
Irakli Nadareishvili, Ronnie Mitra,
Matt McLarty & Mike Amundsen

Microservice
 Architecture
ALIGNING PRINCIPLES, PRACTICES, AND CULTURE

Praise for Microservice Architecture

The authors’ approach of starting with a value proposition, “Speed and Safety at Scale and
in Harmony,” and reasoning from there, is an important contribution to thinking about

application design.
—Mel Conway, Educator and Inventor

A well-thought-out and well-written description of the organizing principles
underlying the microservices architectural style with a pragmatic example of

applying them in practice.
—James Lewis, Principal Consultant, ThoughtWorks

This book demystifies one of the most important new tools for building robust, scalable
software systems at speed.

—Otto Berkes, Chief Technology Officer, CA Technologies

If you’ve heard of companies doing microservices and want to learn more, Microservice
Architecture is a great place to start. It addresses common questions and concerns about

breaking down a monolith and the challenges you’ll face with culture, practices, and
tooling. The microservices topic is a big one and this book gives you smart pointers

on where to go next.
—Chris Munns, Business Development Manager—DevOps,

Amazon Web Services

Anyone who is building a platform for use inside or outside an organization should read
this book. It provides enough “a-ha” insights to keep everyone on your team engaged,

from the business sponsor to the most technical team member. Highly recommended!
—Dave Goldberg, Director, API Products, Capital One

A practical roadmap to microservices design and the underlying cultural and
organizational change that is needed to make it happen successfully.

—Mark Boyd, Writer/Analyst, Platformable

An essential guidebook for your microservices journey, presenting the concepts,
discussions, and structures supportive of this architectural pattern as well as the

pragmatic ground work to become successful.
—Ian Kelly, Experimenter and Contributor, CA Technologies

Irakli Nadareishvili, Ronnie Mitra,
Matt McLarty, and Mike Amundsen

Microservice Architecture
Aligning Principles, Practices, and Culture

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-95625-0

[LSI]

Microservice Architecture
by Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen

Copyright © 2016 Mike Amundsen, Matt McLarty, Ronnie Mitra, Irakli Nadareishvili. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com .

Editors: Brian MacDonald and Holly Bauer
Production Editor: Kristen Brown
Copyeditor: Christina Edwards
Proofreader: Kim Cofer

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Melanie Yarbrough

June 2016: First Edition

Revision History for the First Edition
2016-06-02: First Release
2016-07-18: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491956250 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Microservice Architecture, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491956250

Table of Contents

Preface. ix

Part I. Understanding Microservices

1. The Microservices Way. 3
Understanding Microservices 4
Adopting Microservices 5

“What are microservices? Don’t I already have them?” 6
“How could this work here?” 7
“How would we deal with all the parts? Who is in charge?” 8

The Microservices Way 9
The Speed of Change 9
The Safety of Change 9
At Scale 10
In Harmony 10

Summary 11

2. The Microservices Value Proposition. 13
Microservice Architecture Benefits 13
Deriving Business Value 15
Defining a Goal-Oriented, Layered Approach 17

Modularized Microservice Architecture 17
Cohesive Microservice Architecture 18
Systematized Microservice Architecture 18
Maturity Model for Microservice Architecture Goals and Benefits 19

Applying the Goal-Oriented, Layered Approach 20
Summary 21

v

Part II. Microservice Design Principles

3. Designing Microservice Systems. 25
The Systems Approach to Microservices 25

Service 27
Solution 28
Process and Tools 28
Organization 28
Culture 29
Embracing Change 29
Putting it Together: The Holistic System 30
Standardization and Coordination 30

A Microservices Design Process 33
Set Optimization Goals 34
Development Principles 35
Sketch the System Design 35
Implement, Observe, and Adjust 36
The Microservices System Designer 38
Summary 38

4. Establishing a Foundation. 41
Goals and Principles 42

Goals for the Microservices Way 42
Operating Principles 45

Platforms 49
Shared Capabilities 50
Local Capabilities 52

Culture 54
Focus on Communication 55
Aligning Your Teams 55
Fostering Innovation 56

Summary 58

Part III. Microservices in Practice

5. Service Design. 61
Microservice Boundaries 62

Microservice Boundaries and Domain-Driven Design 62
Bounded Context 64
Smaller Is Better 65
Ubiquitous Language 66

vi | Table of Contents

API Design for Microservices 67
Messsage-Oriented 67
Hypermedia-Driven 68

Data and Microservices 70
Shipping, Inc. 70
Event Sourcing 72
System Model for Shipping, Inc. 75
CQRS 76

Distributed Transactions and Sagas 78
Asynchronous Message-Passing and Microservices 80
Dealing with Dependencies 81

Pragmatic Mobility 84
Summary 86

6. System Design and Operations. 89
Independent Deployability 89
More Servers, More Servers! My Kingdom for a Server! 91
Docker and Microservices 93
The Role of Service Discovery 94
The Need for an API Gateway 97

Security 97
Transformation and Orchestration 98
Routing 100

Monitoring and Alerting 101
Summary 101

7. Adopting Microservices in Practice. 103
Solution Architecture Guidance 104

How many bug fixes/features should be included in a single release? 104
When do I know our microservice transformation is done? 104

Organizational Guidance 105
How do I know if my organization is ready for microservices? 105

Culture Guidance 106
How do I introduce change? 106
Can I do microservices in a project-centric culture? 108
Can I do microservices with outsourced workers? 108

Tools and Process Guidance 109
What kinds of tools and technology are required for microservices? 109
What kinds of practices and processes will I need to support

microservices? 110
How do I govern a microservice system? 111

Services Guidance 112

Table of Contents | vii

Should all microservices be coded in the same programming language? 112
What do I do about orphaned components? 113

Summary 113

8. Epilogue. 115

A. Microservice Architecture Reading List. 117

Index. 121

viii | Table of Contents

Preface

Microservice architecture has emerged as a common pattern of software develop‐
ment from the practices of a number of leading organizations. These practices
includes principles, technologies, methodologies, organizational tendencies, and cul‐
tural characteristics. Companies taking steps to implement microservices and reap
their benefits need to consider this broad scope.

Who Should Read This Book
You should read this book if you are interested in the architectural, organizational,
and cultural changes that are needed to succeed with a microservice architecture. We
primarily wrote this book for technology leaders and software architects who want to
shift their organizations toward the microservices style of application development.
You don’t have to be a CTO or enterprise architect to enjoy this book, but we’ve writ‐
ten our guidance under the assumption that you are able to influence the organiza‐
tional design, technology platform, and software architecture at your company.

What’s In This Book
This book promotes a goal-oriented, design-based approach to microservice architec‐
ture. We offer this design-centric approach because, as we talked to several companies
about their programs, we discovered one of the keys to their success was the willing‐
ness to not stick to a single tool or process as they attempted to increase their compa‐
ny’s time-to-market while maintaining—even increasing—their systems’ safety and
resilience.

The companies we talked to offered a wide range of services including live video and
audio streaming service, foundation-level virtual services in the cloud, and support
for classic brick-and-mortar operations. While these companies’ products vary, we
learned that the principles of speed and safety “at scale” were a common thread. They

ix

each worked to provide the same system properties in their own unique ways—ways
that fit the key business values and goals of the company.

It’s the properties and values that we focus on in this book, and the patterns and prac‐
tices we see companies employ in order to reach their unique goals. If you’re looking
for a way to identify business goals for your microservices adoption, practical guid‐
ance on how to design individual microservices and the system they form, and tips
on how to overcome common architectural challenges, this is your book!

The Outline
The book is organized into three parts. The first part (Chapters 1–2) identifies the
principles and practices of microservice architecture and the benefits they can pro‐
vide. This section will be valuable to anyone who needs to justify the use of microser‐
vices within their organization and provide some background on how other
organizations have started on this journey.

The second part (Chapters 3–4) introduces a design-based approach to microservice
architecture, identifies a series of common processes and practices we see repeated
through successful microservice systems, and provides some implementation guid‐
ance on executing the various elements for your company’s microservice implemen‐
tation.

The third and final part (Chapters 5–7) provides a set of practical recipes and practi‐
ces to help companies identify ways to introduce and support microservices, meet
immediate challenges, and plan for and respond to the inevitably changing business
environment ahead.

Here’s a quick rundown of the chapters:

Chapter 1, The Microservices Way
This chapter outlines the principles, practices, and culture that define microser‐
vice architecture.

Chapter 2, The Microservices Value Proposition
This chapter examines the benefits of microservice architecture and some techni‐
ques to achieve them.

Chapter 3, Designing Microservice Systems
This chapter explores the system aspects of microservices and illustrates a design
process for microservice architecture.

Chapter 4, Establishing a Foundation
This chapter discusses the core principles for microservice architecture, as well as
the platform components and cultural elements needed to thrive.

x | Preface

Chapter 5, Service Design
This chapter takes the “micro” design view, examining the fundamental design
concepts for individual microservices.

Chapter 6, System Design and Operations
This chapter takes the “macro” design view, analyzing the critical design areas for
the software system made up of the collection of microservices.

Chapter 7, Adopting Microservices in Practice
This chapter provides practical guidance on how to deal with common chal‐
lenges organizations encounter as they introduce microservice architecture.

Chapter 8, Epilogue
Finally, this chapter examines microservices and microservice architecture in a
timeless context, and emphasizes the central theme of the book: adaptability to
change.

What’s Not In This Book
The aim of this book is to arm readers with practical information and a way of think‐
ing about microservices that is timeless and effective. This is not a coding book.
There is a growing body of code samples and open source projects related to micro‐
services available on the Web, notably on GitHub and on sites like InfoQ. In addition,
the scope of this domain is big and we can only go so deep on the topics we cover. For
more background on the concepts we discuss, check out our reading list in Appen‐
dix A.

While we provide lots of guidance and advice—advice based on our discussions with
a number of companies designing and implementing systems using microservice
architecture patterns—we do not tell readers which product to buy, which open
source project to adopt, or how to design and test component APIs. Instead, we offer
insight into the thinking processes and practices of experienced and successful com‐
panies actually doing the work of microservices. If you’re looking for simple answers,
you’re likely to be disappointed in some of the material here. If, on the other hand,
you’re looking for examples of successful microservice companies and the kinds of
principles, practices, and processes they employ, this book is for you.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Preface | xi

https://github.com/
http://www.infoq.com/

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,

xii | Preface

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The authors would like to thank Brian MacDonald, Holger Reinhardt, Ian Kelly, and
Brian Mitchell for helping to clarify, focus, and structure the content of the book. We
would also like to thank John Allspaw, Stu Charlton, Adrian Cockcroft, Mel Conway,
James Lewis, Ruth Malan, and Jon Moore for helping to guide our thinking along the
way.

A number of early microservice adopters provided insight for the book. We would
like to thank Greg Bell, Ken Britton, Beier Cai, Steve Cullingworth, Bill Monkman,
Mike Sample, and Jeremy Skelton of Hootsuite; Chris Munns of Amazon; Clay Gar‐
rard and Patrick Devlin of Disney; and Christian Deger of AutoScout24.

The book would not have been completed without the support of CA Technologies.
We would like to thank Alex Jones, Jeff Miller, Ryan Blain, Jaime Ryan, Sam Macklin,
and many others for their help. We would also like to thank Leia Poritz, Heather

Preface | xiii

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Scherer, Rachel Roumeliotis, Sharon Cordesse, Kristen Brown, Christina Edwards,
and the team at O’Reilly Media.

Finally and most importantly, the authors would like to thank their families. Mike
thanks Lee, Shannon, Jesse, and Dana for putting up with his usual travel and writing
shenanigans. Matt thanks Chris, Daniel, and Josiah for their love and support. Ronnie
thanks his father for putting him in front of a computer. Irakli thanks Ana, Dachi,
Maia, Diana, and Malkhaz for their unconditional support and encouragement.

xiv | Preface

PART I

Understanding Microservices

Balancing Speed and Safety
If you drive around Sweden you’ll see variations of the same road markings, road
signs, and traffic signals that are used everywhere else in the developed world. But
Sweden is a remarkably safer place for road users than the rest of the world. In fact, in
2013 it was among the safest countries in road traffic deaths per 100,000 people.

So, how did the Swedes do it? Are they better drivers? Are the traffic laws in Sweden
stricter than other countries? Are their roads just better designed? It turns out that
the recipe for traffic safety is a combination of all of these things, delivered by an
innovative program called Vision Zero.

Vision Zero has a laudable goal—reducing all road accident–related deaths to zero. It
aims to achieve this by designing road systems that prioritize safety above all other
factors, while still recognizing the importance of keeping traffic moving. In other
words, a road system that is designed first and foremost with safety in mind.

At its core, Vision Zero is about culture change. Policymakers, traffic system design‐
ers, and citizens have a shared belief that the safety of pedestrians and drivers is more
valuable than the need to move from place to place as quickly as possible. This cul‐
ture of safety drives individual behavior, which can result in a more desirable out‐
come for the traffic system.

In addition, the road system itself is designed to be safer. Traffic designers apply
speed limits, road signs, and traffic movement patterns in a way that benefits the
overall safety of the system. For example, while it is necessary to ensure the move‐

http://api.co/1qXwA6Q

ment of cars on the road, speed is limited to a level that the human body could with‐
stand in a collision given the technical standards of the vehicles and roads that exist.
While speed limits may impact drivers’ ability to get to their destination as quickly as
possible, the design decision is always driven by the requirement to protect human
life. Where most road systems are designed to facilitate movement (or speed) in a safe
way, Vision Zero systems incorporate movement into a system primarily designed for
safety.

The road designers are continuously making trade-offs that favor the safety of its
users. Instead of solely relying on skilled drivers who know how to avoid common
mistakes, Vision Zero designers create roads that account for the errors and miscal‐
culations that many human drivers inevitably make. While it is the driver’s responsi‐
bility to adhere to the rules of the road, the system designers must do their best to
protect humans even in situations where drivers do not conform.

All in all, the Vision Zero approach seems to work. While they haven’t reduced fatali‐
ties to zero yet, the program has been so successful in improving safety within Swe‐
den that other cities like New York and Seattle are adopting it and hoping to see
similar results in their own traffic systems. In the end, this success was made possible
by combining improvements to policy, technology, and infrastructure in a holistic
manner. Vision Zero adopts a systematic approach to design in a safety-first manner.

Just like traffic systems, software systems become more complex as their scale—in the
form of scope, volume, and user interactions—increases. And like road designers,
software architects and engineers must maintain a balance of speed and safety in their
software systems. Software development organizations have used microservice archi‐
tecture to achieve faster delivery and greater safety as the scale of their systems
increase. The holistic, consciously designed approach of Vision Zero suggests an
approach to microservice architecture that organizations can take to achieve the bal‐
ance of speed and safety that meets their goals.

CHAPTER 1

The Microservices Way

Microservices are a thing these days.
—Phil Calçado, former Director of Engineering, SoundCloud

Building solutions with speed and safety at scale.

If you’re like most software developers, team leaders, and architects responsible for
getting working code out the door of your company, this phrase describes your job in
a nutshell. Most of you have probably struggled at this, too. Getting to market quickly
seems to imply giving up a bit of safety. Or, conversely, making sure the system is safe,
reliable, and resilient means slowing down the pace of feature and bug-fix releases.
And “at scale” is just a dream.

However, a few years ago people started talking about companies that were doing just
that. Shortening their time-to-market on new releases, actually improving their sys‐
tem reliability, and doing it all in runtime environments that were able to respond
smoothly to unexpected spikes in traffic. These companies were “doing microservi‐
ces.”

In this chapter we’ll explore what microservices are and what it means to build an
application the microservices way. To begin with, we’ll explore the meaning of the
term microservices by learning about its origin. Next, we’ll take a look at some of the
biggest perceived barriers to adopting microservices. Finally, we share a simple per‐
spective on application development that will help you better understand how all the
pieces of microservices systems fit together, a balancing act of speed and safety that
we call the microservices way.

3

Understanding Microservices
To better understand what microservices are, we need to look at where they came
from. We aren’t going to recount the entire history of microservices and software
architecture, but it’s worth briefly examining how microservices came to be. While
the term microservices has probably been used in various forms for many years, the
association it now has with a particular way of building software came from a meet‐
ing attended by a handful of software architects. This group saw some commonality
in the way a particular set of companies was building software and gave it a name.

As James Lewis, who was in attendance, remembers it:
At the end of our three-day meeting, one of us called out a theme—that year it had
been clear that many of the problems people were facing in the wild were related to
building systems that were too big. “How can I rebuild a part of this,” “best ways to
implement Strangler,” etc.
Turning that on its head, the problem became “how can we build systems that are
replaceable over being maintainable?” We used the term micro apps, I seem to
remember.

—James Lewis

James’ recollection of the microservices origin story is important not only for histori‐
cal record, but also because it identifies three concepts that are principal to the style:

Microservices are ideal for big systems
The common theme among the problems that people were facing was related to
size. This is significant because it highlights a particular characteristic of the
microservices style—it is designed to solve problems for systems that are big. But
size is a relative measure, and it is difficult to quantify the difference between
small, normal, and big. You could of course come up with some way of deciding
what constitutes big versus small, perhaps using averages or heuristic measure‐
ments, but that would miss the point. What the architects at this gathering were
concerned with was not a question of the size of the system. Instead, they were
grappling with a situation in which the system was too big. What they identified
is that systems that grow in size beyond the boundaries we initially define pose
particular problems when it comes to changing them. In other words, new prob‐
lems arise due to their scale.

Microservice architecture is goal-oriented
Something else we can derive from James’ recollection of the day is the focus on a
goal rather than just a solution. Microservice architecture isn’t about identifying a
specific collection of practices, rather it’s an acknowledgment that software pro‐
fessionals are trying to solve a similar goal using a particular approach. There
may be a set of common characteristics that arise from this style of software

4 | Chapter 1: The Microservices Way

development, but the focus is meant to be on solving the initial problem of sys‐
tems that are too big.

