Kubernetes, you need a Kubernetes cluster. A Kubernetes cluster is a set of
machines that run the Kubernetes components, and that make their resources (CPU,
RAM, disk space) available to be allocated and used by your software. These machines
are typically called worker nodes. A single Kubernetes cluster can have thousands of
worker nodes.

 Let’s say you have a cluster, and you want to run new software on that cluster. Your
cluster has three working nodes, each containing a certain amount of resources avail-
able. Imagine that one of your workers has a moderate amount of resources available,
a second one has plenty available, and the third one is entirely used. Depending on
the resources that the new piece of software needs, your cluster might be able to run it
on the first or the second, but not the third, worker node. Visually, it could look like
figure 10.2. Note that it’s possible (and sometimes pretty useful) to have heteroge-
neous nodes, with various configurations of resources available.

The bars represent visually the amount of
resources available on a given worker.

This worker has plenty
of free resources and
can host new software.

This worker has very little
resources left, and might not
be able to host any new software.

Worker 1 Worker 2 Worker 3

CPU RAM Disk CPU RAM Disk CPU RAM Disk

Figure 10.2 Resources available in a small Kubernetes cluster

https://prometheus.io/
https://containerd.io/
https://en.wiktionary.org/wiki/herd_cats
https://en.wiktionary.org/wiki/herd_cats
https://en.wiktionary.org/wiki/herd_cats

271What’s Kubernetes (in 7 minutes)?
What would starting new software on this cluster look like? All you need to do is tell
your cluster what your software looks like (the container image to run, any configura-
tion like environment variables or secrets), the amount of resources you want to give it
(CPU, RAM, disk space), and how to run it (the number of copies, any constraints on
where it should run). You do that by making an HTTP request to the Kubernetes
API—or by using a tool, like the official command-line interface (CLI) called kubectl.
The part of the cluster that receives the request, stores it as the desired state, and
immediately goes to work in the background on converging the current state of the
cluster to the desired state is often referred to as the control plane.

 Let’s say you want to deploy version v1.0 of mysoftware. You need to allocate one
core and 1 GB of RAM for each copy, and you need to run two copies for high avail-
ability. To make sure that one worker going down doesn’t take both copies down with
it, you add a constraint that the two copies shouldn’t run on the same worker node.
You send this request to the control plane, which stores it and returns OK. In the
background, the same control plane calculates where to schedule the new software,
finds two workers with enough available resources, and notifies these workers to start
your software. Figure 10.3 illustrates this process.

1. User sends a request detailing what
software they want to run and how.

2. The control plane validates and
stores the desired state, then
returns OK to the user.

3. In the background, the control plane tries to converge
to the desired state. It calculates that a copy of the
software should go to workers X and Y, and notifies
the affected workers to start a new container.

CPU

Worker YWorker X

DiskRAM CPU DiskRAM

OK

Control plane

Schedule

Container image: mysoftware:v1.0

Configuration:

CPU: 1 core

RAM: 1 GB

Replicas: 2

Constraints: run each copy on a

different worker

HTTP request

Figure 10.3 Interacting with a Kubernetes cluster

272 CHAPTER 10 Chaos in Kubernetes
And voilà! That’s what Kubernetes can do for you. Instead of making your machines
do specific, low-level tasks like starting a process, you can tell your cluster to figure out
how to do what you need it to do. This is a 10,000-feet aerial view, but don’t worry,
we’ll get into the nitty-gritty later in the chapter. Right now, I bet you can’t wait for
some hands-on experience. Let’s get to that by setting up a test cluster.

10.3 Setting up a Kubernetes cluster
Before we can continue with our scenario, you need access to a working Kubernetes
cluster. The beauty of Kubernetes is that you can get the cluster from various provid-
ers, and it should behave exactly the same! All the examples in this chapter will work
on any conforming clusters, and I will mention any potential caveats. Therefore,
you’re free to pick whatever installation of Kubernetes is the most convenient for you.

10.3.1 Using Minikube

For those who don’t have a Kubernetes cluster handy, the easiest way to get started is
to deploy a single-node, local mini-cluster on your local machine with Minikube
(https://github.com/kubernetes/minikube). Minikube is an official part of Kuberne-
tes itself, and allows you to deploy a single node with single instances of all the Kuber-
netes control-plane components inside a virtual machine. It also takes care of the little
yet crucial things like helping you easily access processes running inside the cluster.

 Before continuing, please follow appendix A to install Minikube. In this chapter,
I’ll assume you’re following along with a Minikube installation on your laptop. I’ll also
mention whatever might be different if you’re not. Everything in this chapter was
tested on Minikube 1.12.3 and Kubernetes 1.18.3.

10.3.2 Starting a cluster

Depending on the platform, Minikube supports multiple virtualization options to run
the actual VM with Kubernetes. The options differ for each platform:

 Linux—KVM or VirtualBox (running processes directly on the host is also
supported)

 macOS—HyperKit, VMware Fusion, Parallels, or VirtualBox
 Windows—Hyper-V or VirtualBox

Pop quiz: What’s Kubernetes?
Pick one:

1 A solution to all of your problems
2 Software that automatically renders the system running on it immune to failure
3 A container orchestrator that can manage thousands of VMs and will continu-

ously try to converge the current state into the desired state
4 A thing for sailors

See appendix B for answers.

https://github.com/kubernetes/minikube

273Setting up a Kubernetes cluster
For our purposes, you can pick any of the supported options, and Kubernetes should
work the same. But because I already made you install VirtualBox for the previous
chapters and it’s a common denominator of all three supported platforms, I recom-
mend you stick with VirtualBox.

 To start a cluster, all you need is the minikube start command. To specify the Vir-
tualBox driver, use the --driver flag. Run the following command from a terminal to
start a new cluster using VirtualBox:

minikube start --driver=virtualbox

The command might take a minute, because Minikube needs to download the VM
image for your cluster and then start a VM with that image. When the command is
done, you will see output similar to the following. Someone took the time to pick rele-
vant emoticons for each log message, so I took the time to respect that and copy verba-
tim. You can see that the command uses the VirtualBox driver as I requested and
defaults to give the VM two CPUs, 4 GB of RAM, and 2 GB of storage. It’s also running
Kubernetes v1.18.3 on Docker 19.03.12 (all in bold font).

 minikube v1.12.3 on Darwin 10.14.6
 Using the virtualbox driver based on user configuration
 Starting control plane node minikube in cluster minikube
 Creating virtualbox VM (CPUs=2, Memory=4000MB, Disk=20000MB) …
 Preparing Kubernetes v1.18.3 on Docker 19.03.12 …
 Verifying Kubernetes components…
 Enabled addons: default-storageclass, storage-provisioner
 Done! kubectl is now configured to use "minikube"

To confirm that the cluster started OK, try to list all pods running on the cluster. Run
the following command in a terminal:

kubectl get pods -A

You will see output just like the following, listing the various components that together
make the Kubernetes control plane. We will cover in detail how they work later in this
chapter. For now, this command working at all proves that the control plane works:

NAMESPACE NAME READY STATUS RESTARTS AGE
kube-system coredns-66bff467f8-62g9p 1/1 Running 0 5m44s
kube-system etcd-minikube 1/1 Running 0 5m49s
kube-system kube-apiserver-minikube 1/1 Running 0 5m49s
kube-system kube-controller-manager-minikube 1/1 Running 0 5m49s
kube-system kube-proxy-bwzcf 1/1 Running 0 5m44s
kube-system kube-scheduler-minikube 1/1 Running 0 5m49s
kube-system storage-provisioner 1/1 Running 0 5m49s

You’re now ready to go. When you’re done for the day and want to stop the cluster,
use minikube stop, and to resume the cluster, use minikube start.

274 CHAPTER 10 Chaos in Kubernetes
TIP You can use the command kubectl --help to get help on all available
commands in kubectl. If you’d like more details on a particular command,
use --help on that command. For example, to get help concerning the avail-
able options of the get command, just run kubectl get --help.

It’s time to get our hands dirty with the High-Profile Project.

10.4 Testing out software running on Kubernetes
With a functional Kubernetes cluster at your disposal, you’re now ready to start work-
ing on the High-Profile Project, aka ICANT. The pressure is on; you have a project
to save!

 As always, the first step is to build an understanding of how things work before you
can reason about how they break. You’ll do that by kicking the tires and looking at
how ICANT is deployed and configured. You’ll then conduct two experiments and fin-
ish this section by seeing how to make things easier for the next time. Let’s start at the
beginning by running the actual project

10.4.1 Running the ICANT Project

As you discovered earlier when reading the documentation you inherited, the project
didn’t get very far. The original team took an off-the-shelf component (Goldpinger),
deployed it, and called it a day. All of this is bad news for the project, but good news to
me; I have less explaining to do!

 Goldpinger works by querying Kubernetes for all the instances of itself, and then
periodically calling each of these instances and measuring the response time. It
then uses that data to generate statistics (metrics) and plot a pretty connectivity
graph. Each instance works in the same way: it periodically gets the address of its
peers and makes a request to each one. Figure 10.4 illustrates this process. Gold-
pinger was invented to detect network slowdowns and problems, especially in larger
clusters. It’s really simple and effective.

 How do you go about running it? You’ll do it in two steps:

1 Set up the right permissions so Goldpinger can query Kubernetes for its peer.
2 Deploy the Goldpinger deployment on the cluster.

You’re about to step into Kubernetes Wonderland, so let me introduce you to some
Kubernetes lingo.

UNDERSTANDING KUBERNETES TERMINOLOGY

The documentation often mentions resources to mean the objects representing various
abstractions that Kubernetes offers. For now, I’m going to introduce you to three basic
building blocks used to describe software on Kubernetes:

 Pod—A collection of containers that are grouped together, run on the same
host, and share some system resources (for example, an IP address). This is the
unit of software that you can schedule on Kubernetes. You can schedule pods

275Testing out software running on Kubernetes
directly, but most of the time you will be using a higher-level abstraction, such as
a deployment.

 Deployment—A blueprint for creating pods, along with extra metadata, such as
the number of replicas to run. Importantly, it also manages the life cycle of
pods that it creates. For example, if you modify a deployment to update a ver-
sion of the image you want to run, the deployment can handle a rollout, delet-
ing old pods and creating new ones one by one to avoid an outage. It also offers
other options, like rollback in case the rollout ever fails.

 Service—A service matches an arbitrary set of pods and provides a single IP
address that resolves to the matched pods. That IP is kept up-to-date with the
changes made to the cluster. For example, if a pod goes down, it will be taken
out of the pool.

You can see a visual representation of how these fit together in figure 10.5. Another
thing you need to know in order to understand how Goldpinger works is that to query
Kubernetes, you need the right permissions.

1. Each Goldpinger instance queries Kubernetes for addresses
of all Goldpinger instances in the cluster (its peers).

2. It then periodically makes an
HTTP call to all its peers, and
produces statistics on errors
and response times.

3. Every instance does the same
thing in order to produce a
full connectivity graph.

Kubernetes

control plane

Worker X

Goldpinger A

10.10.10.1

OK: 10.10.10.1, 10.10.10.2, 10.10.10.3

Give me all goldpinger instances

Worker Y Worker Z

Goldpinger B

10.10.10.2
Goldpinger C

10.10.10.3

Figure 10.4 Overview of how Goldpinger works

276 CHAPTER 10 Chaos in Kubernetes
SETTING PERMISSIONS

Kubernetes has an elegant way of managing permissions. First, it has ClusterRoles, which
allow you to define a role and a corresponding set of permissions to execute verbs
(create, get, delete, list, . . .) on various resources. Second, it has ServiceAccounts,
which can be linked to any software running on Kubernetes, so that it inherits all the
permissions that the ServiceAccount was granted. And finally, to make a link between
a ServiceAccount and a ClusterRole, you can use a ClusterRoleBinding, which does
exactly what it says.

 If you’re new to permissioning, this might sound a little bit abstract, so take a look
at figure 10.6 to see how all of this comes together.

 In this case, you want to allow Goldpinger pods to list their peers, so all you need is
a single ClusterRole and the corresponding ServiceAccount and ClusterRoleBinding.
Later, you will use that ServiceAccount to permission the Goldpinger pods.

Pop quiz: What’s a Kubernetes deployment?
Pick one:

1 A description of how to reach software running on your cluster
2 A description of how to deploy some software on your cluster
3 A description of how to build a container

See appendix B for answers.

1. Deployment creates and
deletes pods as needed.

2. Service provides an IP address
that will resolve to the set of
IPs of matched pods currently
running on the cluster.

3. The user can use the service to
access the pods created and
managed by the deployment.

Deployment

Replicas: 2

Pod

Replica 1

Pod

Replica 2

Service

IP: 10.10.10.123

Figure 10.5 Pods, deployments, and services example in Kubernetes

277Testing out software running on Kubernetes
CREATING THE RESOURCES

It’s time for some code! In Kubernetes, you can describe all the resources you want to
create by using a YAML (.yml) file (https://yaml.org/) that follows the specific format
that Kubernetes accepts. Listing 10.1 shows how all of this permissioning translates
into YAML.

 For each element described, there is a YAML object, specifying the corresponding
type (kind) and the expected parameters. First, a ClusterRole called goldpinger-
clusterrole allows for listing pods (bold font). Then you have a ServiceAccount
called goldpinger-serviceaccount (bold font). And finally, a ClusterRoleBinding
links the ClusterRole to the ServiceAccount. If you’re new to YAML, note that the ---
separators allow for describing multiple resources in a single file.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: goldpinger-clusterrole
rules:
- apiGroups:
 - ""
 resources:
 - pods
 verbs:
 - list

apiVersion: v1
kind: ServiceAccount
metadata:
 name: goldpinger-serviceaccount
 namespace: default

Listing 10.1 Setting up permission peers (goldpinger-rbac.yaml)

1. Two ClusterRoles define different sets of permissions on a resource.

ClusterRole

List pods

...

ClusterRole

Create, delete pods

ClusterRoleBinding ServiceAccount Pod X

2. ClusterRoleBinding links ClusterRoles to a ServiceAccount.

3. A pod using that ServiceAccount inherits all
the permissions from the ClusterRoles in question:
create, delete, and list other pods.

Figure 10.6 Kubernetes permissioning example

You start with a
cluster role.

The cluster role gets
permissions for the
resource of type pod.

The cluster role gets permissions
to list the resource of type pod.

Creates a service
account to use later

https://yaml.org/

278 CHAPTER 10 Chaos in Kubernetes

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: goldpinger-clusterrolebinding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: goldpinger-clusterrole
subjects:
 - kind: ServiceAccount
 name: goldpinger-serviceaccount
 namespace: default

This takes care of the permissioning part. Let’s now go ahead and see what deploying
the actual Goldpinger looks like.

CREATING GOLDPINGER YAML FILES

To make sense of deploying Goldpinger, I need to explain more details that I’ve
skipped over so far: labels and matching.

 Kubernetes makes extensive use of labels, which are simple key-value pairs of type
string. Every resource can have arbitrary metadata attached to it, including labels.
They are used by Kubernetes to match sets of resources, and are fairly flexible and
easy to use.

 For example, let’s say that you have two pods with the following labels:

 Pod A, with labels app=goldpinger and stage=dev
 Pod B, with labels app=goldpinger and stage=prod

If you match (select) all pods with label app=goldpinger, you will get both pods. But if
you match with label stage=dev, you will get only pod A. You can also query by multi-
ple labels, and in that case Kubernetes will return pods matching all requested labels
(a logical AND).

 Labels are useful for manually grouping resources, but they’re also leveraged by
Kubernetes; for example, to implement deployments. When you create a deployment,
you need to specify the selector (a set of labels to match), and that selector needs to
match the pods created by the deployment. The connection between the deployment
and the pods it manages relies on labels.

 Label matching is also the same mechanism that Goldpinger leverages to query
for its peers: it just asks Kubernetes for all pods with a specific label (by default,
app=goldpinger). Figure 10.7 shows that graphically.

 Putting this all together, you can finally write a YAML file with two resource descrip-
tors: a deployment and a matching service. Inside the deployment, you need to specify
the following:

 The number of replicas (we’ll go with three for demonstration purposes)
 The selector (again, the default app=goldpinger)
 The actual template of pods to create

Creates a cluster role
binding that binds the
cluster role . . .

. . . to the service
account

279Testing out software running on Kubernetes
In the pod template, you will specify the container image to run, some environment
values required for Goldpinger to work, and ports to expose so that other instances
can reach it. The important bit is that you need to specify an arbitrary port that
matches the PORT environment variable (this is what Goldpinger uses to know which
port to listen on). You’ll go with 8080. Finally, you also specify the service account you
created earlier to permission the Goldpinger pods to query Kubernetes for their
peers.

 Inside the service, you once again use the same selector (app=goldpinger) so that
the service matches the pods created by the deployment, and the same port 8080 that
you specified on the deployment.

NOTE In a typical installation, you would like to have one Goldpinger pod
per node (physical machine, VM) in your cluster. That can easily be achieved
by using a DaemonSet. It works a lot like a deployment, but instead of specify-
ing the number of replicas, it assumes one replica per node (learn more at
http://mng.bz/d4Jz). In our example setup, you will use a deployment instead,
because with only one node, you would only have a single pod of Goldpinger,
which defeats the purpose of this demonstration.

The following listing contains the YAML file you can use to create the deployment and
the service. Take a look.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: goldpinger
 namespace: default
 labels:
 app: goldpinger
spec:
 replicas: 3
 selector:

Listing 10.2 Creating a Goldpinger deployment (goldpinger.yml)

1. Each Goldpinger instance queries Kubernetes for its peers.

Worker X

Goldpinger A

10.10.10.1

Kubernetes

control plane
Give me all pods with label

app=goldpinger

10.10.10.1, 10.10.10.2, 10.10.10.3

2. It receives a list of peers to test connectivity with.
Figure 10.7 Kubernetes
permissioning for Goldpinger

The deployment will
create three replicas of
the pods (three pods).

The deployment is
configured to match pods
with label app=goldpinger.

http://mng.bz/d4Jz

280 CHAPTER 10 Chaos in Kubernetes
 matchLabels:
 app: goldpinger
 template:
 metadata:
 labels:
 app: goldpinger
 spec:
 serviceAccount: "goldpinger-serviceaccount"
 containers:
 - name: goldpinger
 image: "docker.io/bloomberg/goldpinger:v3.0.0"
 env:
 - name: REFRESH_INTERVAL
 value: "2"
 - name: HOST
 value: "0.0.0.0"
 - name: PORT
 value: "8080"
 # injecting real pod IP will make things easier to understand
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 ports:
 - containerPort: 8080
 name: http

apiVersion: v1
kind: Service
metadata:
 name: goldpinger
 namespace: default
 labels:
 app: goldpinger
spec:
 type: LoadBalancer
 ports:
 - port: 8080
 name: http
 selector:
 app: goldpinger

With that, you’re now ready to actually start the program! If you’re following along,
you can find the source code for both of these files (goldpinger-rbac.yml and gold-
pinger.yml) at http://mng.bz/rydE. Let’s make sure that both files are in the same
folder, and let’s go ahead and run them.

DEPLOYING GOLDPINGER

Start by creating the permissioning resources (the goldpinger-rbac.yml file) by run-
ning the following command:

kubectl apply -f goldpinger-rbac.yml

The pods template
actually gets the label
app=goldpinger.

Configures the
Goldpinger pods to
run on port 8080

Exposes port 8080 on the
pod so it’s reachable

In the service, targets
port 8080 that you made
available on the pods

The service will target
pods based on the label
app=goldpinger.

http://mng.bz/rydE

281Testing out software running on Kubernetes
You will see Kubernetes confirming that the three resources were created successfully,
with the following output:

clusterrole.rbac.authorization.k8s.io/goldpinger-clusterrole created
serviceaccount/goldpinger-serviceaccount created
clusterrolebinding.rbac.authorization.k8s.io/goldpinger-clusterrolebinding

created

Then, create the actual deployment and a service:

kubectl apply -f goldpinger.yml

Just as before, you will see the confirmation that the resources were created:

deployment.apps/goldpinger created
service/goldpinger created

Once that’s done, let’s confirm that pods are running as expected. To do that, list
the pods:

kubectl get pods

You should see output similar to the following, with three pods in status Running
(bold font). If they’re not, you might need to give it a few seconds to start:

NAME READY STATUS RESTARTS AGE
goldpinger-c86c78448-5kwpp 1/1 Running 0 1m4s
goldpinger-c86c78448-gtbvv 1/1 Running 0 1m4s
goldpinger-c86c78448-vcwx2 1/1 Running 0 1m4s

The pods are running, meaning that the deployment did its job. Goldpinger crashes if
it can’t list its peers, which means that the permissioning you set up also works as
expected. The last thing to check is that the service was configured correctly. You can
do that by running the following command, specifying the name of the service you
created (goldpinger):

kubectl describe svc goldpinger

You will see the details of the service, just as in the following output (abbreviated).
Note the Endpoints field, specifying three IP addresses, for the three pods that it’s
configured to match.

Name: goldpinger
Namespace: default
Labels: app=goldpinger
(...)
Endpoints: 172.17.0.3:8080,172.17.0.4:8080,172.17.0.5:8080
(...)

282 CHAPTER 10 Chaos in Kubernetes
If you want to be 100% sure that the IPs are correct, you can compare them to the IPs
of Goldpinger pods. You can display the IPs easily by appending -o wide (for wide out-
put) to the kubectl get pods command:

kubectl get pods -o wide

You will see the same list as before, but this time with extra details, including the IP
(bold font). These details should correspond to the list specified in the service. Any
mismatch between the IP addresses matched by the service and the IP addresses of the
pods would point to misconfigured labels. Depending on your internet connection
speed and your setup, the pods might take a little bit of time to start. If you see pods in
Pending state, give it an extra minute:

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

goldpinger-c86c78448-5kwpp 1/1 Running 0 15m 172.17.0.4 minikube <none>
<none>

goldpinger-c86c78448-gtbvv 1/1 Running 0 15m 172.17.0.3 minikube <none>
<none>

goldpinger-c86c78448-vcwx2 1/1 Running 0 15m 172.17.0.5 minikube <none>
<none>

Everything’s up and running, so let’s access Goldpinger to see what it’s really doing.
To do that, you need to access the service you created.

NOTE Kubernetes does a great job of standardizing the way people run their
software. Unfortunately, not everything is easily standardized. Although every
Kubernetes cluster supports services, the way you access the cluster, and
therefore its services, depends on the way the cluster was set up. This chapter
sticks to Minikube because it’s simple and easily accessible to anyone. If
you’re running your own Kubernetes cluster, or use a managed solution from
a cloud provider, accessing software running on the cluster might require
extra setup (for example, setting up an ingress; http://mng.bz/Vdpr). Refer
to the relevant documentation.

On Minikube, you can leverage the command minikube service, which will figure
out a way to access the service directly from your host machine and open the browser
for you. To do that, run the following command:

minikube service goldpinger

You will see output similar to the following specifying the special URL that Minikube
prepared for you (bold font). Your default browser will be launched to open that URL:

|-----------|------------|-------------|-----------------------------|
NAMESPACE	NAME	TARGET PORT	URL
default	goldpinger	http/8080	http://192.168.99.100:30426
-----------	------------	-------------	-----------------------------
 Opening service default/goldpinger in default browser…

http://mng.bz/Vdpr

283Testing out software running on Kubernetes
Inside the newly launched browser window, you will see the Goldpinger UI. It will look
similar to what’s shown in figure 10.8. It’s a graph, on which every point represents an
instance of Goldpinger, and every arrow represents the last connectivity check (an
HTTP request) between the instances. You can click a node to select it and display
extra information.

The graph also provides other functionality, such as a heatmap, showing hotspots of
any potential networking slowness, and metrics, providing statistics that can be used to
generate alerts and pretty dashboards. Goldpinger is a really handy tool for detecting
any network issues, downloaded more than a million times from Docker Hub!

 Feel free to take some time to play around, but otherwise you’re done setting it all
up. You have a running application that you can interact with, deployed with just two
kubectl commands.

Figure 10.8 Goldpinger UI in action

284 CHAPTER 10 Chaos in Kubernetes
 Unfortunately, on our little test cluster, all three instances are running on the same
host, so you’re unlikely to see any network slowness, which is pretty boring. Fortu-
nately, as chaos engineering practitioners, we’re well equipped to introduce failure
and make things interesting again. Let’s start with the basics—an experiment to kill
some pods.

10.4.2 Experiment 1: Kill 50% of pods

Much like a villain from a comic book movie, you might be interested in seeing what
happens when you kill 50% of Goldpinger pods. Why do that? It’s an inexpensive
experiment that can answer a lot of questions about what happens when one of these
instances goes down (simulating a machine going down). For example

 Do the other instances detect that to begin with?
 If so, how long before they detect it?
 How does Goldpinger configuration affect all of that?
 If you had an alert set up, would it get triggered?

How should you go about implementing this? The previous chapters covered different
ways this could be addressed. For example, you could log into the machine running
the Goldpinger process you want to kill, and simply run a kill command, as you did
before. Or, if your cluster uses Docker to run the containers (more on that soon), you
could leverage the tools covered in chapter 5. All of the techniques you learned in the
previous chapters still apply. That said, Kubernetes gives you other options, like
directly deleting pods. It’s definitely the most convenient way of achieving that, so let’s
go with that option.

 Our experiment has another crucial detail: Goldpinger works by periodically mak-
ing HTTP requests to all of its peers. That period is controlled by the environment
variable REFRESH_PERIOD. In the goldpinger.yml file you deployed, that value was set
to 2 seconds:

 - name: REFRESH_INTERVAL
 value: "2"

This means that the maximum time it takes for an instance to notice another instance
being down is 2 seconds. This is pretty aggressive, and in a large cluster would result in
a lot of traffic and CPU time spent on this, but I chose that value for demonstration
purposes. It will be handy to see the changes detected quickly. With that, you now
have all the elements, so let’s turn this into a concrete plan for an experiment.

EXPERIMENT 1 PLAN

If you take the first question (Do other Goldpinger instances detect a peer down?),
you can design a simple experiment plan like so:

1 Observability: use the Goldpinger UI to see whether any pods are marked as
inaccessible; use kubectl to see new pods come and go.

2 Steady state: all nodes are healthy.

285Testing out software running on Kubernetes
3 Hypothesis: if you delete one pod, you should see it marked as failed in the
Goldpinger UI, and then be replaced by a new, healthy pod.

4 Run the experiment!

That’s it! Let’s see how to implement it.

EXPERIMENT 1 IMPLEMENTATION

To implement this experiment, the pod labels come in useful once again. All you
need to do is leverage kubectl get pods to get all pods with label app=goldpinger,
and then pick a random pod and kill it, using kubectl delete. To make things easy, you
can also leverage kubectl’s -o name flag to display only the pod names, and use a combi-
nation of sort --random-sort and head -n1 to pick a random line of the output.

 Put all of this together, and you get a script like kube-thanos.sh in the following
listing. Store the script somewhere on your system (or clone it from the GitHub repo).

#!/bin/bash

kubectl get pods \
 -l app=goldpinger \
 -o name \
 | sort --random-sort \
 | head -n 1 \
 | xargs kubectl delete

Armed with that, you’re ready to rock. Let’s run the experiment.

EXPERIMENT 1 RUN!
Let’s start by double-checking the steady state. Your Goldpinger installation should
still be running, and you should have the UI open in a browser window. If it’s not, you
can bring both back up by running the following commands:

kubectl apply -f goldpinger-rbac.yml
kubectl apply -f goldpinger.yml
minikube service goldpinger

To confirm that all nodes are OK, simply refresh the graph by clicking the Reload but-
ton, and verify that all three nodes are showing in green. So far, so good.

 To confirm that the script works, let’s also set up some observability for the pods
being deleted and created. You can leverage the --watch flag of the kubectl get com-
mand to print the names of all pods coming and going to the console. You can do that
by opening a new terminal window and running the following command:

kubectl get pods --watch

Listing 10.3 Killing pods randomly (kube-thanos.sh)

Uses kubectl
to list pods

Lists only pods with
label app=goldpinger

Displays the name
as the output

Sorts in random order

Picks the first oneDeletes the pod

286 CHAPTER 10 Chaos in Kubernetes
You will see the familiar output, showing all the Goldpinger pods, but this time the
command will stay active, blocking the terminal. You can use Ctrl-C to exit at any time
if needed:

NAME READY STATUS RESTARTS AGE
goldpinger-c86c78448-6rtw4 1/1 Running 0 20h
goldpinger-c86c78448-mj76q 1/1 Running 0 19h
goldpinger-c86c78448-xbj7s 1/1 Running 0 19h

Now, to the fun part! To conduct our experiment, you’ll open another terminal win-
dow for the kube-thanos.sh script, run it to kill a random pod, and then quickly go to
the Goldpinger UI to observe what the Goldpinger pods saw. Bear in mind that in the
local setup, the pods will recover rapidly, so you might need to be quick to actually
observe the pod becoming unavailable and then healing. In the meantime, the
kubectl get pods --watch command will record the pod going down and a replace-
ment coming up. Let’s do that!

 Open a new terminal window and run the script to kill a random pod:

bash kube-thanos.sh

You will see output showing the name of the pod being deleted:

pod "goldpinger-c86c78448-shtdq" deleted

Go quickly to the Goldpinger UI and click Refresh. You should see some failure, as in
figure 10.9. Nodes that can’t be reached by at least one other node will be marked as
unhealthy. I marked the unhealthy node in the figure. The live UI also uses a red
color to differentiate them. You will also notice four nodes showing up. This is because
after the pod is deleted, Kubernetes tries to reconverge to the desired state (three rep-
licas), so it creates a new pod to replace the one you deleted.

NOTE If you’re not seeing any errors, the pods probably recovered before
you switched to the UI window, because your computer is quicker than mine
when I was writing this and chose the parameters. If you rerun the command
and refresh the UI more quickly, you should be able to see it.

Now, go back to the terminal window that is running kubectl get pods --watch. You
will see output similar to the following. Note the pod that you killed (-shtdq) goes
into Terminating state, and a new pod (-lwxrq) takes its place (both in bold font).
You will also notice that the new pod goes through a life cycle of Pending to Container-
Creating to Running, while the old one goes to Terminating:

NAME READY STATUS RESTARTS AGE
goldpinger-c86c78448-pfqmc 1/1 Running 0 47s
goldpinger-c86c78448-shtdq 1/1 Running 0 22s
goldpinger-c86c78448-xbj7s 1/1 Running 0 20h

287Testing out software running on Kubernetes
goldpinger-c86c78448-shtdq 1/1 Terminating 0 38s
goldpinger-c86c78448-lwxrq 0/1 Pending 0 0s
goldpinger-c86c78448-lwxrq 0/1 Pending 0 0s
goldpinger-c86c78448-lwxrq 0/1 ContainerCreating 0 0s
goldpinger-c86c78448-shtdq 0/1 Terminating 0 39s
goldpinger-c86c78448-lwxrq 1/1 Running 0 2s
goldpinger-c86c78448-shtdq 0/1 Terminating 0 43s
goldpinger-c86c78448-shtdq 0/1 Terminating 0 43s

Finally, let’s check that everything recovered smoothly. To do that, go back to the
browser window with Goldpinger UI, and refresh once more. You should now see
the three new pods happily pinging each other, all in green. This means that our
hypothesis was correct on both fronts.