Microservices are focused on replaceability
The revelation that microservices are really about replaceability is the most
enlightening aspect of the story. This idea that driving toward replacement of
components rather than maintaining existing components get to the very heart of
what makes the microservices approach special.

If you are interested in learning more on the history of microservi‐
ces, visit http://api.co/msabook.

Overwhelmingly, the companies that we talked to have adopted the microservices
architectural style as a way of working with systems in which scale is a factor. They
are more interested in the goal of improving changeability than finding a universal
pattern or process. Finally, the methods that have helped them improve changeability
the most are primarily rooted in improving the replaceability of components. These
are all characteristics that align well with the core of the microservices ideal.

Adopting Microservices
If you are responsible for implementing technology at your company, the microservi‐
ces proposition should sound enticing. Chances are you face increasing pressure to
improve the changeability of the software you write in order to align better with a
business team that wants to be more innovative. It isn’t easy to make a system more
amenable to change, but the microservice focus on building replaceable components
offers some hope.

However, when we’ve talked to people interested in adopting microservice-style
architectures they often have some reservations. Behind the enthusiasm for a new
way of approaching their problem is a set of looming uncertainties about the poten‐
tial damage that this approach might cause to their systems. In particular, after learn‐
ing more about microservices methods, potential adopters frequently identify the
following issues:

1. They have already built a microservice architecture, but they didn’t know it had a
name.

2. The management, coordination, and control of a microservices system would be
too difficult.

Adopting Microservices | 5

http://api.co/msabook

3. The microservices style doesn’t account for their unique context, environment,
and requirements.

While we don’t believe that microservices is the answer to every question about a
potential architecture choice, we do feel that these particular fears should be better
understood before dismissing an opportunity to improve a system. Let’s take a look at
each of these barriers to adoption in more detail.

“What are microservices? Don’t I already have them?”
Earlier in this chapter we shared the story of how microservices got their name, but
we never actually came up with a concrete definition. While there is not one single
definition for the term “microservice,” there are two that we think are very helpful:

Microservices are small, autonomous services that work together.
—Sam Newman, Thoughtworks

Loosely coupled service-oriented architecture with bounded contexts.
—Adrian Cockcroft, Battery Ventures

They both emphasize some level of independence, limited scope, and interoperability.
We also think that it is important to view “a microservice” in the scope of an existing
system. For that reason our definition of microservices also includes the architectural
element:

A microservice is an independently deployable component of bounded scope that sup‐
ports interoperability through message-based communication. Microservice architec‐
ture is a style of engineering highly automated, evolvable software systems made up of
capability-aligned microservices.

You may find much of what is described in the preceding definition familiar. In fact,
your organization is probably doing something like this already. If you’ve imple‐
mented a service-oriented architecture (SOA), you’ve already embraced the concept
of modularity and message-based communication. If you’ve implemented DevOps
practices you’ve already invested in automated deployment. If you are an Agile shop,
you’ve already started shaping your culture in a way that fits the microservices advice.

But given that there is no single, authoritative definition, when do you get to pro‐
claim that your architecture is a microservice architecture? What is the measure and
who gets to decide? Is there such a thing as a “minimum viable microservice architec‐
ture”?

The short answer is we don’t know. More importantly, we don’t care! We’ve found that
the companies that do well with microservices don’t dwell on the meaning of this sin‐
gle word. That doesn’t mean that definitions are trivial—instead, it’s an admission
that finding a universal meaning for the microservices style is not important when it
comes to meeting business goals. Your time is better spent improving your architec‐

6 | Chapter 1: The Microservices Way

ture in a way that helps you unlock more business value. For most organizations this
means building applications with more resilience and changeability than ever before.
What you call that style of application is entirely up to you.

If you are considering adopting a microservice architecture for your organization,
consider how effective the existing architecture is in terms of changeability and more
specifically replaceability. Are their opportunities to improve? Could you go beyond
modularity, Agile practices, or DevOps to gain value? We think you’ll stand a better
chance at providing value to your business team if you are open to making changes
that will get you closer to those goals. Later in this chapter we’ll introduce two goals
that we believe give you the best chance at success.

“How could this work here?”
Earlier in this chapter we shared perspectives on microservices from Newman, Cock‐
croft, Lewis, and Fowler. From these comments, it is clear that microservice applica‐
tions share some important characteristics:

• Small in size
• Messaging enabled
• Bounded by contexts
• Autonomously developed
• Independently deployable
• Decentralized
• Built and released with automated processes

That’s a big scope! So big that some people believe that microservices describe a soft‐
ware development utopia—a set of principles so idealistic that they simply can’t be
realized in the real world. But this type of claim is countered with the growing list of
companies who are sharing their microservice success stories with the world. You’ve
probably heard some of those stories already—Netflix, SoundCloud, and Spotify have
all gone public about their microservices experiences.

But if you are responsible for the technology division of a bank, hospital, or hotel
chain, you might claim that none of these companies look like yours. The microservi‐
ces stories we hear the most about are from companies that provide streamed con‐
tent. While this is a domain with incredible pressure to remain resilient and perform
at great scale, the business impact of an individual stream failing is simply incompa‐
rable to a hotel losing a reservation, a single dollar being misplaced, or a mistake in a
medical report.

Does all of this mean that microservices is not a good fit for hotels, banks, and hospi‐
tals? We don’t think so and neither do the architects we’ve spoken to from each of

Adopting Microservices | 7

those industries. But we have found that the particular way your organization needs
to implement a microservice system is likely to differ from the way that Netflix imple‐
ments theirs. The trick is in having a clear goal and understanding where the dials are
to move your organization toward it. Later in this book we’ll shed some light on the
principles and practices that help microservices companies succeed.

“How would we deal with all the parts? Who is in charge?”
Two microservices characteristics that you might find especially concerning are
decentralization and autonomy. Decentralization means that the bulk of the work
done within your system will no longer be managed and controlled by a central body.
Embracing team autonomy means trusting your development teams to make their
own decisions about the software they produce. The key benefit to both of these
approaches is that software changes become both easier and faster—less centraliza‐
tion results in fewer bottlenecks and less resistance to change, while more autonomy
means decisions can be made much quicker.

But if your organization hasn’t worked this way in the past, how confident are you
that it could do so in the future? For example, your company probably does its best to
prevent the damage that any single person’s decisions can have on the organization as
a whole. In large companies, the desire to limit negative impact is almost always
implemented with centralized controls—security teams, enterprise architecture
teams, and the enterprise service bus are all manifestations of this concept. So, how
do you reconcile the ideals of a microservice architecture within a risk-averse culture?
How do we govern the work done by microservices teams?

Similarly, how do you manage the output of all these teams? Who decides which
services should be created? How will services communicate efficiently? How will you
understand what is happening?

We’ve found that decentralization and control are not opposing forces. In other
words, the idea that there is a trade-off between a decentralized system and a gov‐
erned system is a myth. But this doesn’t mean that you gain the benefits of decentrali‐
zation and autonomy for free. When you build software in this way, the cost of
controlling and managing output increases significantly. In a microservice architec‐
ture, the services tend to get simpler, but the architecture tends to get more complex.
That complexity is often managed with tooling, automation, and process.

Ultimately, you must come to terms with the fact that asserting control and manage‐
ment of a microservice system is more expensive than in other architectural styles.
For many organizations, this cost is justified by a desire for increased system change‐
ability. However, if you believe that the return doesn’t adequately outweigh the bene‐
fit, chances are this is not the best way to build software in your organization.

8 | Chapter 1: The Microservices Way

The Microservices Way
When you first begin learning about microservice architecture it’s easy to get caught
up in the tangible parts of the solution. You don’t have to look hard to find people
who are excited about Docker, continuous delivery, or service discovery. All of these
things can help you to build a system that sounds like the microservice systems we’ve
been discussing. But microservices can’t be achieved by focusing on a particular set of
patterns, process, or tools. Instead, you’ll need to stay focused on the goal itself—a
system that can make change easier.

More specifically, the real value of microservices is realized when we focus on two key
aspects—speed and safety. Every single decision you make about your software devel‐
opment ends up as a trade-off that impacts these two ideals. Finding an effective bal‐
ance between them at scale is what we call the microservices way.

Speed and Safety at Scale and in Harmony.
—The Microservices Way

The Speed of Change
The desire for speed is a desire for immediate change and ultimately a desire for
adaptability. On one hand, we could build software that is capable of changing itself—
this might require a massive technological leap and incredibly complex system. But
the solution that is more realistic for our present state of technological advancement
is to shorten the time it takes for changes to move from individual workers to a pro‐
duction environment.

Years ago, most of us released software in the same way that NASA launches rockets.
After deliberate effort and careful quality control, our software was burned into a per‐
manent state and delivered to users on tapes, CDs, DVDs, and diskettes. Of course,
the popularity of the Web changed the nature of software delivery and the mechanics
of releases have become much cheaper and easier. Ease of access combined with
improved automation has drastically reduced the cost of a software change. Most
organizations have the platforms, tools, and infrastructure in place to implement
thousands of application releases within a single day. But they don’t. In fact, most
teams are happy if they can manage a release in a week. Why is that? The answer of
course is that the real deterrent to release speed is the fragility of the software they’ve
produced.

The Safety of Change
Speed of change gets a lot of attention in stories about microservice architecture, but
the unspoken, yet equally important counterpart is change safety. After all, “speed
kills” and in most software shops nobody wants to be responsible for breaking pro‐
duction. Every change is potentially a breaking change and a system optimized purely

The Microservices Way | 9

for speed is only realistic if the cost of breaking the system is near zero. Most develop‐
ment environments are optimized for release speed, enabling the software developer
to make multiple changes in as short a time as possible. On the other hand, most pro‐
duction environments are optimized for safety, restricting the rate of change to those
releases that carry the minimum risk of damage.

At Scale
On top of everything else, today’s software architect needs to be able to “think big”
when building applications. As we heard earlier in this chapter, the microservices
style is rooted in the idea of solving the problems that arise when software gets too
big. To build at scale means to build software that can continue to work when
demand grows beyond our initial expectations. Systems that can work at scale don’t
break when under pressure; instead they incorporate built-in mechanisms to increase
capacity in a safe way. This added dimension requires a special perspective to build‐
ing software and is essential to the microservices way.

In Harmony
Your life is filled with decisions that impact speed and safety. Not just in the software
domain, but in most of your everyday life; how fast are you willing to drive a car to
get where you need to be on time? How does that maximum speed change when
there is someone else in the car with you? Is that number different if one of your pas‐
sengers is a child? The need to balance these ideals is something you were probably
taught at a young age and you are probably familiar with the well-worn proverb,
“haste makes waste.”

We’ve found that all of the characteristics that we associate with microservice archi‐
tecture (i.e., replaceability, decentralization, context-bound, message-based commu‐
nication, modularity, etc.) have been employed by practitioners in pursuit of
providing speed and safety at scale. This is the reason a universal characteristic-
driven definition of microservices is unimportant—the real lessons are found in the
practices successful companies have employed in pursuit of this balancing act.

We don’t want to give you the wrong idea—microservice architecture is not limited to
a simple series of decisions regarding speed and safety of change. The microservices
domain is actually fairly complex and will require you to understand a wide breadth
of concepts that have a great depth of impact. If it was any other way, this would be a
very short book.

Instead, we introduce the microservices way in order to help you understand the
essence of the microservices style. All of the significant properties and patterns that
are commonly adopted for this style of architecture reflect attempts to deal with the
interplay between these forces. The companies that do this best are the ones that find
ways to allow both safety and speed of change to coexist. Organizations that succeed

10 | Chapter 1: The Microservices Way

with microservice architecture are able to maintain their system stability while
increasing their change velocity. In other words, they created a harmony of speed and
safety that works for their own context.

The pursuit of this harmony should shape the adoption decisions you make for your
own system. Throughout this book we will introduce principles and patterns that
have helped companies provide great value to their business. It will be tempting to
simply replicate the patterns in your own organizations in exactly the same way. But
do your best to first pay attention to the impact of these types of changes on your own
organization’s harmony. We will do our best to provide you with enough information
to connect those dots.

It also means that you may not find your balance in the same way as other companies.
We don’t expect your organization to work the same as the ones we’ve highlighted in
this book and we don’t expect your microservices implementation to be the same
either. Instead, we hope that focusing on the way that microservices applications are
built will help you identify the parts that could work for you.

Summary
In this chapter we introduced the original intent of the microservice architecture con‐
cept—to replace complex monolithic applications with software systems made of
replaceable components. We also introduced some of the concerns that first-time
implementers often have, along with some of the practical realities. Finally, we intro‐
duced the microservices way, a goal-driven approach to building adaptable, reliable
software. The balance of speed and safety at scale is key to understanding the essence
of microservices and will come up again throughout this book. In the next chapter
we’ll take a closer look at the goals of speed and safety in the context of actual micro‐
service implementations.

Summary | 11

CHAPTER 2

The Microservices Value Proposition

The microservice architectural style was defined based on common patterns observed
across a number of pioneering organizations. These organizations did not con‐
sciously implement a microservice architecture. They evolved to it in pursuit of spe‐
cific goals.

In this chapter, we will explore the common benefits of microservice architecture and
how they drive the higher-order goals from Chapter 1—speed, safety, and scale; illus‐
trate how the goals of microservice architecture deliver business value; define a
maturity model for microservice architecture benefits and goals; and finally, apply
this information using a goal-oriented approach to microservice architecture.

To start with, let’s survey the motivations of some early microservice adopters.

Microservice Architecture Benefits
Why are organizations adopting microservices? What are the motivations and chal‐
lenges? How can the leaders of these organizations tell that taking on the challenges
of managing a collection of small, loosely coupled, independently deployable services
is actually paying off for the company? What is the measure of success? Surveying the
early adopters of microservices, we find that the answers to these questions vary quite
a bit. However, some common themes emerge and tie back to the mantra of “balanc‐
ing speed and safety at scale.”

Werner Vogels of Amazon describes the advantages of their architecture as follows:
We can scale our operation independently, maintain unparalleled system availability,
and introduce new services quickly without the need for massive reconfiguration.

—Werner Vogels, Chief Technology Officer, Amazon Web Services

13

http://api.co/24gZrjw

By focusing on scalability and component independence, Amazon has been able to
increase their speed of delivery while also improving the safety—in the form of scala‐
bility and availability—of their environment.

UK e-retailer Gilt is another early adopter of microservice architecture. Their Senior
Vice President of Engineering, Adrian Trenaman, listed these resulting benefits in an
InfoQ article:

• Lessens dependencies between teams, resulting in faster code to production
• Allows lots of initiatives to run in parallel
• Supports multiple technologies/languages/frameworks
• Enables graceful degradation of service
• Promotes ease of innovation through disposable code—it is easy to fail and move

on

The first three points help speed up software development, through organizational
alignment and independent deployability, as well as polyglotism. The last two points
speak to a safe environment that facilitates replaceability of services.

Social media pioneer Hootsuite has observed efficiency benefits in their microservice
adoption based on the tunability of the system:

Some services require high availability, but are low volume, and it’s the opposite for
other services. A microservice approach allows us to tune for both of these situations,
whereas in a monolith it’s all or nothing.

—Beier Cai, Director of Software Development, Hootsuite

With a more granular set of components, Hootsuite is able to independently manage
their services and achieve greater efficiency.

Clay Garrard, Senior Manager of Cloud Services at Disney, found that although there
was work done to modularize the code base of their monolithic applications, the
domain boundaries were not clear. This meant that small changes often led to large
deployments.

With microservices, we have reduced the time it takes to deploy a useful piece of code
and also reduced the frequency of deploying code that hasn’t changed. Ultimately we
strive to be flexible in our interpretation of microservice architecture, using its
strengths where we can, but realizing that the business does not care about how we
achieve results, only that we move quickly with good quality and flexible design.

—Clay Garrard, Senior Manager of Cloud Services, Disney

The primary driver here is speed, as requested directly from the business. However,
there is also an emphasis on safety—through independent deployability and testabil‐
ity—as well as future-proofing through composability.

14 | Chapter 2: The Microservices Value Proposition

http://api.co/gilt-microservices

Lastly, SoundCloud sought to solve the following problem when they evolved to a
microservice architecture:

The monolithic code base we had was so massive and so broad no one knew all of it.
People had developed their own areas of expertise and custodianship around submod‐
ules of the application.

—Phil Calçado, former Director of Engineering, SoundCloud

By embracing microservices, they were able to overcome this issue and improve the
comprehensibility of their software system.

There are common goals and benefits that emerge from these implementation stories.
The goal of improving software delivery speed as functional scope grows is realized
through greater agility, higher composability, improved comprehensibility, independ‐
ent service deployability, organizational alignment, and polyglotism. The goal of
maintaining software system safety as scale increases is achieved through higher
availability and resiliency, better efficiency, independent manageability and replacea‐
bility of components, increased runtime scalability, and more simplified testability.
Now let’s explore how these goals and benefits derive business value for organizations
that employ microservice architecture.

Deriving Business Value
Successful companies do not focus on increasing software delivery speed for its own
sake. They do it because they are compelled by the speed of their business. Similarly,
the level of safety implemented in an organization’s software system should be tied to
specific business objectives. Conversely, the safety measures must not get in the way
of the speed unnecessarily. Balance is required.

For each organization, that balance will be a function of its delivery speed, the safety
of its systems, and the growth of the organization’s functional scope and scale. Each
organization will have its own balance. A media company that aims to reach the wid‐
est possible audience for its content may place a much higher value on delivery speed
than a retail bank whose compliance requirements mandate specific measures around
safety. Nonetheless, in an increasingly digital economy, more companies are recogniz‐
ing that software development needs to become one of their core competencies.