 Nice job. Another one bites the dust another experiment under your belt. But
before we move on, let’s discuss a few points.

This node is unhealthy, because
at least one other node had
trouble reaching it.

Figure 10.9 Goldpinger UI showing an unavailable pod being replaced by a new one.

288 CHAPTER 10 Chaos in Kubernetes
EXPERIMENT 1 DISCUSSION

For the sake of teaching, I took a few shortcuts here that I want to make you aware of.
First, when accessing the pods through the UI, you’re using a service, which resolves
to a pseudorandom instance of Goldpinger every time you make a new call. This
means it’s possible to get routed to the instance you just killed and get an error in the
UI. It also means that every time you refresh the view, you get the reality from the
point of view of a different pod.

 For illustration purposes, that’s not a deal breaker on a small test cluster, but if you
run a large cluster and want to make sure that a network partition doesn’t obscure
your view, you need to make sure you consult all available instances, or at least a rea-
sonable subset. Goldpinger addresses that issue with metrics, and you can learn more
at https://github.com/bloomberg/goldpinger#prometheus.

 Second, using a GUI-based tool this way is a bit awkward. If you see what you
expect, that’s great. But if you don’t, it doesn’t necessarily mean the event didn’t hap-
pen; you might simply have missed it. Again, this can be alleviated by using the met-
rics, which I skipped here for the sake of simplicity.

 Third, if you look closely at the failures that you see in the graph, you will see that
the pods sometimes start receiving traffic before they are actually up. This is because,
again for simplicity, I skipped the readiness probe that serves exactly that purpose. If
set, a readiness probe prevents a pod from receiving any traffic until a certain condi-
tion is met (see the documentation at http://mng.bz/xmdq). For an example of how
to use a readiness probe, see the installation docs of Goldpinger (https://github.com/
bloomberg/goldpinger#installation).

 Finally, remember that depending on the refresh period you’re running Gold-
pinger with, the data you’re looking at is up to that many seconds stale, which means
that for the pods you killed, you’ll keep seeing them for an extra number of seconds
equal to the refresh period (2 seconds in this setup).

 These are the caveats my lawyers advised me to clarify before this goes to print. In
case that makes you think I’m not fun at parties, let me prove you wrong. Let’s play
some Invaders, like it’s 1978.

Pop quiz: What happens when a pod dies on a Kubernetes cluster?
Pick one:

1 Kubernetes detects it and sends you an alert.
2 Kubernetes detects it and will restart it as necessary to make sure the expected

number of replicas are running.
3 Nothing.

See appendix B for answers.

https://github.com/bloomberg/goldpinger#prometheus
http://mng.bz/xmdq
https://github.com/bloomberg/goldpinger#installation
https://github.com/bloomberg/goldpinger#installation
https://github.com/bloomberg/goldpinger#installation

289Testing out software running on Kubernetes
10.4.3 Party trick: Kill pods in style

If you really want to make a point that chaos engineering is fun, I have two tools for you.
 First, let’s look at KubeInvaders (https://github.com/lucky-sideburn/KubeInvad-

ers). It gamifies the process of killing pods by starting a clone of Space Invaders; the
aliens are pods in the specified namespace. You guessed it: the aliens you shoot down
are deleted in Kubernetes. Installation involves deploying Kubernetes on a cluster, and
then connecting a local client that actually displays the game content. See figure 10.10
to see what KubeInvaders looks like in action.

The second tool is for fans of the first-person shooter genre: Kube DOOM (https://
github.com/storax/kubedoom). Similar to KubeInvaders, it represents pods as ene-
mies, and kills in Kubernetes the ones that die in the game. Here’s a tip to justify using
it: playing the game is often much quicker than copying and pasting the name of a
pod, saving so much time (mandatory reference: https://xkcd.com/303/). See figure
10.11 for a screenshot.

 For Kube DOOM, the installation is pretty straightforward: you run a pod on the
host, pass a kubectl configuration file to it, and then use a desktop-sharing client to
connect to the game. After a long day of debugging, it might be just what you need.
I’ll just leave it there.

You control the spaceship killing aliens.

Pods are represented by aliens.

Figure 10.10 KubeInvaders: https://github.com/lucky-sideburn/KubeInvaders

https://github.com/lucky-sideburn/KubeInvaders
https://github.com/lucky-sideburn/KubeInvaders
https://github.com/storax/kubedoom
https://github.com/storax/kubedoom
https://github.com/storax/kubedoom
https://xkcd.com/303/
https://github.com/lucky-sideburn/KubeInvaders

290 CHAPTER 10 Chaos in Kubernetes
I’m sure that will help with your next house party. When you finish the game, let’s take
a look at another experiment—some good old network slowness.

10.4.4 Experiment 2: Introduce network slowness

Slowness, my nemesis, we meet again. If you’re a software engineer, chances are you’re
spending a lot of time trying to outwit slowness. When things go wrong, actual failure
is often easier to debug than situations where things mostly work. And slowness tends
to fall into the latter category.

 Slowness is such an important topic that we touch upon it in nearly every chapter
of this book. I introduced some slowness using tc in chapter 4, and then again using
Pumba in Docker in chapter 5. You’ve used some in the context of the JVM, applica-
tion level, and even browser in other chapters. It’s time to take a look at what’s differ-
ent when running on Kubernetes.

 It’s worth mentioning that everything we covered before still applies here. You
could very well use tc or Pumba directly on one of the machines running the pro-
cesses you’re interested in, and modify them to introduce the failure you care about.
In fact, using kubectl cp and kubectl exec, you could upload and execute tc com-
mands directly in a pod, without even worrying about accessing the host. Or you could
even add a second container to the Goldpinger pod that would execute the necessary
tc commands.

 All of these options are viable but share one downside: they modify the existing
software that’s running on your cluster, and so by definition carry risks of messing

Pods represent
the enemies.

Figure 10.11 Kube DOOM: https://github.com/storax/kubedoom

https://github.com/storax/kubedoom

291Testing out software running on Kubernetes
things up. A convenient alternative is to add extra software, tweaked to implement the
failure you care about, but otherwise identical to the original, and introduce the extra
software in a way that will integrate with the rest of the system. Kubernetes makes it
really easy. Let me show you what I mean; let’s design an experiment around simu-
lated network slowness.

EXPERIMENT 2 PLAN

Let’s say that you want to see what happens when one instance of Goldpinger is slow
to respond to queries of its peers. After all, this is what this piece of software was
designed to help with, so before you rely on it, you should test that it works as
expected.

 A convenient way of doing that is to deploy a copy of Goldpinger that you can
modify to add a delay. Once again, you could do it with tc, but to show you some
new tools, let’s use a standalone network proxy instead. That proxy will sit in front
of that new Goldpinger instance, receive the calls from its peers, add the delay,
and relay the calls to Goldpinger. Thanks to Kubernetes, setting it all up is pretty
straightforward.

 Let’s iron out some details. Goldpinger’s default time-out for all calls is 300 ms, so
let’s pick an arbitrary value of 250 ms for our delay: enough to be clearly seen, but not
enough to cause a time-out. And thanks to the built-in heatmap, you will be able to
visually show the connections that take longer than others, so the observability aspect
is taken care of. The plan of the experiment figuratively writes itself:

1 Observability: use the Goldpinger UI’s graph and heatmap to read delays.
2 Steady state: all existing Goldpinger instances report healthy.
3 Hypothesis: if you add a new instance that has a 250 ms delay, the connectivity

graph will show all four instances healthy, and the 250 ms delay will be visible in
the heatmap.

4 Run the experiment!

Sound good? Let’s see how to implement it.

EXPERIMENT 2 IMPLEMENTATION

Time to dig into what the implementation will look like. Do you remember figure 10.4
that showed how Goldpinger worked? Let me copy it for your convenience in figure
10.12. Every instance asks Kubernetes for all its peers, and then periodically makes
calls to them to measure latency and detect problems.

 Now, what you want to do is add a copy of the Goldpinger pod that has the
extra proxy we just discussed in front of it. A pod in Kubernetes can have multiple
containers running alongside each other and able to communicate via localhost. If
you use the same label app=goldpinger, the other instances will detect the new
pod and start calling. But you will configure the ports in such a way that instead of
directly reaching the new instance, the peers will first reach the proxy (in port
8080). And the proxy will add the desired latency. The extra Goldpinger instance

292 CHAPTER 10 Chaos in Kubernetes
will be able to ping the other hosts freely, like a regular instance. This is summa-
rized in figure 10.13.

 You get the idea of what the setup will look like; now you need the actual network-
ing proxy. Goldpinger communicates via HTTP/1.1, so you’re in luck. It’s a text-
based, reasonably simple protocol running on top of TCP. All you need is the protocol
specification (RFC 7230, RFC 7231, RFC 7232, RFC 7233 and RFC 7234), and you
should be able to implement a quick proxy in no time.1 Dust off your C compiler,
stretch your arms, and let’s do it!

EXPERIMENT 2 TOXIPROXY

Just kidding! You’ll use an existing, open source project designed for this kind of
thing, called Toxiproxy (https://github.com/shopify/toxiproxy). It works as a proxy
on the TCP level (Level 4 of the Open Systems Interconnection, or OSI, model),

1 The specifications are available online at the IETF Tools pages: RFC 7230 at https://tools.ietf.org/html/
rfc7230, RFC 7231 at https://tools.ietf.org/html/rfc7231, RFC 7232 at https://tools.ietf.org/html/rfc7232,
RFC 7233 at https://tools.ietf.org/html/rfc7233, and RFC 7234 at https://tools.ietf.org/html/rfc7234.

Goldpinger A

10.10.10.1

Kubernetes

control plane

Worker X

Worker ZWorker Y

Goldpinger C

10.10.10.3

Goldpinger B

10.10.10.2

1. Each Goldpinger instance queries Kubernetes for addresses
of all Goldpinger instances in the cluster (its peers).

2. It then periodically makes
HTTP calls to all its peers, and
produces statistics on errors
and response times.

3. Every instance does the same thing in order
to produce a full connectivity graph.

Give me all goldpinger instances

OK: 10.10.10.1, 10.10.10.2, 10.10.10.3

Figure 10.12 Overview of how Goldpinger works (again)

https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7232
https://github.com/shopify/toxiproxy
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234

293Testing out software running on Kubernetes
which is fine, because you don’t actually need to understand anything about what’s
going on at the HTTP level (Level 7) to introduce a simple latency. The added benefit
is that you can use the same tool for any other TCP-based protocol in the exact same
way, so what you’re about to do will be equally applicable to a lot of other popular soft-
ware, like Redis, MySQL, PostgreSQL, and many more.

 Toxiproxy consists of two pieces:

 The actual proxy server, which exposes an API you can use to configure what
should be proxied where and the kind of failure that you expect

 A CLI client that connects to that API and can change the configuration live

NOTE Instead of using the CLI, you can also talk to the API directly, and Tox-
iproxy offers ready-to-use clients in a variety of languages.

The dynamic nature of Toxiproxy makes it really useful when used in unit and inte-
gration testing. For example, your integration test could start by configuring the
proxy to add latency when connecting to a database, and then your test could verify
that time-outs are triggered accordingly. It’s also going to be handy in implementing
our experiment.

1. When regular Goldpinger instances detect
and call the experiment instance, they will
reach the proxy, instead of Goldpinger itself.

2. The proxy adds
latency and then relays
the call to the special
Goldpinger instance.

3. The special Goldpinger instance still
makes calls to its peers without
interacting with the proxy.

Goldpinger Chaos

10.10.10.4

Proxy (add latency)

:8080

Goldpinger process

Goldpinger A

10.10.10.1

:8080

Worker C

Worker X

Worker Y

Goldpinger B

10.10.10.2

:8080

Figure 10.13 A modified copy of Goldpinger with an extra proxy in front of it

294 CHAPTER 10 Chaos in Kubernetes
 The version you’ll use, 2.1.4, is the latest available release at the time of writing.
You’ll run the proxy server as part of the extra Goldpinger pod by using a prebuilt,
publicly available image from Docker Hub. You’ll also need to use the CLI locally on
your machine.

 To install it, download the CLI executable for your system (Ubuntu/Debian, Win-
dows, macOS) from https://github.com/Shopify/toxiproxy/releases/tag/v2.1.4 and
add it to your PATH. To confirm it works, run the following command:

toxiproxy-cli --version

You should see version 2.1.4 displayed:

toxiproxy-cli version 2.1.4

When a Toxiproxy server starts, by default it doesn’t do anything apart from running its
HTTP API. By calling the API, you can configure and dynamically change the behavior
of the proxy server. You can define arbitrary configurations by the following:

 A unique name
 A host and port to bind to and listen for connections
 A destination server to proxy to

For every configuration like this, you can attach failures. In Toxiproxy lingo, these fail-
ures are called toxics. Currently, the following toxics are available:

 latency—Adds arbitrary latency to the connection (in either direction)
 down—Takes down the connection
 bandwidth—Throttles the connection to the desired speed
 slow close—Delays the TCP socket from closing for an arbitrary time
 timeout—Waits for an arbitrary time and then closes the connection
 slicer—Slices the received data into smaller bits before sending it to the

destination

You can attach an arbitrary combination of failures to every proxy configuration you
define. For our needs, the latency toxic will do exactly what you want it to. Let’s see
how all of this fits together.

Pop quiz: What’s Toxiproxy?
Pick one:

1 A configurable TCP proxy that can simulate various problems such as dropped
packets or network slowness

2 A K-pop band singing about the environmental consequences of dumping large
amounts of toxic waste sent to developing countries through the use of proxy
and shell companies

See appendix B for answers.

https://github.com/Shopify/toxiproxy/releases/tag/v2.1.4

295Testing out software running on Kubernetes
EXPERIMENT 2 IMPLEMENTATION CONTINUED

To sum it all up, you want to create a new pod with two containers: one for Goldpinger
and one for Toxiproxy. You need to configure Goldpinger to run on a different port
so that the proxy can listen on the default port 8080 that the other Goldpinger
instances will try to connect to. You’ll also create a service that routes connections to
the proxy API on port 8474, so you can use toxiproxy-cli commands to configure
the proxy and add the latency that you want, just as in figure 10.14.

Let’s now translate this into a Kubernetes YAML file. You can see the resulting gold-
pinger-chaos.yml in listing 10.4. You will see two resource descriptions, a pod (with
two containers) and a service. You use the same service account you created before, to
give Goldpinger the same permissions. You’re also using two environment variables,
PORT and CLIENT_PORT_OVERRIDE, to make Goldpinger listen on port 9090, but call its
peers on port 8080, respectively. This is because, by default, Goldpinger calls its peers
on the same port that it runs itself.

1. Our proxy needs to listen on port 8080
(default Goldpinger port) and be able to
talk to the special Goldpinger instance
listening on a different port.

2. We’ll configure an
arbitrary port 9090 for
the special Goldpinger
instance to listen on.

3. The user can communicate with
the proxy API through a service to
configure the proxy at runtime.

Goldpinger Chaos

10.10.10.4

Proxy (add latency)

:8080 (proxy)

:8474 (API)

Goldpinger process

:9090

Goldpinger A

10.10.10.1

:8080

:8474

:8080

toxiproxy-cli...

Service

Goldpinger-chaos

Worker C

Worker X

Figure 10.14 Interacting with the modified version of Goldpinger using toxiproxy-cli

296 CHAPTER 10 Chaos in Kubernetes
 Finally, notice that the service is using the label chaos=absolutely to match to the
new pod you created. It’s important that the Goldpinger pod has the label app=gold-
pinger so that it can be found by its peers, but you also need another label in order to
route connections to the proxy API.

apiVersion: v1
kind: Pod
metadata:
 name: goldpinger-chaos
 namespace: default
 labels:
 app: goldpinger
 chaos: absolutely
spec:
 serviceAccount: "goldpinger-serviceaccount"
 containers:
 - name: goldpinger
 image: docker.io/bloomberg/goldpinger:v3.0.0
 env:
 - name: REFRESH_INTERVAL
 value: "2"
 - name: HOST
 value: "0.0.0.0"
 - name: PORT
 value: "9090"
 - name: CLIENT_PORT_OVERRIDE
 value: "8080"
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: toxiproxy
 image: docker.io/shopify/toxiproxy:2.1.4
 ports:
 - containerPort: 8474
 name: toxiproxy-api
 - containerPort: 8080
 name: goldpinger

apiVersion: v1
kind: Service
metadata:
 name: goldpinger-chaos
 namespace: default
spec:
 type: LoadBalancer
 ports:
 - port: 8474
 name: toxiproxy-api
 selector:
 chaos: absolutely

Listing 10.4 Goldpinger deployment (goldpinger-chaos.yml)

The new pod has the same label
app=goldpinger to be detected by
its peers, but also chaos=absolutely
to be matched by the proxy api
service.

Uses the same service
account as other instances to
give Goldpinger permission
to list its peers

Uses HOST envvar to make
Goldpinger listen on port 9090,
and CLIENT_PORT_OVERRIDE to
make it call its peers on the
default port 8080

Toxiproxy container exposes
two ports: 8474 with the
Toxiproxy API, and 8080 to
proxy through to Goldpinger

Service routes
traffic to port 8474
(Toxiproxy API)

Service uses label
chaos=absolutely to select
the pods running Toxiproxy

297Testing out software running on Kubernetes
And that’s all you need. Make sure you have this file handy (or clone it from the repo
as before). Ready to rock? Let the games begin!

EXPERIMENT 2 RUN!
To run this experiment, you’re going to use the Goldpinger UI. If you closed the
browser window before, restart it by running the following command in the terminal:

minikube service goldpinger

Let’s start with the steady state, and confirm that all three nodes are visible and report
as healthy. In the top bar, click Heatmap. You will see a heatmap similar to the one in
figure 10.15. Each square represents connectivity between nodes and is color-coded
based on the time it took to execute a request:

 Columns represent source (from).
 Rows represent destinations (to).
 The legend clarifies which number corresponds to which pod.

Each square in the heatmap represents connectivity between two
nodes. In this illustration, they all fall into the “good threshold.”

Figure 10.15 Example of Goldpinger heatmap

298 CHAPTER 10 Chaos in Kubernetes
In this example, all squares are the same color and shade, meaning that all requests
take below 2 ms, which is to be expected when all instances run on the same host. You
can also tweak the values to your liking and click Refresh to show a new heatmap.
Close it when you’re ready.

 Let’s introduce our new pod! To do that, you’ll kubectl apply the goldpinger-
chaos.yml file from listing 10.4. Run the following command:

kubectl apply -f goldpinger-chaos.yml

You will see output confirming creation of a pod and service:

pod/goldpinger-chaos created
service/goldpinger-chaos created

Let’s confirm it’s running by going to the UI. You will now see an extra node, just as in
figure 10.16. But notice that the new pod is marked as unhealthy; all of its peers are
failing to connect to it. In the live UI, the node is marked in red, and in figure 10.16

Notice the new, extra node showing in the graph. It’s marked
as unhealthy because other nodes can’t connect to it.

Figure 10.16 Extra Goldpinger instance, detected by its peers, but inaccessible

299Testing out software running on Kubernetes
I annotated the new, unhealthy node for you. This is because you haven’t configured
the proxy to pass the traffic yet.

 Let’s address that by configuring the Toxiproxy. This is where the extra service you
deployed comes in handy: you will use it to connect to the Toxiproxy API using
toxiproxy-cli. Do you remember how you used minikube service to get a special
URL to access the Goldpinger service? You’ll leverage that again, but this time with
the --url flag, to print only the URL itself. Run the following command in a bash ses-
sion to store the URL in a variable:

TOXIPROXY_URL=$(minikube service --url goldpinger-chaos)

You can now use the variable to point toxiproxy-cli to the right Toxiproxy API.
That’s done using the -h flag. Confusingly, -h is not for help; it’s for host. Let’s confirm
it works by listing the existing proxy configuration:

toxiproxy-cli -h $TOXIPROXY_URL list

You will see the following output, saying no proxies are configured. It even goes so far
as to hint that you should create some proxies (bold font):

Name Listen Upstream Enabled Toxics
==
no proxies

Hint: create a proxy with `toxiproxy-cli create`

Let’s configure one. You’ll call it chaos, make it route to localhost:9090 (where you
configured Goldpinger to listen to), and listen on 0.0.0.0:8080 to make it accessible to
its peers to call. Run the following command to make that happen:

toxiproxy-cli \
 -h $TOXIPROXY_URL \
 create chaos \
 -l 0.0.0.0:8080 \
 -u localhost:9090

You will see a simple confirmation that the proxy was created:

Created new proxy chaos

Rerun the toxiproxy-cli list command to see the new proxy appear this time:

toxiproxy-cli -h $TOXIPROXY_URL list

You will see the following output, listing a new proxy configuration called chaos
(bold font):

Connects to a specific proxy Creates a new proxy
configuration called “chaos”

Listens on 0.0.0.0:8080
(default Goldpinger port)

Relays connections to localhost:9090
(where you configured Goldpinger to run)

300 CHAPTER 10 Chaos in Kubernetes
Name Listen Upstream Enabled Toxics
==
chaos [::]:8080 localhost:9090 enabled None

Hint: inspect toxics with `toxiproxy-cli inspect <proxyName>`

If you go back to the UI and click Refresh, you will see that the goldpinger-chaos
extra instance is now green, and all instances happily report healthy state in all direc-
tions. If you check the heatmap, it will also show all green.

 Let’s change that. Using the command toxiproxy-cli toxic add, let’s add a single
toxic with 250 ms latency:

toxiproxy-cli \
 -h $TOXIPROXY_URL \
 toxic add \
 --type latency \
 --a latency=250 \
 --upstream \
 chaos

You will see a confirmation:

Added upstream latency toxic 'latency_upstream' on proxy 'chaos'

To confirm that the proxy got it right, you can inspect your chaos proxy. To do that,
run the following command:

toxiproxy-cli -h $TOXIPROXY_URL inspect chaos

You will see output just like the following, listing your brand-new toxic (bold font):

Name: chaos Listen: [::]:8080 Upstream: localhost:9090
==
Upstream toxics:
latency_upstream: type=latency stream=upstream toxicity=1.00
attributes=[jitter=0 latency=250]

Downstream toxics:
Proxy has no Downstream toxics enabled.

Now, go back to the Goldpinger UI in the browser and refresh. You will still see all
four instances reporting healthy and happy (the 250 ms delay fits within the default
time-out of 300 ms). But if you open the heatmap, this time it will tell a different story.
The row with goldpinger-chaos pod will be marked in red (problem threshold),
implying that all its peers detected slowness. See figure 10.17 for a screenshot.

 Our hypothesis was correct: Goldpinger correctly detects and reports the slowness,
and at 250 ms, below the default time-out of 300 ms, the Goldpinger graph UI reports
all as healthy. And you did all of that without modifying the existing pods.

Adds a toxic to an existing
proxy configuration Toxic type is latency

Adds 250 ms of latency

Sets it in the upstream direction,
toward the Goldpinger instance

Attaches this toxic to a proxy
configuration called “chaos”

301Testing out software running on Kubernetes
This wraps up the experiment, but before we go, let’s clean up the extra pod. To do
that, run the following command to delete everything you created using the gold-
pinger-chaos.yml file:

kubectl delete -f goldpinger-chaos.yml

Let’s discuss our findings.

EXPERIMENT 2 DISCUSSION

How well did you do? You took some time to learn new tools, but the entire implemen-
tation of the experiment boiled down to a single YAML file and a handful of com-
mands with Toxiproxy. You also had a tangible benefit of working on a copy of the
software that you wanted to test, leaving the existing running processes unmodified.
You effectively rolled out extra capacity and then had 25% of running software
affected, limiting the blast radius.

 Does that mean you could do that in production? As with any sufficiently complex
question, the answer is, “It depends.” In this example, if you wanted to verify the
robustness of some alerting that relies on metrics from Goldpinger to trigger, this
could be a good way to do it. But the extra software could also affect the existing

A new row shows the extra instance. No other instances can connect
to it, so the row is marked in a different color and shade.

Figure 10.17 Goldpinger heatmap, showing slowness accessing pod goldpinger-chaos

302 CHAPTER 10 Chaos in Kubernetes
instances in a more profound way, making it riskier. At the end of the day, it really
depends on your application.

 There is, of course, room for improvement. For example, the service you’re using
to access the Goldpinger UI is routing traffic to any instance matched in a pseudoran-
dom fashion. Sometimes it will route to the instance that has the 250 ms delay. In our
case, that will be difficult to spot with the naked eye, but if you wanted to test a larger
delay, it could be a problem.

 Time to wrap up this first part. Coming in part 2: making your chaos engineer life
easier with PowerfulSeal.

Summary
 Kubernetes helps manage container orchestration at scale, but in doing that, it

also introduces its own complexity that needs to be understood and managed.
 Introducing failure by killing pods is easy using kubectl.
 Thanks to Kubernetes, it’s practical to inject network issues by adding an extra

network proxy; by doing so, you can also better control the blast radius.

Automating
Kubernetes experiments
In this second helping of Kubernetes goodness, you’ll see how to use higher-level
tools to implement chaos experiments. In the previous chapter, you set up experi-
ments manually to build an understanding of how to implement the experiment.
But now I want to show you how much more quickly you can go when using the
right tools. Enter PowerfulSeal.

11.1 Automating chaos with PowerfulSeal
It’s often said that software engineering is one of the very few jobs where being lazy
is a good thing. And I tend to agree with that; a lot of automation or reducing toil
can be seen as a manifestation of being too lazy to do manual labor. Automation
also reduces operator errors and improves speed and accuracy.

This chapter covers
 Automating chaos experiments for Kubernetes

with PowerfulSeal

 Recognizing the difference between one-off
experiments and ongoing SLO verification

 Designing chaos experiments on the VM level
using cloud provider APIs
303

304 CHAPTER 11 Automating Kubernetes experiments
 The tools for automation of chaos experiments are steadily becoming more advanced
and mature. For a good, up-to-date list of available tools, it’s worth checking out the
Awesome Chaos Engineering list (https://github.com/dastergon/awesome-chaos-
engineering). For Kubernetes, I recommend PowerfulSeal (https://github.com/
powerfulseal/powerfulseal), created by yours truly, and which we’re going to use
here. Other good options include Chaos Toolkit (https://github.com/chaostoolkit/
chaostoolkit) and Litmus (https://litmuschaos.io/).

 In this section, we’re going to build on the two experiments you implemented
manually in chapter 10 to make you more efficient the next time. In fact, we’re going
to reimplement a slight variation of these experiments, each in 5 minutes flat. So,
what’s PowerfulSeal again?

11.1.1 What’s PowerfulSeal?

PowerfulSeal is a chaos engineering tool for Kubernetes. It has quite a few features:

 Interactive mode, helping you to understand how software on your cluster
works and to manually break it

 Integrating with your cloud provider to take VMs up and down
 Automatically killing pods marked with special labels
 Autonomous mode supporting sophisticated scenarios

The latter point in this list is the functionality we’ll focus on here.
 The autonomous mode allows you to implement chaos experiments by writing a sim-

ple YAML file. Inside that file, you can write any number of scenarios, each listing the
steps necessary to implement, validate, and clean up after your experiment. There
are plenty of options you can use (documented at https://powerfulseal.github.io/
powerfulseal/policies), but at its heart, autonomous mode has a very simple format.
The YAML file containing scenarios is referred to as a policy file.

 To give you an example, take a look at listing 11.1. It contains a simple policy file,
with a single scenario, with a single step. That single step is an HTTP probe. It will try
to make an HTTP request to the designated endpoint of the specified service, and fail
the scenario if that doesn’t work.

scenarios:
- name: Just check that my service responds
 steps:
 - probeHTTP:
 target:
 service:
 name: my-service
 namespace: myapp
 endpoint: /healthz

Once you have your policy file ready, you can run PowerfulSeal in many ways. Typi-
cally, it tends to be used either from your local machine—the same one you use to

Listing 11.1 Minimal policy (powerfulseal-policy-minimal.yml)

Instructs PowerfulSeal to
conduct an HTTP probe

Targets service my-service
in namespace myapp

Calls the /healthz endpoint
on that service

https://github.com/dastergon/awesome-chaos-engineering
https://github.com/dastergon/awesome-chaos-engineering
https://github.com/powerfulseal/powerfulseal
https://github.com/powerfulseal/powerfulseal
https://github.com/powerfulseal/powerfulseal
https://github.com/chaostoolkit/chaostoolkit
https://github.com/chaostoolkit/chaostoolkit
https://github.com/chaostoolkit/chaostoolkit
https://litmuschaos.io/
https://powerfulseal.github.io/powerfulseal/policies
https://powerfulseal.github.io/powerfulseal/policies
https://powerfulseal.github.io/powerfulseal/policies

305Automating chaos with PowerfulSeal
interact with the Kubernetes cluster (useful for development)—or as a deployment
running directly on the cluster (useful for ongoing, continuous experiments).

 To run, PowerfulSeal needs permission to interact with the Kubernetes cluster,
either through a ServiceAccount, as you did with Goldpinger in chapter 10, or
through specifying a kubectl config file. If you want to manipulate VMs in your clus-
ter, you also need to configure access to the cloud provider. With that, you can start
PowerfulSeal in autonomous mode and let it execute your scenario.

 PowerfulSeal will go through the policy and execute scenarios step by step, killing
pods and taking down VMs as appropriate. Take a look at figure 11.1, which shows
what this setup looks like.

And that’s it. Point PowerfulSeal at a cluster, tell it what your experiment is like, and
watch it do the work for you! We’re almost ready to get our hands dirty, but before we
do, you need to install PowerfulSeal.

Pop quiz: What does PowerfulSeal do?
Pick one:

1 Illustrates—in equal measures—the importance and futility of trying to pick up
good names in software

2 Guesses what kind of chaos you might need by looking at your Kubernetes clusters
3 Allows you to write a YAML file to describe how to run and validate chaos

experiments

See appendix B for answers.

1. The user starts PowerfulSeal
in autonomous mode and passes
the necessary configuration.

2. If required by policy,
PowerfulSeal might stop VMs.

3. If required by policy, PowerfulSeal
will kill targeted pods.

powerfulseal autonomous ...
PowerfuISeal

Node X

Pod ABC

Kubernetes API

Kubernetes cluster

Policy.yamI

Kubernetes
access

Cloud provider
API access
(optional)

Stop VM X

Kill pod ABC

Kill pod ABC

Cloud provider API

Stop VM X

Figure 11.1 Setting up PowerfulSeal

306 CHAPTER 11 Automating Kubernetes experiments
11.1.2 PowerfulSeal installation

PowerfulSeal is written in Python, and it’s distributed in two forms:

 A pip package called powerfulseal
 A Docker image called powerfulseal/powerfulseal on Docker Hub

For our two examples, running PowerfulSeal locally will be much easier, so let’s install
it through pip. It requires Python3.7+ and pip available.

 To install it using a virtualenv (recommended), run the following commands in a
terminal window to create a subfolder called env and install everything in it:

python3 --version
python3 -m virtualenv env
source env/bin/activate
pip install powerfulseal

Depending on your internet connection, the last step might take a minute or two. When
it’s done, you will have a new command accessible, called powerfulseal. Try it out:

powerfulseal --version

You will see the version printed, corresponding to the latest version available. If at any
point you need help, feel free to consult the help pages of PowerfulSeal by running
the following command:

powerfulseal --help

With that, we’re ready to roll. Let’s see what experiment 1 would look like using
PowerfulSeal.

11.1.3 Experiment 1b: Killing 50% of pods

As a reminder, this was our plan for experiment 1:

1 Observability: use the Goldpinger UI to see if any pods are marked as inaccessi-
ble; use kubectl to see new pods come and go.

2 Steady state: all nodes are healthy.
3 Hypothesis: if you delete one pod, you should see it marked as failed in the

Goldpinger UI, and then be replaced by a new, healthy pod.
4 Run the experiment!

We have already covered the observability, but if you closed the browser window with
the Goldpinger UI, here’s a refresher. Open the Goldpinger UI by running the follow-
ing command in a terminal window:

minikube service goldpinger

Checks the version to make
sure it’s python3.7+

Creates a new virtualenv in
the current working directory,
called env

Activates the new
virtualenv

Installs PowerfulSeal from pip

307Automating chaos with PowerfulSeal
And just as before, you’d like to have a way to see which pods were created and deleted.
To do that, you leverage the --watch flag of the kubectl get pods command. In
another terminal window, start a kubectl command to print all changes:

kubectl get pods --watch

Now, to the actual experiment. Fortunately, it translates one-to-one to a built-in fea-
ture of PowerfulSeal. Actions on pods are done using PodAction (I’m good at naming
like that). Every PodAction consists of three steps:

1 Match some pods; for example, based on labels.
2 Filter the pods (various filters are available; for example, take a 50% subset).
3 Apply an action on pods (for example, kill them).

This translates directly into experiment1b.yml that you can see in the following listing.
Store it or clone it from the repo.

config:
 runStrategy:
 runs: 1
scenarios:
- name: Kill 50% of Goldpinger nodes
 steps:
 - podAction:
 matches:
 - labels:
 selector: app=goldpinger
 namespace: default
 filters:
 - randomSample:
 ratio: 0.5
 actions:
 - kill:
 force: true

You must be itching to run it, so let’s not wait any longer. On Minikube, the kubectl
config is stored in ~/.kube/config, and it will be automatically picked up when you
run PowerfulSeal. So the only argument you need to specify is the policy file flag
(--policy-file). Run the following command, pointing to the experiment1b.yml file:

powerfulseal autonomous --policy-file experiment1b.yml

You will see output similar to the following (abbreviated). Note the lines indicating it
found three pods, filtered out two, and selected a pod to be killed (bold font):

(...)
2020-08-25 09:51:20 INFO __main__ STARTING AUTONOMOUS MODE
2020-08-25 09:51:20 INFO scenario.Kill 50% of Gol Starting scenario 'Kill 50%

of Goldpinger nodes' (1 steps)

Listing 11.2 PowerfulSeal scenario implementing experiment 1b (experiment1b.yml)

Runs the scenario only
once and then exits

Selects all pods in
namespace default, with
labels app=goldpinger

Filters out to take only 50%
of the matched pods

Kills the pods

308 CHAPTER 11 Automating Kubernetes experiments
2020-08-25 09:51:20 INFO action_nodes_pods.Kill 50% of Gol Matching 'labels'
{'labels': {'selector': 'app=goldpinger', 'namespace': 'default'}}

2020-08-25 09:51:20 INFO action_nodes_pods.Kill 50% of Gol Matched 3 pods for
selector app=goldpinger in namespace default

2020-08-25 09:51:20 INFO action_nodes_pods.Kill 50% of Gol Initial set
length: 3

2020-08-25 09:51:20 INFO action_nodes_pods.Kill 50% of Gol Filtered set
length: 1

2020-08-25 09:51:20 INFO action_nodes_pods.Kill 50% of Gol Pod killed: [pod
#0 name=goldpinger-c86c78448-8lfqd namespace=default containers=1
ip=172.17.0.3 host_ip=192.168.99.100 state=Running
labels:app=goldpinger,pod-template-hash=c86c78448 annotations:]

2020-08-25 09:51:20 INFO scenario.Kill 50% of Gol Scenario finished
(...)

If you’re quick enough, you will see a pod becoming unavailable and then replaced by
a new pod in the Goldpinger UI, just as you did the first time you ran this experiment.
And in the terminal window running kubectl, you will see the familiar sight, confirm-
ing that a pod was killed (goldpinger-c86c78448-8lfqd) and then replaced with a
new one (goldpinger-c86c78448-czbkx):

NAME READY STATUS RESTARTS AGE
goldpinger-c86c78448-lwxrq 1/1 Running 1 45h
goldpinger-c86c78448-tl9xq 1/1 Running 0 40m
goldpinger-c86c78448-xqfvc 1/1 Running 0 8m33s
goldpinger-c86c78448-8lfqd 1/1 Terminating 0 41m
goldpinger-c86c78448-8lfqd 1/1 Terminating 0 41m
goldpinger-c86c78448-czbkx 0/1 Pending 0 0s
goldpinger-c86c78448-czbkx 0/1 Pending 0 0s
goldpinger-c86c78448-czbkx 0/1 ContainerCreating 0 0s
goldpinger-c86c78448-czbkx 1/1 Running 0 2s

That concludes the first experiment and shows you the ease of use of higher-level
tools like PowerfulSeal. But we’re just warming up. Let’s take a look at experiment 2
once again, this time using the new toys.

11.1.4 Experiment 2b: Introducing network slowness

As a reminder, this was our plan for experiment 2:

1 Observability: use the Goldpinger UI’s graph and heatmap to read delays.
2 Steady state: all existing Goldpinger instances report healthy.
3 Hypothesis: if you add a new instance that has a 250 ms delay, the connectivity

graph will show all four instances as being healthy, and the 250 ms delay will be
visible in the heatmap.

4 Run the experiment!

It’s a perfectly good plan, so let’s use it again. But this time, instead of manually set-
ting up a new deployment and doing the gymnastics to point the right port to the
right place, you’ll leverage the clone feature of PowerfulSeal.

309Automating chaos with PowerfulSeal
 It works like this. You point PowerfulSeal at a source deployment that it will copy at
runtime (the deployment must exist on the cluster). This is to make sure that you
don’t break the existing running software, and instead add an extra instance, just as
you did before. Then you can specify a list of mutations that PowerfulSeal will apply to
the deployment to achieve specific goals. Of particular interest is the Toxiproxy muta-
tion. It does almost exactly the same thing that you did:

 Adds a Toxiproxy container to the deployment
 Configures Toxiproxy to create a proxy configuration for each port specified on

the deployment
 Automatically redirects the traffic incoming to each port specified in the origi-

nal deployment to its corresponding proxy port
 Configures any toxics requested

The only real difference between what you did before and what PowerfulSeal does is
the automatic redirection of ports, which means that you don’t need to change any
port configuration in the deployment.

 To implement this scenario using PowerfulSeal, you need to write another policy
file. It’s pretty straightforward. You need to use the clone feature and specify the
source deployment to clone. To introduce the network slowness, you can add a muta-
tion of type toxiproxy, with a toxic on port 8080, of type latency, with the latency
attribute set to 250 ms. And just to show you how easy it is to use, let’s set the number
of replicas affected to 2. This means that two replicas out of the total of five (three
from the original deployment plus these two), or 40% of the traffic, will be affected.
Also note that at the end of a scenario, PowerfulSeal cleans up after itself by deleting
the clone it created. To give you enough time to look around, let’s add a wait of 120
seconds before that happens.

 When translated into YAML, it looks like the file experiment2b.yml that you can
see in the following listing. Take a look.

config:
 runStrategy:
 runs: 1
scenarios:
- name: Toxiproxy latency
 steps:
 - clone:
 source:
 deployment:
 name: goldpinger
 namespace: default
 replicas: 2
 mutations:
 - toxiproxy:
 toxics:

Listing 11.3 PowerfulSeal scenario implementing experiment 2b (experiment2b.yml)

Uses the clone feature
of PowerfulSeal

Clones the deployment
called “goldpinger” in
the default namespace

Uses two replicas
of the clone

310 CHAPTER 11 Automating Kubernetes experiments
 - targetProxy: "8080"
 toxicType: latency
 toxicAttributes:
 - name: latency
 value: 250
 - wait:
 seconds: 120

TIP If you got rid of the Goldpinger deployment from experiment 2, you can
bring it back up by running the following command in a terminal window:

kubectl apply -f goldpinger-rbac.yml
kubectl apply -f goldpinger.yml

You’ll see a confirmation of the created resources. After a few seconds, you will be able
to see the Goldpinger UI in the browser by running the following command:

minikube service goldpinger

You will see the familiar graph with three Goldpinger nodes, just as in chapter 10. See
figure 11.2 for a reminder of what it looks like.

 Let’s execute the experiment. Run the following command in a terminal window:

powerfulseal autonomous --policy-file experiment2b.yml

You will see PowerfulSeal creating the clone, and then eventually deleting it, similar to
the following output:

(...)
2020-08-31 10:49:32 INFO __main__ STARTING AUTONOMOUS MODE
2020-08-31 10:49:33 INFO scenario.Toxiproxy laten Starting scenario

'Toxiproxy latency' (2 steps)
2020-08-31 10:49:33 INFO action_clone.Toxiproxy laten Clone deployment

created successfully
2020-08-31 10:49:33 INFO scenario.Toxiproxy laten Sleeping for 120 seconds
2020-08-31 10:51:33 INFO scenario.Toxiproxy laten Scenario finished
2020-08-31 10:51:33 INFO scenario.Toxiproxy laten Cleanup started (1 items)
2020-08-31 10:51:33 INFO action_clone Clone deployment deleted successfully:

goldpinger-chaos in default
2020-08-31 10:51:33 INFO scenario.Toxiproxy laten Cleanup done
2020-08-31 10:51:33 INFO policy_runner All done here!

During the 2-minute wait you configured, check the Goldpinger UI. You will see a
graph with five nodes. When all pods come up, the graph will show all as being
healthy. But there is more to it. Click the heatmap, and you will see that the cloned
pods (they will have chaos in their names) are slow to respond. But if you look closely,
you will notice that the connections they are making to themselves are unaffected.
That’s because PowerfulSeal doesn’t inject itself into communications on localhost.

Targets port 8080 (the one
that Goldpinger is running on)

Specifies latency
of 250 ms

Waits for 120 seconds

311Ongoing testing and service-level objectives
Click the heatmap button. You will see a heatmap similar to figure 11.3. Note that
the squares on the diagonal (pods calling themselves) remain unaffected by the
added latency.

 That concludes the experiment. Wait for PowerfulSeal to clean up after itself and
then delete the cloned deployment. When it’s finished (it will exit), let’s move on to
the next topic: ongoing testing.

11.2 Ongoing testing and service-level objectives
So far, all the experiments we’ve conducted were designed to verify a hypothesis and
call it a day. Like everything in science, a single counterexample is enough to prove a
hypothesis wrong, but absence of such a counterexample doesn’t prove anything. And
sometimes our hypotheses are about normal functioning of a system, where various
events might occur and influence the outcome.

Figure 11.2 Goldpinger UI in action

312 CHAPTER 11 Automating Kubernetes experiments
To illustrate what I mean, let me give you an example. Think of a typical SLA that you
might see for a platform as a service (PaaS). Let’s say that your product is to offer
managed services, similar to AWS Lambda (https://aws.amazon.com/lambda/): the
client can make an API call specifying a location of some code, and your platform will
build, deploy, and run that service for them. Your clients care deeply about the speed
at which they can deploy new versions of their services, so they want an SLA for the
time it takes from their request to their service being ready to serve traffic. To keep
things simple, let’s say that the time for building their code is excluded, and the time
to deploy it on your platform is agreed to be 1 minute.

 As the engineer responsible for that system, you need to work backward from that
constraint to set up the system in a way that can satisfy these requirements. You design
an experiment to verify that a typical request you expect to see in your clients fits in
that timeline. You run it, it turns out it takes only about 30 seconds, the champagne
cork is popping, and the party starts! Or does it?

 When you run the experiment like this and it works, what you’ve actually proved is
that the system behaved the expected way during the experiment. But does that guaran-
tee it will work the same way in different conditions (peak traffic, different usage

The two new Goldpinger nodes created by PowerfulSeal are slow to respond and so
are marked in the heatmap. Note that the squares on the diagonal are unaffected.

Figure 11.3 Goldpinger heatmap showing two pods with added latency, injected by PowerfulSeal

https://aws.amazon.com/lambda/

313Ongoing testing and service-level objectives
patterns, different data)? Typically, the larger and more complex the system, the
harder it is to answer that question. And that’s a problem, especially if the SLAs you
signed have financial penalties for missing the goals.

 Fortunately, chaos engineering really shines in this scenario. Instead of running an
experiment once, you can run it continuously to detect any anomalies, experimenting
every time on a system in a different state and during the kind of failure you expect to
see. Simple yet effective.

 Let’s go back to our example. You have a 1-minute deadline to start a new service.
Let’s automate an ongoing experiment that starts a new service every few minutes,
measures the time it took to become available, and alerts if it exceeds a certain thresh-
old. That threshold will be your internal SLO, which is more aggressive than the
legally binding version in the SLA that you signed, so that you can get alerted when
you get close to trouble.

 It’s a common scenario, so let’s take our time and make it real.

11.2.1 Experiment 3: Verifying pods are ready within (n) seconds
of being created

Chances are that PaaS you’re building is running on Kubernetes. When your client
makes a request to your system, it translates into a request for Kubernetes to create a
new deployment. You can acknowledge the request to your client, but this is where
things start to get tricky. How do you know that the service is ready?

 In one of the previous experiments, you used kubectl get pods --watch to print
to the console all changes to the state of the pods you cared about. All of them are
happening asynchronously, in the background, while Kubernetes is trying to converge
to the desired state. In Kubernetes, pods can be in one of the following states:

 pending—The pod has been accepted by Kubernetes but hasn’t been set up yet.
 running—The pod has been set up, and at least one container is still running.
 succeeded—All containers in the pod have terminated in success.
 failed—All containers in the pod have terminated, at least one of them in failure.
 unknown—The state of the pod is unknown (typically, the node running it stopped

reporting its state to Kubernetes).

If everything goes well, the happy path is for a pod to start in pending and then move
to running. But before that happens, a lot of things need to happen, many of which
will take a different amount of time every time; for example:

 Image download—Unless already present on the host, the images for each con-
tainer need to be downloaded, potentially from a remote location. Depending
on the size of the image and on how busy the location from which it needs to be
downloaded is at the time, it might take a different amount of time every time.
Additionally, like everything on the network, the download is prone to failure
and might need to be retried.

314 CHAPTER 11 Automating Kubernetes experiments
 Preparing dependencies—Before a pod is run, Kubernetes might need to prepare
dependencies it relies on, like (potentially large) volumes, configuration files,
and so on.

 Actually running the containers—The time to start a container will vary depending
on how busy the host machine is.

In a not-so-happy path, for example, if an image download gets interrupted, you might
end up with a pod going from pending through failed to running. The point is that
you can’t easily predict how long it’s going to take to actually have it running. So the
next best thing you can do is to continuously test it and alert when it gets too close to
the threshold you care about.

 With PowerfulSeal, that’s easy to do. You can write a policy that will deploy an
example application to run on the cluster, wait the time you expect it to take, and
then execute an HTTP request to verify that the application is running correctly. It
can also automatically clean up the application when it’s done, and provide a means
to get alerted when the experiment fails.

 Normally, you would add some type of failure, and test that the system withstands
that. But right now, I just want to illustrate the idea of ongoing experiments, so let’s
keep it simple and stick to verifying our SLO on the system without any disturbance.

 Leveraging that, you can design the following experiment:

1 Observability: read PowerfulSeal output (and/or metrics).
2 Steady state: N/A.
3 Hypothesis: when you schedule a new pod and a service, it becomes available

for HTTP calls within 30 seconds.
4 Run the experiment!

That translates into a PowerfulSeal policy that runs the following steps indefinitely:

1 Create a pod and a service.
2 Wait 30 seconds.
3 Make a call to the service to verify it’s available; fail if it’s not.
4 Remove the pod and service.
5 Rinse and repeat.

Take a look at figure 11.4, which illustrates this process. To write the actual Powerful-
Seal policy file, you’re going to use three more features:

 A step of type kubectl behaves as you expect it to: it executes the attached
YAML just as if you used kubectl apply or kubectl delete. You’ll use that to
create the pods in question. You’ll also use the option for automatic cleanup at
the end of the scenario, called autoDelete.

 You’ll use the wait feature to wait for the 30 seconds you expect to be sufficient
to deploy and start the pod.

 You’ll use probeHTTP to make an HTTP request and detect whether it works.
probeHTTP is fairly flexible; it supports calling services or arbitrary URLs, using
proxies and more.

315Ongoing testing and service-level objectives
You also need an actual test app to deploy and call. Ideally, you’d choose something
that represents a reasonable approximation of the type of software that the platform is
supposed to handle. To keep things simple, you can deploy a simple version of Gold-
pinger again. It has an endpoint /healthz that you can reach to confirm that it
started correctly.

 Listing 11.4 shows experiment3.yml, which is what the preceding list looks like
when translated into a YAML file. Unlike in the previous experiments, where you con-
figured the policy to run only once, here you configure it to run continuously (the
default) with a 5- to 10-second wait between runs. Take a look; you’ll run that file in
just a second.

config:
 runStrategy:
 minSecondsBetweenRuns: 5
 maxSecondsBetweenRuns: 10
scenarios:
- name: Verify pod start SLO
 steps:
 - kubectl:
 autoDelete: true
 # equivalent to `kubectl apply -f -`
 action: apply
 payload: |

 apiVersion: v1
 kind: Pod
 metadata:

Listing 11.4 PowerfulSeal scenario implementing experiment 3 (experiment3.yml)

2. PowerfulSeal calls the pod to
verify that it’s running correctly.

3. PowerfulSeal cleans up
by deleting the pod.

1. PowerfulSeal schedules a new pod.

Rinse and

repeat

Create pod ABC

Wait 30 seconds

Verify—make HTTP call

Cleanup—remove pod ABC

PowerfulSeal Kubernetes cluster

Kubernetes API

Node X

Pod ABC

Figure 11.4 Example of an ongoing chaos experiment

Configures the seal to run
continuously with 5- to 10-
second wait between runs

The kubectl command
is equivalent to kubectl
apply -f.

Cleans up whatever was
created here at the end
of the scenario

316 CHAPTER 11 Automating Kubernetes experiments
 name: slo-test
 labels:
 app: slo-test
 spec:
 containers:
 - name: goldpinger
 image: docker.io/bloomberg/goldpinger:v3.0.0
 env:
 - name: HOST
 value: "0.0.0.0"
 - name: PORT
 value: "8080"
 ports:
 - containerPort: 8080
 name: goldpinger

 apiVersion: v1
 kind: Service
 metadata:
 name: slo-test
 spec:
 type: LoadBalancer
 ports:
 - port: 8080
 name: goldpinger
 selector:
 app: slo-test
 # wait the minimal time for the SLO
 - wait:
 seconds: 30
 # make sure the service responds
 - probeHTTP:
 target:
 service:
 name: slo-test
 namespace: default
 port: 8080
 endpoint: /healthz

We’re almost ready to run this experiment, but I have just one caveat to get out of the
way. If you’re running this on Minikube, the service IPs that PowerfulSeal uses to
make the call in probeHTTP need to be accessible from your local machine. Fortu-
nately, that can be handled by the Minikube binary. To make them accessible, run the
following command in a terminal window (it will ask for a sudo password):

minikube tunnel

After a few seconds, you will see it start to periodically print a confirmation message
similar to the following. This is to show you that it detected a service, and that it made
local routing changes to your machine to make the IP route correctly. When you stop
the process, the changes will be undone:

Waits for the
arbitrarily chosen
30 seconds

Makes an HTTP call to the specified
service (the one created above in
the kubectl section)

Calls the /healthz endpoint
just to verify the server is
up and running

317Ongoing testing and service-level objectives
Status:
 machine: minikube
 pid: 10091
 route: 10.96.0.0/12 -> 192.168.99.100
 minikube: Running
 services: [goldpinger]
 errors:
 minikube: no errors
 router: no errors
 loadbalancer emulator: no errors

With that, you are ready to run the experiment. Once again, to have a good view of
what’s happening to the cluster, let’s start a terminal window and run the kubectl
command to watch for changes:

kubectl get pods --watch

In another window, run the actual experiment:

powerfulseal autonomous --policy-file experiment3.yml

PowerfulSeal will start running, and you’ll need to stop it at some point with Ctrl-C. A
full cycle of running the experiment will look similar to the following output. Note
the lines creating the pod, making the call, and getting a response and doing the
cleanup (all in bold font):

(...)
2020-08-26 09:52:23 INFO scenario.Verify pod star Starting scenario 'Verify

pod start SLO' (3 steps)
2020-08-26 09:52:23 INFO action_kubectl.Verify pod star pod/slo-test created

service/slo-test created
2020-08-26 09:52:23 INFO action_kubectl.Verify pod star Return code: 0
2020-08-26 09:52:23 INFO scenario.Verify pod star Sleeping for 30 seconds
2020-08-26 09:52:53 INFO action_probe_http.Verify pod star Making a call:

http://10.101.237.29:8080/healthz, get, {}, 1000, 200, , , True
2020-08-26 09:52:53 INFO action_probe_http.Verify pod star Response:

{"OK":true,"duration-ns":260,"generated-at":"2020-08-26T08:52:53.572Z"}
2020-08-26 09:52:53 INFO scenario.Verify pod star Scenario finished
2020-08-26 09:52:53 INFO scenario.Verify pod star Cleanup started (1 items)
2020-08-26 09:53:06 INFO action_kubectl.Verify pod star pod "slo-test"

deleted
service "slo-test" deleted
2020-08-26 09:53:06 INFO action_kubectl.Verify pod star Return code: 0
2020-08-26 09:53:06 INFO scenario.Verify pod star Cleanup done
2020-08-26 09:53:06 INFO policy_runner Sleeping for 8 seconds

PowerfulSeal says that the SLO was being respected, which is great. But we only just
met, so let’s double-check that it actually deployed (and cleaned up) the right stuff on
the cluster. To do that, go back to the terminal window running kubectl. You should
see the new pod appear, run, and disappear, similar to the following output:

318 CHAPTER 11 Automating Kubernetes experiments
slo-test 0/1 Pending 0 0s
slo-test 0/1 Pending 0 0s
slo-test 0/1 ContainerCreating 0 0s
slo-test 1/1 Running 0 1s
slo-test 1/1 Terminating 0 30s
slo-test 0/1 Terminating 0 31s

So there you have it. With about 50 lines of verbose YAML, you can describe an ongo-
ing experiment and detect when starting a pod takes longer than 30 seconds. The
Goldpinger image is pretty small, so in the real world, you’d pick something that more
closely resembles the type of thing that will run on the platform. You could also run
multiple scenarios for multiple types of images you expect to deal with. And if you
wanted to make sure that the image is downloaded every time so that you deal with
the worst-case scenario, that can easily be achieved by specifying imagePullPolicy:
Always in your pod’s template (http://mng.bz/A0lE).

 This should give you an idea of what an ongoing, continuously verified experiment
can do for you. You can build on that to test other things, including but not limited to
the following:

 SLOs around pod healing—If you kill a pod, how long does it take to be resched-
uled and ready again?

 SLOs around scaling—If you scale your deployment, how long does it take for
the new pods to become available?

As I write this, the weather outside is changing; it’s getting a little bit . . . cloudy. Let’s
take a look at that now.

11.3 Cloud layer
So far, we’ve focused on introducing failure to particular pods running on a Kuberne-
tes cluster—a bit like a reverse surgical procedure, inserting a problem with high pre-
cision. And the ease with which Kubernetes allows us to do that is still making me feel
warm and fuzzy inside to this day.

Pop quiz: When does it make sense to run chaos experiments continuously?
Pick one:

1 When you want to detect when an SLO is not satisfied
2 When an absence of problems doesn’t prove that the system works well
3 When you want to introduce an element of randomness
4 When you want to make sure that there are no regressions in the new version of

the system
5 All of the above

See appendix B for answers.

http://mng.bz/A0lE

319Cloud layer
 But there is more. If you’re running your cluster in a cloud, private or public, it’s
easy to simulate failure on the VM level by simply taking machines up or down. In
Kubernetes, a lot of the time you can stop thinking about the machines and data cen-
ters that your clusters are built on. But that doesn’t mean that they stop existing. They
are very much still there, and you still need to obey the rules of physics governing
their behavior. And with a bigger scale come bigger problems. Let me show you some
napkin math to explain what I mean.

 One of the metrics to express the reliability of a piece of hardware is the mean time
to failure (MTTF). It’s the average time that the hardware runs without failure. It’s typi-
cally established empirically by looking at historical data. For example, let’s say that
the servers in your datacenter are of good quality, and their MTTF is five years. On
average, each server will run about five years between times it fails. Roughly speaking,
on any given day, the chance of failing for each of your servers is 1 in 1826 (5 × 365 +
leap year). That’s a 0.05% chance. This is, of course, a simplification, and other fac-
tors would need to be taken into account for a serious probability calculation, but this
is a good enough estimate for our needs.

 Now, depending on your scale, you’re going to be more or less exposed to that. If
the failures were truly independent in a mathematical sense, with just 20 servers you’d
have a daily chance of failure of 1%, or 10% with 200 servers. And if that failed server
is running multiple VMs that you use as Kubernetes nodes, you’re going to end up
with a chunk of your cluster down. If your scale is in the thousands of servers, the fail-
ure is a daily occurrence.

 From the perspective of a chaos-engineering-practicing SRE, that means one thing—
you should test your system for the kind of failure coming from hardware failure:

 Single machines going down and back up
 Groups of machines going down and back up
 Entire regions/datacenters/zones going down and back up
 Network partitions that make it look like other machines are unavailable

Let’s take a look at how to prepare for this kind of issue.

11.3.1 Cloud provider APIs, availability zones

Every cloud provider offers an API you can use to create and modify VMs, including
taking them up and down. This includes self-hosted, open source solutions like Open-
Stack. They also provide GUIs, CLIs, libraries, and more to best integrate with your
existing workflow.

 To allow for effective planning against outages, cloud providers also structure their
hardware by partitioning it into regions (or an equivalent) and then using availability
zones (or an equivalent) inside the regions. Why is that?

 Typically, regions represent different physical locations, often far away from each
other, plugged into separate utility providers (internet, electricity, water, cooling, and
so on). This is to ensure that if something dramatic happens in one region (storm,

320 CHAPTER 11 Automating Kubernetes experiments
earthquake, flood), other regions remain unaffected. This approach limits the blast
radius to a single region.

 Availability zones are there to further limit that blast radius within a single region.
The actual implementations vary, but the idea is to leverage things that are redundant
(power supply, internet provider, networking hardware) to put the machines that rely
on them in separate groups. For example, if your datacenter has two racks of servers,
each plugged into a separate power supply and separate internet supply, you could
mark each rack as an availability zone, because failure within the components in one
zone won’t affect the other.

 Figure 11.5 shows an example of both regions and availability zones. The West
Coast region has two availability zones (W1 and W2), each running two machines.
Similarly, the East Coast region has two availability zones (E1 and E2), each running
two machines. A failure of a region wipes out four machines. A failure of an availabil-
ity zone wipes out two.

With this partitioning, software engineers can design their applications to be resilient
to the different problems we mentioned earlier:

 Spreading your application across multiple regions can make it immune to an
entire region going down.

 Within a region, spreading your application across multiple availability zones
can help make it immune to an availability zone going down.

Regions are geographically separate and independent.

Availability zones have limited independent aspects (power supply,
network supply, and so on) but are all part of the same region.

Region West Coast Region East Coast

Availability zone W1 Availability zone E1

Availability zone W2 Availability zone E2

Machine

W22

Machine

W21

Machine

W12

Machine

W11

Machine

E22

Machine

E21

Machine

E12

Machine

E11

Figure 11.5 Regions and availability zones

321Cloud layer
To automatically achieve this kind of spreading, we often talk about affinity and anti-
affinity. Marking two machines with the same affinity group simply means that they
should (soft affinity) or must (hard affinity) be running within the same partition
(availability zone, region, others). Anti-affinity is the opposite: items within the same
group shouldn’t or mustn’t be running in the same partition.

 And to make planning easier, cloud providers often express their SLOs by using
regions and availability zones—for example, promising to keep each region up 95%
of the time, but at least one region up 99.99% of the time.

 Let’s see how you’d go about implementing an on-demand outage to verify your
application.

11.3.2 Experiment 4: Taking VMs down

On Kubernetes, the application you deploy is going to be run on a physical machine
somewhere. Most of the time, you don’t care which one that is—until you want to
ensure a reasonable partitioning with respect to outages. To make sure that multiple
replicas of the same application aren’t running on the same availability zones, most
Kubernetes providers set labels for each node that can be used for anti-affinity. Kuber-
netes also allows you to set your own criteria of anti-affinity and will try to schedule
pods in a way that respects them.

 Let’s assume that you have a reasonable spread and want to see that your applica-
tion survives the loss of a certain set of machines. Take the example of Goldpinger
from the previous section. In a real cluster, you would be running an instance per
node. Earlier, you killed a pod, and you investigated how that was being detected by its
peers. Another way of going about that would be to take down a VM and see how the
system reacts. Will it be detected as quickly? Will the instance be rescheduled some-
where else? How long will it take for it to recover, after the VM is brought back up?
These are all questions you could investigate using this technique.

 From the implementation perspective, these experiments can be very simple. In its
most crude form, you can log in to a GUI, select the machines in question from a list,
and click Shutdown or write a simple bash script that uses the CLI for a particular
cloud. Those steps would absolutely do it.

 The only problem with these two approaches is that they are cloud-provider spe-
cific, and you might end up reinventing the wheel each time. If only an open source
solution supporting all major clouds would let you do that. Oh, wait, PowerfulSeal can
do that! Let me show you how to use it.