In this new business environment, where disruptive competitors can cross industry
boundaries or start up from scratch seemingly overnight, fast software delivery is
essential to staying ahead of the competition and achieving sustainable growth. In
fact, each of the microservice architecture benefits that drive delivery speed contrib‐
ute real business value:

Deriving Business Value | 15

http://api.co/1PcIYvk
http://api.co/1PcIYvk

• Agility allows organizations to deliver new products, functions, and features
more quickly and pivot more easily if needed.

• Composability reduces development time and provides a compound benefit
through reusability over time.

• Comprehensibility of the software system simplifies development planning,
increases accuracy, and allows new resources to come up to speed more quickly.

• Independent deployability of components gets new features into production more
quickly and provides more flexible options for piloting and prototyping.

• Organizational alignment of services to teams reduces ramp-up time and encour‐
ages teams to build more complex products and features iteratively.

• Polyglotism permits the use of the right tools for the right task, thus accelerating
technology introduction and increasing solution options.

Likewise, digital native consumers expect always-on services and are not shy about
changing corporate allegiances. Outages or lost information can cause them to take
their business elsewhere. A safe software system is indispensable. The safety-aligned
benefits discussed earlier also provide particular business value:

• Greater efficiency in the software system reduces infrastructure costs and reduces
the risk of capacity-related service outages.

• Independent manageability contributes to improved efficiency, and also reduces
the need for scheduled downtime.

• Replaceability of components reduces the technical debt that can lead to aging,
unreliable environments.

• Stronger resilience and higher availability ensure a good customer experience.
• Better runtime scalability allows the software system to grow or shrink with the

business.
• Improved testability allows the business to mitigate implementation risks.

Clearly, microservice architecture has the potential to provide numerous business
benefits. However, not every organization needs every benefit, and not every micro‐
service architecture is capable of delivering all of them. With that in mind, let’s now
look at how an organization can combine its business objectives with the potential
benefits of microservice architecture to tailor a goal-oriented approach.

16 | Chapter 2: The Microservices Value Proposition

Defining a Goal-Oriented, Layered Approach
In spite of the fact that microservice architecture was originally a reaction to the limi‐
tations of monolithic applications, there is a fair amount of guidance in the industry
that says new applications should still be built as monoliths first. The thinking is that
only through the creation and ownership of a monolith can the right service bound‐
aries be identified. This path is certainly well trodden, given that early microservice
adopters generally went through the process of unbundling their own monolithic
applications. The “monolith first” approach also appears to follow Gall’s Law, which
states that, “A complex system that works is invariably found to have evolved from a
simple system that worked.” However, is a monolithic application architecture the
only simple system starting point? Is it possible to start simple with a microservice
architecture?

In fact, the complexity of a software system is driven by its scale. Scale comes in the
form of functional scope, operational magnitude, and change frequency. The first
companies to use microservice architecture made the switch from monolithic appli‐
cations once they passed a certain scale threshold. With the benefit of hindsight, and
with an analysis of the common goals and benefits of microservice architecture, we
can map out a set of layered characteristics to consider when adopting microservice
architecture.

Modularized Microservice Architecture
Modularity … is to a technological economy what the division of labor is to a manu‐
facturing one.

—W. Brian Arthur, author of The Nature of Technology

At its most basic level, microservice architecture is about breaking up an application
or system into smaller parts. A software system that is modularized arbitrarily will
obviously have some limitations, but there is still a potential upside. Network-
accessible modularization facilitates automation and provides a concrete means of
abstraction. Beyond that, some of the microservice architecture benefits discussed
earlier already apply at this base layer.

To help software delivery speed, modularized services are independently deployable.
It is also possible to take a polyglot approach to tool and platform selection for indi‐
vidual services, regardless of what the service boundaries are. With respect to safety,
services can be managed individually at this layer. Also, the abstracted service inter‐
faces allow for more granular testing.

This is the most technologically focused microservice architecture layer. In order to
address this layer and achieve its associated benefits, you must establish a foundation
for your microservice architecture. This will be discussed in detail in Chapter 4.

Defining a Goal-Oriented, Layered Approach | 17

http://martinfowler.com/bliki/MonolithFirst.html
http://amzn.to/27RdQYu

1 http://api.co/kay-systems

Cohesive Microservice Architecture
The greater the cohesion of individual modules in the system, the lower the coupling
between modules will be.

—Larry Constantine and Edward Yourdon, authors of Structured Design: Funda‐
mentals of a Discipline of Computer Program and Systems Design

The next layer to consider in your microservice architecture is the cohesion of serv‐
ices. In order to have a cohesive microservice architecture, it must already be modu‐
larized. Achieving service cohesion comes from defining the right service boundaries
and analyzing the semantics of the system. The concept of domains is useful at this
layer, whether they are business-oriented or defined by some other axis.

A cohesive microservice architecture can enable software speed by aligning the sys‐
tem’s services with the supporting organization’s structure. It can also yield composa‐
ble services that are permitted to change at the pace the business dictates, rather than
through unnecessary dependencies. Reducing the dependencies of a system featuring
cohesive services also facilitates replaceability of services. Moreover, service cohesion
lessens the need for highly orchestrated message exchanges between components,
thereby creating a more efficient system.

It takes a synthesized view of business, technology, and organizational considerations
to build a cohesive system. This can be addressed through service design, which is the
focus of Chapter 5.

Systematized Microservice Architecture
The key in making great and growable systems is much more to design how its mod‐
ules communicate rather than what their internal properties and behaviors should be.1

—Alan Kay, 1998 email to the Squeak-dev list

The final and most advanced layer to consider in a microservice architecture is its
system elements. After breaking the system into pieces through modularization, and
addressing the services’ contents through cohesion, it is time to examine the interre‐
lationships between the services. This is where the greatest level of complexity in the
system needs to be addressed, but also where the biggest and longest-lasting benefits
can be realized.

18 | Chapter 2: The Microservices Value Proposition

http://api.co/kay-systems

There are two ways speed of delivery is impacted in a systematized microservice
architecture. Although a single service may be understandable even in a modularized
microservice architecture, the overall software system is only comprehensible when
the connectivity between services is known. Also, agility is only possible when the
impacts of changes on the whole system can be identified and assessed rapidly. This
applies on the safety side as well, where runtime scalability is concerned. Lastly,
although individual components may be isolated and made resilient in a modularized
or cohesive microservice architecture, the system availability is not assured unless the
interdependencies of the components are understood.

Dealing with complex systems requires a careful approach based on influence versus
control. The system aspects of microservice architecture are discussed in detail in
Chapters 3 and 6.

Maturity Model for Microservice Architecture Goals and Benefits
These layered characteristics—modularized, cohesive, and systematized—help to
define a maturity model that serves a number of purposes. First, it classifies the bene‐
fits according to phase and goal (speed or safety) as discussed previously. Secondly, it
illustrates the relative impact and priority of benefits as scale and complexity increase.
Lastly, it shows the activities needed to address each architectural phase. This matur‐
ity model is depicted in Figure 2-1.

Note that an organization’s microservice architecture can be at different phases for
different goals. Many companies have become systematized in their approach to
safety—through automation and other operational considerations—without seeking
the speed-aligned system-level benefits. The point of this model is not for every orga‐
nization to achieve systematized actualization with their microservice architecture.
Rather, the model is meant to clarify goals and benefits in order to help organizations
focus their microservice strategies and prepare for what could come next.

Defining a Goal-Oriented, Layered Approach | 19

Figure 2-1. A maturity model for microservice architecture goals and benefits

Applying the Goal-Oriented, Layered Approach
Now we have a good understanding of how a microservice architecture can bring
value to an organization, and a model for understanding what characteristics can
bring what goals and benefits at what stage of adoption. But what about your organi‐
zation? What are your business goals? What problems do you need to solve? It is a
common misstep to start down the microservices path for its own sake without
thinking about the specific benefits you are targeting. In other cases, some organiza‐
tions aim for a high-level goal and then only implement one aspect of microservices
while ignoring its founding conditions. For example, an organization with a high-
level divide between development and operations—an organizational red flag—might
execute a containerization strategy on their existing applications and then wonder
why they didn’t speed up their software development sufficiently. A broad perspective
is needed.

To begin with, define the high-level business objectives you want to accomplish, and
then weigh these against the dual goals of speed and safety. Within that context, con‐

20 | Chapter 2: The Microservices Value Proposition

sider the distinct benefits you are targeting. You can then use the maturity model to
determine the complexity of the goal, and identify the best approach to achieve it.

Holger Reinhardt, CTO of the German digital media group Haufe-Lexware, provides
an example of a goal-oriented approach in action. One of Haufe’s initial attempts at
microservice architecture was on their monolithic service platform, which included
functions such as user management and license management. The first attempt was
explicitly focused on changing the architecture from monolith to service-enabled
software system. The results were not positive. However, when they evaluated the
main issues with the application—particularly the operational inefficiencies around it
—they changed their approach from refactoring the existing architecture to automat‐
ing the problematic deployment process. Through a small investment, they were able
to take their service platform deployment downtime from 5 days to 30 minutes. Their
next iteration will focus on reducing QA time through automation and a switch in
methodology from white-box to black-box testing. Following these methodological
changes, they will identify the domains in their monolithic application that require
the greatest speed of innovation and unbundle those first. By taking an iterative
approach tied to clear goals, they are able to measure success quickly and change
course if needed.

Summary
This chapter has covered a lot of ground that should help you define a strategy for
applying a microservice architecture in your organization. We first analyzed the rea‐
sons the early adopters of microservice architecture chose this style. Next, we looked
into the common goals and benefits of microservices, how they relate to each other,
and what business objectives they can drive. Lastly, we defined a maturity model that
can be used to target the right goals and benefits for applying a microservice architec‐
ture in your organization. You should now be ready to roll up your sleeves and learn a
design-based approach to microservice architecture.

Summary | 21

PART II

Microservice Design Principles

The Flaw of Averages
In the 1950s, the US Air Force launched a study into the causes of pilot errors and
part of that study focused on the physical dimensions of the pilots and their cockpit
control systems. The cockpits had been initially designed based on assumed physical
averages of pilots and it was assumed that pilots had grown larger over time and that
the design needed to be updated.

This story comes from the book The End of Average by Todd Rose
(Harper Collins, 2016). Rose has given a TEDx talk on the subject
of averages and is a leading proponent of an interdisciplinary field
called “The Science of the Individual”.

It fell to 23-year-old Lt. Gilbert Daniels to lead the painstaking process of carefully
measuring over 4,000 pilots on 140 different physcial dimensions and then analyze
the results. Along the way, Daniels got the idea to go beyond the initial plan to com‐
pute the averages of all 140 dimensions in order to construct what the military
deemed the “average pilot.” Daniels wanted to know just how many of the 4,000 pilots
he had measured actually were average—i.e., how many fit the computed values the
military was aiming to use to redesign the airplane cockpits?

By taking just ten of the many dimensions he was working with (height, chest size,
sleeve length, etc.), Daniels constructed what he defined as the average pilot. Daniels
also posited that anyone who fell within a 30% range of the target number for a
dimension would be included in his list of average pilots. For example, the average

http://lsi.gse.harvard.edu/home-0

pilot height turned out to be 5’9”. So, for Daniels, anyone who measured 5’7” to 5’11”
would be counted as average for height. Daniels then proceeded to check each of his
4,000 subjects to discover just how many of them would score within the average for
every dimension. He was looking for all the pilots who could be considered com‐
pletely average. To everyone’s surprise, the total count was zero. There was not one
single pilot that fell within 30% of the average for all ten dimensions. As Daniels
wrote in his paper The “Average Man”?:

As an abstract representation of a mythical individual most representative of a given
population, the average man is convenient to grasp in our minds. Unfortunately he
doesn’t exist.

—Lt. Gilbert Daniels, The “Average Man”?

It turns out there is no such thing as an average pilot. Designing a cockpit for the aver‐
age pilot results in a cockpit configuration that fits no one. Intuitively, this makes
sense to most of us. While averages are helpful when looking for trends in a group,
the resulting “profile” from this group does not exist in real life. Averages help us
focus on trends or broad strokes but do not describe any actual existing examples.

The reason for this difference between real pilots and the average pilot can be sum‐
med up in what Rose calls the principle of jaggedness. When measuring individuals on
a multidimensional set of criteria (height, arm length, girth, hand size, and so forth),
there are so many varying combinations that no one individual is likely to exhibit the
average value for all dimensions. And designing for an individual that exhibits all
those averages will result in a poor fit for every actual person.

This principle of jaggedness is important to keep in mind when designing software
architecture, too. Designing for an ideal or average is likely to result in a model that
fits no single purpose well. Guidance that calls out specific measurements of an ideal
microservice or canonical model for microservices is likely to have traits that fit no
existing microservice implementation. Ideals are just that—not realities.

The solution that eventually worked for the US Air Force was to incorporate variabil‐
ity into the design of airplane cockpits. For example, creating an adjustable seat, the
ability to modify the tilt and length of the steering column, and moving the foot ped‐
als forward or back are all examples of designing in variability. This works because
the exact dimensions of any single element in the design are not as important as the
ability to identify the important dimensions that need to support variability.

http://api.co/average-man

CHAPTER 3

Designing Microservice Systems

So far we’ve learned that companies building applications in the microservices way do
more than just implement small components. We now know that there isn’t a strict
definition for what constitutes a microservice architecture. Instead, the focus is on
building applications that balance speed and safety at scale, primarily through repla‐
ceability. Throughout the remaining chapters of this book we will dive deeper into the
details of microservice adoption. But considering what you’ve learned about micro‐
services systems so far, one thing should be clear—there are a lot of moving parts to
consider. The hallmark of a microservice architecture might be smaller services, but
following the microservices way will require you to think big. You’ll need to tune your
culture, organization, architecture, interfaces, and services in just the right way to
gain the balance of speed and safety at scale.

In this chapter we will lay the groundwork for thinking about your application in a
way that helps you unlock the potential value of a microservices system. The concepts
introduced are rooted in some pretty big domains: design, complexity, and systems
thinking. But you don’t need to be an expert in any of those fields to be a good micro‐
service designer. Instead, we will highlight a model-driven way of thinking about
your application that encapsulates the essential parts of complexity and systems
thinking. Finally, at the end of this chapter we will introduce an example of a design
process that can help promote a design-driven approach to microservices implemen‐
tation.

The Systems Approach to Microservices
We’ve found that many first-time adopters of microservices tend to focus on the serv‐
ices that need to be built. But in order to develop applications in the microservices
way, you’ll need to conceptualize the design as much more than isolated, individual
service designs. That doesn’t mean that the design of services can be ignored—just

25

like cars and pedestrians are essential to a traffic system, services are the key ingredi‐
ent of a microservice system. But thinking in services terms alone isn’t enough;
instead you’ll need to consider how all aspects of the system can work together to
form an emergent behavior. Emergent behaviors are the ones that are greater than the
sum of their parts and for a microservices application this includes the runtime
behavior that emerges when we connect individual services together and the organi‐
zational behavior that gets us there.

Emergence is an essential part of the science of complexity and is a
key indicator of system complexity. Complexity scientist Melanie
Mitchell (known for her work at the Santa Fe Institute) often uses
ant colonies to illustrate emergence and complexity: predicting the
behavior of a single ant is trivial, but predicting the behavior of an
entire ant colony is much more difficult.

A microservices system encompasses all of the things about your organization that
are related to the application it produces. This means that the structure of your orga‐
nization, the people who work there, the way they work, and the outputs they pro‐
duce are all important system factors. Equally important are runtime architectural
elements such as service coordination, error handling, and operational practices. In
addition to the wide breadth of subject matter that you need to consider, there is the
additional challenge that all of these elements are interconnected—a change to one
part of the system can have an unforeseen impact on another part. For example, a
change to the size of an implementation team can have a profound impact on the
work that the implementation team produces.

If you implement the right decisions at the right times you can influence the behavior
of the system and produce the behaviors you want. But that is often easier said than
done. Grappling with all of these system elements at the same time is difficult. In fact,
you might find it especially challenging to conceptualize all of the moving parts of the
microservice system in your head. What we are learning is that microservice systems
are complex!

Complexity scientists face a similar challenge when they work with complex systems.
With all of the interconnected parts and the complex emergence that results, it is very
difficult to understand how the parts work together. In particular, it is difficult to pre‐
dict the results that can arise from a change to the system. So, they do what scientists
have always done—they develop a model.

The models mathematicians develop to study complex systems allow them to more
accurately understand and predict the behavior of a system. But this is a field in its
infancy and the models they produce tend to be very complicated. We don’t expect
you to understand the mathematics of complexity, nor do we think it will be particu‐
larly helpful in creating better microservice applications. But we do believe that a

26 | Chapter 3: Designing Microservice Systems

model-based approach can help all of us conceptualize our system of study and will
make it easier for us talk about the parts of the system.

With that in mind, Figure 3-1 depicts a microservice design model comprised of five
parts: Service, Solution, Process and Tools, Organization, and Culture.

Figure 3-1. The microservice system design model

In truth, each of these design elements are deserving of their own book and we point
you to some great sources in the reading list in Appendix A. But the goal of this
model is to highlight the major areas of concern and the parts of the system you need
to influence in order to succeed with this architectural style.

Service
Implementing well-designed microservices and APIs are essential to a microservice
system. In a microservice system, the services form the atomic building blocks from
which the entire organism is built. If you can get the design, scope, and granularity of
your service just right you’ll be able to induce complex behavior from a set of compo‐
nents that are deceptively simple.

In Chapter 5 we’ll give you some guidance on designing effective microservices and
APIs.