 PowerfulSeal supports OpenStack, AWS, Microsoft Azure, and Google Cloud Plat-
form (GCP), and adding a new driver involves implementing a single class with a
handful of methods. To make PowerfulSeal take VMs down and bring them back up,
you need to do these two things:

1 Configure the relevant cloud driver (see powerfulseal autonomous --help).
2 Write a policy file that performs the VM operations.

322 CHAPTER 11 Automating Kubernetes experiments
The cloud drivers are configured in the same way as their respective CLIs. Unfortu-
nately, your Minikube setup only has a single VM, so it won’t be any good for this sec-
tion. Let me give you two examples of two different ways of taking VMs down.

 First, similar to podAction, which you used in the previous experiments, you can
use nodeAction. It works the same way: it matches, filters, and takes action on a set of
nodes. You can match on names, IP addresses, availability zones, groups, and state.

 Take a look at listing 11.5, which represents an example policy for taking down a
single node from any availability zone starting with WEST, and then making an example
HTTP request to verify that things continue working, and finally cleaning up after
itself by restarting the node.

config:
 runStrategy:
 runs: 1
scenarios:
- name: Test load-balancing on master nodes
 steps:
 - nodeAction:
 matches:
 - property:
 name: "az"
 value: "WEST.*"
 filters:
 - randomSample:
 size: 1
 actions:
 - stop:
 autoRestart: true
 - probeHTTP:
 target:
 url: "http://load-balancer.example.com"

Second, you can also stop VMs running a particular pod. You use podAction to select
the pod, and then use the stopHost action to stop the node that the pod is running
on. Listing 11.6 shows an example. The scenario selects a random pod from the
mynamespace namespace and stops the VM that runs it. PowerfulSeal automatically
restarts the machines it took down.

scenarios:
- name: Stop that host!
 steps:
 - podAction:
 matches:
 - namespace: mynamespace
 filters:
 - randomSample:
 size: 1

Listing 11.5 PowerfulSeal scenario implementing experiment 4a (experiment4a.yml)

Listing 11.6 PowerfulSeal scenario implementing experiment 4b (experiment4b.yml)

Selects one VM from
any availability zone
starting with WEST

Selects one VM randomly
from within the matched set

Stops the VM, but auto-restarts
it at the end of the scenario

Makes an HTTP request to some kind of URL
to confirm that the system keeps working

Selects all pods in namespace
“mynamespace”

Selects one pod randomly from
within the matched set

323Summary
 actions:
 - stopHost:
 autoRestart: true

Both of these policy files work with any of the supported cloud providers. And if you’d
like to add another cloud provider, feel free to send pull requests on GitHub to
https://github.com/powerfulseal/powerfulseal!

 It’s time to wrap up this section. Hopefully, this gives you enough tools and ideas to
go forth and improve your cloud-based applications’ reliability. In chapter 12, you’ll
take a step deeper into the rabbit hole by looking at how Kubernetes works under
the hood.

Summary
 High-level tools like PowerfulSeal make it easy to implement sophisticated

chaos engineering scenarios, but before jumping into using them, it’s import-
ant to understand how the underlying technology works.

 Some chaos experiments work best as an ongoing validation, such as verifying
that an SLO isn’t violated.

 You can easily simulate machine failure by using the cloud provider’s API to
take VMs down and bring them back up again, just like the original Chaos Mon-
key did.

Pop quiz: What can PowerfulSeal not do for you?
Pick one:

1 Kill pods to simulate processes crashing
2 Take VMs up and down to simulate hypervisor failure
3 Clone a deployment and inject simulated network latency into the copy
4 Verify that services respond correctly by generating HTTP requests
5 Fill in the discomfort coming from the realization that if there are indeed infinite

universes, there exists, theoretically, a version of you that’s better in every con-
ceivable way, no matter how hard you try

See appendix B for answers.

Stops the VM, but auto-restarts
it at the end of the scenario

https://github.com/powerfulseal/powerfulseal

Under the hood
of Kubernetes
Finally, in this third and final chapter on Kubernetes, we dive deep under the hood
and see how Kubernetes really works. If I do my job well, by the end of this chapter
you’ll have a solid understanding of the components that make up a Kubernetes
cluster, how they work together, and what their fragile points might be. It’s the most
advanced of the triptych, but I promise it will also be the most satisfying. Take a
deep breath, and let’s get straight into the thick of it. Time for an anatomy lesson.

12.1 Anatomy of a Kubernetes cluster and how to break it
As I’m writing, Kubernetes is one of the hottest technologies out there. And it’s for
a good reason; it solves a lot of problems that come from running a large number
of applications on large clusters. But like everything else in life, it comes with costs.

This chapter covers
 Understanding how Kubernetes components work

together under the hood

 Debugging Kubernetes and understanding how
the components break

 Designing chaos experiments to make your
Kubernetes clusters more reliable
324

325Anatomy of a Kubernetes cluster and how to break it
 One of them is the complexity of the underlying workings of Kubernetes. And
although this can be somewhat alleviated by using managed Kubernetes clusters so
that most day-to-day management of Kubernetes is someone else’s problem, you’re
never fully insulated from the consequences. And perhaps you’re reading this on your
way to a job managing Kubernetes clusters, which is yet another reason to understand
how things work.

 Regardless of whose problem this is, it’s good to know how Kubernetes works
under the hood and how to test that it works well. And as you’re about to see, chaos
engineering fits right in.

NOTE In this section, I describe things as they stand for Kubernetes v1.18.3.
Kubernetes is a fast-moving target, so even though special care was taken to
keep the details in this section as future-proof as possible, the only constant is
change in Kubernetes Land.

Let’s start at the beginning—with the control plane.

12.1.1 Control plane

The Kubernetes control plane is the brain of the cluster. It consists of the following
components:

 etcd—The database storing all the information about the cluster
 kube-apiserver—The server through which all interactions with the cluster

are done, and that stores information in etcd
 kube-controller-manager—Implements an infinite loop reading the current

state, and attempts to modify it to converge into the desired state
 kube-scheduler—Detects newly created pods and assigns them to nodes, tak-

ing into account various constraints (affinity, resource requirements, policies,
and so forth)

 kube-cloud-manager (optional)—Controls cloud-specific resources (VMs,
routing)

In the previous chapter, you created a deployment for Goldpinger. Let’s see, on a high
level, what happens under the hood in the control plane when you run a kubectl
apply command.

 First, your request reaches the kube-apiserver of your cluster. The server vali-
dates the request and stores the new or modified resources in etcd. In this case, it
creates a new deployment resource. Once that’s done, kube-controller-manager
gets notified of the new deployment. It reads the current state to see what needs to
be done, and eventually creates new pods through another call to kube-apiserver.
Once kube-apiserver stores it in etcd, kube-scheduler gets notified about the new
pods, picks the best node to run them, assigns the node to them, and updates them
back in kube-apiserver.

326 CHAPTER 12 Under the hood of Kubernetes
 As you can see, kube-apiserver is at the center of it all, and all the logic is imple-
mented in asynchronous, eventually consistent loops in loosely connected compo-
nents. See figure 12.1 for a graphic representation.

Let’s take a closer look at each of these components and see their strengths and weak-
nesses, starting with etcd.

ETCD

Legend has it that etcd (https://etcd.io/) was first written by an intern at a company
called CoreOS that was bought by Red Hat that was acquired by IBM. Talk about big-
ger fish eating smaller fish. If the legend is to be believed, it was an exercise in imple-
menting a distributed consensus algorithm called Raft (https://raft.github.io/). What
does consensus have to do with etcd?

 Four words: availability and fault tolerance. In chapter 11, I spoke about MTTF
and how with just 20 servers, you were playing Russian roulette with a 0.05% probabil-
ity of losing your data every day. If you have only a single copy of the data, when it’s
gone, it’s gone. You want a system that’s immune to that. That’s fault tolerance.

 Similarly, if you have a single server and it’s down, your system is down. You want a
system that’s immune to that. That’s availability.

 To achieve fault tolerance and availability, you really can’t do much other than run
multiple copies. And that’s where you run into trouble: the multiple copies have to
somehow agree on a version of reality. In other words, they need to reach a consensus.

1. Client uses kubectl to
create a new deployment

2. gets notifiedkube-controller-manager

about the new deployment and creates
pods (without nodes allocated to them).

kube-apiserver etcdstores all state data in .

3. calculates where thekube-scheduler

pods should be scheduled and allocates
a node to each pod through .kube-apiserver

Notify: new

deployment
Create

pods

kube-schedulerkube-controller-manager

Allocate pods to

relevant nodes

Notify:

new pods

kubectl apply -f Store data

etcd

kube-apiserver

Deployments
endpoints

Pods
endpoints

Figure 12.1 Kubernetes control plane interactions when creating a deployment

https://etcd.io/
https://raft.github.io/

327Anatomy of a Kubernetes cluster and how to break it
 Consensus is agreeing on a movie to watch on Netflix. If you’re by yourself, there is
no one to argue with. When you’re with your partner, consensus becomes almost
impossible, because neither of you can gather a majority for a particular choice.
That’s when power moves and barter comes into play. But if you add a third person,
then whoever convinces them gains a majority and wins the argument.

 That’s pretty much exactly how Raft (and by extension, etcd) works. Instead of
running a single etcd instance, you run a cluster with an odd number of nodes (typi-
cally three or five), and then the instances use the consensus algorithm to decide on
the leader, who basically makes all decisions while in power. If the leader stops
responding (Raft uses a system of heartbeats, or regular calls between all instances, to
detect that), a new election begins where everyone announces their candidacy, votes
for themselves, and waits for other votes to come in. Whoever gets a majority of votes
assumes power. The best thing about Raft is that it’s relatively easy to understand. The
second best thing about Raft is that it works.

 If you’d like to see the algorithm in action, the Raft official website has a nice anima-
tion with heartbeats represented as little balls flying between bigger balls representing
nodes (https://raft.github.io/). I took a screenshot showing a five-node-cluster (S1 to
S5) in figure 12.2. It’s also interactive, so you can take nodes down and see how the
rest of the system copes.

Heartbeats (the small circles) are sent from
all other nodes to the current leader (S3).

The big circles are
nodes in the cluster.

Figure 12.2 Animation showing Raft consensus algorithm in action (https://raft.github.io/)

https://raft.github.io/
https://raft.github.io/

328 CHAPTER 12 Under the hood of Kubernetes
I could talk (and I have talked) about etcd and Raft all day, but let’s focus on what’s
important from the chaos engineering perspective. etcd holds pretty much all of the
data about a Kubernetes cluster. It’s strongly consistent, meaning that the data you
write to etcd is replicated to all nodes, and regardless of which node you connect to,
you get the up-to-date data.

 The price you pay for that is in performance. Typically, you’ll be running in clus-
ters of three or five nodes, because that tends to give enough fault tolerance, and any
extra nodes just slow the cluster with little benefit. And odd numbers of members are
better, because they actually decrease fault tolerance.

 Take a three-node cluster, for example. To achieve a quorum, you need a majority
of two nodes (n / 2 + 1 = 3 / 2 + 1 = 2). Or looking at it from the availability perspec-
tive, you can lose a single node, and your cluster keeps working. Now, if you add an
extra node for a total of four, you need a majority of three to function. You still can
survive only a single node failure at a time, but you now have more nodes in the clus-
ter that can fail, so overall you are worse off in terms of fault tolerance.

 Running etcd reliably is not easy. It requires an understanding of your hardware
profiles, tweaking various parameters accordingly, continuous monitoring, and keep-
ing up-to-date with bug fixes and improvements in etcd itself. It also requires building
an understanding of what actually happens when failure occurs and whether the clus-
ter heals correctly.

 And that’s where chaos engineering can really shine. The way that etcd is run var-
ies from one Kubernetes offering to another, so the details will vary too, but here are a
few high-level ideas:

 Experiment 1—In a three-node cluster, take down a single etcd instance.
– Does kubectl still work? Can you schedule, modify, and scale new pods?
– Do you see any failures connecting to etcd? Its clients are expected to retry

their requests to another instance if the one they connected to doesn’t
respond.

– When you take the node back up, does the etcd cluster recover? How long
does it take?

– Can you see the new leader election and small increase in traffic in your
monitoring setup?

 Experiment 2—Restrict resources (CPU) available to an etcd instance to simu-
late an unusually high load on the machine running the instance.
– Does the cluster still work?
– Does the cluster slow down? By how much?

 Experiment 3—Add a networking delay to a single etcd instance.
– Does a single slow instance affect the overall performance?
– Can you see the slowness in your monitoring setup? Will you be alerted if

that happens? Does your dashboard show how close the values are to the lim-
its (the values causing time-outs)?

329Anatomy of a Kubernetes cluster and how to break it
 Experiment 4—Take down enough nodes for the etcd cluster to lose the quorum.
– Does kubectl still work?
– Do the pods already on the cluster keep running?
– Does healing work?

– If you kill a pod, is it restarted?
– If you delete a pod managed by a deployment, will a new pod be created?

This book gives you all the tools you need to implement all of these experiments and
more. etcd is the memory of your cluster, so it’s crucial to test it well. And if you’re
using a managed Kubernetes offering, you’re trusting that the people responsible for
running your clusters know the answers to all these questions (and that they can prove
it with experimental data). Ask them. If they’re taking your money, they should be
able to give you reasonable answers!

 Hopefully, that’s enough for a primer on etcd. Let’s pull the thread a little bit more
and look at the only thing actually speaking to etcd in your cluster: kube-apiserver.

KUBE-APISERVER

kube-apiserver, true to its name, provides a set of APIs to read and modify the state
of your cluster. Every component interacting with the cluster does so through kube-
apiserver. For availability reasons, kube-apiserver also needs to be run in multiple
copies. But because all the state is stored in etcd, and etcd takes care of its consis-
tency, kube-apiserver can be stateless.

 This means that running it is much simpler, and as long as enough instances are
running to handle the load of requests, we’re good. There is no need to worry about
majorities or anything like that. It also means that they can be load-balanced, although
some internal components are often configured to skip the load balancer. Figure 12.3
shows what this typically looks like.

2. knows about all nodes inkube-apiserver

cluster, but speaks to one at a time.etcd

3. Sometimes, internal components might talk to the
directly, skipping the load balancer.kube-apiserver

Client Load balancer

kube-apiserver
etcd

etcd

etcd

kube-apiserver

kube-apiserver

1. Clients issue requests to the cluster.

Figure 12.3 etcd and kube-apiserver

330 CHAPTER 12 Under the hood of Kubernetes
From a chaos engineering perspective, you might be interested in knowing how
slowness on kube-apiserver affects the overall performance of the cluster. Here are
a few ideas:

 Experiment 1—Create traffic to kube-apiserver.
– Since everything (including the internal components responsible for creat-

ing, updating, and scheduling resources) talks to kube-apiserver, creating
enough traffic to keep it busy could affect how the cluster behaves.

 Experiment 2—Add network slowness.
– Similarly, adding a networking delay in front of the proxy could lead to a

buildup of queuing of new requests and adversely affect the cluster.

Overall, you will find kube-apiserver start up quickly and perform pretty well. Despite
the amount of work it does, running it is pretty lightweight. Next in the line: kube-
controller-manager.

KUBE-CONTROLLER-MANAGER

kube-controller-manager implements the infinite control loop, continuously detect-
ing changes in the cluster state and reacting to them to move it toward the desired state.
You can think of it as a collection of loops, each handling a particular type of resource.

 Do you remember when you created a deployment with kubectl in the previous
chapter? What actually happened is that kubectl connected to an instance of kube-
apiserver and requested creation of a new resource of type deployment. That was
picked up by kube-controller-manager, which in turn created a ReplicaSet. The
purpose of the latter is to manage a set of pods, ensuring that the desired number
runs on the cluster. How is it done? You guessed it: a replica set controller (part of
kube-controller-manager) picks it up and creates pods. Both the notification mech-
anism (called watch in Kubernetes) and the updates are served by kube-apiserver.

 See figure 12.4 for a graphical representation. A similar cascade happens when a
deployment is updated or deleted; the corresponding controllers get notified about
the change and do their bit.

 This loosely coupled setup allows for separation of responsibilities; each control-
ler does only one thing. It is also the heart of the ability of Kubernetes to heal from
failure. Kubernetes will attempt to correct any discrepancies from the desired state
ad infinitum.

 Like kube-apiserver, kube-controller-manager is typically run in multiple cop-
ies for failure resilience. Unlike kube-apiserver, only one of the copies is doing work
at a time. The instances agree among themselves on who the leader is through acquir-
ing a lease in etcd.

 How does that work? Thanks to its property of strong consistency, etcd can be used
as a leader-election mechanism. In fact, its API allows for acquiring a lock—a distrib-
uted mutex with an expiration date. Let’s say that you run three instances of kube-
controller-manager. If all three try to acquire the lease simultaneously, only one will
succeed. The lease then needs to be renewed before it expires. If the leader stops

331Anatomy of a Kubernetes cluster and how to break it
working or disappears, the lease will expire and another copy will acquire it. Once
again, etcd comes in handy and allows for offloading a difficult problem (leader elec-
tion) and keeping the component relatively simple.

 From the chaos engineering perspective, here are some ideas for experiments:

 Experiment 1—How does kube-apiserver’s amount of traffic affect the speed at
which your cluster converges toward the desired state?
– kube-controller-manager gets all its information about the cluster from

kube-apiserver. It’s worth understanding how any extra traffic on kube-
apiserver affects the speed at which your cluster is converging toward the
desired state. At what point does kube-controller-manager start timing out,
rendering the cluster broken?

 Experiment 2—How does your lease expiry affect how quickly the cluster recov-
ers from losing the leader instance of kube-controller-manager?
– If you run your own Kubernetes cluster, you can choose various time-outs for

this component. That includes the expiry time of the leadership lease. A
shorter value will increase the speed at which the cluster restarts converging
toward the desired state after losing the leader kube-controller-manager,
but it comes at the price of increased load on kube-apiserver and etcd.

When kube-controller-manager is done reacting to the new deployment, the pods are
created, but they aren’t scheduled anywhere. That’s where kube-scheduler comes in.

1. Client uses to create a new deploymentkubectl

2. kube-controller-manager
gets notified about the new
deployment and creates a
replica set.

3. getskube-controller-manager

notified about the new replica
set, and creates pods (without
nodes allocated to them).

kubectl apply -f
kube-apiserver

Deployments
endpoints

Deployments
controller

kube-controller-manager

Replica sets
controller

Notify: new

deployment
Notify: new

replica set

Create a

replica set

Replica sets
endpoints

Pods
endpoints

Figure 12.4 Kubernetes control plane interactions when creating a deployment—more details

332 CHAPTER 12 Under the hood of Kubernetes
KUBE-SCHEDULER

As I mentioned earlier, kube-scheduler’s job is to detect pods that haven’t been
scheduled on any nodes and to find them a new home. They might be brand-new
pods, or a node that used to run the pod might go down and need a replacement.

 Every time kube-scheduler assigns a pod to run on a particular node in the clus-
ter, it tries to find a best fit. Finding the best fit consists of two steps:

1 Filter out the nodes that don’t satisfy the pod’s requirements.
2 Rank the remaining nodes by a giving them scores based on a predefined list of

priorities.

NOTE If you’d like to know the details of the algorithm used by the latest ver-
sion of the kube-scheduler, you can see it at http://mng.bz/ZPoj.

For a quick overview, the filters include the following:

 Check that the resources (CPU, RAM, disk) requested by the pod can fit in
the node.

 Check that any ports requested on the host are available on the node.
 Check whether the pod is supposed to run on a node with a particular host-

name.
 Check that the affinity (or anti-affinity) requested by the pod matches (or

doesn’t match) the node.
 Check that the node is not under memory or disk pressure.

The priorities taken into account when ranking nodes include the following:

 The highest amount of free resources after scheduling—The higher the better; this has
the effect of enforcing spreading.

 Balance between the CPU and memory utilization—The more balanced, the better.
 Anti-affinity—Nodes matching the anti-affinity setting are least preferred.
 Image locality—Nodes already having the image are preferred; this has the effect

of minimizing the number of image downloads.

Just like kube-controller-manager, a cluster typically runs multiple copies of kube-
scheduler, but only the leader does the scheduling at any given time. From the chaos
engineering perspective, this component is prone to basically the same issues as kube-
controller-manager.

 From the moment you ran the kubectl apply command, the components you just
saw worked together to figure out how to move your cluster toward the new state you
requested (the state with a new deployment). At the end of that process, the new pods
were scheduled and assigned a node to run. But so far, we haven’t seen the actual
component that starts the newly scheduled process. Time to take a look at Kubelet.

http://mng.bz/ZPoj

333Anatomy of a Kubernetes cluster and how to break it
12.1.2 Kubelet and pause container

Kubelet is the agent starting and stopping containers on a host to implement the pods
you requested. Running a Kubelet daemon on a computer turns it into a part of a
Kubernetes cluster. Don’t be fooled by the affectionate name; Kubelet is a real work-
horse, doing the dirty work ordered by the control plane.

 Like everything else on a cluster, Kubelet reads the state and takes its orders from
kube-apiserver. It also reports the data about the factual state of what’s running on
the node, whether it’s running or crashing, how much CPU and RAM is actually used,
and more. That data is later leveraged by the control plane to make decisions and
make it available to the user.

 To illustrate how Kubelet works, let’s do a thought experiment. Let’s say that the
deployment you created earlier always crashes within seconds after it starts. The pod is
scheduled to be running on a particular node. The Kubelet daemon is notified about
the new pod. First, it downloads the requested image. Then, it creates a new container
with that image and the specified configuration. In fact, it creates two containers: the
one you requested, and another special one called pause. What is the purpose of the
pause container?

 It’s a pretty neat hack. In Kubernetes, the unit of software is a pod, not a single
container. Containers inside a pod need to share certain resources and not others.
For example, processes in two containers inside a single pod share the same IP
address and can communicate via localhost. Do you remember namespaces from

Pop quiz: Where is the cluster data stored?
Pick one:

1 Spread across the various components on the cluster
2 In /var/kubernetes/state.json
3 In etcd
4 In the cloud, uploaded using the latest AI and machine learning algorithms and

leveraging the revolutionary power of blockchain technology

See appendix B for answers.

Pop quiz: What’s the control plane in Kubernetes jargon?
Pick one:

1 The set of components implementing the logic of Kubernetes converging toward
the desired state

2 A remote-control aircraft, used in Kubernetes commercials
3 A name for Kubelet and Docker

See appendix B for answers.

334 CHAPTER 12 Under the hood of Kubernetes
chapter 5 on Docker? The IP address sharing is implemented by sharing the net-
work namespace.

 But other things (for example, the CPU limit) are applicable to each container
separately. The reason for pause to exist is simply to hold these resources while the
other containers might be crashing and coming back up. The pause container doesn’t
do much. It starts and immediately goes to sleep. The name is pretty fitting.

 Once the container is up, Kubelet will monitor it. If the container crashes, Kubelet
will bring it back up. See figure 12.5 for a graphical representation of the whole process.

When you delete the pod, or perhaps it gets rescheduled somewhere else, Kubelet
takes care of removing the relevant containers. Without Kubelet, all the resources cre-
ated and scheduled by the control plane would remain abstract concepts.

 This also makes Kubelet a single point of failure. If it crashes, for whatever rea-
son, no changes will be made to the containers running on that node, even though
Kubernetes will happily accept your changes. They just won’t ever get implemented
on that node.

 From the perspective of chaos engineering, it’s important to understand what actu-
ally happens to the cluster if Kubelet stops working. Here are a few ideas:

 Experiment 1—After Kubelet dies, how long does it take for pods to get resched-
uled somewhere else?
– When Kubelet stops reporting its readiness to the control plane, after a certain

time-out it’s marked as unavailable (NotReady). That time-out is configurable

1. Kubelet gets notified about a new
pod scheduled for this node.

2. Kubelet creates a
pause container.

3. Kubelet creates a
pod container.

4. Kubelet detects the
pod container crashing.

5. Kubelet restarts the
crashing pod container.

Pause container

IP 192.168.1.123

Pod container

Pod container

Crash
Kubelet

kube-apiserver

Node X

Create pause container

to hold IP address

Create pod container

and join IP address

Re-create pod container

and join IP address

Figure 12.5 Kubelet starting a new pod

335Anatomy of a Kubernetes cluster and how to break it
and defaults to 5 minutes at the time of writing. Pods are not immediately
removed from that node. The control plane will wait another configurable
time-out before it starts assigning the pods to another node.

– If a node disappears (for example, if the hypervisor running the VM crashes),
you’re going to need to wait a certain minimal amount of time for the pods
to start running somewhere else.

– If the pod is still running, but for some reason Kubelet can’t connect to the
control plane (network partition) or dies, then you’re going to end up with a
node running whatever it was running before the event, and it won’t get any
updates. One of the possible side effects is to run extra copies of your soft-
ware with potentially stale configuration.

– The previous chapter covered the tools to take VMs up and down, as well as
killing processes. PowerfulSeal also supports executing commands over SSH;,
for example, to kill or switch off Kubelet.

 Experiment 2—Does Kubelet restart correctly after crashing?
– Kubelet typically runs directly on the host to minimize the number of depen-

dencies. If it crashes, it should be restarted.
– As you saw in chapter 2, sometimes setting things up to get restarted is

harder than it initially looks, so it’s worth checking that different patterns of
crashing (consecutive crashes, time-spaced crashes, and so on) are all cov-
ered. This takes little time and can avoid pretty bad outages.

So the question now remains: How exactly does Kubelet run these containers? Let’s
take a look at that now.

12.1.3 Kubernetes, Docker, and container runtimes

Kubelet leverages lower-level software to start and stop containers to implement the
pods that you ask it to create. This lower-level software is often called container run-
times. Chapter 5 covered Linux containers and Docker (their most popular represen-
tative), and that’s for a good reason. Initially, Kubernetes was written to use Docker
directly, and you can still see some naming that matches one-to-one to Docker; even
the kubectl CLI feels similar to the Docker CLI.

Pop quiz: Which component starts and stops processes on the host?
Pick one:

1 kube-apiserver
2 etcd
3 kubelet

4 docker

See appendix B for answers.

336 CHAPTER 12 Under the hood of Kubernetes
 Today, Docker is still one of the most popular container runtimes to use with
Kubernetes, but it’s by no means the only option. Initially, the support for new run-
times was baked directly into Kubernetes internals. To make it easier to add new sup-
ported container runtimes, a new API was introduced to standardize the interface
between Kubernetes and container runtimes. It is called the Container Runtime Interface
(CRI), and you can read more about its introduction in Kubernetes 1.5 in 2016 at
http://mng.bz/RXln.

 Thanks to that new interface, interesting things happened. For example, since ver-
sion 1.14, Kubernetes has had Windows support. Kubernetes uses Windows containers
(http://mng.bz/2eaN) to start and stop containers on machines running Windows.
And on Linux, other options have emerged; for example, the following runtimes
leverage basically the same set of underlying technologies as Docker:

 containerd (https://containerd.io/)—The emerging industry standard that seems
poised to eventually replace Docker. To make matters more confusing, Docker
versions 1.11.0 and higher use containerd under the hood to run containers.

 CRI-O (https://cri-o.io/)—Aims to provide a simple, lightweight container run-
time optimized for use with Kubernetes.

 rkt (https://coreos.com/rkt)—Initially developed by CoreOS, the project now
appears to be no longer maintained. It was pronounced rocket.

To further the confusion, the ecosystem has more surprises for you. First, both con-
tainerd (and therefore Docker, which relies on it) and CRIO-O share some code by
leveraging another open source project called runc (https://github.com/opencon-
tainers/runc), which manages the lower-level aspects of running a Linux container.
Visually, when you stack the blocks on top of one another, it looks like figure 12.6. The

1. Client requests a new pod

2. Kubernetes uses the
container runtime it’s
configured with.

3. Depending on the
configuration, the actual
underlying container
runtime might vary.

Kubernetes

Container Runtime Interface (CRI)

Docker

ContainerD CRI-O

runc

Figure 12.6 Container Runtime Interface, Docker, containerd, CRI-O, and runc

http://mng.bz/RXln
http://mng.bz/2eaN
https://containerd.io/
https://cri-o.io/
https://coreos.com/rkt
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc

337Anatomy of a Kubernetes cluster and how to break it
user requests a pod, and Kubernetes reaches out to the container runtime it was con-
figured with. It might go to Docker, containerd, or CRI-O, but at the end of the day, it
all ends up using runc.

 The second surprise is that in order to avoid having different standards pushed by
different entities, a bunch of companies led by Docker came together to form the
Open Container Initiative (or OCI for short; https://opencontainers.org/). It pro-
vides two specifications:

 Runtime Specification—Describes how to run a filesystem bundle (a new term to
describe what used to be called a Docker image downloaded and unpacked)

 Image Specification—Describes what an OCI image (a new term for a Docker
image) looks like, and how to build, upload, and download one

As you might imagine, most people didn’t just stop using names like Docker images and
start prepending everything with OCI, so things can get a little bit confusing at times.
But that’s all right. At least there is a standard now!

 One more plot twist. In recent years, we’ve seen a few interesting projects pop up that
implement the CRI, but instead of running Docker-style Linux containers, get creative:

 Kata Containers (https://katacontainers.io/)—Runs “lightweight VMs” instead
of containers that are optimized for speed, to offer a “container-like” experi-
ence, but with stronger isolation offered by different hypervisors.

 Firecracker (https://github.com/firecracker-microvm/firecracker)—Runs “micro-
VMs,” also a lightweight type of VM, implemented using Linux Kernel Vir-
tual Machine, or KVM (http://mng.bz/aozm). The idea is the same as Kata
Containers, with a different implementation.

 gVisor (https://github.com/google/gvisor)—Implements container isolation in
a different way than Docker-style projects do. It runs a user-space kernel that
implements a subset of syscalls that it makes available to the processes running
inside the sandbox. It then sets up the program to capture the syscalls made by
the process and execute them in the user-space kernel. Unfortunately, that cap-
ture and redirection of syscalls introduces a performance penalty. You can use
multiple mechanisms for the capture, but the default leverages ptrace (briefly
mentioned in chapter 6), so it takes a serious performance hit.

Now, if we plug these into the previous figure, we end up with something along the
lines of figure 12.7. Once again, the user requests a pod, and Kubernetes makes a call
through the CRI. But this time, depending on which container runtime you are using,
the end process might be running in a container or a VM.

 If you’re running Docker as your container runtime, everything you learned in
chapter 5 will be directly applicable to your Kubernetes cluster. If you’re using con-
tainerd or CRI-O, the experience will be mostly the same, because they all use the
same underlying technologies. gVisor will differ in many aspects because of its dif-
ferent approach to implementing isolation. If your cluster uses Kata Containers or

https://opencontainers.org/
https://katacontainers.io/
https://github.com/firecracker-microvm/firecracker
http://mng.bz/aozm
https://github.com/google/gvisor

338 CHAPTER 12 Under the hood of Kubernetes
Firecracker, you’re going to be running VMs rather than containers. This is a fast-
changing landscape, so it’s worth following the new developments in this zone. Unfor-
tunately, as much as I love these technologies, we need to wrap up. I strongly encour-
age you to at least play around with them.