The Systems Approach to Microservices | 27

Solution
A solution architecture is distinct from the individual service design elements
because it represents a macro view of our solution. When designing a particular
microservice your decisions are bounded by the need to produce a single output—the
service itself. Conversely, when designing a solution architecture your decisions are
bounded by the need to coordinate all the inputs and outputs of multiple services.
This macro-level view of the system allows the designer to induce more desirable sys‐
tem behavior. For example, a solution architecture that provides discovery, safety, and
routing features can reduce the complexity of individual services.

We will dive into the patterns that you can employ to produce good microservice sys‐
tem behavior in Chapter 6.

Process and Tools
Your microservice system is not just a byproduct of the service components that han‐
dle messages at runtime. The system behavior is also a result of the processes and
tools that workers in the system use to do their job. In the microservice’s system, this
usually includes tooling and processes related to software development, code deploy‐
ment, maintenance, and product management.

Choosing the right processes and tools is an important factor in producing good
microservice system behavior. For example, adopting standardized processes like
DevOps and Agile or tools like Docker containers can increase the changeability of
your system. In Chapters 4 and 6 we will take a closer look at the processes and tools
that can have the biggest impact on a microservices system.

Organization
How we work is often a product of who we work with and how we communicate.
From a microservice system perspective, organizational design includes the structure,
direction of authority, granularity, and composition of teams. Many of the companies
that have had success with microservice architecture point to their organizational
design as a key ingredient. But organizational design is incredibly context-sensitive
and you may find yourself in a terrible situation if you try to model your 500+
employee enterprise structure after a 10-person startup (and vice versa).

A good microservice system designer understands the implications of changing these
organizational properties and knows that good service design is a byproduct of good
organizational design. We will dive deeper into team design concepts in Chapter 4.

28 | Chapter 3: Designing Microservice Systems

Culture
Of all the microservice system domains, culture is perhaps the most intangible yet
may also be the most important. We can broadly define culture as a set of values,
beliefs, or ideals that are shared by all of the workers within an organization. Your
organization’s culture is important because it shapes all of the atomic decisions that
people within the system will make. This large scope of influence is what makes it
such a powerful tool in your system design endeavor.

Much like organizational design, culture is a context-sensitive feature of your system.
What works in Japan may not work in the United States and what works in a large
insurance firm may not work at an ecommerce company. So, you’ll need to be cau‐
tious when attempting to emulate the practices that work in a company whose culture
you admire. There is no recipe or playbook that will guarantee you the same results.

As important as it is, the culture of an organization is incredibly difficult to measure.
Formal methods of surveying and modeling exist, but many business and technology
leaders evaluate the culture of their teams in a more instinctual way. You can get a
sense of the culture of your organization through your daily interactions with team
members, team products, and the customers they cater to.

However you gauge it, culture is often an indication of the impact of other parts of
your system. Shared ideals shape how people do their work and how they work will in
turn shape their organizational view. This is the interconnected nature of the system.

Embracing Change
Time is an essential element of a microservice system and failing to account for it is a
grave mistake. All of the decisions you make about the organization, culture, pro‐
cesses, services, and solutions should be rooted in the notion that change is inevita‐
ble. You cannot afford to be purely deterministic in your system design; instead, you
should design adaptability into the system as a feature.

There is good reason for taking this perspective: first, trying to determine what the
end state of your organization and solution design should look like is a near impossi‐
ble task. Second, it is unlikely that the context in which you made your design deci‐
sions will stay the same. Changes in requirements, markets, and technology all have a
way of making today’s good decisions obsolete very quickly.

A good microservice designer understands the need for adaptability and endeavors to
continually improve the system instead of working to simply produce a solution. We
give you some practical patterns and tools for improving system adaptability in the
third part of this book.

The Systems Approach to Microservices | 29

Putting it Together: The Holistic System
When put together all of these design elements form the microservices system. They
are interconnected and a change to one element can have a meaningful and some‐
times unpredictable impact on other elements. The system changes over time and is
unpredictable. It produces behavior that is greater than the behavior of its individual
components. It adapts to changing contexts, environments, and stimuli.

In short, the microservices system is complex and teasing desirable behaviors and
outcomes from that system isn’t an easy task. But some organizations have had enor‐
mous success in doing so and we can learn from their examples.

Standardization and Coordination
To be precise, one cannot speak of leaders who cause organizations to achieve superla‐
tive performance, for no one can cause it to happen. Leaders can only recognize and
modify conditions which prevent it.

—Dee Hock, author of The Art of Chaordic Leadership

Almost all of us work in organizations that operate within constraints. These con‐
straints arise because the wrong type of system behavior can be harmful to the orga‐
nization, even resulting in the organization failing as a result of particularly bad
behavior. For example, a banking technology system that makes it easy to steal some‐
one else’s money or a tax system that fails to protect its users’ private information are
unacceptable.

With the cost of unwanted system behavior so high, it’s no wonder that so many
architects and designers do their best to control system behavior. In practice, the sys‐
tem designer decides that there is some behavior or expectation that must be univer‐
sally applied to the actors within the system. Policies, governance, and audits are all
introduced as a way of policing the behavior of the system and ensuring that the
actors conform. In other words, some parts of the system are standardized.

But true control of this type of complex system is an illusion. You have as much
chance of guaranteeing that your banking system will be perfectly secure as a farmer
does of guaranteeing that his crops will always grow. No matter how many rules,
checks, and governance methods you apply you are always at the mercy of actors in a
system that can make poor decisions.

Instead, all of these mechanisms of control act as system influencers that greatly
increase the likelihood of the results you want. Mastering the system you are design‐
ing and making it do the things you want requires you to develop the right standards,
make sure the standards are being applied, and measure the results of the changes
you are making.

30 | Chapter 3: Designing Microservice Systems

However, control of the system comes at a steep price. Standardization is the enemy
of adaptability and if you standardize too many parts of your system you risk creating
something that is costly and difficult to change.

In his book Structure in Fives, organizational designer Henry Mintzberg identifies
some of the coordination mechanisms and standards that make the biggest differ‐
ences for organizational systems. In particular, he identifies standardization of work
outputs, worker skills, and work processes as having the most impact.

Don’t be scared off by our use of the word “standardization”! When
we talk about standards, we mean the established norms and
accepted ways of working that exist within an organization. The
goal of this section is to understand the system impact when stand‐
ardization is focused on different parts of the company.

Standardizing process
We’ve already talked about how processes and tools are important for the behavior
that emerges from our system. By standardizing the way that people work and the
tools they use, you can influence the behavior in a more predictable way. For exam‐
ple, standardizing a deployment process that reduces the time for component deploy‐
ment may improve the overall changeability of the system as the cost of new
deployments decreases.

Standardizing how we work has broad-reaching implications on the type of work we
can produce, the kind of people we hire, and the culture of an organization. The Agile
methodology is a great example of process standardization. Agile institutionalizes the
concept that change should be introduced in small measurable increments that allow
the organization to handle change easier. One observable system impact for Agile
teams is that the output they produce begins to change. Software releases become
smaller and measurability becomes a feature of the product they output. There are
also usually follow-on effects to culture and organizational design.

In addition to process standardization, most companies employ some form of tool
standardization as well. In fact, many large organizations have departments whose
sole purpose is to define the types of tools their workers are allowed to utilize. For
example, some firms forbid the use of open source software and limit their teams to
the use of centrally approved software, procured by a specialist team.

The microservices tooling space is moving very quickly and we are certain that any
discussion of particular microservice tools would be out of date by the time this book
is published. But we make an effort to describe the type of tools that are particularly
important to standardize in Chapter 4, along with some examples of tools that are
particularly relevant at the moment.

The Systems Approach to Microservices | 31

Standardizing outputs
We can define a team as a group of workers who take a set of inputs and transform
them into one or more outputs. Output standardization is way of setting a universal
standard for what that output should look like. For example, in an assembly line the
output of the line workers is standardized—everyone on the line must produce
exactly the same result. Any deviation from the standard output is considered a fail‐
ure.

In a microservices system, a team takes a set of requirements and turns those into a
microservice. So, the service is the output and the face of that output is the interface
(or API) that provides access to the features and data the microservice provides. In
fact, from the microservice consumer perspective, the API is the output, as they have
no visibility of the implementation behind it.

In the microservices context, output standardization often means developing some
standards for the APIs that expose the services. For example, you might decide that
all the organization’s services should have an HTTP interface or that all services
should be capable of subscribing to and emitting events. Some organizations even
standardize how the interfaces should be designed in an effort to improve the usabil‐
ity, changeability, and overall experience of using the service. In Chapter 5 we will
dive deeper into the types of API standardization that make sense for microservice
systems and the benefits and costs of different types of interface styles.

Standardizing people
You can also decide to standardize the types of people that do the work within your
organization. For example, you could introduce a minimum skill requirement for
anyone who wants to work on a microservice team. In fact, many of the companies
that have shared microservice stories point to the skill level of their people as a pri‐
mary characteristic of their success.

Standardizing skills or talent can be an effective way of introducing more autonomy
into your microservices system. When the people who are implementing the services
are more skilled they have a better chance of making decisions that will create the sys‐
tem behavior you want.

All organizations have some level of minimum skill and experience level for their
workers, but organizations that prioritize skill standardization often set very high
specialist requirements in order to reap system benefits. If only the best and brightest
are good enough to work within your system, be prepared to pay a high cost to main‐
tain that standard.

32 | Chapter 3: Designing Microservice Systems

Standardization trade-offs
Standardizing helps you exert influence over your system, but you don’t have to
choose just one of these standards to utilize. But keep in mind that while they aren’t
mutually exclusive, the introduction of different modes of standardization can create
unintended consequences in other parts of the system.

For example, you might decide to standardize on the APIs that all microservices
expose because you want to reduce the cost of connecting things together in your sol‐
ution architecture. To do this you might prescribe a set of rules for the types of APIs
that developers are allowed to create and institute a review process to police this
standardization. As an example, many organizations standardize a way of document‐
ing the interfaces that are created. At the moment Swagger (also called OpenAPI) is a
popular example of an interface description language, but there are many others
(WADL, Blueprint, RAML, etc.).

But we may find that constraining the types of APIs our people are allowed to pro‐
duce limits the types of tools they can use to create them. It might be the case that the
development tool we want everyone to use doesn’t support the interface description
language we have already chosen. In other words, the decision to standardize the
team’s output has had unintended consequences on the team’s work process. This
happens because standardization is an attempt to remove uncertainty from our sys‐
tem, but comes at the cost of reducing innovation and changeability.

The benefit of standardization is a reduction in the set of all possible outcomes. It
gives us a way to shape the system by setting constraints and boundaries for the
actions that people within the system can take. But this benefit comes at a cost. Stand‐
ardization also constrains the autonomy of individual decision-makers.

The challenge for designers is to introduce just enough standardization to achieve the
best emergent system outcome, while also employing standards and constraints that
complement each other. Throughout this book we will highlight standardization
techniques that will be useful for you in your microservices system, along with the
possible repercussions of using them.

A Microservices Design Process
The very first step of a service design process is to design the process itself.

—Marc Stickdorn, author of This is Service Design Thinking

Professional designers know that the secret to great design is using the right design
process. Where others apply expert advice or make false assumptions about the
impact of their design decisions, a good designer employs a process that helps them
continually get closer to the best product. This doesn’t mean that you never have to
make assumptions or that expert guidance is necessarily wrong. Instead, it means that

A Microservices Design Process | 33

your best chance at designing the microservice system you want is to work with a
process that helps you understand the impact of your assumptions and the applicabil‐
ity of advice as you change the system.

Figure 3-2 illustrates a framework for a design process that you can use in your own
microservice system designs. In practice, it is likely that you’ll need to customize the
process to fit within your own unique constraints and context. You might end up
using these design activities in a different order than given here. You may also decide
that some activities aren’t applicable to your goals or that other steps need to be
added.

Figure 3-2. Microservice system design process

Set Optimization Goals
The behavior of your microservice system is “correct” when it helps you achieve your
goals. There isn’t a set of optimization goals that perfectly apply to all organizations,
so one of your first tasks will be to identify the goals that make sense for your particu‐
lar situation. The choice you make here is important—every decision in the design
process after this is a trade-off made in favor of the optimization goal.

Note that optimization doesn’t mean that other system qualities are undesirable. In
fact, it is extremely likely that you will initially list many desirable outcomes for the
system you create. But as you go through the system design process you will find that
it is difficult to pull your system into many directions at the same time. A smaller set
of optimization goals is easier to design for. A single optimization goal (like the

34 | Chapter 3: Designing Microservice Systems

Vision Zero goal of zero traffic-related fatalities) provides the most clarity and has a
higher likelihood of succeeding.

For example, a financial information system might be optimized for reliability and
security above all other factors. That doesn’t mean that changeability, usability, and
other system qualities are unimportant—it simply means that the designers will
always make decisions that favor security and reliability above all other things.

In Chapter 4 we will identify the goals that we have most commonly seen among
companies that have embraced the microservices way and the principles that help
support them.

It is possible that you may need to change your optimization goals
at some point in the lifetime of your application. That is OK; it just
means that you need to follow the design process and implement
small changes to guide your system toward the new goal. If the goal
change is quite different from your original design goal this may
take some time. If the optimization goal is radically different from
your original goal, you may even create a new system design
entirely.

Development Principles
Underpinning a system optimization goal is a set of principles. Principles outline the
general policies, constraints, and ideals that should be applied universally to the
actors within the system to guide decision-making and behavior. The best designed
principles are simply stated, easy to understand, and have a profound impact on the
system they act upon.

In Chapter 4 we will look at some of the principles that Netflix employs toward its
optimization goals.

Sketch the System Design
If you find yourself building the application in a greenfield environment with no
existing organization or solution architecture in place, it is important that you estab‐
lish a good starting point for your system design. You won’t be able to create the per‐
fect system on your first try and you aren’t likely to have the time or information to
do that anyway. Instead, a good approach is to sketch the important parts of your sys‐
tem design for the purposes of evaluation and iteration.

How you do this is entirely up to you. There is a wealth of modeling and communica‐
tion tools available to conceptualize organizational and solution architectures; choose
the ones that work well for you. But the value of this step in the design process is to
serialize some of the abstract concepts from your head into a tangible form that can

A Microservices Design Process | 35

be evaluated. The goal of a sketching exercise is to continually improve the design
until you are comfortable moving forward.

The goal is to sketch out the core parts of your system, including organizational
structure (how big are the teams? what is the direction of authority? who is on the
team?), the solution architecture (how are services organized? what infrastructure
must be in place?), the service design (what outputs? how big?), and the processes
and tools (how do services get deployed? what tools are necessary?). You should eval‐
uate these decisions against the goals and principles you’ve outlined earlier. Will your
system foster those goals? Do the principles make sense? Do the principles need to
change? Does the system design need to change?

Sketching is powerful when the risk of starting over is small. Good sketches are easy
to make and easy to destroy, so avoid modeling your system in a way that requires a
heavy investment of time or effort. The more effort it takes to sketch your system the
less likely you are to throw it away. At this early stage of system design, change should
be cheap.

Most importantly, remember that the purpose of the iterative sketching stage is to
participate in the process of designing. The goal is to form new ideas, consider the
impact of proposed designs, and experiment in a safe way. The goal is not to create a
set of beautiful design documents or prescriptive plans.

Implement, Observe, and Adjust
Bad designers make assumptions about how a system works, apply changes in the
hope that it will produce desired behavior, and call it a day. Good designers make
small system changes, assess the impact of those changes, and continually prod the
system behavior toward a desired outcome. But a good design process is predicated
on your ability to get feedback from the system you are designing. This is actually
much more difficult than it sounds—the impact of a change to one small part of the
system may result in a ripple of changes that impact other parts of your system with
low visibility.

The perfect microservice system provides perfect information about all aspects of the
system across all the domains of culture, organization, solution architecture, services,
and process. Of course, this is unrealistic. It is more realistic to gain essential visibility
into our system by identifying a few key measurements that give us the most valuable
information about system behavior. In organizational design, this type of metric is
known as a key performance indicator (KPI). The challenge for the microservice
designer is to identify the right ones.

Gathering information about your system by identifying KPIs is useful, but being able
to utilize those metrics to predict future behavior is incredibly valuable. One of the
challenges that all system designers face is the uncertainty about the future. With per‐

36 | Chapter 3: Designing Microservice Systems

fect information about how our system might need to change we could build bound‐
aries in exactly the right places and make perfect decisions about the size of our
services and teams.

Without perfect information we are forced to make assumptions. Designers working
on existing applications can observe the existing and past behavior of the system to
identify patterns—components that change often, requirements that are always in
flux, and services that can expect high usage. But designers who are working on new
applications often have very little information to start with—the only way to identify
the brittle points of the application is to ship the product and see what happens.

The risk of making poor decisions is that we steer the system in a direction that
increases our “technical debt” (i.e., the future cost of addressing a technical defi‐
ciency). If we go too far along the wrong path we risk producing a system that
becomes too expensive to change, so we give up.

The classic microservices example of this is the cautionary tale of the “monolith.” A
team creates an initial release of an application when the feature set is small and the
componentry has low complexity. Over time, the feature set grows and the complex‐
ity of the deployed application grows, making change ever more difficult. At this
point, the team agrees that the application needs to be redesigned and modularized to
improve its changeability. But the redesign work is continually deferred because the
cost of that work is too high and difficult to justify.

At the other end of the scale is a system that is so overdesigned and overengineered
for future flexibility that it becomes impractical. An incredibly complex, adaptable
system that is built for massive amounts of change that never seems to happen.

Rather than trying to predict the future, a good microservices designer examines the
current state and makes small, measurable changes to the system. This is a bit like
taking a wrong turn on a long road trip—if you don’t know that you’ve made a mis‐
take you might not find out you’re going the wrong way until it is too late to turn
back. But if you have a navigator with you, they may inform you right away and you
can take corrective action.

When you are driving a car, taking a corrective action to steer your car back in the
right direction is fairly straightforward, but what should a corrective action look like
in a microservices system? A system that is designed with a high degree of visibility
might give us a lot of information about what is happening, but if the cost of chang‐
ing the system is too high we won’t be able to make any course corrections. This
problem of costly change presents itself when you need special permission, additional
funds, more people, or more time to make the changes you want to the system.

A Microservices Design Process | 37

So, in order to design a microservice system that is dynamic you’ll need to identify
the right KPIs, be able to interpret the data, and make small, cheap changes to the
system that can guide you back on the right course. This is only possible if the right
organization, culture, processes, and system architecture are in place to make it cheap
and easy to do so.

The Microservices System Designer
Throughout this chapter we’ve referred to the work that the microservices system
designer needs to undertake. But we haven’t identified who this system designer is or
where she might fit into your existing organization.

To be most effective, the microservices system designer should be able to enact
change to a wide array of system concerns. We’ve already identified that organization,
culture, processes, solution architecture, and services are significant concerns for the
system designer. But the boundaries of this system haven’t been properly identified.

You could decide that the system boundaries should mirror the boundaries of the
company. This means that the changes you enact could have a broad-reaching
impact. Alternatively, you could focus on a particular team or division within the
company and build a system that aligns with the parent company’s strategic goals. In
fact, this type of nested set of systems is fairly common and we see it all around us in
the physical world (e.g., consider the complex systems of the human brain, the
human, and the human community).

Ultimately, the microservices system designer or software system designer is respon‐
sible for all the elements of the bounded system. The implication is that there is a
world within the system and world outside of these borders. The system designer’s
task is to introduce small changes within the system in order to produce behavior that
will align with the desired goal. Not very different than the traditional executive,
manager, or CIO’s mission.

But outside of these managerial positions there aren’t many roles in the technology
domain that allow for this systematic solution view. Instead, responsibilities are segre‐
gated among specialists who may not share the same objectives: The solution archi‐
tect focuses on the coordination of services, the team manager focuses on the people,
and the service developer focuses on the service design. We believe that someone or
some team must be responsible for the holistic view of the entire system for a micro‐
services system to succeed.

Summary
In this chapter we introduced the microservices system model and a generic design
process for influencing the system. Throughout the rest of the book we will be diving
into each of the model’s domains in much greater detail. Remember that each of the

38 | Chapter 3: Designing Microservice Systems

decisions you make about organizational design, culture, solution architecture, pro‐
cess, and automation can result in unintended consequences to the system as a whole.
Always maintain your holistic perspective and continue to observe and adjust as
required.

A Microservices Design Process | 39

CHAPTER 4

Establishing a Foundation

Now that we have a general model for establishing complex systems, we also need to
come up with goals, principles, and guidelines for actually designing the system. A
common challenge in creating a microservice architecture for your company is find‐
ing the right set of principles to govern the work. One easy answer is to just copy
someone else’s successful model—to adopt the same goals, principles, and implemen‐
tation patterns they used. This can work if the company you decide to mimic has the
same general goals as your company. But that is not often the case. Each company has
a unique set of priorities, culture, and customer challenges and simply taking on a
fully formed model from some other organization is not likely to get you where you
need to go.

In this chapter, we’ll review a capabilities model for microservices environments.
We’ll also introduce the platform that represents the tools and services you provide
your developer and operations teams to allow them to meet their objectives. The
quality and fit of these tools has an important impact on your teams’ productivity. We
will also review how company culture—including team size—can affect the resulting
output of your teams.

Following that, we’ll focus on teams themselves; their size, communication modes,
and the level of freedom they have to innovate within their own scope of work. There
is quite a bit of research that shows that varying the size of the team has a direct
impact on the quality of the code that team produces. And establishing support for
creative thinking is another common trait for many of the companies we talked to in
preparation for this book.

By the time you complete this chapter, you should have a better understanding of the
role goals and principles have in establishing a successful microservice environment
and how you can use platforms and innovation culture to improve the general output
or your teams.

41

Goals and Principles
Regardless of the software architecture style you employ, it is important to have some
overall goals and principles to help inform your design choices and guide the imple‐
mentation efforts. This is especially true in companies where a higher degree of
autonomy is provided to developer teams. The more autonomy you allow, the more
guidance and context you need to provide to those teams.

In this section, we’ll take a look at some general goals for a microservice architecture
and some example principles. Along the way we’ll list our own suggested principles
for you to consider.

Goals for the Microservices Way
It is a good idea to have a set of high-level goals to use as a guide when making deci‐
sions about what to do and how to go about doing it. We’ve already introduced our
ultimate goal in building applications in the microservices way: finding the right har‐
mony of speed and safety at scale. This overarching goal gives you a destination to aim
for and given enough time, iterations, and persistence, will allow you to build a sys‐
tem that hits the right notes for your own organization.

There is of course a glaring problem with this strategy—it might take a very long time
for you to find that perfect harmony of speed and safety at scale if you are starting
from scratch. But thanks to the efforts of generations of technologists we have access
to proven methods for boosting both speed and safety. So, you don’t need to reinvent
established software development practices. Instead, you can experiment with the
parameters of those practices.

From our research, we’ve been able to distill four specific goals that lead to practices
that aid both safety and speed of change. These goals aren’t unique to microservice
architecture, but they are useful in shaping your journey. Here are the four goals to
consider:

1. Reduce Cost: Will this reduce overall cost of designing, implementing, and main‐
taining IT services?

2. Increase Release Speed: Will this increase the speed at which my team can get
from idea to deployment of services?

3. Improve Resilience: Will this improve the resilience of our service network?
4. Enable Visibility: Does this help me better see what is going on in my service net‐

work?

Let’s look at these in a bit more depth.

42 | Chapter 4: Establishing a Foundation

Reduce cost
The ability to reduce the cost of designing, implementing, and deploying services
allows you more flexibility when deciding whether to create a service at all. For exam‐
ple, if the work of creating a new service component includes three months of design
and review, six months of coding and testing, and two more weeks to get into produc‐
tion, that’s a very high cost—one that you would likely think very carefully about
before starting. However, if creating a new service component takes only a matter of a
few weeks, you might be more likely to build the component and see if it can help
solve an important problem. Reducing costs can increase your agility because it
makes it more likely that you’ll experiment with new ideas.

In the operations world, reducing costs was achieved by virtualizing hardware. By
making the cost of a “server” almost trivial, it makes it more likely that you can spin
up a bunch of servers in order to experiment with load testing, how a component will
behave when interacting with others, and so on. For microservices, this means com‐
ing up with ways to reduce the cost of coding and connecting services together. Tem‐
plated component stubs, standardized data-passing formats, and universal interfaces
are all examples of reducing the costs of coding and connecting service components.

Increase release speed
Increasing the speed of the “from design to deploy” cycle is another common goal. A
more useful way to view this goal is that you want to shorten the time between idea
and deployment. Sometimes, you don’t need to “go faster,” you just need to take a
shortcut. When you can get from idea to running example quickly, you have the
chance to get feedback early, to learn from mistakes, and iterate on the design more
often before a final production release. Like the goal of reducing costs, the ability to
increase speed can also lower the risk for attempting new product ideas or even
things as simple as new, more efficient data-handling routines.

One place where you can increase speed is in the deployment process. By automating
important elements of the deployment cycle, you can speed up the whole process of
getting services into production. Some of the companies we talked with for this book
spend a great deal of time building a highly effective deployment pipeline for their
organization. Many of them have such a well-designed deployment model that they
release to production multiple times a day (sometimes over 100 times a day!). Auto‐
mating release can go a long way toward increasing the speed of your microservice
implementation.

Improve resilience
No matter the speed or cost of solutions, it is also important to build systems that can
“stand up” to unexpected failures. In other words, systems that don’t crash, even when
errors occur. When you have an overall system approach (not just focused on a single

Goals and Principles | 43

component or solution) you can aim for creating resilient systems. This goal is often
much more reasonable than trying to create a single component that is totally free of
bugs or errors. In fact, creating a component that will have zero bugs is often impossi‐
ble and sometimes simply not worth the time and money it takes to try.

One of the ways DevOps practices has focused on improving resilience is through the
use of automated testing. By making testing part of the build process, the tests are
constantly run against checked-in code, which increases the chances of finding errors
in the code. This covers the code, but not the errors that could occur at runtime.
There are companies that run what they call end-to-end tests before releasing to pro‐
duction but many companies rely on a practice that Jez Humble calls blue-green
deployment. In this case, a new release is placed in production with a small subset of
users and, if all goes well during a monitoring phase, more users are routed to the
new release until the full userbase is on the new release. If any problems are encoun‐
tered during this phased rollout, the users can all be returned to the previous release
until problems are resolved and the process starts again.

Enable visibility
Another key goal should be to enable runtime visibility. In other words, improve the
ability of stakeholders to see and understand what is going on in the system. There is
a good set of tools for enabling visibility during the coding process. We often get
reports on the coding backlog, how many builds were created, the number of bugs in
the system versus bug completed, and so on. But we also need visibility into the run‐
time system.

The DevOps practices of logging and monitoring are great examples of this level of
runtime visibility. Etsy’s John Allspaw has said, “If it moves graph it. If it matters, alert
on it”. Most effort to date has been to log and monitor operation-level metrics (mem‐
ory, storage, throughput, etc.). However, there are some monitoring tools that can
take action when things go badly (e.g., reroute traffic).

Trade-offs
Each of these are important goals and sometimes they are competing goals. There are
trade-offs to consider. You might be able to reduce your overall costs, but it might
adversely affect runtime resilience. Or, you might be able to speed up deployment but
that might mean you lose track of what services are running in production and
reduce visibility into the larger service network. In the end, you’ll need to balance
various goals and find the right mix for your organization.

Your organization may have some other high-level goals you want to consider and
document. Whatever these turn out to be, one of the next things you need to do is
convert those goals into a set of actionable principles.

44 | Chapter 4: Establishing a Foundation

http://api.co/20Qs8mO
http://api.co/20Qs8mO
http://api.co/allspaw-mtbf
http://api.co/allspaw-mtbf

1 http://slideshare.net/adrianco has better links and a full annotated Netflix architecture workshop deck that
should be the basis for these references.

Operating Principles
Along with a set of goals for a microservice approach, it is important to have a set of
principles. Unlike goals, which are general, principles offer more concrete guidance
on how to act in order to achieve those goals. Principles are not rules—they don’t set
out required elements. Instead, they offer examples on how to act in identifiable situa‐
tions. Principles can also be used to inform best practices. Many of the organizations
we looked at when doing research have their own set of principles within their
company.

Netflix
One company that has been open about their own journey toward creating a success‐
ful microservice architecture is Netflix. In 2013, Adrian Cockcroft, Netflix’s Cloud
Architect, presented a day-long workshop on Netflix’s cloud architecture and operat‐
ing principles.1 We’ll highlight a few of them here.

We’ve called out just a few of Netflix’s principles here. You can
learn more about these and other key elements of the Netflix oper‐
ating model by checking out the slides and video from Adrian
Cockcroft’s 2013 talk, “Cloud Native Architecture.” From 2014 on,
Adrian left Netflix and has continued presenting on microservices,
DevOps, and related technology issues. You can find these presen‐
tations and videos in a different SlideShare account.

Antifragility
Netflix works to strengthen their internal systems so that they can withstand
unexpected problems. “The point of antifragility is that you always want a bit of
stress in your system to make it stronger.” There are several things Netflix does to
promote this, including their “Simian Army” set of tools, which “enforce archi‐
tectural principles, induce various kinds of failures, and test our ability to survive
them”. Software has bugs, operators make mistakes, and hardware fails. By creat‐
ing failures in production under controlled conditions, developers are incentiv‐
ized to learn to build more robust systems. Error reporting and recovery systems
are regularly tested, and real failures are handled with minimal drama and cus‐
tomer impact.

Immutability
Cockcroft says the principle of immutability is used at Netflix to assert that auto-
scaled groups of service instances are stateless and identical, which enables Net‐

Goals and Principles | 45

http://slideshare.net/adrianco
http://api.co/netflix-slides
http://api.co/1NZhGIs
http://slideshare.net/adriancockcroft
http://api.co/1NZi1uE
http://api.co/1NZi1uE
http://api.co/1NZi1uE

flix’s system to “scale horizontally.” The Chaos Monkey, a member of the Simian
Army, removes instances regularly to enforce the immutable stateless service
principle. Another related technique is the use of “Red/Black pushes”. Although
each released component is immutable, a new version of the service is introduced
alongside the old version, on new instances, then traffic is redirected from old to
new. After waiting to be sure all is well, the old instances are terminated.

Separation of Concerns
The Netflix microservice architecture arises because of separation of concerns
(SoC) in the engineering team organization. Each team owns a group of services.
They own building, operating, and evolving those services, and present a stable
agreed interface and service level agreement to the consumers of those services.
Invoking Conway’s law, an organization structured with independent self-
contained cells of engineers will naturally build what is now called a microservice
architecture.

So these are the three key principles: antifragility, immutability, and separation of
concerns. Some of these same ideas were expressed in slightly different terms in 1978
by Douglas McIlroy when describing the Unix operating system.

Unix
A succinct set of software architecture principles appears in the foreword for the 1978
edition of Bell Labs’ “UNIX Timesharing System” documentation. The four points
(listed next) were offered as a set of “maxims that have gained currency among the
builders and users of the Unix system.”

Here is the list Douglas McIrloy and his colleagues called out:

1. Make each program do one thing well. To do a new job, build afresh rather than
complicate old programs by adding new features.

2. Expect the output of every program to become the input to another, as yet
unknown, program. Don’t clutter output with extraneous information. Avoid
stringently columnar or binary input formats. Don’t insist on interactive input.

3. Design and build software, even operating systems, to be tried early, ideally
within weeks. Don’t hesitate to throw away the clumsy parts and rebuild them.

4. Use tools in preference to unskilled help to lighten a programming task, even if
you have to detour to build the tools and expect to throw some of them out after
you’ve finished using them.

One of the interesting things about these four principles is that they offer general
guidance on how to think about writing software. Phrases like “do one thing well” and
“build software … to be tried early” can lead developers to adopt what is known in
the Unix world as “The Rule of Parsimony” when writing code (“only write a big pro‐

46 | Chapter 4: Establishing a Foundation

http://api.co/1XJrY19
http://api.co/25u0Rdd

gram when nothing else will do”). This along with other Unix rules provides develop‐
ers with a set of guidelines for which programming languages or libraries to use.
These principles are also meant to shape developers’ thinking.

Suggested principles
Having a set of principles to guide software developers and architects makes a lot of
sense. As we learned from the story at the top of this chapter, the jaggedness principle
applies here as well. There is no one set of principles that matches every company.
Each organization needs to create a set that works for their company.

With this in mind, we offer a set of eight principles that reflects aspects of the other
examples we’ve looked at so far. You can use these as starter material in putting
together your own unique set for your company, or tune these until they fit.

Do one thing well
Many microservice implementations adopt the essential message—“do one thing
well,” which leads to the challenge of deciding what constitutes “one thing” in
your implementation. For some, “one thing” is managing user accounts. For oth‐
ers, “one thing” is finding a single user record. We’ll get a chance to talk about
how they decide where these types of boundaries are drawn for your organization
in Chapter 5.

Build afresh
The second part of McIlroy’s first principle (“build afresh”) is also important. Part
of the Unix philosophy is to create a collection of powerful tools that are predict‐
able and consistent over a long period of time. It is worth considering this as an
additional principle when implementing microservices. It may be better to build
a new microservice component rather than attempt to take an existing compo‐
nent already in production and change it to do additional work. This also maps to
Netflix’s immutability principle.

Expect output to become input
Another important principle for Unix developers is the notion that one program’s
output is another program’s input. For Unix systems, this leads to reliance on text
strings as the primary data-passing medium. On the Web, the data-passing
medium is the media type (HTML, HAL, Siren, Collection+JSON, etc.). In some
cases, you can even use HTTP’s content-negotiation feature to allow API provid‐
ers and consumers to decide for themselves at runtime which format will be used
to pass data.

Don’t insist on interactive input
In the Unix world, there is a desire to create scripts that tie a number of
command-line tools together to create a “solution.” This means humans don’t
need to be engaged every step of the way—the scripts handle both the input and

Goals and Principles | 47

the output on their own. Reducing the need for human interaction increases the
likelihood that the component can be used in unexpected ways.

Human interaction isn’t something that microservice components need to deal
with at runtime. But when we expand our scope of focus to the microservice sys‐
tem, it’s easy to find countless human interactions that could benefit from this
principle. Reducing the dependency on human interaction in the software devel‐
opment process can go a long way toward increasing the speed at which change
occurs.

Try early
Adopting the point of view that your microservice components should be “tried
early” fits well with the notion of continuous delivery and the desire to have
speed as a goal for your implementations. Another advantage of this “try early”
principle is you will learn your mistakes early. It turns out “try early” is also a way
to encourage teams to get in the habit of releasing early and often. The earlier
you release (even when that release is to a test environment), the earlier you get
feedback and the quicker you can improve.

Don’t hesitate to throw it away
This is a difficult one for some developers. Being willing to throw something
away can be hard when you’ve spent a great deal of time and effort building a
component. However, when you adopt the “try early” principle, throwing away
the early attempts is easier.

It is also important to consider this “throw it away” principle for components that
have been running in production for a long time. Over time, components that
did an important job may no longer be needed. You may have applied the “build
afresh” principle and replaced this component with one that does the job better. It
may be the case that the “one thing” that component does is simply no longer
needed. The important thing is to be willing to throw away a component when it
no longer serves its intended purpose.

Toolmaking
The “use tools” principle covers the notion that, when working to build a solu‐
tion, you sometimes need to build the “right tool” for the job. One of the impor‐
tant elements in the developmental history of humans was the ability to create
tools. These tools were created in order to reach a goal. In other words, tools are
a means, not an end. This is also an important principle for microservice archi‐
tecture.