 Let’s take a look at the last piece of the puzzle: the Kubernetes networking model.

12.1.4 Kubernetes networking

There are three parts of Kubernetes networking that you need to understand to be
effective as a chaos engineering practitioner:

 Pod-to-pod networking
 Service networking
 Ingress networking

Pop quiz: Can you use a different container runtime than Docker?
Pick one:

1 If you’re in the United States, it depends on the state. Some states allow it.
2 No, Docker is required for running Kubernetes.
3 Yes, you can use a number of alternative container runtimes, like CRI-O, contain-

erd, and others.

See appendix B for answers.

1. Client requests a new pod

2. Kubernetes uses the
container runtime it’s
configured with.

3. Depending on the configuration,
the actual underlying container
runtime might vary.

4. Depending on the container runtime,
the final process might run in a
container or a VM.

Kubernetes

Container Runtime Interface (CRI)

Docker

ContainerD CRI-O gVisor
Kata

Containers
Firecracker

hypervisor

VM

runc

container

Figure 12.7 Runc-based container runtimes, alongside Kata Containers, Firecracker and gVisor

339Anatomy of a Kubernetes cluster and how to break it
I’ll walk you through them one by one. Let’s start with pod-to-pod networking.

POD-TO-POD NETWORKING

To communicate between pods, or have any traffic routed to them, pods need to be
able to resolve each other’s IP addresses. When discussing Kubelet, I mentioned that
the pause container was holding the IP address that was common for the whole pod.
But where does this IP address come from, and how does it work?

 The answer is simple: It’s a made-up IP address that’s assigned to the pod by
Kubelet when it starts. When configuring a Kubernetes cluster, a certain range of IP
addresses is configured, and then subranges are given to every node in the cluster.
Kubelet is then aware of that subrange, and when it creates a pod through the CRI, it
gives it an IP address from its range. From the perspective of processes running in that
pod, they will see that IP address as the address of their networking interface. So far,
so good.

 Unfortunately, by itself, this doesn’t implement any pod-to-pod networking. It
merely attributes a fake IP address to every pod and then stores it in kube-apiserver.

 Kubernetes then expects you to configure the networking independently. In fact, it
gives you only two conditions that you need to satisfy, and doesn’t really care how you
achieve that (http://mng.bz/1rMZ):

 All pods can communicate to all other pods on the cluster directly.
 Processes running on the node can communicate with all pods on that node.

This is typically done with an overlay network (https://en.wikipedia.org/wiki/Over-
lay_network); the nodes in the cluster are configured to route the fake IP addresses
among themselves, and deliver them to the right containers.

 Once again, the interface for dealing with the networking has been standardized.
It’s called the Container Networking Interface (CNI). At the time of writing, the offi-
cial documentation lists 29 options for implementing the networking layer (http://
mng.bz/PPx2). To keep things simple, I’ll show you an example of how one of the
most basic works: Flannel (https://github.com/coreos/flannel).

 Flannel runs a daemon (flanneld) on each Kubernetes node and agrees on sub-
ranges of IP addresses that should be available to each node. It stores that information
in etcd. Every instance of the daemon then ensures that the networking is configured to
forward packets from different ranges to their respective nodes. On the other end, the
receiving flanneld daemon delivers received packets to the right container. The for-
warding is done using one of the supported existing backends; for example, Virtual
Extensible LAN, or VXLAN (https://en.wikipedia.org/wiki/Virtual_Extensible_LAN).

 To make it easier to understand, let’s walk through a concrete example. Let’s say that
your cluster has two nodes, and the overall pod IP address range is 192.168.0.0/16.
To keep things simple, let’s say that node A was assigned range 192.168.1.0/24, and
node B was assigned range 192.168.2.0/24. Node A has a pod A1, with an address
192.168.1.1, and it wants to send a packet to pod B2, with an address 192.168.2.2 run-
ning on node B.

http://mng.bz/1rMZ
https://en.wikipedia.org/wiki/Overlay_network
https://en.wikipedia.org/wiki/Overlay_network
http://mng.bz/PPx2
http://mng.bz/PPx2
http://mng.bz/PPx2
https://github.com/coreos/flannel
https://en.wikipedia.org/wiki/Virtual_Extensible_LAN

340 CHAPTER 12 Under the hood of Kubernetes
 When pod A1 tries to connect to pod B2, the forwarding set up by Flannel will
match the node IP address range for node B and encapsulate and forward the packets
there. On the receiving end, the instance of Flannel running on node B will receive
the packets, undo the encapsulation, and deliver them to pod B. From the perspective
of a pod, our fake IP addresses are as real as anything else. Take a look at figure 12.8,
which shows this in a graphical way.

Flannel is pretty bare-bones. There are much more advanced solutions, doing things
like allowing for dynamic policies that dictate which pods can talk to what other pods
in what circumstances, and much more. But the high-level idea is the same: the pod IP
addresses get routed, and a daemon is running on each node that makes sure that
happens. And that daemon will always be a fragile part of the setup. If it stops work-
ing, the networking settings will be stale and potentially wrong.

 That’s the pod networking in a nutshell. There is another set of fake IP addresses
in Kubernetes: service IP addresses. Let’s take a look at that now.

SERVICE NETWORKING

As a reminder, services in Kubernetes give a shared IP address to a set of pods that you
can mix and match based on the labels. In the previous example, you had some pods
with the label app=goldpinger; the service used that same label to match the pods
and give them a single IP address.

2. The address matches flannel’s
subrange for Node B, so the
packet gets encapsulated and
sent over to Node B.

Send to 192.168.2.2
packetpacket

Encapsulated Encapsulated

Pod B2

192.168.2.2

Pod A1

192.168.1.1

Decapsulate

FlannelFlannel

Encapsulate

Packet Packet

Node A

192.168.1.0/24

Node B

192.168.2.0/24

1. Pod A1 wants to connect
to pod B2 at 92. 68.2.2.1 1

3. On node B, the packet gets
decapsulated and delivered
to the right pod.

Figure 12.8 High-level overview of pod networking with Flannel

341Anatomy of a Kubernetes cluster and how to break it
 Just like the pod IP addresses, the service IP addresses are completely made up.
They are implemented by a component called kube-proxy, which also runs on each
node on your Kubernetes cluster. kube-proxy watches for changes to the pods match-
ing the particular label, and reconfigures the host to route these fake IP addresses to
their respective destinations. They also offer some load-balancing. The single service
IP address will resolve to many pod IP addresses, and depending on how kube-proxy
is configured, you can load-balance them in different fashions.

 kube-proxy can use multiple backends to implement the networking changes.
One of them is to use iptables (https://en.wikipedia.org/wiki/Iptables). We don’t
have time to dive into how iptables works, but at a high level, it allows you to write a set
of rules that modify the flow of the packets on the machine.

 In this mode, kube-proxy will create rules that forward the packets to particular
pod IP addresses. If there is more than one pod, each will have rules, with correspond-
ing probabilities. The first rule to match wins. Let’s say you have a service that resolves
to three pods. On a high level, they would look something like this:

1 If IP == SERVICE_IP, forward to pod A with probability 33%
2 If IP == SERVICE_IP, forward to pod B with probability 50%
3 If IP == SERVICE_IP, forward to pod C with probability 100%

This way, on average, the traffic should be routed roughly equally to the three pods.
 The weakness of this setup is that iptables evaluates all the rules one by one, until it

hits a rule that matches. As you can imagine, the more pod services and pods you’re
running on your cluster, the more rules there will be, and therefore the bigger over-
head this will create.

 To alleviate that problem, kube-proxy can also use IP Virtual Server, or IPVS
(https://en.wikipedia.org/wiki/IP_Virtual_Server), which scales much better for large
deployments.

 From a chaos engineering perspective, that’s one of the things you need to be
aware of. Here are a few ideas for chaos experiments:

 Experiment 1—Does the number of services affect the speed of networking?
– If you’re using iptables, you will find that just creating a few thousand ser-

vices (even if they’re empty) will suddenly and significantly slow the network-
ing on all nodes. Do you think your cluster shouldn’t be affected? You’re one
experiment away from checking that.

 Experiment 2—How good is the load balancing?
– With probability-based load balancing, you might sometimes find interesting

results in terms of traffic split. It might be a good idea to verify your assump-
tions about that.

 Experiment 3—What happens when kube-proxy is down?
– If the networking is not updated, it is quite possible to end up with not only

stale routing that doesn’t work, but also routing to the wrong service. Can

https://en.wikipedia.org/wiki/Iptables
https://en.wikipedia.org/wiki/IP_Virtual_Server

342 CHAPTER 12 Under the hood of Kubernetes
your setup detect when that happens? Would you be alerted if requests start
flowing to the wrong destinations?

Once you have a service configured, one last thing that you want to do with it is to
make it accessible outside the cluster. That’s what ingresses are designed for. Let’s take
a look at that now.

INGRESS NETWORKING

Having the routing work inside the cluster is great, but the cluster won’t be of much
use if you can’t access the software running on it from the outside. That’s where
ingresses come in.

 In Kubernetes, an ingress is a natively supported resource that effectively describes
a set of hosts and the destination service that these hosts should be routed to. For
example, an ingress could say that requests for example.com should go to a service
called example, in the namespace called mynamespace, and route to port 8080. It’s a
first-class citizen, natively supported by the Kubernetes API.

 But once again, creating this kind of resource doesn’t do anything by itself. You
need to have an ingress controller installed that will listen on changes to the resources
of this kind and implement them. And yes, you guessed it, there are multiple options.
As I’m looking at it now, the official docs list 15 options at http://mng.bz/JDlp.

 Let me use the NGINX ingress controller (https://github.com/kubernetes/ingress-
nginx) as an example. You saw NGINX in the previous chapters. It’s often used as a
reverse proxy, receiving traffic and sending it to some kind of server upstream. That’s
precisely how it’s used in the ingress controller.

 When you deploy it, it runs a pod on each host. Inside that pod, it runs an instance
of NGINX, and an extra process that listens to changes on resources of type ingress.
Every time a change is detected, it regenerates a config for NGINX, and asks NGINX
to reload it. NGINX then knows which hosts to listen on, and where to proxy the
incoming traffic. It’s that simple.

 It goes without saying that the ingress controller is typically the single point of
entry to the cluster, and so everything that prevents it from working well will deeply
affect the cluster. And like any proxy, it’s easy to mess up its parameters. From the
chaos engineering perspective, here are some ideas to get you started:

1 What happens when a new ingress is created or modified and a config is
reloaded? Are the existing connections dropped? What about corner cases like
WebSockets?

2 Does your proxy have the same time-out as the service it proxies to? If you time
out quicker, not only can you have outstanding requests being processed long
after the proxy dropped the connection, but the consequent retries might accu-
mulate and take down the target service.

We could chat about that for a whole day, but this should be enough to get you started
with your testing. Unfortunately, all good things come to an end. Let’s finish with a
summary of the key components covered in this chapter.

https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
http://mng.bz/JDlp

343Summary of key components
12.2 Summary of key components
We covered quite a few components in this chapter, so before I let you go, I have a lit-
tle parting gift for you: a handy reference of the key functions of these components.
Take a look at table 12.1. If you’re new to all of this, don’t worry; it will soon start feel-
ing like home.

And with that, it’s time to wrap up!

Pop quiz: Which component did I just make up?
Pick one:

1 kube-apiserver

2 kube-controller-manager
3 kube-scheduler
4 kube-converge-loop

5 kubelet
6 etcd
7 kube-proxy

See appendix B for answers.

Table 12.1 Summary of the key Kubernetes components

Component Key function

kube-apiserver Provides APIs for interacting with the Kubernetes cluster

etcd The database used by Kubernetes to store all its data

kube-controller-manager Implements the infinite loop converging the current state toward the
desired one

kube-scheduler Schedules pods onto nodes, trying to find the best fit

kube-proxy Implements the networking for Kubernetes services

Container Networking Interface
(CNI)

Implements pod-to-pod networking in Kubernetes—for example, Flan-
nel, Calico

Kubelet Starts and stops containers on hosts, using a container runtime

Container runtime Actually runs the processes (containers, VMs) on a host—for exam-
ple, Docker, containerd, CRI-O, Kata, gVisor

344 CHAPTER 12 Under the hood of Kubernetes
Summary
 Kubernetes is implemented as a set of loosely coupled components, using etcd

as the storage for all data.
 The capacity of Kubernetes to continuously converge to the desired state is

implemented through various components reacting to well-defined situations
and updating the part of the state they are responsible for.

 Kubernetes can be configured in various ways, so implementation details might
vary, but the Kubernetes APIs will work roughly the same wherever you go.

 By designing chaos experiments to expose various Kubernetes components to
expected kinds of failure, you can find fragile points in your clusters and make
your cluster more reliable.

Chaos engineering
(for) people
Let’s focus on the other type of resource that’s necessary for any project to succeed:
people. In many ways, human beings and the networks we form are more complex,
dynamic, and harder to diagnose and debug than the software we write. Talking
about chaos engineering without including all that human complexity would there-
fore be incomplete.

 In this chapter, I would like to bring to your attention three facets of chaos engi-
neering meeting human brains:

 First, we’ll discuss the kind of mindset that is required to be an effective
chaos engineer, and why sometimes that shift is hard to make.

 Second is the hurdle to get buy-in from the people around you. You will see
how to communicate clearly the benefits of this approach.

This chapter covers
 Understanding mindset shifts required for

effective chaos engineering

 Getting buy-in from the team and management
for doing chaos engineering

 Applying chaos engineering to teams to make
them more reliable
345

346 CHAPTER 13 Chaos engineering (for) people
 Finally, we’ll talk about human teams as distributed systems and how to apply
the same chaos engineering approach we did with machines to make teams
more resilient.

If that sounds like your idea of fun, we can be friends. First stop: the chaos engineer-
ing mindset.

13.1 Chaos engineering mindset
Find a comfortable position, lean back, and relax. Take control of your breath and try
taking in deep, slow breaths through your nose, and release the air with your mouth.
Now, close your eyes and try to not think about anything. I bet you found that hard;
thoughts just keep coming. Don’t worry, I’m not going to pitch my latest yoga and
mindfulness classes (they’re all sold out for the year)!

 I just want to bring to your attention that a lot of what you consider “you” is hap-
pening without your explicit knowledge. From the chemicals produced inside your
body to help process the food you ate and make you feel sleepy at the right time of the
night, to split-second, subconscious decisions on other people’s friendliness and
attractiveness based on visual cues, we’re all a mix of rational decisions and rationaliz-
ing the automatic ones.

 To put it differently, parts of what makes up your identity are coming from the
general-purpose, conscious parts of the brain, while others are coming from the sub-
conscious. The conscious brain is much like implementing things in software—easy to
adapt to any type of problem, but costlier and slower. That’s opposed to the quicker,
cheaper, and more-difficult-to-change logic implemented in the hardware.

 One of the interesting aspects of this duality is our perception of risk and rewards.
We are capable of making the conscious effort to think about and estimate risks, but a
lot of this estimation is done automatically, without even reaching the level of con-
sciousness. And the problem is that some of these automatic responses might still be
optimized for surviving in the harsh environments the early human was exposed to—
and not doing computer science.

 The chaos engineering mindset is all about estimating risks and rewards with partial
information, instead of relying on automatic responses and gut feelings. This mindset
requires doing things that feel counterintuitive at first—like introducing failure into
computer systems—after careful consideration of the risk-reward ratio. It necessitates
a scientific, evidence-based approach, coupled with a keen eye for potential problems.
In the rest of this chapter, I illustrate why.

Calculating risks: The trolley problem
If you think that you’re good at risk mathematics, think again. You might be familiar
with the trolley problem (https://en.wikipedia.org/wiki/Trolley_problem). In the exper-
iment, participants are asked to make a choice that will affect other people—by
either keeping them alive, or not.

https://en.wikipedia.org/wiki/Trolley_problem

347Chaos engineering mindset
Let’s take a look at the mindset of an effective chaos engineering practitioner, starting
with failure.

13.1.1 Failure is not a maybe: It will happen

Let’s assume that we’re using good-quality servers. One way of expressing the quality
of being good quality in a scientific manner is the mean time between failure (MTBF).
For example, if the servers had a very long MTBF of 10 years, that means that on aver-
age, each of them would fail every 10 years. Or put differently, the probability of the
machine failing today is 1 / (10 years × 365.25 days in a year) ~= 0.0003, or 0.03%. If
we’re talking about the laptop I’m writing these words on, I am only 0.03% worried it
will die on me today.

 The problem is that small samples like this give us a false impression of how reli-
able things really are. Imagine a datacenter with 10,000 servers. How many servers can
be expected to fail on any given day? It’s 0.0003 × 10,000 ~= 3. Even with a third of
that, at 3333 servers, the number would be 0.0003 × 3333 ~= 1. The scale of modern
systems we’re building makes small error rates like this more pronounced, but as you
can see, you don’t need to be Google or Facebook to experience them.

 Once you get the hang of it, multiplying percentages is fun. Here’s another exam-
ple. Let’s say that you have a mythical, all-star team shipping bug-free code 98% of the
time. That means, on average, with a weekly release cycle, the team will ship bugs
more than once a year. And if your company has 25 teams like that, all 98% bug free,
you’re going to have a problem every other week—again, on average.

 In the practice of chaos engineering, it’s important to look at things from this per-
spective —a calculated risk—and to plan accordingly. Now, with these well-defined val-
ues and elementary school-level multiplication, we can estimate a lot of things and
make informed decisions. But what happens if the data is not readily available, and it’s
harder to put a number to it?

13.1.2 Failing early vs. failing late

One common mindset blocker when starting with chaos engineering is that we might
cause an outage that we would otherwise most likely get away with. We discussed how
to minimize this risk in chapter 4, so now I’d like to focus on the mental part of the

A trolley is barreling down the tracks. Ahead, five people are tied to the tracks. If the
trolley hits them, they die. You can’t stop the trolley, and there is not enough time to
detach even a single person. However, you notice a lever. Pulling the lever will redi-
rect the trolley to another set of tracks, which has only one person attached to it.
What do you do?

You might think most people would calculate that one person dying is better than five
people dying, and pull the lever. But the reality is that most people wouldn’t do it.
There is something about it that makes the basic arithmetic go out the window.

348 CHAPTER 13 Chaos engineering (for) people
equation. The reasoning tends to be like this: “It’s currently working, its lifespan is X
years, so chances are that even if it has bugs that would be uncovered by chaos engi-
neering, we might not run into them within this lifespan.”

 There are many reasons a person might think this. The company culture could be
punitive for mistakes. They might have had software running in production for years,
and bugs were found only when it was being decommissioned. Or they might simply
have low confidence in their (or someone else’s) code. And there may be plenty of
other reasons.

 A universal reason, though, is that we have a hard time comparing two probabili-
ties we don’t know how to estimate. Because an outage is an unpleasant experience,
we’re wired to overestimate how likely it is to happen. It’s the same mechanism that
makes people scared of dying of a shark attack. In 2019, two people died of shark
attacks in the entire world (http://mng.bz/goDv). Given the estimated population of
7.5 billion people in June 2019 (www.census.gov/popclock/world), the likelihood of
any given person dying from a shark attack that year was 1 in 3,250,000,000. But because
people watched the movie Jaws, if interviewed on the street, they will estimate that
likelihood very high.

 Unfortunately, this just seems to be how we are. So instead of trying to convince
people to swim more in shark waters, let’s change the conversation. Let’s talk about
the cost of failing early versus the cost of failing late. In the best-case scenario (from
the perspective of possible outages, not learning), chaos engineering doesn’t find any
issues, and all is good. In the worst-case scenario, the software is faulty. If we experi-
ment on it now, we might cause the system to fail and affect users within our blast
radius. We call this failing early. If we don’t experiment on it, it’s still likely to fail, but
possibly much later (failing late).

 Failing early has several advantages:

 Engineers are actively looking for bugs, with tools at the ready to diagnose the
issue and help fix it as soon as possible. Failing late might happen at a much less
convenient time.

 The same applies to the development team. The further in the future from the
code being written, the bigger the context switch the person fixing the bug will
have to execute.

 As a product (or company) matures, usually the users expect to see increased
stability and decreased number of issues over time.

 Over time, the number of dependent systems tends to increase.

But because you’re reading this book, chances are you’re already aware of the advan-
tages of doing chaos engineering and failing early. The next hurdle is to get the peo-
ple around you to see the light too. Let’s take a look at how to achieve that in the most
effective manner.

http://mng.bz/goDv
http://www.census.gov/popclock/world

349Getting buy-in
13.2 Getting buy-in
To get your team from zero to chaos engineering hero, you need team members to
understand the benefits it brings. And for them to understand those benefits, you
need to be able to communicate them clearly. Typically, you’re going to be pitching to
two groups of people: your peers/team members and your management. Let’s start by
looking at how to talk to the latter.

13.2.1 Management

Put yourself in your manager’s shoes. The more projects you’re responsible for, the
more likely you are to be risk-averse. After all, what you want is to minimize the num-
ber of fires to extinguish, while achieving your long-term goals. And chaos engineer-
ing can help with that.

 So to play some music to your manager’s ears, perhaps don’t start with breaking
things on purpose in production. Here are some elements that managers are much
more likely to react well to:

 Good return on investment (ROI)—Chaos engineering can be a relatively cheap
investment (even a single engineer can experiment on a complex system in a
single-digit number of days if the system is well documented) with a big poten-
tial payoff. The result is a win-win situation:
– If the experiments don’t uncover anything, the output is twofold: first,

increased confidence in the system; second, a set of automated tests that can
be rerun to detect any regressions later.

– If the experiments uncover a problem, it can be fixed.
 Controlled blast radius—It’s good to remind them again that you’re not going to

be randomly breaking things, but conducting a well-controlled experiment with
a defined blast radius. Obviously, things can still go sideways, but the idea is not
to set the world on fire and see what happens. Rather, it’s to take a calculated
risk for a large potential payoff.

 Failing early—The cost of resolving an issue found earlier is generally lower than
if the same issue is found later. You can then have faster response time to an
issue found on purpose, rather than at an inconvenient time.

 Better-quality software—Your engineers, knowing that the software will undergo
experiments, are more likely to think about the failure scenarios early in the
process and write more resilient software.

 Team building—The increased awareness of the importance of interaction and
knowledge sharing has the potential to make teams stronger (more on this later
in this chapter).

 Increased hiring potential—You’ll have a real-life proof of building solid software.
All companies talk about the quality of their product. Only a subset puts their

350 CHAPTER 13 Chaos engineering (for) people
money where their mouth is when it comes to funding engineering efforts in
testing.
– Solid software means fewer calls outside working hours, which means hap-

pier engineers.
– Remember the shininess factor: using the latest techniques helps attract

engineers who want to learn them and have them on their CVs.

If delivered correctly, the tailored message should be an easy sell. It has the potential
to make your manager’s life easier, make the team stronger, the software better qual-
ity, and hiring easier. Why would you not do chaos engineering?!

 How about your team members?

13.2.2 Team members

When speaking to your team members, many of the arguments we just covered apply
in equal measure. Failing early is less painful than failing later; thinking about corner
cases and designing all software with failure in mind is often interesting and reward-
ing. Oh, and office games (we’ll get to them in just a minute) are fun.

 But often what really resonates with the team is simply the potential of getting
called less. If you’re on an on-call rotation, everything that minimizes the number of
times you’re called in the middle of the night is helpful. So framing the conversation
around this angle can really help with getting the team onboard. Here are some ideas
of how to approach that conversation:

 Failing early and during work hours—If there is an issue, it’s better to trigger it
before you’re about to go pick up your kids from school or go to sleep in the
comfort of your own home.

 Destigmatizing failure—Even for a rock-star team, failure is inevitable. Thinking
about it and actively seeking problems can remove or minimize the social pres-
sure of not failing. Learning from failure always trumps avoiding and hiding
failure. Conversely, for a poorly performing team, failure is likely a common
occurrence. Chaos engineering can be used in preproduction stages as an extra
layer of testing, allowing the unexpected failures to be rarer.

 Chaos engineering is a new skill, and one that’s not that hard to pick up—Personal
improvement will be a reward in itself for some. And it’s a new item on a CV.

With that, you should be well equipped to evangelize chaos engineering within your
teams and to your bosses. You can now go and spread the good word! But before you
go, let me give you one more tool. Let’s talk about game days.

13.2.3 Game days

You might have heard of teams running game days. Game days are a good tool for getting
buy-in from the team. They are a little bit like those events at your local car dealership.
Big, colorful balloons, free cookies, plenty of test drives and miniature cars for your kid,
and boom—all of a sudden you need a new car. It’s like a gateway drug, really.

351Teams as distributed systems
 Game days can take any form. The form is not important. The goal is to get the
entire team to interact, brainstorm ideas of where the weaknesses of the system might
lie, and have fun with chaos engineering. It’s both the balloons and the test drives that
make you want to use a new chaos engineering tool.

 You can set up recurring game days. You can start your team off with a single event
to introduce them to the idea. You can buy some fancy cards for writing down chaos
experiment ideas, or you can use sticky notes. Whatever you think will get your team
to appreciate the benefits, without feeling like it’s forced upon them, will do. Make
them feel they’re not wasting their time. Don’t waste their time.

 That’s all I have for the buy-in—time to dive a level deeper. Let’s see what happens
if you apply chaos engineering to a team itself.

13.3 Teams as distributed systems
What’s a distributed system? Wikipedia defines it as “a system whose components are
located on different networked computers, which communicate and coordinate their
actions by passing messages to one another” (https://en.wikipedia.org/wiki/Distrib-
uted_computing). If you think about it, a team of people behaves like a distributed
system, but instead of computers, we have individual humans doing things and pass-
ing messages to one another.

 Let’s imagine a team responsible for running customer-facing ticket-purchasing
software for an airline. The team will need varied skills to succeed, and because it’s
a part of a larger organization, some of the technical decisions will be made for
them. Let’s take a look at a concrete example of the core competences required for
this team:

 Microsoft SQL database cluster management—That’s where all the purchase data
lands, and that’s why it is crucial to the operation of the ticket sales. This also
includes installing and configuring Windows OS on VMs.

 Full-stack Python development—For the backend receiving the queries about avail-
able tickets as well as the purchase orders, this also includes packaging the soft-
ware and deploying it on Linux VMs. Basic Linux administration skills are
therefore required.

 Frontend, JavaScript-based development—The code responsible for rendering and
displaying the user-facing UI.

 Design—Providing artwork to be integrated into the software by the frontend
developers.

 Integration with third-party software—Often, the airline can sell a flight operated
by another airline, so the team needs to maintain integration with other air-
lines’ systems. What it entails varies from case to case.

Now, the team is made of individuals, all of whom have accumulated a mix of vari-
ous skills over time as a function of their personal choices. Let’s say that some of our
Windows DB admins are also responsible for integrating with third parties (the

https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Distributed_computing

352 CHAPTER 13 Chaos engineering (for) people
Windows-based systems, for example). Similarly, some of the full-stack developers also
handle integrations with Linux-based third parties. Finally, some of the frontend
developers can also do some design work. Take a look at figure 13.1, which shows a
Venn diagram of these skill overlaps.

The team is also lean. In fact, it has only six people. Alice and Bob are both Windows
and Microsoft SQL experts. Alice also supports some integrations. Caroline and David
are both full stack developers, and both work on integrations. Esther is a frontend
developer who can also do some design work. Franklin is the designer. Figure 13.2
places these individuals onto the Venn diagram of the skill overlaps.

 Can you see where I’m going with this? Just as with any other distributed system, we
can identify the weak links by looking at the architecture diagram. Do you see any
weak links? For example, if Esther has a large backlog, no one else on the team can
pick it up, because no one else has the skills. She’s a single point of failure. By con-
trast, if Caroline or David is distracted with something else, the other one can cover:
they have redundancy between them. People need holidays, they get sick, and they
change teams and companies, so in order for the team to be successful long term,
identifying and fixing single points of failure is very important. It’s pretty convenient
that we had a Venn diagram ready!

 One problem with real life is that it’s messy. Another is that teams rarely come
nicely packaged with a Venn diagram attached to the box. Hundreds of different skills

Full stack

Design

SQL

Linux

Integrations

Front-end

Windows

Figure 13.1 Venn diagram of skill overlaps in our example team

353Teams as distributed systems
(hard and soft), constantly shifting technological landscapes, evolving requirements,
personnel turnaround, and the sheer scale of some organizations are all factors in
how hard it can be to ensure no single points of failure. If only there was a methodol-
ogy to uncover systemic problems in a distributed system . . . oh, wait!

 To discover systemic problems within a team, let’s do some chaos experiments.
The following experiments are heavily inspired by Dave Rensin, who described them
in his talk, “Chaos Engineering for People Systems” (https://youtu.be/sn6wokyCZSA). I
strongly recommend watching that talk. They are also best sold to the team as “games”
rather than experiments. Not everyone wants to be a guinea pig, but a game sounds
like a lot of fun and can be a team-building exercise if done right. You could even
have prizes!

 Let’s start with identifying single points of failure within a team.

13.3.1 Finding knowledge single points of failure: Staycation

To see what happens to a team in the absence of a person, the chaos engineering
approach is to simulate the event and observe how the team members cope. The most
lightweight variant is to just nominate a person and ask them to not answer any que-
ries related to their responsibilities and work on something different than they had
scheduled for the day. Hence, the name Staycation. Of course, it’s a game, and should
an actual emergency arise, it’s called off and all hands are on deck.

Full stack

Design

Franklin

Esther
Linux

David

Caroline

Alice

SQL

Integrations

Bob

Windows

Front-end

Figure 13.2 Individuals on the Venn diagram of skill overlaps

https://youtu.be/sn6wokyCZSA

354 CHAPTER 13 Chaos engineering (for) people
 If the team continues working fine at full (remaining) capacity, that’s great. It
means the team is doing a really good job of spreading knowledge. But chances are
that sometimes other team members will need to wait for the person on staycation to
come back, because some knowledge wasn’t replicated sufficiently. It could be work in
progress that wasn’t documented well enough, an area of expertise that suddenly
became relevant, tribal knowledge the newer people on the team don’t have yet, or
any number of other reasons. If that’s the case, congratulations: you’ve just discovered
how to make your team stronger as a system!

 People are different, and some will enjoy games like this much more than others.
You’ll need to find something that works for the individuals on your team. There is no
single best way of doing this; whatever works is fair game. Here are some other knobs
to tweak in order to create an experience better tailored for your team:

 Unlike a regular vacation, where the other team members can predict problems
and execute some knowledge transfer to avoid them, it might be interesting to
run this game by surprise. It will simulate someone falling sick, rather than tak-
ing a holiday.