While doing research for this book, we found several examples of companies that
created their own developer and deployment tool chains in order to improve
their overall developer experience. Sometimes these tools are built from existing
open source software projects. Sometimes the tools are, themselves, passed into

48 | Chapter 4: Establishing a Foundation

open source so that others can use them and contribute to improving and main‐
taining them. The important element here is to recognize that, in some cases, you
may need to divert from building your solution and spend some time building
tools to help you build that solution.

Platforms
Along with a set of general goals and concrete principles, you’ll need tangible tools to
make them real—a platform with which to make your microservice environment a
reality. From a microservice architecture perspective, good platforms increase the
harmonic balance between speed and safety of change at scale. We typically think
about speed and safety as opposing properties that require a trade-off to be made but
the right tooling and automation give you an opportunity to cheat the trade-off.

For example, the principle of immutability primarily improves the safety of changes
that are made to the system. There is also an inherent release cost for immutability as
each deployable unit needs its own associated release mechanisms, infrastructure,
and management. On its own, the added cost can reduce the speed at which changes
can be made. However, the introduction of containerization tools like Docker make
independent deployability easy and greatly reduce the associated costs. When immut‐
ability is combined with containerization, both speed and safety of changes are opti‐
mized, which may explain the rapid adoption of Docker in large organizations.

With a platform we pass from the conceptual world to the actual world. The good
news is that there are many examples of companies establishing—and even sharing—
their microservice platforms. The challenge is that it seems every company is doing
this their own way, which presents some choices to anyone who wants to build their
own microservice environment. Do you just select one of the existing OSS platforms?
Do you try to purchase one? Build one from scratch?

It would be a mistake to just select one of the popular company’s platforms and adopt
it without careful consideration. Does this company provide the same types of serv‐
ices that mine does? Does this company optimize for the same things that mine will?
Do we have similar staffing and training environments? Are our target customers
similar (priorities, skills, desired outcomes, etc.)?

Instead of focusing on a single existing company’s platform, we’ll look at a general
model for microservice platforms. One of the ones we like was described by Adrian
Cockcroft in 2014. He outlined a set of capabilities that he said all microservice
implementations need to deal with, which he called “microservice concerns.” We will
divide them into two groups: shared capabilities and local capabilities.

Platforms | 49

http://api.co/cockroft-dockercon
http://api.co/cockroft-dockercon

Shared Capabilities
It’s common in large enterprises to create a shared set of services for everyone to use.
These are typically centered around the common infrastructure for the organization.
For example, anything that deals with hardware (actual or virtual) falls into this cate‐
gory. Common database technologies (MySQL, Cassandra, etc.) and other software-
implemented infrastructure is another example of shared services.

Shared capabilities are platform services that all teams use. These are standardized
things like container technology, policy enforcement, service orchestration/interop,
and data storage services. Even in large organizations it makes sense to narrow the
choices for these elements in order to limit complexity and gain cost efficiencies.
Essentially, these are all services that are provided to every team in the organization.

It is important to note that shared services does not mean shared
instance or shared data. Just because all the teams use a single type
of data storage technology (e.g., Datomic, Mongo, Cassandra, and
MySQL) does not mean they all use the same running instance of
the data storage and all read and write from the same tables.

While shared capabilities offer potential cost savings they are ultimately rooted in the
microservices goal of change safety. Organizations that highly value safety of changes
are more likely to deploy centralized shared capabilities that can offer consistent, pre‐
dictable results. On the other hand, organizations that desire speed at all costs are
likely to avoid shared components as much as possible as it has the potential to
inhibit the speed at which decentralized change can be introduced. In these speed-
centric companies, capability reuse is less important than speed of delivery. As with
all things in the microservices way you will need to experiment with different forms
of shared capabilities to see what works best for your unique context.

The following is a quick rundown of what shared services platforms usually provide:

Hardware services
All organizations deal with the work of deploying OS- and protocol-level soft‐
ware infrastructure. In some companies there is a team of people who are
charged with accepting shipments of hardware (e.g., 1-U servers), populating
those machines with a baseline OS and common software for monitoring, health
checks, etc., and then placing that completed unit into a rack in the “server room”
ready for use by application teams.

Another approach is to virtualize the OS and baseline software package as a vir‐
tual machine (VM). VMs like Amazon’s EC2 and VMWare’s hypervisors are
examples of this technology. VMs make it possible to automate most of the work
of populating a “new machine” and placing it into production.

50 | Chapter 4: Establishing a Foundation

A more recent trend is the use of containers to solve this problem. Docker is the
most popular player in this field. We’ll talk more about Docker in Chapter 6. But
there are others. CoreOS Rocket is one. By the time you read this there may be
many more container products in the space.

Code management, testing, and deployment
Once you have running servers as targets, you can deploy application code to
them. That’s where code management (e.g., source control and review), testing,
and (eventually) deployment come in. There are quite a few options for all these
services and some of them are tied to the developer environment, especially test‐
ing.

Most microservice shops go to considerable lengths to automate this part of the
process. For example, the Amazon platform offers automation of testing and
deployment that starts as soon a developer checks in her code. Since the process
of automation can be involved and posting to production can be risky, it is a
good idea to treat this as a shared service that all teams learn to use.

Data stores
There are many data storage platforms available today, from classic SQL-based
systems to JSON document stores on through graph-style databases such as Riak
and Neo4J. It is usually not effective for large organizations to support all possible
storage technologies. Even today, some organizations struggle with providing
proper support for the many storage implementations they have onsite. It makes
sense for your organization to focus on a select few storage platforms and make
those available to all your developer teams.

Service orchestration
The technology behind service orchestration or service interoperability is
another one that is commonly shared across all teams. There is a wide range of
options here. Many of the flagship microservice companies (e.g., Netflix and
Amazon) wrote their own orchestration platforms. We’ll cover more on this in
Chapter 5.

Security and identity
Platform-level security is another shared service. This often happens at the
perimeter via gateways and proxies. Again, some companies have written their
own frameworks for this; Netflix’s Security Monkey is an example. There are also
a number of security products available. Shared identity services are sometimes
actually external to the company. We’ll talk more about this in Chapter 6.

Architectural policy
Finally, along with shared security, sometimes additional policy services are
shared. These are services that are used to enforce company-specific patterns or
models—often at runtime through a kind of inspection or even invasive testing.

Platforms | 51

http://api.co/security-monkey

One example of policy enforcement at runtime is Netflix’s “Simian Army”—a set
of services designed to purposely cause problems on the network (simulate miss‐
ing packets, unresponsive services, and so on) to test the resiliency of the system.

Another kind of policy tooling is one that standardizes the way outages or other
mishaps are handled after the fact. These kinds of after-action reviews are some‐
times called postmortems. For example, Etsy created (and open sourced) a tool
for standardizing postmortems called Morgue. Whether in the form of runtime
monitors or postmortem analysis, policy services ensure that varying teams
adhere to the same guidance on how to handle both resiliency and security in
their implementations.

Local Capabilities
Local capabilities are the ones that are selected and maintained at the team or group
level. One of the primary goals of the local capabilities set is to help teams become
more self-sufficient. This allows them to work at their own pace and reduces the
number of blocking factors a team will encounter while they work to accomplish their
goals. Also, it is common to allow teams to make their own determination on which
developer tools, frameworks, support libraries, config utilities, etc., are best for their
assigned job. Sometimes these tools are selected from a curated set of “approved”
products. Sometimes these tools are created in-house (even by the same team). Often
they are open source, community projects.

Finally, it is important that the team making the decision is also the one taking
responsibility for the results. Amazon’s Werner Vogels’ describes it this way:

You build it, you run it.
—Werner Vogels, Amazon CTO

In small organizations, it is likely that the local capability elements
will be the same for the entire company (e.g., the small startup is
just a single team anyway). However, as the company grows,
acquires new products, and expands into new technology and mar‐
ket spaces, forcing everyone to continue to use the same developer
tools, routing implementations, etc., does not scale well. At that
point, it makes sense to allow product groups to start making those
decisions for themselves.

Most local capabilities services are ones that access and/or manipulate the shared ser‐
vice. For example, Netflix created a tool to make it easy for teams to spin up Amazon
machine images (or AMIs) called Aminator, and another tool to make deploying
code to those cloud images (called Asgard). Both of these tools make dealing with
AMIs and deployments a “self-service” experience. Dev teams don’t need to rely on

52 | Chapter 4: Establishing a Foundation

https://github.com/etsy/morgue
http://api.co/ami-aminator
http://api.co/1Ue6Kmw

someone else to spin up machines or install software on them—the team does that
themselves.

Here’s a rundown of the common local capabilities for microservice environments:

General tooling
A key local capability is the power to automate the process of rolling out, moni‐
toring, and managing VMs and deployment packages. Netflix created Asgard and
Aminator for this. A popular open source tool for this is Jenkins.

Runtime configuration
A pattern found in many organizations using microservices is the ability roll out
new features in a series of controlled stages. This allows teams to assess a new
release’s impact on the rest of the system (are we running slower?, is there an
unexpected bug in the release?, etc.). Twitter’s Decider configuration tool is used
by a number of companies for this including Pinterest, Gilt, and Twitter. This
tool lets teams use configuration files to route traffic from the “current” set of
services to the “newly deployed” set of services in a controlled way. In 2014, Twit‐
ter’s Raffi Kirkorian explained Decider and other infrastructure topics in an
InfoQ interview. Facebook created their own tool called Gatekeeper that does the
same thing. Again, placing this power in the hands of the team that wrote and
released the code is an important local capability.

Service discovery
There are a handful of popular service discovery tools including Apache Zoo‐
keeper, CoreOS’ etcd, and HashiCorp’s Consul. We’ll cover the role of discovery
tools in Chapter 6. These tools make it possible to build and release services that,
upon install, register themselves with a central source, and then allow other serv‐
ices to “discover” the exact address/location of each other at runtime. This ability
to abstract the exact location of services allows various teams to make changes to
the location of their own service deployments without fear of breaking some
other team’s existing running code.

Request routing
Once you have machines and deployments up and running and discovering serv‐
ices, the actual process of handling requests begins. All systems use some kind of
request-routing technology to convert external calls (usually over HTTP, Web‐
Sockets, etc.) into internal code execution (e.g., a function somewhere in the
codebase). The simplest form of request routing is just exposing HTTP end‐
points from a web server like Apache, Microsoft IIS, NodeJS, and others. How‐
ever, as service requests scale up, it is common to “front” the web servers with
specialized routing proxies or gateways. Netflix created Zuul to handle their rout‐
ing. There are popular open source services like Netty (created by JBoss) and
Twitter’s Finagle. We’ll talk more about gateways in Chapter 6.

Platforms | 53

https://jenkins-ci.org/
http://www.infoq.com/articles/twitter-infrastructure
http://api.co/1PcBdWf
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://coreos.com/etcd/
https://www.consul.io/
http://api.co/27ZatPd
http://netty.io/
https://twitter.github.io/finagle/

System observability
A big challenge in rapidly changing, distributed environments is getting a view of
the running instances—seeing their failure/success rates, spotting bottlenecks in
the system, etc. There are quite a few tools for this. Twitter created (and open
sourced) Zipkin for this task, and there are other similar frameworks that pro‐
vide visibility into the state of the running system.

There is another class of observability tooling—those that do more than report
on system state. These tools actually take action when things seem to be going
badly by rerouting traffic, alerting key team members, etc. Netflix’s Hystrix is one
of those tools. It implements a pattern known as the Circuit Breaker to improve
the resiliency of running systems.

Culture
Along with establishing goals and principles and arming your organization with the
right tools for managing platform, code, and runtime environments, there is another
critical foundation element to consider—your company culture. Culture is important
because it not only sets the tone for the way people behave inside an organization, but
it also affects the output of the group. The code your team produces is the result of
the culture.

But what is culture? Quite a bit has been written about culture in general—from
many perspectives including anthropological as well as organizational. We’ll focus on
the organizational point of view here. In her 1983 paper, “Concepts of Culture and
Organizational Analysis”, Linda Smircich describes culture as “shared key values and
beliefs” that convey a sense of identity, generate commitment to something larger
than the self, and enhances social stability.Damon Edwards of DTO Solutions and
one of the organizers of the DevOpsDays series of events defines culture as “why we
do it the way we do it”.

So, how does culture affect team output? And, if it does, what kinds of team culture
improve team performance and work quality? We’ll look at three aspects of culture
that you should consider as a foundation for your microservice efforts:

Communication
Research shows that the way your teams communicate (both to each other and to
other teams) has a direct measurable effect on the quality of your software.

Team alignment
The size of your teams also has an effect on output. More people on the team
means essentially more overhead.

54 | Chapter 4: Establishing a Foundation

http://twitter.github.io/zipkin/
http://techblog.netflix.com/2012/11/hystrix.html
http://martinfowler.com/bliki/CircuitBreaker.html
http://api.co/smircich
http://api.co/smircich
http://api.co/1qXA89l
http://api.co/1qXA89l

Fostering innovation
Innovation can be disruptive to an organization but it is essential to growth and
long-term success.

Focus on Communication
One of the best-known papers on how culture affects team output is Mel Conway’s
1968 article in Datamation magazine, “How Do Committees Invent?” The line most
often quoted from this short and very readable paper is:

Organizations which design systems … are constrained to produce designs that are
copies of the communication structures of these organizations.

—Mel Conway, author of “How Do Committees Invent?”

Put simply, communication dictates output.

This quote was identified in 1975 by Fred Brooks as “Conway’s law” and it provides
some important insights on the importance of organizational structure affecting the
quality of the final product of the company. Conway’s paper identifies a number of
reasons for this assertion as well as directives on how to leverage this understanding
to improve the group’s output. A 2009 study for Microsoft Research showed that
“organizational metrics are significantly better predictors of error-proneness” in code
than other more typical measures including code complexity and dependencies.

Another key point in Conway’s article is that “the very act of organizing a team means
certain design decisions have already been made.” The process of deciding things like
the size, membership, even the physical location of teams is going to affect the team
choices and, ultimately, the team output. This gives a hint to the notion of applying
Conway’s law when setting up your team structure for a software project (sometimes
referred to as a “reverse Conway”). By considering the communication needs and
coordination requirements for a software project, you can set up your teams to make
things easier, faster, and to improve overall communication.

Aligning Your Teams
Team alignment is important—it affects the quality of code. What can we do to take
advantage of this information? Using the information from the start of this chapter,
what “tunable” elements can we use to improve the alignment of our team structures
to meet our goals for increasing speed, resilience, and visibility for our microservice
efforts?

In his 1998 paper, “The Social Brain”, British anthropologist Robin Dunbar found
that social group sizes fall into predictable ranges. “[T]he various human groups that
can be identified in any society seem to cluster rather tightly around a series of values
(5, 12, 35, 150, 500, and 2,000).” These groups each operate differently. The first (5)
relies very much on a high-trust, low-conversation mode: they seem to understand

Culture | 55

http://www.melconway.com/Home/Committees_Paper.html
http://dl.acm.org/citation.cfm?id=1368160
http://api.co/social-brain

each other without lots of discussion. Dunbar found that, as groups get larger, more
time is spent on maintaining group cohesion. In his book Grooming, Gossip and the
Evolution of Language, Dunbar suggests that in large primate groups up to 40% of
time is spent in grooming just to maintain group stability. He points out that this
grooming behavior in primates is replaced by gossip and other trivial conversations
in humans.

Dunbar’s “grooming” in primates is analogous to meetings, emails, and other forms
of communication in organizations that are often seen as time wasters. The possibility
of increasing the number of internal meetings with large groups at Amazon in the
early days of their AWS services implementation prompted Jeff Bezos to quip:

No, communication is terrible!
—Jeff Bezos, Amazon founder and CEO

This led to Bezos’ now famous “two-pizza team” rule. Any team that cannot be fed by
two pizzas is a team that is too big.

Fred Brooks’ 1975 book The Mythical Man Month contains the classic observation
that “adding [more people] to a late software project makes it later.” This maxim
speaks directly to the notion that adding people increases communication overhead,
similar to the findings of Dunbar.

As the size of the group grows, the number of unique communication channels grows
in a nonlinear way. This instance of combinatorial explosion is a common problem
and needs to be kept in mind as you design your teams.

When we talk to companies working in the microservices way, they commonly cite
team sizes that match closely to Dunbar’s first two groups (5 and 12). We refer to
these as Dunbar levels 1 and 2, respectively. For example, Spotify, the Swedish music
streaming company, relies on a team size of around seven (what they call a [squad).
They also rely on an aggregate of several teams that they call a tribe and reference
Dunbar’s work directly when describing how they came to this arrangement.

There are a number of other factors in establishing your teams including responsibili‐
ties, deliverables, and skillsets that need to be present within a team. We’ll cover
details on how to go about selecting and tuning these elements later in the book.

Fostering Innovation
A third important element in managing company culture is fostering innovation
within your organization. Many companies say they want to make innovative think‐
ing common within the organization. And the ability to take advantage of creative
and innovative ideas is sometimes cited as a reason to adopt a microservice approach
to developing software. So it makes sense to spend a bit of time exploring what inno‐
vation looks like and how it can affect your organization.

56 | Chapter 4: Establishing a Foundation

http://api.co/dunbar-evolution
http://api.co/dunbar-evolution
http://api.co/1TSPVld

A simple definition of innovate from Merriam-Webster’s dictionary is “to do some‐
thing in a new way; to have new ideas about how something can be done.” It’s worth
noting that being innovative is most often focused on changing something that is
already established. This is different than creating something new. Innovation is usu‐
ally thought of as an opportunity to improve what a team or company already has or
is currently doing.

A common challenge is that the innovation process can be very disruptive to an orga‐
nization. Sometimes “changing the way we do things” can be seen as a needless or
even threatening exercise—especially if the change will disrupt some part of the orga‐
nization (e.g., result in eliminating tasks, reducing workload, or even replacing whole
teams). For this reason, the act of innovating can be difficult. Another problem with
innovation is that the actual process often looks chaotic from the outside. Innovating
can mean coming up with ideas that might not work, that take time to get operating
properly, or even start out as more costly and time consuming than the current prac‐
tice. Yet, many organizations really want to encourage innovative work within their
teams.

Companies we talked to enable innovation by adopting a few key principles. First,
they provide a level of autonomy to their teams. They allow teams to determine the
best way to handle details within the team. Netflix calls this the principle of “context,
not control.” Team leaders are taught to provide context for the team’s work and guid‐
ance on meeting goals, but to not control what the team does. Netflix’s Steve Urban
explains it like this:

I have neither the place, the time, nor the desire, to micromanage or make technical
decisions for [my team].

—Steve Urban, Netflix engineer

Second, companies that foster innovation build in a tolerance for some level of chaos.
They operate with the understanding that it’s OK if some things look a bit disorgan‐
ized or messy. Of course, there are limits to this. Harvard Business Review’s “Manag‐
ing Innovation: Controlled Chaos” points out that “Effective managers of innovation
… administer primarily by setting goals, selecting key people, and establishing a few
critical limits and decision points for intervention.” Fostering innvotation means set‐
ting boundaries that prevent teams from taking actions that threaten the health and
welfare of the company and allowing teams to act on their own within these safe
boundaries.

Managing communication channels, aligning teams, and establishing a safe place to
innovate are all essential to enabling a successful culture that can take advantage of a
microservice-style approach to designing, implementing, and maintaining software.

Culture | 57

http://api.co/27ZaylY
http://api.co/1Z8BcCR
http://api.co/1Z8BcCR

Summary
In this chapter we’ve reviewed the common set of platform capabilities called Cock‐
croft’s “microservices concerns” and cited examples of how a number of organiza‐
tions provide these platform capabilities to their teams. We also focused on the teams
themselves. The way your teams communicate, their size, and the level of innovation
you support within those teams have a significant effect on the quality of their output.

So, with these ideals in mind, what does it take to actually implement microservice
solutions? In the next two chapters we’ll show you working examples of the platform
capabilities we discussed here as well as offer guidance on component design and
implementation that follows the recommended principles from this chapter.

58 | Chapter 4: Establishing a Foundation

PART III

Microservices in Practice

The Microservices Way at Hootsuite
Vancouver-based Hootsuite is a pioneer in social media for business. The company
was formed by members of Invoke Media who built a platform to manage their own
social network interactions and then realized that other companies had the same
need. As the company grew, so did their monolithic, PHP-based platform. In order to
meet the demands of their market through a 100+ team of developers, they are evolv‐
ing their application to a collection of product-oriented microservices.

Hootsuite took a design-based approach to their microservice migration from the
outset. They recognized that defining the right logic boundaries can be a harder prob‐
lem than introducing new technology. They use what they call “distributed domain-
driven design” as a means of breaking services out of their monolith. API definitions
and associated contracts provide a means of describing service scope and function,
and API consumers are involved in the creation of both. The Hootsuite team found
that API design guidelines helped to create a common language for this process. Over
time, Hootsuite has classified their microservices into three categories: data services
that encapsulate key business entities and ensure scalability, functional services that
combine data services with business logic to execute core business logic, and facade
services that decouple consumer contracts from core functional logic. Hootsuite’s
design approach continues to evolve as their microservice implementation matures.

Hootsuite’s organization includes product-aligned teams made up of five to seven
people. They also have a cross-functional platform team that is responsible for frame‐
works and tooling, and has visibility across the organization. To address common

http://api.co/1U7Z5Xa

interest areas like APIs and JavaScript, they have a collection of “guilds” that anyone
can join. In the spirit of empowerment and delivery speed, Hootsuite does not have
any governance checkpoints that intrude on a team’s development process. Instead,
they have a set of community-defined principles and tools that guide microservice
development. Recently, they formed a technology architecture group made up of
senior technical leaders to address technological issues that have a broad effect on the
organization, but this group was formed organically—not as the result of an executive
edict. Beier Cai, Director of Software Development, likens Hootsuite’s governance
approach to “eventual consistency.” This empowered, iterative style is a match for the
microservices way.

Fittingly given the company’s origin, Hootsuite has created a goal-oriented toolset for
microservices. To address deployment, they use Docker and Mesos. For service dis‐
covery, they use Consul and NGINX. These four open source components are used
together in a solution called “Skyline” that enables secure, dynamic, performant rout‐
ing in their growing fabric of microservices. They have also found Scala, Akka, and
the Play framework useful in building their individual services, and leverage both
HTTP and Kafka for interservice communication. The tooling extends to the design
process as well. To make sure developers know what services and components are
available for use in service development, the Hootsuite team created a tool to dynam‐
ically generate system visualizations that link to code repositories and operational
documentation. As needs arise, more tools are discovered or created.

Hootsuite’s evolution to a microservice architecture continues. They have over a
dozen microservices in production with many more on the way. As a result of
embracing an approach to microservices adoption that cuts across their architecture,
organization, culture, processes, and tools, they have been able to improve their deliv‐
ery speed, flexibility, autonomy, and developer morale.

CHAPTER 5

Service Design

As discussed in Chapter 3, one of the key elements—the one most everyone thinks of
when we talk about microservice architecture—is the design of the actual microser‐
vice components themselves. It is these autonomous services that make up the fabric
of our microservice system and do the actual work of implementing your solution
strategy. Implementing systems that contain a large number of small service compo‐
nents is a challenge so we’ll devote an entire chapter to a set of tools and processes
that can help you and your team take on the task.

In our experience working with various organizations and interviewing others, some
of the more challenging questions that teams adopting microservice architecture face
are how to properly size microservices (“how micro is micro?”) and how to properly
deal with data persistence in order to avoid sharing of data across services. These two
concerns are actually closely related. A mistake in optimal sizing often begets the
extraneous data-sharing problem, but the latter is especially problematic, operation‐
ally, since it can create tight cross-service coupling and impede independent deploya‐
bility, a core value of the architectural style. Other topics that come up frequently
when we talk with people who are designing and implementing microservices are
things like support for asynchronous messaging, transaction modeling, and dealing
with dependencies in a microservice environment. Getting a handle on these ele‐
ments will help you curb the amount of additional (nonessential) complexity that
creeps into your overall system. And doing that can help you in your constant strug‐
gle to balance the two key factors in any IT system: speed and safety.

In this chapter, we will cover microservice boundaries, looking at just how “micro” a
service should be and why. We will explore microservice interfaces (APIs), discussing
the importance of evolvable, message-oriented APIs for microservices and how they
can reduce intercomponent coupling. We will investigate effective data storage
approaches for microservices, exploring the power of shifting from data-centric and

61

1 http://api.co/1WtSZGE

state-capturing models toward capability-driven and event-sourcing-oriented ones.
We’ll also show how the command query responsibility segregation (CQRS) pattern
can improve the granularity of data services, while maintaining sufficient speed and
safety.

This chapter will also cover key topics such as supporting transactions across micro‐
service boundaries, asynchronous messaging, and dealing with dependencies with
eyes on the prize of independent deployability.

By the time we get through this material you should have a good understanding of
the challenges as well as the available patterns and practices you can use when it
comes to designing and building microservice components.

Let’s get started with the big one: “What is the optimal size of a microservice?”

Microservice Boundaries
So just how micro should a microservice be?

In reality, there is no simple answer for this question. The things that first come to
mind, such as lines of code in a microservice or the size of a team working on one are
compelling, since they offer the chance to focus on a quantifiable value (e.g., “The
answer is 42!”).1 However, the problem with these measures is that they ignore the
business context of what we are implementing. They don’t address the organizational
context of who is implementing the service and, more importantly, how the service is
being used within your system.

Instead of trying to find some quantity to measure, we find most companies focus on
a quality of each microservice—the use case or context in which the component will
be used. Many microservice adopters have turned to Eric Evans’ “domain-driven
design” (DDD) approach for a well-established set of processes and practices that
facilitate effective, business-context–friendly modularization of large complex sys‐
tems.

Microservice Boundaries and Domain-Driven Design
Essentially, what we see people doing when they introduce the microservices way into
their companies is that they begin to decompose existing components into smaller
parts in order to increase their ability to improve the quality of the service faster
without sacrificing reliability.

There are many ways to decompose a large system into smaller subsystems. In one
case we may be tempted to decompose a system based on implementation technology.

62 | Chapter 5: Service Design

http://api.co/1WtSZGE

For instance, we can say that all computationally heavy services need to be written in
C or Rust or Go (choose your own poison) and therefore they are a separate subsys‐
tem, while I/O-heavy features could certainly benefit from the nonblocking I/O of a
technology such as Node.js and therefore they are a subsystem of their own. Alterna‐
tively, we can divide a large system based on team geography: one subsystem may be
written in the US, while others may be developed and maintained by software teams
in Africa, Asia, Australia, Europe, or South America. Intuitively, giving a self-
contained subsystem for development to a team that is located in one place is well-
optimized. Another reason you may decide to divide a system based on geography is
that specific legal, commercial, and cultural requirements of operating in a particular
market may be better understood by a local team. Can a software development team
from New York accurately capture all the necessary details of an accounting software
that will be used in Cairo?

In his seminal book Domain-Driven Design, Eric Evans outlines a fresh approach to
determining boundaries of subsystems in the context of a larger system. In the pro‐
cess, he offers a model-centric view of software system design. As we’ve pointed out
in this book, models are a great way to view a system. They provide an abstract way to
look at something—a way that highlights the things we are interested in. Models are a
point of view.

It’s Only a Model

To understand the DDD approach, it is important to remember
that any software system is a model of a reality—it is not the reality
itself. For instance, when we log in to online banking and are look‐
ing at our checking account, we are not looking at the actual check‐
ing account. We’re just looking at a representation—a model—that
gives us information about the checking account such as balance
and past transactions. It’s likely that the screen our bank teller sees
when looking at our account has different information because it’s
another model of our account.

In his book, Evans notes that most large systems don’t actually have a single model.
The overall model of a large system is actually comprised of many smaller models
that are intermingled with each other. These smaller models are organic representa‐
tions of relevant business contexts—they make sense in their context and when used
within the context they are intuitive for a person who is the subject matter expert of
the context.

Microservice Boundaries | 63

Bounded Context
In DDD, Evans points out that teams need to be very careful when combining con‐
textual models to form a larger software system. He puts it this way:

Multiple models are in play on any large project. Yet when code based on distinct mod‐
els is combined, software becomes buggy, unreliable, and difficult to understand. Com‐
munication among team members becomes confused. It is often unclear in what
context a model should not be applied.

—Eric Evans, author of Domain-Driven Design: Tackling Complexity in the Heart of
Software

It is worth noting that Evans’ DDD was introduced more than a decade before the
word “microservice” had come into vogue. Yet, the preceding quotation is an impor‐
tant observation about the nature of modeling—if you try to rely on a single model
(e.g., a canonical model) things become difficult to understand. The microservices
way attempts to break large components (models) into smaller ones in order to
reduce the confusion and bring more clarity to each element of the system. As such,
microservice architecture is an architectural style that is highly compatible with the
DDD way of modeling. To aid in this process of creating smaller, more coherent com‐
ponents, Evans introduced the bounded contexts concept. Each component in the
system lives within its own bounded context, which means the model for each com‐
ponent and these context models are only used within their bounded scope and are
not shared across the bounded contexts.

It is generally acknowledged that properly identifying bounded contexts in a system,
using DDD techniques, and breaking up a large system along the seams of those
bounded contexts is an effective way of designing microservice boundaries. In his
book Building Microservices, Sam Newman states:

If our service boundaries align to the bounded contexts in our domain, and our micro‐
services represent those bounded contexts, we are off to an excellent start in ensuring
that our microservices are loosely coupled and strongly cohesive.

Newman makes an important point here: bounded contexts represent autonomous
business domains (i.e., distinct business capabilities), and therefore are the appropri‐
ate starting point for identifying the dividing lines for microservices. If we use the
DDD and bounded contexts approaches, the chances of two microservices needing to
share a model and the corresponding data space, or ending up having tight coupling,
are much lower. Avoiding data sharing improves our ability to treat each microservice
as an independently deployable unit. And independent deployability is how we can
increase our speed while still maintaining safety within the overall system.

Using DDD and bounded contexts is an excellent process for designing components.
However, there is more to the story. We could actually use DDD and still end up cre‐
ating fairly large components. But large is not what we’re going for in a microservice

64 | Chapter 5: Service Design

http://shop.oreilly.com/product/0636920033158.do

architecture. Instead, we’re aiming at small—micro, even. And that leads to an impor‐
tant aspect of designing microservice components—smaller is better.

Smaller Is Better
The notion of work-unit granularity is a crucial one in many contexts of modern soft‐
ware development. Whether defined explicitly or implicitly, we can clearly see the
trend showing up in such foundational methodologies as Agile Development, Lean
Startup, and Continuous Delivery, among others. These methodologies have revolu‐
tionized project management, product development, and DevOps, respectively.

It is interesting to note that each one of them has the principle of size reduction at its
core: reducing the size or scope of the problem, reducing the time it takes to complete
a task, reducing the time it takes to get feedback, and reducing the size of the deploy‐
ment unit. These all fall into a notion we call “batch-size reduction.”

For example, here’s an excerpt from the Agile Manifesto:
Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

—The Agile Manifesto, Kent Beck et al.

Basically, moving to Agile from Waterfall can be viewed as a reduction of the “batch
size” of a development cycle—if the cycle was taking many months in Waterfall, now
we strive to complete a similar batch of tasks: define, architect, design, develop, and
deploy, in much shorter cycles (weeks versus months). Granted, the Agile Manifesto
lists other important principles as well, but they only reinforce and complement the
core principle of “shorter cycles” (i.e., reduced batch size).

In the case of Lean Startup, Eric Ries directly points to the crucial importance of
small batch size, right in the definition of the methodology:

The Lean Startup takes its name from the lean manufacturing revolution that Taiichi
Ohno and Shigeo Shingo are credited with developing at Toyota. Lean thinking is radi‐
cally altering the way supply chains and production systems are run. Among its tenets
are drawing on the knowledge and creativity of individual workers, the shrinking of
batch sizes, just-in-time production and inventory control, and an acceleration of cycle
times. It taught the world the difference between value-creating activities and waste
and showed how to build quality into products from the inside out.

—Eric Ries, author of The Lean Startup

Similarly, when discussing the principal benefits of Continuous Delivery, Martin
Fowler is unambiguous about the role of small batch sizes, calling it the precondition
for a core benefit of the methodology.

Once you adopt the notion of limited batch size from Agile, Lean, and Continuous
Delivery at the code, project, and deployment level, it makes sense to think about

Microservice Boundaries | 65

http://api.co/deploy-line
http://www.agilemanifesto.org/
http://martinfowler.com/bliki/ContinuousDelivery.html

applying it at the architecture level as well. And many of the companies we inter‐
viewed have done this. After all, architecture is the direct counterpart to the other
three disciplines. So, in the simplest terms, this “limited batch size” is the “micro” in
microservice.

Just as in Agile, etc., there’s no simple, universal measure for deter‐
mining just “how small” a microservice should be (e.g., a quantity).
What people tell us is that they use the word “small” as a quality
like “reliable” and “coherent,” etc.

Ubiquitous Language
Just by stating a simple preference of “smaller is better,” we immediately run into a
problem if bounded contexts are our only tool for sizing microservices, because
bounded contexts cannot actually be arbitrarily small. Here’s what one of the promi‐
nent authorities in the space of DDD, Vaughn Vernon, had to say about the optimal
size of a bounded context:

Bounded context should be as big as it needs to be in order to fully express its complete
ubiquitous language.

—Vaughn Vernon, author of Implementing Domain–Driven Design

In DDD, we need a shared understanding and way of expressing the domain
specifics. This shared understanding should provide business and tech teams with a
common language that they can use to collaborate on the definition and implementa‐
tion of a model. Just as DDD tells us to use one model within a component (the
bounded context), the language used within that bounded context should be coherent
and pervasive—what we in DDD call ubiquitous language.

From a purely technical perspective, the smaller the microservice the easier it can be
developed quicker (Agile), iterated on quicker (Lean), and deployed more frequently
(Continuous Delivery). But on the modeling side, it is important to avoid creating
services that are “too small.” According to Vernon, we cannot arbitrarily reduce the
size of a bounded context because its optimal size is determined by the business con‐
text (model). Our technical need for the size of a service can sometimes be different
(smaller) from what DDD modeling can facilitate. This is probably why Sam New‐
man, very carefully, called bounded context analysis an “excellent start,” but not the
sole prescription for how to size microservices. And we completely agree. Bounded
contexts are a great start, but we need more tools in our toolbelt if we are to size
microservices efficiently. We will discuss some of those tools later in this chapter, in
particular when we look into data storage for microservices.

66 | Chapter 5: Service Design

API Design for Microservices
When considering microservice component boundaries, the source code itself is only
part of our concern. Microservice components only become valuable when they can
communicate with other components in the system. They each have an interface or
API. Just as we need to achieve a high level of separation, independence, and modu‐
larity of our code we need to make sure that our APIs, the component interfaces, are
also loosely coupled. Otherwise, we won’t be able to deploy two microservices inde‐
pendently, which is one of our primary goals in order to balance speed and safety.