 You can tell the other team members about the experiment . . . or not. Telling
them will have the advantage that they can proactively think about things they
won’t be able to resolve without the person on staycation. Telling them only
after the fact is closer to a real-life situation, but might be seen as distraction.
You know your team; suggest what you think will work best.

 Choose your timing wisely. If team members are working hard to meet a dead-
line, they might not enjoy playing games that eat up their time. Or, if they are
very competitive, they might like that, and having more things going on might
create more potential for knowledge-sharing issues to arise.

Whichever way works for your team, this can be a really inexpensive investment with a
large potential payout. Make sure you take the time to discuss the findings with the
team, lest they might find the game unhelpful. Everyone involved is an adult and
should recognize when a real emergency arises. But even if the game goes too far, fail-
ing early is most likely better than failing late, just as with the chaos experiments we
run in computer systems.

 Let’s take a look at another variant, this time focusing not on absence, but on false
information.

13.3.2 Misinformation and trust within the team: Liar, Liar

In a team, information flows from one team member to another. A certain amount of
trust must exist among members for effective cooperation and communication—but
also a certain amount of distrust, so that we double-check and verify things, instead of
just taking them at face value. After all, to err is human.

 We’re also complex human beings, and we can trust the same person more on one
topic than a different one. That’s very helpful. You reading this book shows some trust
in my chaos engineering expertise, but that doesn’t mean you should trust my carrot

355Teams as distributed systems
cake (the last one didn’t look like a cake, let alone a carrot!) And that’s perfectly fine;
these checks should be in place so that wrong information can be eventually weeded
out. We want that property of the team, and we want it to be strong.

 Liar, Liar is a game designed to test how well your team is dealing with false infor-
mation circulating. The basic rules are simple: nominate a person who’s going to spend
the day telling very plausible lies when asked about work-related stuff. Some safety mea-
sures: write down the lies, and if they weren’t discovered by others, straighten them out
at the end of the day, and in general be reasonable with them. Don’t create a massive
outage by telling another person to click Delete on the whole system.

 This game has the potential to uncover situations in which other team members
skip the mental effort of validating their inputs and just take what they heard at face
value. Everyone makes a mistake, and it’s everyone’s job to reality-check what you
heard before you implement it. Here are some ideas of how to customize this game:

 Choose the liar wisely. The more the team relies on their expertise, the bigger
the blast radius, but also the bigger the learning potential.

 The liar’s acting skills are pretty useful here. Being able to keep up the ruse for
the whole day, without spilling the beans, should have a pretty strong wow effect
on other team members.

 You might want to have another person on the team know about the liar, to
observe and potentially step in if they think the situation might have some con-
sequences they didn’t think of. At a minimum, the team leader should always
know about this!

Take your time to discuss the findings within the team. If people see the value in
doing this, it can be good fun. Speaking of fun, do you recall what happened when we
injected latency in the communications with the database in chapter 4? Let’s see what
happens when you inject latency into a team.

13.3.3 Bottlenecks in the team: Life in the Slow Lane

The next game, Life in the Slow Lane, is about finding who’s a bottleneck within the
team, in different contexts. In a team, people share their respective expertise to pro-
pel the team forward. But everyone has a maximum throughput of what they can pro-
cess. Bottlenecks form as some team members need to wait for others before they can
continue with their work. In the complex network of social interactions, it’s often dif-
ficult to predict and observe these bottlenecks, until they become obvious.

 The idea behind this game is to add latency to a designated team member by ask-
ing them to take at least X minutes to respond to queries from other team members.
By artificially increasing the response time, you will be able to discover bottlenecks
more easily: they will be more pronounced, and people might complain about them
directly! Here are some tips to ponder:

 If possible, working from home might be useful when implementing the extra
latency. It limits the amount of social interaction and might make it a bit less weird.

356 CHAPTER 13 Chaos engineering (for) people
 Going silent when others are asking for help is suspicious, might make you
uncomfortable, and can even be seen as rude. Responding to queries with
something along the lines of, “I’ll get back to you on this; sorry, I’m really busy
with something else right now,” might help greatly.

 Sometimes resolving found bottlenecks might be the tricky bit. Policies might
be in place, cultural norms or other constraints may need to be taken into
account, but even just knowing about the potential bottlenecks can help plan-
ning ahead.

 Sometimes the manager of the team will be a bottleneck. Reacting to that might
require a little bit more self-reflection and maturity, but it can provide invalu-
able insights.

So this one is pretty easy, and you don’t need to remember the syntax of tc to imple-
ment it! And since we’re on a roll, let’s cover one more. Let’s see how to use chaos
engineering to test out your remediation procedures.

13.3.4 Testing your processes: Inside Job

Your team, unless it was started earlier today, has a set of rules to deal with problems.
These rules might be well structured and written down, might be tribal knowledge in
the collective mind of the team, or as is the case for most teams, somewhere between the
two. Whatever they are, these “procedures” of dealing with different types of incidents
should be reliable. After all, that’s what you rely on in stressful times. Given that you’re
reading a book on chaos engineering, how do you think we could test them out?

 With a gamified chaos experiment, of course! I’m about to encourage you to exe-
cute an occasional act of controlled sabotage by secretly breaking a subsystem you rea-
sonably expect the team to be able to fix using the existing procedures, and then sit
and watch them fix it.

 Now, this is a big gun, so here are a few caveats:

 Be reasonable about what you break. Don’t break anything that would get you
in trouble.

 Pick the inside group wisely. You might want to let the stronger people on the
team in on the secret, and let them “help out” by letting the other team mem-
bers follow the procedures to fix the issue.

 It might also be a good idea to send some people to training or a side project, to
make sure that the issue can be solved even with some people out.

 Double-check that the existing procedures are up-to-date before you break the
system.

 Take notes while you’re observing the team react to the situation. See what
takes up their time, what part of the procedure is prone to mistakes, and who
might be a single point of failure during the incident.

 It doesn’t have to be a serious outage. It might be a moderate-severity issue,
which needs to be remediated before it becomes serious.

357Where to go from here?
If done right, this can be a very useful piece of information. It increases the confi-
dence in the team’s ability to fix an issue of a certain type. And again, it’s much nicer
to be dealing with an issue just after lunch, rather than at 2 a.m.

 Would you do an inside job in production? The answer will depend on many fac-
tors we covered earlier in chapter 4 and on the risk/reward calculation. In the worst-
case scenario, you create an issue that the team fails to fix in time, and the game needs
to be called off and the issue fixed. You learn that your procedures are inadequate
and can take action on improving them. In many situations, this might be perfectly
good odds.

 You can come up with an infinite number of other games by applying the chaos
engineering principles to the human teams and interaction within them. My goal
here is to introduce you to some of them to illustrate that human systems have a lot of
the same characteristics as computer systems. I hope that I piqued your interest. Now,
go forth and experiment with and on your teams!

Summary
 Chaos engineering requires a mindset shift from risk averse to risk calculating.
 Good communication and tailoring your message can facilitate getting buy-in

from the team and management.
 Teams are distributed systems, and can also be made more reliable through the

practice of experiments and office games.

13.4 Where to go from here?
This is the last section of the last chapter of this book, and I’d be lying if I said it didn’t
feel weird. It really does. For the last year or so, writing this book has been a sort of
daily ritual for me. Forcing myself out of bed hours too early to keep pushing was
hard, but it made this book possible. And now my Stockholm syndrome is kicking in
and I’m finding myself wondering what I’m going to do with all this free time!

 With a topic as broad as chaos engineering, choosing what should go into the book
and what to leave out was objectively tricky. My hope is that the 13 chapters give you
just enough information, tools, and motivation to help you continue your journey on
making better software. At the same time, it’s been my goal to remove all fluff and
leave only a thin layer of padding in the form of a few jokes and “rickrolls” (if you
don’t know what that means, I know you haven’t run the code samples!). If you’d like
to see some things that didn’t make it into the main part of the book, see appendix C.
And if you’re still hungry for more after that, head straight to appendix D!

 If you’re looking for a resource that’s updated more often than a book, check out
https://github.com/dastergon/awesome-chaos-engineering. It’s a good list of chaos
engineering resources in various shapes and forms.

 If you’d like to hear more from me, ping me on LinkedIn (I love hearing people’s
chaos engineering stories) and subscribe to my newsletter at http://chaosengineering
.news.

https://github.com/dastergon/awesome-chaos-engineering
http://chaosengineering.news
http://chaosengineering.news
http://chaosengineering.news

358 CHAPTER 13 Chaos engineering (for) people
 As I mentioned before, the line between chaos engineering and other disciplines
is a fine one. In my experience, coloring outside these lines from time to time tends to
make for better craftsmanship. That’s why I encourage you to take a look at some of
these:

 SRE
– The three books from Google (https://landing.google.com/sre/books/):

– Site Reliability Engineering (O’Reilly, 2016) edited by Betsy Beyer, Chris
Jones, Jennifer Petoff, and Niall Richard Murphy

– The Site Reliability Workbook (O’Reilly, 2018) edited by Betsy Beyer, Niall
Richard Murphy, David K. Rensin, Kent Kawahara, and Stephen Thorne

– Building Secure & Reliable Systems (O’Reilly, 2020) by Heather Adkins, Betsy
Beyer, Paul Blankinship, Piotr Lewandowski, Ana Oprea, and Adam Stub-
blefield

 System performance
– Systems Performance: Enterprise and the Cloud (Addison-Wesley, 2020) by Bren-

dan Gregg
– BPF Performance Tools (Addison-Wesley, 2020) by Brendan Gregg

 Linux kernel
– Linux Kernel Development (Addison-Wesley, 2010) by Robert Love
– The Linux Programming Interface: A Linux and UNIX System Programming Hand-

book (No Starch Press, 2010) by Michael Kerrisk
– Linux System Programming: Talking Directly to the Kernel and C Library (O’Reilly,

2013) by Robert Love
 Testing

– The Art of Software Testing (Wiley, 2011) by Glenford J. Myers, Corey San-
dler, and Tom Badgett

 Other topics to observe
– Kubernetes
– Prometheus, Grafana

Two chaos engineering conferences are worth checking out:

 Conf42: Chaos Engineering (www.conf42.com); I’m involved in organizing it.
 Chaos Conf (www.chaosconf.io).

Finally Chaos Engineering: System Resiliency in Practice (O’Reilly, 2020) by Casey Rosen-
thal and Nora Jones is a good complement to this read. Unlike this book, which is
pretty technical, it covers more high-level stuff and offers firsthand experience from
people working at companies in various industries. Give it a read.

 And with that, time to release you into the wild world of chaos engineering. Good
luck and have fun!

https://landing.google.com/sre/books/
http://www.conf42.com
http://www.chaosconf.io

appendix A
Installing chaos
engineering tools

This appendix will help you install the tools you need in order to implement chaos
engineering experiments in this book. All of the tools we discuss here (with the
exception of Kubernetes) are also preinstalled in the VM that ships with this book,
so the easiest way to benefit from the book is to just start the VM.

 If you’d like to use the tools directly on any host, let’s see how to do that now.

A.1 Prerequisites
You’re going to need a Linux machine. All of the tools and examples in this book
have been tested on kernel version 5.4.0. The book uses Ubuntu (https://ubuntu
.com/), a popular Linux distribution, version 20.04 LTS, but none of the tools used
in the book are Ubuntu-specific.

 The book assumes the x86 architecture, and none of the examples have been
tested on other architectures.

 There aren’t specific machine specification requirements per se, although I rec-
ommend using a machine with at least 8 GB of RAM and multiple cores. The most
power-hungry chapters (chapters 10, 11, and 12) use a small virtual machine to run
Kubernetes, and I recommend 4 GB of RAM for that machine.

 You’re also going to need an internet connection to download all the tools we
cover here. With these caveats out of the way, let’s go for it.

359

https://ubuntu.com/
https://ubuntu.com/
https://ubuntu.com/

360 APPENDIX A Installing chaos engineering tools
A.2 Installing the Linux tools
Throughout the book, you will need tools available through the Ubuntu package
management system. To install them, you can run the following command in a termi-
nal window (replace PACKAGE and VERSION with the correct values):

sudo apt-get install PACKAGE=VERSION

For example, to install Git in version 1:2.25.1-1ubuntu3, run the following command:

sudo apt-get install git=1:2.25.1-1ubuntu3

Table A.1 summarizes the package names, the versions I used in testing, and a short
description of where the package is used.

NOTE I’ve added this table for completeness, but in the fast-moving Wild
West of open source packaging, the versions used here will probably be out-
dated by the time these words are printed. Some of these versions might no
longer be available (this is one of the reasons I prebuilt the VM image for
you). When in doubt, try to go for the latest packages.

Table A.1 Packages used in the book

Package name Package version Notes

git 1:2.25.1-1ubuntu3 Used to download the code accompanying this
book.

vim 2:8.1.2269-1ubuntu5 A popular text editor. Yes, you can use Emacs.

curl 7.68.0-1ubuntu2.2 Used in various chapters to make HTTP calls
from the terminal window.

nginx 1.18.0-0ubuntu1 An HTTP server used in chapters 2 and 4.

apache2-utils 2.4.41-4ubuntu3.1 A suite of tools including Apache Bench (ab),
used in multiple chapters to generate load on
an HTTP server.

docker.io 19.03.8-0ubun-
tu1.20.04

Docker is a container runtime for Linux. Chap-
ter 5 covers it.

sysstat 12.2.0-2 A collection of tools for measuring perfor-
mance of a system. Includes commands like
iostat, mpstat, and sar. Covered in
chapter 3, we use them across the book.

python3-pip 20.0.2-5ubuntu1 Pip is a package manager for Python. We use
it to install packages in chapter 11.

stress 1.0.4-6 Stress is a tool to . . . stress test a Linux sys-
tem, by generating load (CPU, RAM, I/O). Cov-
ered in chapter 3 and used in many chapters.

361Installing the Linux tools
On top of that, the book uses a few other tools that aren’t packaged, and need to be
installed by downloading them. Let’s take a look at doing that now.

A.2.1 Pumba

To install Pumba, you need to download it from the internet, make it executable, and
place it somewhere in your PATH. For example, you can run the following command:

curl -Lo ./pumba \
"https://github.com/alexei-led/pumba/releases/download/0.6.8/

pumba_linux_amd64"
chmod +x ./pumba
sudo mv ./pumba /usr/bin/pumba

bpfcc-tools 0.12.0-2 The package for BCC tools (https://github
.com/iovisor/bcc) that provide various
insights into Linux kernel using eBPF. Covered
in chapter 3.

cgroup-lite 1.15 Cgroup utilities. Covered in chapter 5.

cgroup-tools 0.41-10 Cgroup utilities. Covered in chapter 5.

cgroupfs-mount 1.4 Cgroup utilities. Covered in chapter 5.

apache2 2.4.41-4ubuntu3.1 An HTTP server. Used in chapter 4.

php 2:7.4+75 PHP language installer. Used in chapter 4.

wordpress 5.3.2+dfsg1-1ubuntu1 A blogging engine. Used in chapter 4.

manpages 5.05-1 Manual pages for various commands. Used
throughout the book.

manpages-dev 5.05-1 Manual pages for sections 2 (Linux system
calls) and 3 (library calls). Used in chapter 6.

manpages-posix 2013a-2 POSIX flavor of the manual pages. Used in
chapter 6.

manpages-posix-dev 2013a-2 POSIX flavor of the manual pages for sections
2 (Linux system calls) and 3 (library calls).
Used in chapter 6.

libseccomp-dev 2.4.3-1ubun-
tu3.20.04.3

Libraries necessary to compile code using
seccomp. See chapter 6.

openjdk-8-jdk 8u265-b01-0ubun-
tu2~20.04

Java Development Kit (OpenJDK flavor). Used
to run Java code in chapter 7.

postgresql 12+214ubuntu0.1 PostgreSQL is a very popular, open source
SQL database. Used in chapter 9.

Table A.1 Packages used in the book (continued)

Package name Package version Notes

https://github.com/iovisor/bcc
https://github.com/iovisor/bcc

362 APPENDIX A Installing chaos engineering tools
A.2.2 Python 3.7 with DTrace option

In chapter 3, you’ll use a Python binary that’s compiled in a special way. It’s so you we
can get extra insight into its inner workings, thanks to DTrace. To download and com-
pile Python 3.7 from sources, run the following command (note that it might take a
while, depending on your processing power):

install the dependencies
sudo apt-get install -y build-essential
sudo apt-get install -y checkinstall
sudo apt-get install -y libreadline-gplv2-dev¶
sudo apt-get install -y libncursesw5-dev
sudo apt-get install -y libssl-dev
sudo apt-get install -y libsqlite3-dev
sudo apt-get install -y tk-dev
sudo apt-get install -y libgdbm-dev
sudo apt-get install -y libc6-dev
sudo apt-get install -y libbz2-dev
sudo apt-get install -y zlib1g-dev
sudo apt-get install -y openssl
sudo apt-get install -y libffi-dev
sudo apt-get install -y python3-dev
sudo apt-get install -y python3-setuptools
sudo apt-get install -y curl
sudo apt-get install -y wget
sudo apt-get install -y systemtap-sdt-dev
download
cd ~
curl -o Python-3.7.0.tgz \
 https://www.python.org/ftp/python/3.7.0/Python-3.7.0.tgz
tar -xzf Python-3.7.0.tgz
cd Python-3.7.0
./configure --with-dtrace
make
make test
sudo make install
make clean
./python –version
cd ..
rm Python-3.7.0.tgz

A.2.3 Pgweb

The easiest way to install pgweb is to download it from GitHub. At the command-line
prompt, use the following command to get the latest version available:

sudo apt-get install -y unzip
curl -s https://api.github.com/repos/sosedoff/pgweb/releases/latest \
| grep linux_amd64.zip \
| grep download \
| cut -d '"' -f 4 \
| wget -qi - \
&& unzip pgweb_linux_amd64.zip \
&& rm pgweb_linux_amd64.zip \
&& sudo mv pgweb_linux_amd64 /usr/local/bin/pgweb

363Configuring WordPress
A.2.4 Pip dependencies

To install the freegames package used in chapter 3, run the following command:

pip3 install freegames

A.2.5 Example data to look at for pgweb

In chapter 9, you’ll look at PostgreSQL, which you just installed in section A.2. An
empty database is not particularly exciting, so to make it more interesting, let’s fill it in
with some data. You can use the examples that come with pgweb. To clone them and
apply them to your database, run the following command:

git clone https://github.com/sosedoff/pgweb.git /tmp/pgweb
cd /tmp/pgweb
git checkout v0.11.6
sudo -u postgres psql -f ./data/booktown.sql

A.3 Configuring WordPress
In chapter 4, you’ll look at a WordPress blog and how to apply chaos engineering to it.
In section A.2, you installed the right packages, but you still need to configure Apache
and MySQL to work with WordPress. To do that, a few more steps are required.

 First, create an Apache configuration file for WordPress by creating a new file
/etc/apache2/sites-available/wordpress.conf with the following content:

Alias /blog /usr/share/wordpress
<Directory /usr/share/wordpress>
 Options FollowSymLinks
 AllowOverride Limit Options FileInfo
 DirectoryIndex index.php
 Order allow,deny
 Allow from all
</Directory>
<Directory /usr/share/wordpress/wp-content>
 Options FollowSymLinks
 Order allow,deny
 Allow from all
</Directory>

Second, you need to activate the WordPress configuration in Apache, so the new file is
taken into account. Run the following commands:

a2ensite wordpress
service apache2 reload || true

Third, you need to configure WordPress to use MySQL. Create a new file at /etc/
wordpress/config-localhost.php with the following content:

<?php
define('DB_NAME', 'wordpress');¶define('DB_USER', 'wordpress');
define('DB_PASSWORD', 'wordpress');
define('DB_HOST', '127.0.0.1');

364 APPENDIX A Installing chaos engineering tools
define('WP_CONTENT_DIR', '/usr/share/wordpress/wp-content');
define('WP_DEBUG', true);
Finally, you need to create a new database in MySQL for WordPress to use:
cat <<EOF | sudo mysql -u root
CREATE DATABASE wordpress;
CREATE USER 'wordpress'@'localhost' IDENTIFIED BY 'wordpress';
GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP,ALTER
ON wordpress.* TO wordpress@localhost;
FLUSH PRIVILEGES;
quit
EOF

After that, you will be able to browse to localhost/blog and see the WordPress blog
configuration page.

A.4 Checking out the source code for this book
Throughout this book, I refer to the various examples that are available in your VM
and on GitHub. To clone them on your machine, use git. Run the following com-
mand to copy all the code coming with this book to a folder called src in your home
directory:

git clone https://github.com/seeker89/chaos-engineering-book.git ~/src

A.5 Installing Minikube (Kubernetes)
For chapters 10, 11, and 12, you need a Kubernetes cluster. Unlike all the previous
chapters, I recommend against doing that from the VM shipped with this book. This is
for two reasons:

■ Minikube (https://github.com/kubernetes/minikube) is officially supported
by the Kubernetes team, and runs on Windows, Linux, and macOS, so there is
no need to reinvent the wheel.

■ Minikube works by starting a VM with all the Kubernetes components precon-
figured, and we want to avoid running a VM inside of a VM.

Besides, if you haven’t used Minikube before and you’re new to Kubernetes, knowing
how to use it is a valuable skill in its own way. Let’s go ahead and install it.

 Minikube runs on Linux, macOS, and Windows, and the installation is pretty
straightforward. Go through the necessary steps for your operating system that are
detailed next. For troubleshooting instructions, feel free to consult https://minikube
.sigs.k8s.io/docs/.

A.5.1 Linux

First, check that virtualization is supported on your system. To do that, run the follow-
ing command in a terminal window:

grep -E --color 'vmx|svm' /proc/cpuinfo

https://github.com/kubernetes/minikube
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/

365Installing Minikube (Kubernetes)
You should see a non-empty output. If it’s empty, your system won’t be able to run any
VMs, so you won’t be able to use Minikube, unless you’re happy to run the processes
directly on the host (there are some caveats, so read https://minikube.sigs.k8s.io/
docs/drivers/none/ to learn more, if you’d like to take that route).

 The next step is to download and install kubectl:

curl -LO https:/ /storage.googleapis.com/kubernetes-release/release/$(curl -s
https:/ /storage.googleapis.com/kubernetes-release/release/stable.txt)/
bin/linux/amd64/kubectl

chmod +x ./kubectl
sudo mkdir -p /usr/local/bin/
sudo mv ./kubectl /usr/local/bin/kubectl
kubectl version --client

You will see the kubectl version printed to the console. Finally, you can install the
actual Minikube CLI:

curl -Lo minikube https://storage.googleapis.com/minikube/releases/latest/
minikube-linux-amd64

chmod +x minikube
sudo install minikube /usr/local/bin/
minikube version

If you see the Minikube version printed, then voilà, you’re all done here. Otherwise,
for troubleshooting, see the docs at https://github.com/kubernetes/minikube.

A.5.2 macOS

Just as on Linux, check that virtualization is supported on your system. Run the follow-
ing command in a terminal window:

sysctl -a | grep -E --color 'machdep.cpu.features|VMX'

On any modern Mac, you should see VMX in the output to tell you that your system
supports running VMs. The next step is to download and install kubectl. It looks sim-
ilar to Linux. Run the following commands:

curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s
https://storage.googleapis.com/kubernetes-release/release/stable.txt)/
bin/darwin/amd64/kubectl

chmod +x ./kubectl
sudo mv ./kubectl /usr/local/bin/kubectl
kubectl version --client

You will see the kubectl version printed to the console. Finally, you can install the
actual Minikube CLI:

curl -Lo minikube https://storage.googleapis.com/minikube/releases/latest/
minikube-darwin-amd64

chmod +x minikube
sudo install minikube /usr/local/bin/
minikube version

https://minikube.sigs.k8s.io/docs/drivers/none/
https://minikube.sigs.k8s.io/docs/drivers/none/
https://github.com/kubernetes/minikube

366 APPENDIX A Installing chaos engineering tools
You will see the version printed out, and you’re good to go. Finally, let’s cover Windows.

A.5.3 Windows

Once again, first you need to check that your system supports virtualization. On Win-
dows, this can be done by running the following command in a Windows terminal:

systeminfo

Find the section Hyper-V Requirements. It will mention whether the virtualization is
supported. If it isn’t, you won’t be able to run Minikube.

 Second, you need to install kubectl. This is done by downloading the file from the
official link (http://mng.bz/w9P7) and adding the binary to your PATH. To confirm
that it’s working, run the following command:

kubectl version --client

You will see the kubectl version printed to the console. Let’s now install the actual
Minikube. Similar to kubectl, it can be had by downloading it from Google servers
(http://mng.bz/q9dK) and adding it to your PATH. Confirm that it works by running
the following command in a terminal:

minikube version

You will see the version printed out, and you’re ready to rock. Let’s rock.

http://mng.bz/w9P7
http://mng.bz/q9dK

appendix B
Answers to the pop quizzes

This appendix provides answers to the exercises spread throughout the book. Cor-
rect answers are marked in bold.

Chapter 2
Pick the false statement:

1 Linux processes provide a number that indicates the reason for exiting.
2 Number 0 means successful exit.
3 Number 143 corresponds to SIGTERM.
4 There are 32 possible exit codes.

What’s OOM?:

1 A mechanism regulating the amount of RAM any given process is given
2 A mechanism that kills processes when the system runs low on resources
3 A yoga mantra
4 The sound that Linux admins make when they see processes dying

Which step is not a part of the chaos experiment template?

1 Observability
2 Steady state
3 Hypothesis
4 Crying in the corner when an experiment fails

What’s a blast radius?

1 The amount of stuff that can be affected by our actions
2 The amount of stuff that we want to damage during a chaos experiment
367

368 APPENDIX B Answers to the pop quizzes
3 The radius, measured in meters, that’s a minimal safe distance from coffee
being spilled when the person sitting next to you realizes their chaos experi-
ment went wrong and suddenly stands up and flips the table

Chapter 3
What’s USE?

1 A typo in USA
2 A method of debugging a performance issue, based around measuring utiliza-

tion, severity, and exiting
3 A command showing you the usage of resources on a Linux machine
4 A method of debugging a performance issue, based around measuring utiliza-

tion, saturation and errors

Where can you find kernel logs?

1 /var/log/kernel
2 dmesg
3 kernel --logs

Which command does not help you see statistics about disks?

1 df
2 du
3 iostat
4 biotop
5 top

Which command does not help you see statistics about networking?

1 sar
2 tcptop
3 free

Which command does not help you see statistics about CPU?

1 top
2 free
3 mpstat

Chapter 4
What can Traffic Control (tc) not do for you?

1 Introduce all kinds of slowness on network devices
2 Introduce all kinds of failure on network devices
3 Give you permission for landing the aircraft

369Chapter 5
When should you test in production?

1 When you are short on time
2 When you want to get a promotion
3 When you’ve done your homework, tested in other stages, applied common

sense, and see the benefits overweighing the potential problems
4 When it’s failing in the test stages only intermittently, so it might just pass in

production

Pick the true statement:

1 Chaos engineering renders other testing methods useless.
2 Chaos engineering only makes sense only in production.
3 Chaos engineering is about randomly breaking things.
4 Chaos engineering is a methodology to improve your software beyond the exist-

ing testing methodologies.

Chapter 5
What’s an example of OS-level virtualization?

1 Docker container
2 VMware virtual machine

Which statement is true?

1 Containers are more secure than VMs.
2 VMs typically offer better security than containers.
3 Containers are equally secure as VMs.

Which statement is true?

1 Docker invented containers for Linux.
2 Docker built on top of existing Linux technologies to provide an accessible way

of using containers, rendering them much more popular.
3 Docker is the chosen one in The Matrix trilogy.

What does chroot do?

1 Change the root user of the machine
2 Change permissions to access the root filesystem on a machine
3 Change the root of the filesystem from the perspective of a process

What do namespaces do?

1 Limit what a process can see and access for a particular type of resource
2 Limit the resources that a process can consume (CPU, memory, and so forth)
3 Enforce naming conventions to avoid name clashes

370 APPENDIX B Answers to the pop quizzes
What do cgroups do?

1 Give extra control powers to groups of users
2 Limit what a process can see and access for a particular type of resource
3 Limit the resources that a process can consume (CPU, memory, and so forth)

What is Pumba?

1 A really likable character from a movie
2 A handy wrapper around namespaces that facilitates working with Docker

containers
3 A handy wrapper around cgroups that facilitates working with Docker containers
4 A handy wrapper around tc that facilitates working with Docker containers, and

that also lets you kill containers

Chapter 6
What are syscalls?

1 A way for a process to request actions on physical devices, such as writing to disk
or sending data on a network

2 A way for a process to communicate with the kernel of the operating system it
runs on

3 A universal angle of attack for chaos experiments, because virtually every piece
of software relies on syscalls

4 All of the above

What can strace do for you?

1 Show you what syscalls a process is making in real time
2 Show you what syscalls a process is making in real time, without incurring a per-

formance penalty
3 List all places in the source code of the application, where a certain action, like

reading from disk, is performed

What’s BPF?

1 Berkeley Performance Filters: an arcane technology designed to limit the amount
of resources a process can use, to avoid one client using all available resources

2 A part of the Linux kernel that allows you to filter network traffic
3 A part of the Linux kernel that allows you execute special code directly inside

the kernel to gain visibility into various kernel events
4 Options 2, 3, and much more!

Is it worth investing some time into understanding BPF, if you’re interested in system
performance?

1 Yes
2 Definitely

371Chapter 9
3 Absolutely
4 Positively

Chapter 7
What’s javaagent?

1 A secret service agent from Indonesia from a famous movie series
2 A flag used to specify a JAR that contains code to inspect and modify the code

loaded into THE JVM on the fly
3 Archnemesis of the main protagonist in a knockoff version of the movie The

Matrix

Which of the following is not built into the JVM?

1 A mechanism for inspecting classes as they are loaded
2 A mechanism for modifying classes as they are loaded
3 A mechanism for seeing performance metrics
4 A mechanism for generating enterprise-ready names from regular, boring names.

For example: “butter knife” -> “professional, stainless-steel-enforced, dish-
washer-safe, ethically sourced, low-maintenance butter-spreading device”

Chapter 8
When is it a good idea to build chaos engineering into the application?

1 When you can’t get it right on the lower levels, such as infrastructure or syscalls
2 When it’s more convenient, easier, safer, or you have access to only the applica-

tion level
3 When you haven’t been certified as a chaos engineer yet
4 When you downloaded only this chapter instead of getting the full book!

What is not that important when building chaos experiments into the application itself?

1 Making sure the code implementing the experiment is executed only when
switched on

2 Following the best practices of software deployment to roll out your changes
3 Rubbing the ingenuity of your design into everyone else’s faces
4 Making sure you can reliably measure the effects of your changes

Chapter 9
What is XMLHttpRequest?

1 A JavaScript class that generates XML code that can be sent in HTTP requests
2 An acronym standing for Xeno-Morph! Little Help to them please Request, which is

horribly inconsistent with the timeline in the original movie Alien
3 One of the two main ways for JavaScript code to make requests, along with the

Fetch API

372 APPENDIX B Answers to the pop quizzes
To simulate a frontend application loading slowly, which one of the following is the
best option?

1 Expensive, patented software from a large vendor
2 An extensive, two-week-long training session
3 A modern browser, like Firefox or Chrome

Pick the true statement:

1 JavaScript is a widely respected programming language, famous for its consis-
tency, and intuitive design that allows even beginner programmers to avoid
pitfalls.

2 Chaos engineering applies to only the backend code.
3 JavaScript’s ubiquitous nature combined with its lack of safeguards makes it

very easy to inject code to implement chaos experiments on the fly into existing
applications.

Chapter 10
What’s Kubernetes?

1 A solution to all of your problems
2 Software that automatically renders the system running on it immune to failure
3 A container orchestrator that can manage thousands of VMs and will continu-

ously try to converge the current state into the desired state
4 A thing for sailors

What’s a Kubernetes deployment?

1 A description of how to reach software running on your cluster
2 A description of how to deploy some software on your cluster
3 A description of how to build a container

What happens when a pod dies on a Kubernetes cluster?

1 Kubernetes detects it and sends you an alert.
2 Kubernetes detects it, and will restart it as necessary to make sure the expected

number of replicas are running.
3 Nothing.

What’s Toxiproxy?

1 A configurable TCP proxy that can simulate various problems, such as dropped
packets or network slowness

2 A K-pop band singing about the environmental consequences of dumping large
amounts of toxic waste sent to developing countries through the use of proxy
and shell companies

373Chapter 12
Chapter 11
What does PowerfulSeal do?

1 Illustrates—in equal measures—the importance and futility of trying to pick up
good names in software

2 Guesses what kind of chaos you might need by looking at your Kubernetes clusters
3 Allows you to write a YAML file to describe how to run and validate chaos

experiments

When does it make sense to run chaos experiments continuously?

1 When you want to detect when an SLO is not satisfied
2 When an absence of problems doesn’t prove that the system works well
3 When you want to introduce an element of randomness
4 When you want to make sure that there are no regressions in the new version of

the system
5 All of the above

What can PowerfulSeal not do for you?

1 Kill pods to simulate processes crashing
2 Take VMs up and down to simulate hypervisor failure
3 Clone a deployment and inject simulated network latency into the copy
4 Verify that services respond correctly by generating HTTP requests
5 Fill in the discomfort coming from the realization that if there are indeed infinite

universes, there exists, theoretically, a version of you that’s better in every con-
ceivable way, no matter how hard you try

Chapter 12
Where is the cluster data stored?

1 Spread across the various components on the cluster
2 In /var/kubernetes/state.json
3 In etcd
4 In the cloud, uploaded using the latest AI and machine learning algorithms and

leveraging the revolutionary power of blockchain technology

What’s the control plane in Kubernetes jargon?

1 The set of components implementing the logic of Kubernetes converging toward
the desired state

2 A remote-control aircraft, used in Kubernetes commercials
3 A name for Kubelet and Docker

Which component actually starts and stops processes on the host?

1 kube-apiserver

2 etcd

374 APPENDIX B Answers to the pop quizzes
3 kubelet
4 docker

Can you use a different container runtime than Docker?

1 If you’re in the United States, it depends on the state. Some states allow it.
2 No, Docker is required for running Kubernetes.
3 Yes, you can use a number of alternative container runtimes, like CRI-O, con-

tainerd, and others.

Which component did I just make up?

1 kube-apiserver
2 kube-controller-manager
3 kube-scheduler
4 kube-converge-loop
5 kubelet
6 etcd
7 kube-proxyNo index entries found.

appendix C
Director’s cut

(aka the bloopers)

True story: during my final review, one of the reviewers asked what would go into
the book if I did a director’s cut. And boom, next thing I know, I have to uncheck
the Finished checkbox, call off the party, and go back to writing. The people at my
door were disappointed to hear the news, but they must understand—the idea was
just too good to let go!

 In this appendix, you will find a collection of scenes that didn’t make it into the
movie for various reasons. Apparently, this being an appendix means that the pub-
lisher cut me a bit more slack, so this is in the form of a friendly chat, rather than
serious teaching. Either the rules are different, or the PR team didn’t read this far.
Let’s go before they change their minds!

C.1 Cloud
The winner of the Yearly Award for the Most Abused Word for Years 2006 to 2020—
cloud—has been haunting me throughout the process of writing this book. Some
people expressed their surprise to not see a chapter called “Cloud” in the table of
contents.

 I chose not to have a dedicated chapter for various reasons, including but not
limited to the following. (When I was 6.5 years old, I had a short period of time
when I stopped wanting to be an astronaut-archaeologist and wanted to be a lawyer.
It lasted about two weeks, from what I’m told, but maybe my penchant for reasoned
arguments remains.)

■ I already covered a multi-cloud solution for taking VMs up and down in
chapter 11 with PowerfulSeal.
375

376 APPENDIX C Director’s cut (aka the bloopers)
■ Different cloud providers have their own tools and API, and I wanted to focus
on things that are as portable as possible.

■ While it’s true that cloud-based applications are getting more and more popu-
lar, at the end of the day, it’s just someone else’s computer. This book focuses
on technologies that I expect to be relevant for the foreseeable future.

C.2 Chaos engineering tools comparison
I was tempted to create a large table with all the chaos engineering tools I know of.
But when I started to create it, I realized the following:

■ Different open source projects get different levels of support; some flourish,
some slowly degrade; so creating a detailed table like this would produce value
mainly for the archaeologists who might dig it out a few thousand years later.

■ It’s better for you to form your own opinions anyway.

I still covered a few tools (Pumba, PowerfulSeal, Chaos Toolkit) that I’m fairly confi-
dent will stay relevant for a while. For an up-to-date list, I recommend this site: http://
mng.bz/7V1x.

C.3 Windows
One of the (valid) criticisms of this book is that it’s entirely Linux-based. And
although you can apply a large portion of it to other *nix operating systems, there is a
gaping hole in the shape of Windows.

 I don’t cover Windows mainly because I would be out of my depth. I spent the vast
majority of my professional life with Linux, and I don’t know the Windows ecosystem
well enough to write about it.

 The mindset and the methodology are universal, and will work regardless of which
operating system you use. The tooling, on the other hand, will differ.

 Besides, with Windows Subsystem for Linux (https://docs.microsoft.com/en-us/
windows/wsl/about), Microsoft publicly acknowledged defeat, so perhaps you’re cov-
ered anyway.

 If you’re reading this (whether you work in Redmond or not), and would like to
add a Windows section to the second edition, give me a shout!

C.4 Runtimes
We looked briefly at DTrace with Python, but various languages, runtimes, and frame-
works often offer metrics out of the box that can be useful from the perspective of
observability. This subject could be a book in itself, so I didn’t even try to include it in
these pages.

https://shortener.manning.com/7V1x
https://shortener.manning.com/7V1x
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about

377You should have included <tool X>!
C.5 Node.js
For some reason beyond my cognitive abilities, a sizable crowd of people kept sug-
gesting that I add a chapter similar to chapter 8 (application-level chaos engineer-
ing), but in Node.js. This goes back to the previous point, but it was a surprisingly
persistent question.

 So far, I’ve managed to successfully parry that using a combination of these two
arguments:

■ If you understand my points from chapter 8 in Python, you can replicate that in
JavaScript.

■ I already cover JavaScript, albeit of the browser variety, in chapter 9.

I’m hoping that works for you too.

C.6 Architecture problems
Various people I spoke to while writing the book mentioned architecture problems as
an exciting topic to include in the book. Although I see the value in looking at case
studies like that, this book attacks chaos testing from a slightly different angle.

 If I tried to include all the relevant practices on how to design reliable systems, I
would probably die of old age before I finished. Instead, this book attempts to give
you the mindset, with all the tools and techniques you need to verify that systems
behave the way you expect them to and detect when they don’t. It leaves the actual fix-
ing part to the users. There are shelves and shelves of books on designing good soft-
ware. This one is about checking how well you’ve done.

C.7 The four steps to a chaos experiment
One of the thoughtful reviewers asked a question that’s been on the back of my
mind every time I wrote the word four in this book: “Why isn’t there a fifth step
called analysis?”

 It’s a good question. An experiment is useless if you don’t analyze your findings at
the end. Ultimately, I decided against adding the fifth step, primarily for the promo-
tional reasons: fewer steps sound easier and are admittedly catchier. The analysis part
is implied.

 In a way, I feel like I sacrificed some of the “correctness” on the altar of “easier
sells.” But then again, if this book doesn’t sell well, no one will care anyway. Now I have
to live with that decision.

C.8 You should have included <tool X>!
We all have our favorites, and in this book I had to make decisions on which tools to
cover, decisions that are by definition going to surprise some people. In particular,
some folks expected to see commercial offerings on these pages.

 The main motivation for the selections I made aligns with point C.2: this entire
chaos engineering ecosystem is young, and I expect it to move a lot in the coming

378 APPENDIX C Director’s cut (aka the bloopers)
years. The basics will likely stay the same, but the specifics might look very different in
just a short while. I would like this book to stay relevant for a few years.

C.9 Real-world failure examples!
Another thing that didn’t make the cut was my attempt to gather some real-life fail-
ures detected using chaos engineering. Although people are pretty excited to talk
about their experiences with chaos engineering, it’s a completely different story when
it’s about going on record and telling others why your system was badly designed
before you fixed it.

 A fair amount of stigma surrounds this topic, and I expect this is unlikely to go
away anytime soon. The reason is simple: we all know that software is hard, but we all
want to appear to be good at writing it.

 The unfortunate side effect is that I failed to gather stories for a chapter on spe-
cific failures that went unnoticed and eventually were uncovered by chaos engineer-
ing. Well, I guess that’s what the live events are for!

C.10 “Chaos engineering” is a terrible name!
There, I said it. The chaos part makes it interesting but goes a long way toward generat-
ing initial friction for adoption. It’s a little too late to say, “OK everyone, we’re renam-
ing it; just cross out the chaos part!” But with a bit of luck, people will eventually stop
worrying about the name and focus on what it does.

 You probably heard that there are only three hard things in computer science:
naming things and off-by-one errors. I named one project PowerfulSeal and another
Goldpinger, so don’t look at me for better ideas!

C.11 Wrap!
It was nice to let some steam off, but now I’m feeling a little bit peckish (that’s British
for ”as I can’t be sure whether I’m actually famished or just bored, I shall err on the
side of caution and devour something imminently”). Check out appendix D if you’re
just a little bit peckish yourself!

appendix D
Chaos-engineering recipes

Writing books makes you hungry. Well, at the very least, it makes me hungry. If my
manuscript was in a paper form, it would smell of all of the following things.

D.1 SRE (’ShRoomEee) burger
I like the taste of burgers, but I don’t like what the meat industry is doing to the
planet and to the meat. Also, making common mushrooms edible appears to be
easier than cooking meat (Figure D.1). And it’s cheaper. For these three reasons,

Legal disclaimer 1
I’m not a doctor, dietician or even a cook. What you find below is a result of letting
a software engineer loose in the kitchen. Oh, and THE RECIPES ARE PROVIDED
“AS IS,” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES, OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

Legal disclaimer 2
Previous returns are no guarantee of future performance. In other words, the fact
that I lived through eating these things doesn’t guarantee that you will. Use at your
own risk, preferably under adult supervision. As a rule of thumb, don’t do anything
your mum would disapprove of.
379

380 APPENDIX D Chaos-engineering recipes
I’ve been experimenting with multiple veggie burger recipes, and debugging burger
recipes turns out to be generally easier than debugging software.

D.1.1 Ingredients

Patties:

■ Makes three to four medium-sized patties, depending on how hungry you are.
■ 8 ounces (250 g) of mushrooms (any edible variety, preferably sliced already)
■ One large onion
■ Two large cloves of garlic
■ Your favorite seasoning
■ Smoked tofu—2 to 4 ounces (50 to 100 g), as a function of how much you like it
■ Wheat flour
■ Some oil for frying (coconut is good, because it has a higher burning temperature)

Miscellaneous:

■ Bread to put the patties in-between—you can make your own or buy ready-made
■ One large avocado—adds creaminess
■ Sauce—BBQ, ketchup, mayo, whatever you like
■ Any customary additives your culture expects you to throw in, like lettuce, an

extra slice of onion, cheese—whatever floats your boat

Figure D.1 The real reason I didn’t become a food photographer

381SRE (’ShRoomEee) burger
D.1.2 Hidden dependencies

■ Frying equipment—a stove and a pan
■ A spatula to turn things over in the pan

Listen in. If you try hard, you can hear all the seasoned (pun intended!) software engi-
neers sighing in concert at how vague this list of ingredients is. The very senior ones
will be positively surprised that there is at least one quantifiable amount (8 ounces) in
the list, but don’t worry: they too will be disappointed when they see that during cook-
ing, mushrooms give away a variable amount of water, depending on the type of mush-
room used. Yep, it’s freestyle!

D.1.3 Making the patty

1 Clean, cut (unless already sliced), and fry the mushrooms until they’re edible.
– Most varieties will release water, which you can discard; you want the mush-

rooms to be reasonably dry.
– (Parallelism) While the mushrooms are frying, slice the garlic and the onion,

and chop the tofu to your liking.
2 Once the mushrooms are deemed edible, take them out of the frying pan and

repeat the process with the onion and garlic.
3 Once the onion looks nothing like it did when you cut it, and is nice and soft,

add the mushrooms back in with all of your favorite seasonings (no one will
judge you).

4 Take the mixture out of the pan and put it in a bowl.
5 Throw in tofu, chopped into small pieces. The smokiness of it should trigger

the parts of your brain that recognize burger meat.
6 Mix it as much as you like. You can make the texture pretty uniform, or leave

out larger chunks. Both have their merits.
7 Finally, glue the ingredients together. This is done by leveraging gluten in the

flour. Repeat the following steps:
– Add 2 to 3 teaspoons (10 g) of flour and mix it in well, so that the moisture

from the mixture reaches the flour. The more flour you add, the less moist
the patty will be.

– Try to form a small ball. If it sticks together, break the loop. If it’s too runny
and/or sticky, keep going.

8 Form the mixture into three or four balls.
9 Warm up the frying pan with a little oil.

10 Squash the balls in the frying pan to form patties. Fry until piping hot inside.
The thicker they are, the longer they will take to cook.
– Alternatively, you can fry them a little to give them shape and then bake

them in the oven for the rest of the process.
– Once the flour mixed with water from the mixture was heated to a high tempera-

ture, the gluten in it should have bound and the patty should hold its shape.

382 APPENDIX D Chaos-engineering recipes
11 Switch off any appliances with the potential of burning down your house.
12 Take a photo and post it on LinkedIn or Twitter. Make sure to tag me!

D.1.4 Assembling the finished product

Once the patties are done, wrap them in two slices of bread and add whatever top-
pings you like. After you’ve done it once, you will feel the urge to experiment further.
Give into that urge. Try adding chickpeas, pickled onions, or dying the patty with a
small amount of beetroot, to make it look meatier. I recommend A/B testing, and
scoring the different attempts for observability reasons.

D.2 Chaos pizza
I used to think that making pizza was difficult, until I discovered the real secret: it all
relies on baking the pizza directly on a hot surface. The heat transfer through direct
contact is what leads to this crispy base that I associate with a successful attempt (fig-
ure D.2). You can buy a dedicated pizza stone, but preheating a thick metal tray can
also do the trick.

 Pizza is happiness. With about half an hour of your time, you can turn a rainy day
into a holiday. And it can be as healthy or unhealthy as you want it to be.

Figure D.2 Another reason I really should have gotten a professional photographer to take
pictures of these foods

383Chaos pizza
D.2.1 Ingredients

Pizza base:

■ Active dry yeast (about 1 ½ teaspoons, or 7 g per pizza)
■ 2 cups (250 g) flour (for two medium-sized, thin-crust bases)
■ 1 tablespoon of olive oil
■ Salt, oregano, any other flavoring you like
■ Water
■ ¼ teaspoon of sugar

Toppings that go into the oven:

■ Sauce—tomato, BBQ, pesto, ajvar, your grandma’s famous sauce, whatever you
like

■ Melt-friendly cheese, like mozzarella or a mozzarella-style vegan alternative
■ Absolutely anything else you want:

– Onions
– Mushrooms (best precooked)
– Olives
– Tofu
– Meat or fish (precooked)
– Leftovers from the fridge that magically turn into a tasty experience

Toppings that don’t go into the oven (you add them after baking):

■ Leafy vegetables, like arugula or spinach
■ Dried meats, like prosciutto—if you’re into that kind of stuff

D.2.2 Preparation

1 Prepare the yeast.
– Take a half glass of warm (not boiling) water.
– Add sugar.
– Add dry yeast.
– Mix it until it becomes muddy.

2 Make the dough.
– Put the flour in a bowl.
– Slowly pour in the yeast mixture while mixing with a spoon.
– Add salt, oregano, olive oil.
– Get the consistency right:

– You need to be able to knead the dough with your hands.
– If it’s too runny or sticky, add extra flour.
– If it’s too hard, or there are visible bits of flour in it, add more water.

– Once the mixture is kneadable, knead the dough for a couple of minutes
until you feel like ordering a DNA test to track down your Italian ancestry.

384 APPENDIX D Chaos-engineering recipes
– Leave the dough in a bowl to rise for about 20 minutes. (The rising process
happens because you’ve just fed the dehydrated yeast some sugar and water,
and let it rest; the poor thing will start growing, creating bubbles of air in
your dough; and then you’re going to bake and eat it. It really is a cruel
world.)

3 Preheat the oven to about 400˚F (200˚C, or 180˚C fan), including a pizza stone,
or a thick tray equivalent.

4 Take out a sheet of parchment or wax paper, and spread a small amount of
flour on it to prevent sticking (alternatively, you can use more olive oil).

5 Take half of the dough from the bowl and spread it on the paper.
– You can use your hands or a rolling pin.
– Or attempt the rotate-the-dough-in-the-air-until-it’s-flat thing. (You have a

redundant copy in the pipe; no one will know.)
– Spread the sauce.
– Add all the bake-able toppings.

6 Bake for about 10 to 12 minutes.
– It’s ready when the dough is baked (but not carbonized) and the cheese is

melted.
7 Take it out; decorate with non-bake-able toppings.
8 Take a photo and post it on LinkedIn or Twitter. Make sure to tag me!

That’s it. Now you know how to vote for the best food recipe in a tech book. If there
ever was a tasteful ending to a programming book, hopefully this is one.

index
Symbols

[interval] [count] 55
[tcpActiveOpens] 58
[tcpAttemptFails] 58
[tcpEstabResets] 58
[tcpInErrs] 58
[tcpInSegs] 58
[tcpOutRsts] 58
[tcpOutSegs] 58
[tcpPassiveOpens] 58
[tcpRetransSegs] 58
/api/does-not-exist endpoint

259
/api/v1/ endpoint 32–33
/healthz endpoint 315
./legacy_server command 172
./org/my subfolder

structure 208
/search page 236
%CPU field 61
%ifutil field 56
~/src/examples/app

command 234

A

ab command 91, 95, 97, 161–164,
189, 191, 194, 236–237, 239

accept syscall 182, 184
access syscall 179
active/s field 58
addTransformer method 213,

220
affinity 321
Agent class 212, 214

agentmain method 227
ALL keyword 156
alpine image 114
Alpine Linux 114
anti-affinity 321, 332
Apache Bench 31
Apache2 85
apache2 package 361
apache2-utils package 360
app=goldpinger label 278, 291,

296
AppKiller assault 226
application layer 75–79

BCC suite and Python 77–79
cProfile module 76–77

application-level fault
injection 228–245

application vs.
infrastructure 243–244

experiments
failing requests 241–243
Redis latency 235–240

scenario 229–235
.apply(this, arguments)

method 254
@app.route(231
assaults 226
atexit(3) function 177
attach_chaos_if_enabled

function 238–239
automated monitoring

systems 79–83
Grafana 80–83
Prometheus 80–83

autonomous mode 304
availability 326

available column 60
available field 61

B

bandwidth toxic 294
bash program 134
bc command 68–70, 74
BCC (BPF Compiler Collection)

BPF and 185–187
Python and 77–79

benchmarking 5
biotop tool 53–54
biotop-bpfcc command 54
black boxes 22
blast radius 19, 36, 349
block I/O (block input/output)

devices 50–54
biotop tool 53–54
df tool 51–52
iostat tool 52–53

BPF (Berkeley Packet Filter) 53,
185–187

-bpfcc 53, 185
bpfcc-tool package 54
br-b1ac9b3f5294 interface 152
bridge mode 150
bridge option 150
brk syscall 179
buffers 60
bytecode 207–215

-javaagent 211–215
reading 208–210

Byteman 223–225
installing 223
using 223–225
385

INDEX386
Byte-Monkey 225–226
installing 225
using 225–226

C

CACHE_CLIENT variable
237–239, 241

capabilities 155–157
- -cap-add flag 156
- -cap-drop ALL flag 156
- -cap-drop flag 156
CAP_KILL 155
cap_sys_chroot 155
CAP_SYS_TIME 155
cat /proc/loadavg command 49
.catch handler 259
catch method 259
cereal_killer.sh script 35–36, 38
cgcreate 71, 136
cgexec 71, 136
cgroup.procs 139
cgroups tool

implementing simple contain-
ers with 146–149

killing processes in
namespace 135–140

chaos engineering 1–15, 345,
350–358

buy-in 349–351
game days 350–351
management 349–350
team members 350

defined
what it is 2–3
what it isn’t 11–12

FaaS example 13–15
all-night investigation into

problem 13–14
four steps 15
overview of 13
postmortem 14–15

four steps of 6–11, 377
experiment 11
hypothesis 10–11
observability 9
steady state 10

mindset for 346–348
failing early vs. failing

late 347–348
failure will happen 347

motivations for 3–6
estimating risk and cost 3–5
finding emergent

properties 5–6

setting SLIs, SLOs, and
SLAs 3–5

testing system as a whole 5
problems with term 378
teams as distributed

systems 351–357
bottlenecks 355–356
misinformation and

trust 354–355
single points of

failure 353–354
testing processes 356–357

tool installation 359–366
Linux tools 360–363
Minikube 364–366
prerequisites for 359
source code 364
WordPress 363–364

tools comparison 376
CHAOS environment

variable 238, 242
Chaos Monkey for Spring

Boot 226–227
chaos network 152
chaos pizza 382–384

ingredients 383
preparation 383–384

chaos proxy 299–300
ChaosClient class 238
CHAOS_DELAY_SECONDS

variable 238
chaos-engineering recipes

379–384
chaos pizza 382–384
SRE burger 379–382

ChaosMachine 227
chroot tool

implementing simple
container 117–119

uprooting processes 114–117
classfileBuffer 212
ClassFileTransformer

interface 212
ClassInjector class 218–220
className 212
ClassNode class 218
ClassPrinter class 212–213
ClassReader instance 217
CLIENT_PORT_OVERRIDE

environment variable 295
clock_nanosleep syscall 180–181
close syscall 189–193

analysis 192–193
implementation 191–192
steady state 191

CLOSED state 58
CLOSE-WAIT state 58
cloud 375
cloud layer 318–323

availability zones 319–321
cloud provider APIs 319–321
taking VMs down 321–323

ClusterRole 276
clusters 324–342

control plane 325–332
etcd 326–329
kube-apiserver 329–330
kube-controller-manager

330–331
kube-scheduler 332

Docker, and container
runtimes 335–338

networking 338–342
ingress networking 342
pod-to-pod

networking 339–340
service networking

340–342
pause container 333–335
setting up using

Minikube 272
starting 272–274

Cmd 165
CNCF (Cloud Native Computing

Foundation) 269
CNI (Container Networking

Interface) 339
coll/s field 57
command column 125
consensus 326
container image format 112
Container Runtime Interface

(CRI) 336
container runtimes 112, 335,

343
ContainerCreating 286
containerd 336
CONTAINER_PID 154
containers

Docker and 110–112, 335–338
implementing with

cgroups 146–149
implementing with chroot

tool 117–119
implementing with

namespaces 133–135
network slowness for 161–165

experiment implemen-
tation 162–165

Pumba 161–162

INDEX 387
containers (continued)
one container preventing

another from writing to
disk 119–124

pause container 333–335
virtual machines and

107–110
containers, defined 104
Content-type header 236
control container 119, 123–124
Control group (cname) 125
control groups 71, 135
control plane 271
cProfile module 76–77
CPU (central processing

unit) 66–72
mpstat P ALL 1 tool 69–70
stress command 141–143
top tool 67–69

cpu controller 136
- -cpu flag 143
cpu type 147
cpu,cpuacct 136, 149
cpu.cfs_period_us 137, 143
cpu.cfs_period_us,

cpu.cfs_quota_us 137
cpu.cfs_quota_us 137, 143
- -cpus flag 141
cpu.shares 137, 143
CRI (Container Runtime

Interface) 336
CRI-O 336
cumtime 76
curl command 33, 97
curl package 360

D

daemon restarts 166
DaemonSet 279
databases 84–100

testing in production
98–100

WordPress weak link
example 86–98

overview of 85–86
slow connection

experiment 92–98
slow disks experiment

87–92
deployment type 330
DEV keyword 55
df -h command 123
df tool 51–52, 60
dispatchEvent method 257

dmesg tool 27, 49–50
DNS (Domain Name System)

server 5
Docker 103–168

advanced networking 167
blocking syscalls with

seccomp 196–197
chroot tool

implementing simple
container 117–119

uprooting processes
114–117

container runtimes 335–338
containers 110–112
daemon restarts 166
experiments

CPU usage 141–143
killing processes in differ-

ent PID
namespace 129–140

network slowness for con-
tainers with Pumba
161–165

one container preventing
another from writing to
disk 119–124

RAM overuse 143–149
history of 106–110

emulation, simulation,
and virtualization
106–107

virtual machines and
containers 107–110

namespaces 127–129
isolating processes

with 124–127
networking 150–157

capabilities 155–157
seccomp 157

security 167–168
slow app problem 104–105
solving problem 158–161
storage for image layers

166–167
docker command-line

client 112
Docker Hub 112
docker images command 141
docker inspect command 116
docker inspect firstcontainer

command 116
docker network

subcommand 150
docker ps command 128
Docker Registry 112

docker run 156
docker stack deploy 158
docker stack ls command 160
docker utility 112
docker0 bridge interface 150
dockerd 112
docker.io package 360
Domain Name System (DNS)

server 5
down toxic 294
downtime 4
- -driver flag 273
dtrace tool 75

E

-e inject flag 190
-e inject option 190–191
e2e (end-to-end) tests 5, 241
EACCES error 190
eBPF (extended Berkeley Packet

Filter) 53, 185
ECHO_REQUEST datagram 94
ECHO_RESPONSE 94
EDEV keyword 56
EINVAL (Invalid

argument) 183
emergent properties 5–6
emulation 106–107
Endpoints field 281
end-to-end (e2e) tests 5, 241
Entrypoint 165
error event 257
ERRORS section 192
ESTABLISHED state 58
estres/s field 58
etcd 326–329
ETCP keyword 57
eth0 interface 55–56
events 256
example service 342
Example1 class 209
Example1.java program 208
exception assault 226
exec variants 74, 172
execsnoop tool 74
execve 179
exit codes 23
_exit(2) syscall 177
exit(3) glibc syscall 177
exit_group 181
export CONTAINER_ID 138,

145
extended Berkeley Packet Filter

(eBPF) 53, 185

INDEX388
F

f flag 24
FaaS (FizzBuzz as a Service)

example 13–15, 19–42
all-night investigation into

problem 13–14
blast radiuses 36–37
four steps 15, 29–36

experiment 15, 34–36
hypothesis 15, 34
observability 15, 33–34
steady state 15, 34

Linux forensics 22–28
exit codes 23
killing processes 24–25
Out-of-Memory Killer 26–28

overview of 13
postmortem 14–15
scenario 21–22
solution 38–41
source code 20–21

faas001_a 32
faas001_b 32, 41
Failed requests 34
failed state 313–314
failing early 348–350
failing late 348
failing requests

experiment 241–243
execution 243
implementation 242–243
plan 241–242

fail_timeout parameter 33
failure container 121–124
fallocate script 120
fault injection

application-level 228–245
application vs.

infrastructure 243–244
failing requests

experiment 241–243
Redis latency

experiment 235–240
scenario 229–235

JavaScript 256–259
JVM 201–227

existing tools 222–227
experiment 204–222
scenario 202–204

fault mode 225
fault option 189
fault tolerance 326
FBEE (FizzBuzzEnterprise-

Edition) 202

Fetch API 259–260
fetch method 259
file utility 127
filesystem bundle 337
filesystems feature 111
Firecracker 109, 337
FizzBuzzEnterpriseEdition

example 202–204
experiment idea 204–206
experiment

implementation 215–222
experiment plan 206–207
JVM bytecode 207–215

FizzBuzzEnterpriseEdition/lib
subfolder 203

FizzBuzzEnterpriseEdition.jar
file 203

flanneld daemon 339
flask.request.cookies.get

method 231
free tool 60
freegames package 363
fstat 179
fsync 190
Ftrace 188
full virtualization 107
full-stack Python

development 351
fuzzing 6

G

game days 350
generate_legacy.py script 171
get command 274
get method 237–238
get_insterests function 243
get_interests function 237,

241–242
getpcaps command 155–156
getpid syscall 196–199
getstatic instruction 210
ghost container 160
git package 360, 364
glibc 176
GNU C Library 176
Goldpinger 268

creating YAML files 278–280
deploying 280–284

goldpinger-chaos 300
goldpinger-clusterrole

ClusterRole 277
goldpinger-rbac.yml file 280
goldpinger-serviceaccount

ServiceAccount 277

goldpinger.yml file 280
Grafana 80–83
GraphDriver section 116
.GraphDriver.Data.MergedDir

path 116
Greasemonkey 261
grep 36
groups 136
gVisor 109, 337

H

-h argument 60
-h flag 189, 299
hardware interrupts (hi) 67
hardware virtualization 107
hardware-assisted

virtualization 109
- -hdd n option 89
- -hdd option 89
head -n1 285
Hello chaos message 214, 260
- -help command 274
hi (hardware interrupts) 67
host option 150
hostname -I command 153
- -human option 50
Hyper-V Requirements 366
hypervisors 108
hypothesis

FaaS example 15, 34
forming 10–11

I

-i flag 116
ICANT project 267
ICMP (Internet Control Message

Protocol) 94
id (idle time) 67
if statement 240
image layer storage 166–167
Image Specification 337
imagePullPolicy: Always 318
Inception-style reality 110, 156
index function 230–231
info endpoint 249
ingress networking 342
ingress type 342
input/output (block I/O)

devices 50
instrumentation package 211,

213
integration tests 5, 241
internal.jdk package 220

INDEX 389
Internet Control Message Proto-
col (ICMP) 94

invokestatic instruction 216, 218
invokestatic JVM

instruction 216
invokevirtual instruction 210
IOException 205–206, 215
iostat tool 52–53, 89
ip addr command 151
ip command 152
ipc (Interprocess

Communication) 125
iseg/s field 58
isegerr/s field 58

J

java command 209
Java Management Extensions

(JMX) 226
-javaagent argument 214, 223,

225
javaagent argument 219–220,

223
-javaagent package 211–215
-javaagent parameter 224
javac command-line tool 209
javacalls 204
java.io.IOException 224
java.io.PrintStream 210
java.lang.instrument

interface 201, 207
java.lang.instrument

package 211–212, 222,
227

java.lang.System class 210
javap -c org.my.Example1

command 209
javap tool 209
JMX (Java Management

Extensions) 226
jQuery 250
JS (JavaScript) 246–262

experiments
adding failure 256–259
adding latency 251–256

Fetch API 259–260
Greasemonkey and

Tampermonkey 261
pgweb 247–248

implementation
details 249–250

scenario 247–250
throttling 260–261

- -json flag 126

JVM (Java Virtual Machine)
201–227

existing tools 222–227
Byteman 223–225
Byte-Monkey 225–226
Chaos Monkey for Spring

Boot 226–227
experiment 204–222

bytecode 207–215
finding right exception to

throw 205–206
idea 204–206
implementation 215–222
injecting code 216–220
plan 206–207

scenario 202–204

K

Kata Containers 109, 337
kernel space 173
kill command 22, 24–25, 28, 36,

172, 284
KILL signal 25
killer_while.sh script 38, 41
killing processes 24–25

in different PID
namespace 129–140

cgroups tool 135–140
implementing simple con-

tainers with
namespaces 133–135

Out-of-Memory Killer 26–28
known unknowns 45
kube-apiserver 329–330, 333,

339
kube-apiserver component 325,

330, 343
kube-apiserver, kube-controller-

manager 330
kube-cloud-manager

component 325
kube-controller-manager

330–331
kube-controller-manager

component 325, 330, 332,
343

kubectl 284–285, 314, 365
kubectl - -help command 274
kubectl apply command 314,

325, 332
kubectl apply -f goldpinger-

chaos.yml command 298
kubectl apply -f goldpinger-

rbac.yml command 280, 285

kubectl command 271, 283,
306–308, 317

kubectl config file 305, 307
kubectl configuration file 289
kubectl cp 290
kubectl delet 314
kubectl exec 290
kubectl get - -help 274
kubectl get command 285
kubectl get pods - -watch

command 285–286, 313
kubectl get pods -A

command 273
kubectl get pods command 282,

285, 307
KubeInvaders 289
kube-proxy component 341,

343
Kubernetes 265–302, 324–344

anatomy of cluster 324–342
control plane 325–332
Docker, and container

runtimes 335–338
networking 338–342
pause container 333–335

automating experiments
303–323

cloud layer 318–323
ongoing testing and

service-level objectives
311–318

PowerfulSeal 303–311
history of 269–270
key components 343
overview of 268–272
porting onto 266–268

Goldpinger 268
project documentation

267
setting up cluster 272–274

starting cluster 272–274
using Minikube 272

terminology 274–275
testing software running

on 274–302
killing pods

experiment 284–290
network slowness

experiment 290–302
running project 274–284

Kubernetes cluster 270
kube-scheduler component

325, 331–332, 343
kube-thanos.sh script 285–286
kworker 54

INDEX390
L

labels 278
latency 93–95

JavaScript 251–256
Redis 235–240

latency assault 226
latency toxic 294
latency type 309
layers 115
ldc instruction 210
ldd command 118
legacy image 197
legacy_server binary 171, 191
libseccomp 198–199
libseccomp-dev package 198
libseccomp-devel package 198
lightweight isolation 107
Linux 22–28, 272

exit codes 23
killing processes 24–25
Out-of-Memory Killer 26–28

Linux containers 110
LISTEN state 58
lo network interface 55
load averages 49
LowerDir 116
lsns command 125, 127, 129,

153
-lwxrq pod 286

M

main method 208–209,
213–216

man 2 read command 176
man 2 syscall-name 181
man 2 syscalls command 175
man 3 read 177
man 8 ld.so 179
man cgroups 140, 158
man command 175
man man command 174
man namespaces 158
man proc 49
man ps command 132
man sar 56
man strace(1) 183
man tc 93
man top 61
man unshare 133
manpages package 361
manpages-posix package 361
manpages-posix-dev

package 361

max_fails 33
mean time between failure

(MTBF) 347
mean time to failure

(MTTF) 319
memory assault 226
memory cgroup 149
memory controller 136
- -memory flag 143
memory utilization 332
memory.limit_in_bytes value

139–140
memory.usage_in_bytes value

139–140
meower 160
MergedDir 116
Minikube

installing 364–366
Linux 364–365
macOS 365–366
Windows 366

setting up clusters 272
minikube service

command 282, 299
minikube service goldpinger

command 282, 297, 310
minikube start - -driver 273
minikube start command 273
minikube stop 273
mmap syscall 179–180
Mounts (mnt) 125
mprotect syscall 180
mpstat 66, 70
mpstat P ALL 1 tool 69–70
mpstat -u -P ALL 2

command 142
MTBF (mean time between

failure) 347
MTTF (mean time to

failure) 319
munmap 180
musl libc 177
my_container container 162
mynamespace namespace 322,

342
MySQL 85
mystery001 program 26–27, 65
mystery002 command 68, 70,

74
mystery002 script 71

N

-n1 flag 26
Name member 116

namespaces
Docker and 127–129
isolating processes with

124–127
killing processes in 129–140

cgroups tool 135–140
implementing simple con-

tainers with namespaces
133–135

nanosleep syscalls 179
ncalls 76
net (Network) 125
net namespaces 153–154
netem subcommand 162
- -network host container 150
- -network none 150
networking

Docker 150–157
advanced networking 167
capabilities 155–157
seccomp 157

Kubernetes 338–342
ingress networking 342
pod-to-pod networking

339–340
service networking 340–342

network interfaces 54–59
sar tool 55–58
tcptop tool 58–59

network slowness and
PowerfulSeal 308–311

network slowness for
containers 161–165

experiment implemen-
tation 162–165

Pumba 161–162
slowness 290–302

Networking feature 111
new Event(‘timeout’) 257
new-filesystem.sh script 134
NEW_FS_FOLDER 156
NFS (Network File System) 193
nginx package 35, 360
ni (nice time) 67
niceness 27, 70
nodeAction 322
node_cpu_seconds_total CPU

metric 81
Node.js 377
none option 150
NotReady 334
NPROCS 125
nr_throttled 143
NS column 126
nsenter command 131, 154

INDEX 391
NULL argument 179
null driver 150
number of nines 4

O

-o flag 132
-o name flag 285
observability 9, 15

ensuring 9
FaaS example 15, 33–34
slow app problem 43–83

application layer 75–79
automated monitoring

systems 79–83
overview of 44–45
resources 47–75
solving problem 70–72
USE method 45–47

syscalls 178–188
BPF 185–187
Ftrace 188
strace tool 178–184
SystemTap 188

OCI image 337
OOM (Out-of-Memory)

Killer 25–28
oom_dump_tasks 29
oomkill tool 65–66
- -oom-kill-disable flag 146
oom_reaper 27
oom_score_adj column 27
open syscall 172, 179
openat 179
openjdk-8-jdk package 361
opensnoop tool 73–74
operand stack 210
org/my/Example1 class 214
org.agent package 217
org.agent2 package 217
org.agent2.Agent 220
org.agent2.ClassInjector

class 217
org.agent.Agent 214
org.my.Example1 class 209
orsts/s field 58
OS (operating system) 73–75

execsnoop tool 74
opensnoop tool 73–74

oseg/s field 58
OS-level virtualization 107
out static field 210
output method 206, 221, 224
overlay2 116
OXIPROXY_URL 299

P

-p flag 187
PACKAGE 360
passive/s field 58
PATH 294, 361, 366
pause container 333–335, 339
pending state 282, 286,

313–314
perf tool 75
pgweb 247–248, 363

implementation details
249–250

installing 362
pgweb - -user 247
php package 361
PID (process ID) 36, 125
- -pid flag 134
pid namespace 127, 129
ping command 94
Pip dependencies 363
platform virtualization 107
podAction 307, 322
pods 274

killing
killing half experiment

284–288, 306–308
tools for 289–290

pod-to-pod networking
339–340

verifying pods are ready
313–318

pod-to-pod networking
339–340

policy file 304
PORT environment variable

279, 295
portability 173
postgresql package 361
PowerfulSeal 303–311

defined 304–305
installing 306
killing pods experiment

306–308
network slowness experiment

308–311
powerfulseal - -help command

306
powerfulseal autonomous

- -policy-file experiment1b
.yml command 307

powerfulseal autonomous
- -policy-file experiment2b
.yml command 310

powerfulseal command 306

powerfulseal pip package 306
powerfulseal/powerfulseal

image 306
pquota option 124
premain class 220
premain method 212–214,

219–220
Premain-Class attribute 212–214,

219
preparing dependencies 314
println call 208
.println method 210
prio qdisc 96
- -privileged flag 167
probeHTTP 314, 316
process ID (PID) 36, 125
production, testing in 98–99
profile module 76
profile.json 196
Prometheus 80–83
Promise object 259
prom.yml configuration file 80
PROT_NONE flag 180
protocol 112
PROT_READ flag 180
ps command 34, 132, 148
ptrace default leverage 337
ptrace syscall 184
Pumba 161–162, 361
pumba help 161
pumba netem command 162
Python

BCC suite and 77–79
installing 362

python3-pip package 360
pythonflow 75, 77–78
pythonstat 75, 77–78

Q

QA (quality assurance)
environment 37

qdisc 93
queueing discipline 93

R

raise_rediserror_every_other_
time_if_enabled function
242

RAM (random access memory)
59–66

free tool 60
oomkill tool 65–66
stress command 143–149

INDEX392
RAM (random access memory)
(continued)

top tool 60–63
vmstat tool 63–65

read syscall 172, 175, 179, 183,
186

read-eval-print loop (REPL) 76
readlink command 127
recommend_other_products

function 231
Redis latency experiment

235–240
discussion 240
execution 239–240
implementation 237–239
plan 235–236
steady state 236–237

RedisError 241
redis.exceptions.RedisError 242
redis-server command 234
REFRESH_PERIOD

variable 284
REPL (read-eval-print loop) 76
ReplicaSet 330
reset function 231
resources 45, 47–75, 274

block I/O devices 50–54
biotop tool 53–54
df tool 51–52
iostat tool 52–53

CPU 66–72
mpstat P ALL 1 tool 69–70
top tool 67–69

network interfaces 54–59
sar tool 55–58
tcptop tool 58–59

OS 73–75
execsnoop tool 74
opensnoop tool 73–74
other tools 75

RAM 59–66
free tool 60
oomkill tool 65–66
top tool 60–63
vmstat tool 63–65

system overview 48–50
dmesg tool 49–50
uptime tool 48–49

response.set_cookie 231
retrans/s field 58
retval=<return code> argument

190
rkB/s field 52
rkt 336
- -rm flag 114

- -rm option 124
RST flag 58
runc 135
Running 281, 286
running state 313–314
Runtime Specification 337
runtimes 376
rxcmp/s field 56
rxdrop/s field 57
rxerr/s field 57
rxfifo/s field 57
rxfram/s field 57
rxkB/s field 56
rxmcst/s field 56
rxpck/s field 56

S

-S count flag 181
-s flag 64
sar tool 55–58
saturation 45
scenarios 304
SCMP_ACT_ERRNO default

action 196
scraping metrics 80
search function 231
seccomp tool

blocking syscalls 195–199
with Docker 196–197
with libseccomp 198–199

Docker networking 157
seccomp_init function 198
seccomp_load function 198
seccomp_release function 198
seccomp_rule_add function 198
Secure Shell (SSH) 269
security feature 111, 173
- -security-opt seccomp 157
selectors 278
send method 254–256
service networking 340–342
ServiceAccounts 276
service-level agreements

(SLAs) 3–5
service-level indicators (SLIs) 3–

5
service-level objectives

(SLOs) 3–5
services 275
sessionID cookie 231
set method 237–238
set_session_id function 230
setTimeout function 254
si (software interrupts) 67

SIGFPE signal 23
signal= sig argument 190
SIGTERM 25
simulation 106–107
site reliability engineering

(SRE) 3, 44
SLAs (service-level

agreements) 3–5
sleep 1 command 178
sleep 3600 24
sleep command 24, 178
sleep process 138
slicer toxic 294
SLIs (service-level indicators)

3–5
SLOs (service-level

objectives) 3–5
slow app problem 43–83

application layer 75–79
BCC suite and Python

77–79
cProfile module 76–77

automated monitoring
systems 79–83

Grafana 80–83
Prometheus 80–83

Docker 104–105
architecture 105
CPU usage 141–143
killing processes in differ-

ent PID namespace
129–140

network slowness for con-
tainers with Pumba
161–165

one container preventing
another from writing to
disk 119–124

RAM overuse 143–149
overview of 44–45
resources 47–75

block I/O devices 50–54
CPU 66–72
network interfaces 54–59
OS 73–75
RAM 59–66
system overview 48–50

solving problem 70–72,
158–161

USE method 45–47
slow close toxic 294
slow connection experiment

92–98
implementation 95–98
latency 93–95

INDEX 393
slow disks experiment 87–92
discussion 91–92
implementation 88–91

software interrupts (si) 67
solid-state drives (SSDs) 90
sort - -random-sort 285
source code 20–21, 364
SPA (single-page

application) 250
SRE (’ShRoomEee)

burger 379–382
assembling finished

product 382
hidden dependencies 381
ingredients 380
making patty 381–382

SRE (site reliability
engineering) 3, 44

SSDs (solid-state drives) 90
SSH (Secure Shell) 269
st (steal time) 67
stage=dev label 278
stapbpf 188
StartLimitIntervalSec 40
Staycation 353
steady state 9, 15

breaking close syscall 191
breaking write syscall 194
defining 10
FaaS example 15, 34
JavaScript latency 252

stopHost action 322
- -storage-opt size 124
store_interests function 231, 241
strace command 178, 181–182,

184–186, 190–191, 194–195
strace -h flag 190
strace output 178
strace tool 75, 182–183

blocking syscalls 188–195
breaking close syscall

189–193
breaking write syscall

193–195
overhead 183–184
sleep command and 178–181

stress command 70, 74, 89–91,
141–144

stress package 360
string type 278
strong isolation 107
succeeded state 313
sudo apt-get install bpfcc-tools

linux-headers-$(uname -r)
command 185

sudo apt-get install git 360
sudo apt-get install

PACKAGE 360
sudo command 36, 119, 128,

178
sudo lsns -t pid command 135
sudo password 316
sudo pip3 install redis 234
sudo service postgresql start

command 247
sudo strace command 181
sudo strace -C command 182
sudo syscount-bpfcc command

185
swap 60–61
sy (system time) 67
SYN-RCVD state 58
SYN-SENT stat 58
SYN-SENT state 58
syscalls 169, 172–200

blocking with seccomp
195–199

with Docker 196–197
with libseccomp 198–199

blocking with strace
188–195

breaking close syscall
189–193

breaking write syscall
193–195

finding out about 174–176
observability 178–188

BPF 185–187
Ftrace 188
strace tool 178–184
SystemTap 188

overview of 172–178
scenario 170–172
using standard C library and

glibc 176–178
syscount command 186–187
syscount tool 185
syscount-bpfcc 187
sysstat package 55, 360
system calls 172
system calls. See syscalls
system overview 48–50
systemctl daemon 40
systemctl restart 36
systemd service 36, 38, 40, 269
systemd unit file 40
SystemOutFizzBuzzOutput-

Strategy class 206, 221,
224

SystemTap 188

T

Tampermonkey 261
- -target flag 154
- -task flag 126
tc (Traffic Control) 235
tc command 94, 98, 161–162,

165, 167, 290
tc tool 93
- -tc-image flag 162, 165
TCP keyword 57
tcptop tool 58–59
telnet 97
Terminating state 286
testing

chaos engineering not
replacement for other
methods of 12

in production 98–99
of system as whole 5

.then handler 259
then method 259
throttled_time 143
throttling 260–261
throwIOException method 215,

217–218
throws keyword 205
Time (time) namespace 125
time command 97
time curl localhost/blog/

command 97
timeout toxic 294
top tool 60–64, 67–69
tottime 76
toxics 294
Toxiproxy 292–294
toxiproxy type 309
toxiproxy-cli command 295,

299
toxiproxy-cli list command 299
toxiproxy-cli toxic add

command 300
transform method 211–212,

217
TripleAgent 227
tv_sec argument 180
txcarr/s field 57
txcmp/s field 56
txdrop/s field 57
txerr/s field 57
txfifo/s field 57
txkB/s field 56
txpck/s field 56

INDEX394
U

unified 136
UniK 109
union filesystem 115
union mount 115
unistd.h 176–177
unit tests 5
unknown state 313
unknown unknowns 45
unshare command 133–134,

147
UpperDir 116
uptime tool 48–49
- -url flag 299
us (user time) 67
USDT (User Statically Defined

Tracing) 77
USE (utilization, saturation,

and errors) 45–47
User ID (user) 125
user space 173
utilization 45, 51
UTS (uts) 125

V

-verbose flag 209
VERSION command 360

vim package 360
virtual machines

containers and 107–110
taking down 321–323

virtualenv 306
virtualization 106–107
VM (virtual machine) image 20
vmstat command 63
vmstat -D 65
vmstat -d 65
vmstat -f 65
vmstat tool 63–65

W

wa (I/O wait time) 67
- -watch flag 285, 307
watch notification

mechanism 330
wget command 59
window global scope 254
window variable 254
window.XMLHttpRequest.proto

type.send 254, 257
- -with-dtrace 78
wkB/s field 52
WORA (write once, run any-

where) principle 207
WordPress 85

wordpress package 361
WordPress weak link

example 86–98
configuring WordPress

363–364
overview of 85–86
slow connection

experiment 92–98
implementation 95–98
latency 93–95

slow disks experiment 87–92
discussion 91–92
implementation 88–91

write syscall 193–195
implementation 194–195
steady state 194

X

-x flag 52
-XDignore.symbol.file flag 220
xfs filesystem 124
XMLHttpRequest 253–254,

256–257, 259–260

Y

YAML files 278–280

Admin utilities
Testing

applications

Detecting

SLO failures

Implement own

container-ish

JavaScript

injection

Toxiproxyjavaagent

Chaos

engineering

seccomp

Time-series

databases

Observability
KubemetesOOM

strace

Syscalls

Bytecode

injection

JVM Network

slowness

Traffic Control

(tc)

Browser

Test out limits of

Docker

Docker

Underlying

technologies

Reliability-testing

Kubernetes

Automation

(PowerfulSeal)

eBPF

eBPF

Mikolaj Pawlikowski

ISBN: 978-1-61729-775-5

C
an your network survive a devastating failure? Could an
accident bring your day-to-day operations to a halt?
Chaos engineering simulates infrastructure outages, com-

ponent crashes, and other calamities to show how systems
and staff respond. Testing systems in distress is the best way
to ensure their future resilience, which is especially important
for complex, large-scale applications with little room for
downtime.

Chaos Engineering teaches you to design and execute controlled
experiments that uncover hidden problems. Learn to inject
system-shaking failures that disrupt system calls, networking,
APIs, and Kubernetes-based microservices infrastructures. To
help you practice, the book includes a downloadable Linux
VM image with a suite of preconfi gured tools so you can
experiment quickly—without risk.

What’s Inside
● Inject failure into processes, applications, and virtual
 machines
● Test software running on Kubernetes
● Work with both open source and legacy software
● Simulate database connection latency
● Test and improve your team’s failure response

Assumes Linux servers. Basic scripting skills required.

Mikolaj Pawlikowski is a recognized authority on chaos
engineering. He is the creator of the Kubernetes Chaos
Engineering tool PowerfulSeal, and the networking visibility
tool Goldpinger.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$49.99 / Can $65.99 [INCLUDING eBOOK]

Chaos Engineering

TESTING/SOFTWARE ENGINEERING

M A N N I N G

“The topics covered in this
book are easy to follow and

detailed. It provides a number
of hands-on exercises to help

the reader master chaos
 engineering.”

—Kelum Prabath Senanayake
Echoworx

“The book we needed to
improve our system’s reliability

and resilience.”
—Hugo Cruz

People Driven Technology

“An important topic if you
want to fi nd hidden problems

in your large system.
This book gives a really
 good foundation.”—Yuri Kushch, Amazon

“One of the best books
about in-depth infrastructure,

troubleshooting complex
systems, and chaos engineering

that I’ve ever read.”
—Lev Andelman

Terasky Cloud & Devops

See first page

	Chaos Engineering
	brief contents
	contents
	foreword
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: a roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	1 Into the world of chaos engineering
	1.1 What is chaos engineering?
	1.2 Motivations for chaos engineering
	1.2.1 Estimating risk and cost, and setting SLIs, SLOs, and SLAs
	1.2.2 Testing a system as a whole
	1.2.3 Finding emergent properties

	1.3 Four steps to chaos engineering
	1.3.1 Ensure observability
	1.3.2 Define a steady state
	1.3.3 Form a hypothesis
	1.3.4 Run the experiment and prove (or refute) your hypothesis

	1.4 What chaos engineering is not
	1.5 A taste of chaos engineering
	1.5.1 FizzBuzz as a service
	1.5.2 A long, dark night
	1.5.3 Postmortem
	1.5.4 Chaos engineering in a nutshell

	Summary

	Part 1—Chaos engineering fundamentals
	2 First cup of chaos and blast radius
	2.1 Setup: Working with the code in this book
	2.2 Scenario
	2.3 Linux forensics 101
	2.3.1 Exit codes
	2.3.2 Killing processes
	2.3.3 Out-Of-Memory Killer

	2.4 The first chaos experiment
	2.4.1 Ensure observability
	2.4.2 Define a steady state
	2.4.3 Form a hypothesis
	2.4.4 Run the experiment

	2.5 Blast radius
	2.6 Digging deeper
	2.6.1 Saving the world

	Summary

	3 Observability
	3.1 The app is slow
	3.2 The USE method
	3.3 Resources
	3.3.1 System overview
	3.3.2 Block I/O
	3.3.3 Networking
	3.3.4 RAM
	3.3.5 CPU
	3.3.6 OS

	3.4 Application
	3.4.1 cProfile
	3.4.2 BCC and Python

	3.5 Automation: Using time series
	3.5.1 Prometheus and Grafana

	3.6 Further reading
	Summary

	4 Database trouble and testing in production
	4.1 We’re doing WordPress
	4.2 Weak links
	4.2.1 Experiment 1: Slow disks
	4.2.2 Experiment 2: Slow connection

	4.3 Testing in production
	Summary

	Part 2—Chaos engineering in action
	5 Poking Docker
	5.1 My (Dockerized) app is slow!
	5.1.1 Architecture

	5.2 A brief history of Docker
	5.2.1 Emulation, simulation, and virtualization
	5.2.2 Virtual machines and containers

	5.3 Linux containers and Docker
	5.4 Peeking under Docker’s hood
	5.4.1 Uprooting processes with chroot
	5.4.2 Implementing a simple container(-ish) part 1: Using chroot
	5.4.3 Experiment 1: Can one container prevent another one from writing to disk?
	5.4.4 Isolating processes with Linux namespaces
	5.4.5 Docker and namespaces

	5.5 Experiment 2: Killing processes in a different PID namespace
	5.5.1 Implementing a simple container(-ish) part 2: Namespaces
	5.5.2 Limiting resource use of a process with cgroups

	5.6 Experiment 3: Using all the CPU you can find!
	5.7 Experiment 4: Using too much RAM
	5.7.1 Implementing a simple container(-ish) part 3: Cgroups

	5.8 Docker and networking
	5.8.1 Capabilities and seccomp

	5.9 Docker demystified
	5.10 Fixing my (Dockerized) app that’s being slow
	5.10.1 Booting up Meower
	5.10.2 Why is the app slow?

	5.11 Experiment 5: Network slowness for containers with Pumba
	5.11.1 Pumba: Docker chaos engineering tool
	5.11.2 Chaos experiment implementation

	5.12 Other parts of the puzzle
	5.12.1 Docker daemon restarts
	5.12.2 Storage for image layers
	5.12.3 Advanced networking
	5.12.4 Security

	Summary

	6 Who you gonna call? Syscall-busters!
	6.1 Scenario: Congratulations on your promotion!
	6.1.1 System X: If everyone is using it, but no one maintains it, is it abandonware?

	6.2 A brief refresher on syscalls
	6.2.1 Finding out about syscalls
	6.2.2 Using the standard C library and glibc

	6.3 How to observe a process’s syscalls
	6.3.1 strace and sleep
	6.3.2 strace and System X
	6.3.3 strace’s problem: Overhead
	6.3.4 BPF
	6.3.5 Other options

	6.4 Blocking syscalls for fun and profit part 1: strace
	6.4.1 Experiment 1: Breaking the close syscall
	6.4.2 Experiment 2: Breaking the write syscall

	6.5 Blocking syscalls for fun and profit part 2: Seccomp
	6.5.1 Seccomp the easy way with Docker
	6.5.2 Seccomp the hard way with libseccomp

	Summary

	7 Injecting failure into the JVM
	7.1 Scenario
	7.1.1 Introducing FizzBuzzEnterpriseEdition
	7.1.2 Looking around FizzBuzzEnterpriseEdition

	7.2 Chaos engineering and Java
	7.2.1 Experiment idea
	7.2.2 Experiment plan
	7.2.3 Brief introduction to JVM bytecode
	7.2.4 Experiment implementation

	7.3 Existing tools
	7.3.1 Byteman
	7.3.2 Byte-Monkey
	7.3.3 Chaos Monkey for Spring Boot

	7.4 Further reading
	Summary

	8 Application-level fault injection
	8.1 Scenario
	8.1.1 Implementation details: Before chaos

	8.2 Experiment 1: Redis latency
	8.2.1 Experiment 1 plan
	8.2.2 Experiment 1 steady state
	8.2.3 Experiment 1 implementation
	8.2.4 Experiment 1 execution
	8.2.5 Experiment 1 discussion

	8.3 Experiment 2: Failing requests
	8.3.1 Experiment 2 plan
	8.3.2 Experiment 2 implementation
	8.3.3 Experiment 2 execution

	8.4 Application vs. infrastructure
	Summary

	9 There’s a monkey in my browser!
	9.1 Scenario
	9.1.1 Pgweb
	9.1.2 Pgweb implementation details

	9.2 Experiment 1: Adding latency
	9.2.1 Experiment 1 plan
	9.2.2 Experiment 1 steady state
	9.2.3 Experiment 1 implementation
	9.2.4 Experiment 1 run

	9.3 Experiment 2: Adding failure
	9.3.1 Experiment 2 implementation
	9.3.2 Experiment 2 run

	9.4 Other good-to-know topics
	9.4.1 Fetch API
	9.4.2 Throttling
	9.4.3 Tooling: Greasemonkey and Tampermonkey

	Summary

	Part 3—Chaos engineering in Kubernetes
	10 Chaos in Kubernetes
	10.1 Porting things onto Kubernetes
	10.1.1 High-Profile Project documentation
	10.1.2 What’s Goldpinger?

	10.2 What’s Kubernetes (in 7 minutes)?
	10.2.1 A very brief history of Kubernetes
	10.2.2 What can Kubernetes do for you?

	10.3 Setting up a Kubernetes cluster
	10.3.1 Using Minikube
	10.3.2 Starting a cluster

	10.4 Testing out software running on Kubernetes
	10.4.1 Running the ICANT Project
	10.4.2 Experiment 1: Kill 50% of pods
	10.4.3 Party trick: Kill pods in style
	10.4.4 Experiment 2: Introduce network slowness

	Summary

	11 Automating Kubernetes experiments
	11.1 Automating chaos with PowerfulSeal
	11.1.1 What’s PowerfulSeal?
	11.1.2 PowerfulSeal installation
	11.1.3 Experiment 1b: Killing 50% of pods
	11.1.4 Experiment 2b: Introducing network slowness

	11.2 Ongoing testing and service-level objectives
	11.2.1 Experiment 3: Verifying pods are ready within (n) seconds of being created

	11.3 Cloud layer
	11.3.1 Cloud provider APIs, availability zones
	11.3.2 Experiment 4: Taking VMs down

	Summary

	12 Under the hood of Kubernetes
	12.1 Anatomy of a Kubernetes cluster and how to break it
	12.1.1 Control plane
	12.1.2 Kubelet and pause container
	12.1.3 Kubernetes, Docker, and container runtimes
	12.1.4 Kubernetes networking

	12.2 Summary of key components
	Summary

	13 Chaos engineering (for) people
	13.1 Chaos engineering mindset
	13.1.1 Failure is not a maybe: It will happen
	13.1.2 Failing early vs. failing late

	13.2 Getting buy-in
	13.2.1 Management
	13.2.2 Team members
	13.2.3 Game days

	13.3 Teams as distributed systems
	13.3.1 Finding knowledge single points of failure: Staycation
	13.3.2 Misinformation and trust within the team: Liar, Liar
	13.3.3 Bottlenecks in the team: Life in the Slow Lane
	13.3.4 Testing your processes: Inside Job

	Summary
	13.4 Where to go from here?

	appendix A—Installing chaos engineering tools
	A.1 Prerequisites
	A.2 Installing the Linux tools
	A.2.1 Pumba
	A.2.2 Python 3.7 with DTrace option
	A.2.3 Pgweb
	A.2.4 Pip dependencies
	A.2.5 Example data to look at for pgweb

	A.3 Configuring WordPress
	A.4 Checking out the source code for this book
	A.5 Installing Minikube (Kubernetes)
	A.5.1 Linux
	A.5.2 macOS
	A.5.3 Windows

	appendix B—Answers to the pop quizzes
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12

	appendix C—Director’s cut (aka the bloopers)
	C.1 Cloud
	C.2 Chaos engineering tools comparison
	C.3 Windows
	C.4 Runtimes
	C.5 Node.js
	C.6 Architecture problems
	C.7 The four steps to a chaos experiment
	C.8 You should have included <tool X>!
	C.9 Real-world failure examples!
	C.10 “Chaos engineering” is a terrible name!
	C.11 Wrap!

	appendix D—Chaos-engineering recipes
	D.1 SRE (’ShRoomEee) burger
	D.1.1 Ingredients
	D.1.2 Hidden dependencies
	D.1.3 Making the patty
	D.1.4 Assembling the finished product

	D.2 Chaos pizza
	D.2.1 Ingredients
	D.2.2 Preparation

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