We see two practices in crafting APIs for microservices worth mentioning here:

• Message-oriented
• Hypermedia-driven

Messsage-Oriented
Just as we work to write component code that can be safely refactored over time, we
need to apply the same efforts to the shared interfaces between components. The
most effective way to do this is to adopt a message-oriented implementation for
microservice APIs. The notion of messaging as a way to share information between
components dates back to the initial ideas about how object-oriented programming
would work. Alan Kay reminded everyone of the power of messages on an email list
in 1998:

I’m sorry that I long ago coined the term “objects” for this topic because it gets many
people to focus on the lesser idea. The big idea is “messaging.”

—Alan Kay

All of the companies we talked with about microservice component design men‐
tioned the notion of messaging as a key design practice. For example, Netflix relies on
message formats like Avro, Protobuf, and Thrift over TCP/IP for communicating
internally and JSON over HTTP for communicating to external consumers (e.g.,
mobile phones, browsers, etc.). By adopting a message-oriented approach, developers
can expose general entry points into a component (e.g., an IP address and port num‐
ber) and receive task-specific messages at the same time. This allows for changes in
message content as a way of refactoring components safely over time. The key lesson
learned here is that for far too long, developers have viewed APIs and web services as
tools to transmit serialized “objects” over the wire. However, a more efficient
approach is to look at a complex system as a collection of services exchanging mes‐
sages over a wire.

API Design for Microservices | 67

http://api.co/kay-systems
http://api.co/kay-systems
http://api.co/1U7ZgBX
http://api.co/1U7ZgBX

Hypermedia-Driven
Some companies we spoke to are taking the notion of message-oriented to the next
level. They are relying on hypermedia-driven implementations. In these instances, the
messages passed between components contain more than just data. The messages also
contain descriptions of possible actions (e.g., links and forms). Now, not just the data
is loosely coupled—so are the actions. For example, Amazon’s API Gateway and App‐
Stream APIs both support responses in the Hypertext Application Language (HAL)
format.

Hypermedia-style APIs embrace evolvability and loose coupling as the core values of
the design style. You may also know this style as APIs with Hypermedia As The
Engine Of Application State (HATEOAS APIs). Regardless of the name used, if we are
to design proper APIs in microservice architecture, it helps to get familiar with the
hypermedia style.

Hypermedia style is essentially how HTML works for the browser. HTTP messages
are sent to an IP address (your server or client location on the Internet) and a port
number (usually “80” or “443”). The messages contain the data and actions encoded
in HTML format. For example, a message that contains information on an outstand‐
ing shipment due to arrive at your office might look like this:

<html>
 <head>
 <title>Shipment #123</title>
 </head>
 <body>
 <h1>Shipment #123</h1>
 <div id="data">
 ID: 123

 Description: Widget Covers

 Quantity: 1 Gross

 Estimated Arrival: 2017-01-09

 </div>
 <div id="actions">
 Refresh
 Exit
 <form method="get" action="...">
 <input name="id" value="" />
 <input type="submit" value="Search" />
 </form>
 </div>
</html>

James Gregory of ThoughtWorks, a company experienced in helping customers
adopt and implement microservice-style systems, puts it this way:

68 | Chapter 5: Service Design

http://stateless.co/hal_specification.html
http://stateless.co/hal_specification.html
http://api.co/1VqvjC2
http://api.co/1NZkTIb

When we work on projects with more and more services involved the big revelation
was the people who build HTTP and use Hypermedia know what they’re talking about
—and we should listen to them.

—James Gregory, Lead Consultant at ThoughtWorks

The hypermedia API style is as transformative to the API space as object-oriented
design was for code design. A long time ago, we used to just write endless lines of
code (maybe lightly organizing them in functions), but then object-oriented design
came by with a revolutionary idea: “what if we grouped the state and the methods
that operate on that state in an autonomous unit called an object, thus encapsulating
data and behavior?” In essence, hypermedia style has very similar approach but for
API design. This is an API style in which API messages contain both data and con‐
trols (e.g., metadata, links, forms), thus dynamically guiding API clients by respond‐
ing with not just static data but also control metadata describing API affordances (i.e.,
“what can I do with this API?”).

To learn more about hypermedia APIs and how to design them,
check out the book RESTful Web APIs by Mike Amundsen, Leo‐
nard Richardson, and Sam Ruby. By the way, don’t let the book title
fool you—even though it says “RESTful,” it is about hypermedia
APIs and among other things explains why the book says REST
while it talks about hypermedia APIs.

Exposing affordances makes sense for services that communicate over the Web. If we
look at the Web as both the human-centric Web (websites consumed by humans) and
machine Web (APIs), we can see stark differences in how far behind the machine
Web is. When you load a web page on the human-centric Web, it doesn’t just give you
content (text, photos, videos, etc.)—most web pages also contain links to related con‐
tent or search menus: something you can interact with. Basically, web pages tell you,
in the response itself, what else you can do. Conventional web APIs don’t do this.
Most contemporary RESTful (CRUD) APIs respond with just data and then you have
to go and read some documentation to find out what else can be done. Imagine if
websites were like that: you would go to a specific URL, read content, then you’d have
to look in some documentation (a book? a PDF?) to find other interesting URLs,
many of which may be outdated, to navigate to the next thing. Most people would
agree that it would be quite a ridiculous experience. The human Web wouldn’t be
very functional if the responses didn’t contain behavioral affordances. But that’s
exactly the case for most modern RESTful APIs. And, as a matter of fact, the data-
only approach is quite as brittle and dysfunctional for the machine Web as the picture
we painted for the human-centric Web, except we have gotten used to the unfortunate
state of affairs.

API Design for Microservices | 69

http://shop.oreilly.com/product/0636920028468.do

Hypermedia APIs are more like the human Web: evolvable, adaptable, versioning-
free—when was the last time you cared about what “version” of a website you are
looking at? As such, hypermedia-style APIs are less brittle, more discoverable, and fit
right at home in a highly distributed, collaborative architectural style such as micro‐
services.

Data and Microservices
As software engineers, we have been trained to think in terms of data, first and fore‐
most. To give the simplest example, it has pretty much been ingrained in our “muscle
memory,” or whatever the mental equivalent of one is, to start system design by first
designing the pertinent data models. When asked to build an application, the very
first task most software engineers will complete is identifying entities and designing
database tables for data storage. This is an efficient way of designing centralized sys‐
tems and whole generations of programmers have been trained to think this way. But
data-centric design is not a good way to implement distributed systems—especially
systems that rely on independently deployable microservices. The biggest reason for
this is the absence of strong, centralized, uniform control over the entire system in
the case of distributed systems, which makes a formerly efficient process inefficient.

The first step in breaking the data-centric habit is to rethink our system designs. We
need to stop designing systems as a collection of data services and instead use busi‐
ness capabilities as the design element, or as Sam Newman notes in his book:

You should be thinking not in terms of data that is shared, but about the capabilities
those contexts provide [...]. I have seen too often that thinking about data leads to ane‐
mic, CRUD-based (create, read, update, delete) services. So ask first “What does this
context do?” and then “So what data does it need to do that?”

—Sam Newman, author of Building Microservices

It turns out that capabilities-centric design is more suitable for microservices than a
more traditional, data-centric design.

Shipping, Inc.
To demonstrate some of the practical aspects of microservice architecture, through‐
out Chapters 5 and 6 we will be using an imaginary startup. Let’s assume that we are
designing a microservice architecture for a fledgling shipment company, aptly named
Shipping, Inc. As a parcel-delivery company, they need to accept packages, route
them through various sorting warehouses (hops on the route), and eventually deliver
to the destination. Because it is 2016 and the company is very tech-savvy, Shipping,
Inc. is building native mobile applications for a variety of platforms to let customers
track their packages all the way from pickup to final delivery. These mobile applica‐
tions will get the data and functionality they need from a set of microservices.

70 | Chapter 5: Service Design

Let’s imagine that Shipping, Inc.’s accounting and sales subsystems (microservices)
need access to daily currency exchange rates to perform their operations. A data-
centric design would create a table or set of tables in a database that contain exchange
rates. Then we would let various subsystems query our database to retrieve the data.
This solution has significant issues—two microservices depend on the design of the
shared table and data in it, leading to tight coupling and impeding independent
deployability.

If instead, we had viewed “currency exchange rates” as a capability and had built an
independent microservice (currency rates) serving the sales and accounting micro‐
services, we would have had three independent services, all loosely coupled and inde‐
pendently deployable. Furthermore, since, by their nature, APIs in services hide
implementation details, we can completely change the data persistence supporting
the currency rates service (e.g., from MySQL to Cassandra, if scalability became an
issue) without any of the service’s consumers noticing the change or needing to
adjust. Last but not least, since services (APIs) are able to put forward alternative
interfaces to its various consumers, we can easily alter the interface that the currency
rates microservice provides to the sales microservice, without affecting the account‐
ing microservice, thus fulfilling the promise of independent evolution, a necessity for
independent deployability. Mission accomplished!

Thinking in terms of capabilities rather than data is a very powerful technique for
API design, in general. It usually results in a more use-case-oriented interface
(instead of an SQL-like data-object interface). A capabilities-centric API design is
usually a good approach, but in the case of microservices it is not just a smart design
technique, it’s a powerful way of avoiding tight coupling. We just saw evidence of this.

Much like bounded context analysis, capabilities-oriented design is a crucial techni‐
que but not sufficient to ensure independent deployability for all use cases. Not every
example is as simple as our currency rates one. We cannot always encapsulate shared
data inside a microservice and call it a day. For example, a common use case that can‐
not be solved with encapsulated capabilities is that of reporting. Any business applica‐
tion requires a certain level of reporting. And reporting often spans across multiple
models, bounded contexts, and capabilities. Should reporting-oriented microservices
be allowed to share tables with other microservices? The obvious answer is no,
because that would immediately create severe tight coupling of services all around the
system, and at the very least undermine (if not completely kill) independent deploya‐
bility.

Let’s see what techniques we can use to avoid data-sharing in complex use cases. The
first one we will look at is event sourcing, a powerful data-modeling methodology that
can help us avoid data-sharing in microservices, even in very complicated cases. The
second, related methodology is CQRS—command query responsibility segregation.

Data and Microservices | 71

Event Sourcing
We’ve mentioned that there are some deeply ingrained software engineering habits
that greatly affect the way we typically approach systems engineering. One of the
most widespread of those habits is structural data modeling. It has become very natu‐
ral for us to describe models as collections of interacting logical entities and then to
map those logical entities to physical tables where the data is stored. More recently,
we have started using NoSQL and object stores that take us slightly away from the
relational world, but in essence the approach is still the same: we design structural
entities that model objects around us and then we “save” the object’s state in a data‐
base store of some kind. Whether storage happens in table rows and columns, serial‐
ized as JSON strings, or as object graphs, we are still performing CRUD-based
modeling. But this is not the only way to model the world. Instead of storing struc‐
tures that model the state of our world, we can store events that lead to the current
state of our world. This modeling approach is called event sourcing.

Event sourcing is all about storing facts and any time you have “state” (structural mod‐
els)—they are first-level derivative off of your facts. And they are transient.

—Greg Young, Code on the Beach, 2014

In this context, by “facts” Young means the representative value of an event occur‐
rence. An example could be “a package was transported from the last sorting facility,
out for final delivery.” Later in this chapter, we will see more examples of what facts
can be.

It is fair to note that for the majority of software developers used to structural data
modeling, event sourcing will initially sound alien and, maybe, even somewhat weird.
But it really isn’t. For one thing, event sourcing is not some bleeding-edge, untested
theory dreamed up to solve problems in microservices. Event sourcing has been used
in the financial industry with great success, independent of any microservice archi‐
tecture association.

In addition, the roots and inspiration for event sourcing go way beyond microservi‐
ces, the Internet itself, or even computers—all the way back to financial accounting
and the paper-and-pen ledgers that contain a list of transactions, and never just the
end value (“state”) of a balance. Think of your bank account: there’s a balance amount
for your checking and savings accounts, but those are not first-class values that banks
store in their databases. The account balance is always a derivative value; it’s a func‐
tion. More specifically, the balance is the sum of all transactions from the day you
opened your account.

72 | Chapter 5: Service Design

http://api.co/1TSQgo1

If you decide to dispute your current balance and call up your bank, they are not
going to retort by saying, “But sir/ma’am, that’s the value in our database, it has to be
true!” Instead, they will print out all relevant transactions for you (or point you to
online banking where you can do it yourself) and let you verify that the result of the
transactions should indeed be equal to the balance value displayed. If you do find any
errors with any of the transactions, the bank will issue a “compensating transaction”
to fix the error. This is another crucial property of event sourcing: much like in life,
we can never “go back” in time and “change” the past, we can only do something in
the present to compensate for the mistakes of the past. In event sourcing, data is
immutable—we always issue a new command/event to compensate rather than
update a state of an entity, as we would do in a CRUD style.

When event sourcing is introduced to developers, the immediate concern is usually
performance. If any state value is a function of events, we may assume that every
access to the value would require recalculation of the current state from the source
events. Obviously that would be extremely slow and generally unacceptable. Fortu‐
nately, in event sourcing, we can avoid such expensive operations by using a so-called
rolling snapshot—a projection of the entity state at a given point in time. Depending
on the event source implementation, it is common to snapshot intermediary values at
various time points. For instance, you may precalculate your bank account balance on
the last day of every month, so that if you need the balance on January 15, 2016 you
will already have it on December 31, 2015 and will just need to calculate the projec‐
tion for two weeks, instead of the entire life of the bank account. The specifics of how
you implement rolling snapshots and projections may depend on the context of your
application. Later in this chapter we will see that with a related pattern called CQRS,
we can do much more than just cache states in rolling snapshots.

Despite its accounting roots, event sourcing is not only relevant to just financial use
cases. For the rest of this chapter we will use a business scenario as far from banking
and accounting as we could imagine: shipment and delivery of goods.

Remember the imaginary package-shipment startup Shipping, Inc. that we intro‐
duced in this chapter? As a parcel-delivery company, they need to accept packages,
route them through various sorting warehouses (hops on the route), and eventually
deliver to their destinations.

A representative data model for this system executed in structural style is shown in
Figure 5-1.

Data and Microservices | 73

Figure 5-1. Data model for Shipping, Inc. using “current state” approach

The corresponding events-based model is shown in Figure 5-2.

Figure 5-2. Data model for Shipping, Inc. using event sourcing

74 | Chapter 5: Service Design

As you can see, the structural model strives to only save the current state of the sys‐
tem, while the event sourcing approach saves individual “facts.” State, in event sourc‐
ing, is a function of all the pertinent facts that occurred. Not only does this give us full
auditability (as demonstrated in the case when we called our bank to dispute the bal‐
ance), we can also build state projections toward any time in the past, not just the
“now.” Would you like to know where all the packages were on Wednesday? No prob‐
lem with event sourcing! Answering this question would be more difficult with the
structural model, since it would require special coding.

If you enjoy noticing patterns in seemingly unrelated things the way we do, we urge
you to take another look at the two diagrams. You may notice how every entity in the
structural model is a “snowflake” (i.e., it has a unique “shape,” in terms of properties
and relationships, and was attentively crafted to represent differing real-life con‐
cepts). In contrast, events in an event store all look the same from the outside. This is
a very similar view to another technology closely related to microservices: containers.
Indeed, for the container host (e.g., a Docker host), all containers look alike—the host
doesn’t “care” what is inside a container, it knows how to manage the lifecycle of a
container independent of the contents of the container. In contrast, custom-installed
enterprise applications have all kinds of peculiar “shapes” and environmental depen‐
dencies that the host must ensure exist (e.g., shared libraries the application expects).
The “indifference to shape and contents” approach seems to be a trend in modern
technologies, as we can see the same pattern in SQL versus NoSQL storage. It is very
reminiscent, in its tendency to show up under multiple contexts, of the “batch-size
reduction” trend we noticed earlier while looking at different modern methodologies
across multiple disciplines (e.g., project management, product development, opera‐
tions, and architecture). We love this—when the same pattern emerges in multiple
places, we can use our understanding of the pattern to identify or predict “next big
thing.”

But let’s get back to microservices. We dipped our toes in a data-modeling technology
called event sourcing and noted some of its benefits compared to conventional, struc‐
tural modeling, but how exactly does it help us solve the data isolation and encapsula‐
tion challenges of microservice architecture? As it turns out, we need one more
design pattern, CQRS, to complement event sourcing and we will be well on our way
toward being able to design effective data storage for microservices with data persis‐
tence models that can avoid data sharing at even very small microservice sizes.

System Model for Shipping, Inc.
As we noted earlier, a good start for a microservice system design is to identify boun‐
ded contexts in the system. Figure 5-3 shows a context map for key bounded contexts
in our problem space. We will use this context map in discussing the solution
throughout the chapter.

Data and Microservices | 75

https://www.docker.com/

Figure 5-3. High-level context map for Shipping, Inc.’s microservice architecture

What are the capabilities of the three contexts and some of the data flows between the
contexts, depicted by the arrows and numbers on the graph? They are as follows:

1. Customer Management creates, edits, enables/disables customer accounts, and
can provide a representation of a customer to any interested context.

2. Shipment Management is responsible for the entire lifecycle of a package from
drop-off to final delivery. It emits events as the package moves through sorting
and forwarding facilities, along the delivery route.

3. Shipment Tracking is a reporting application that allows end users to track their
shipments on their mobile device.

If we were to implement a data model of this application using a traditional, struc‐
tural, CRUD-oriented model we would immediately run into data sharing and tight-
coupling problems. Indeed, notice that the Shipment Management and Shipment
Tracking contexts will have to query the same tables, at the very least the ones con‐
taining the transitions along the route. However, with event sourcing, the Shipment
Management bounded context (and its corresponding microservice) can instead
record events/commands and issue event notifications for other contexts and those
other contexts will build their own data indexes (projections), never needing direct
access to any data owned and managed by the Shipment Management microservice.
The formal approach to this process is described in a pattern called CQRS.

CQRS
Command query responsibility segregation is a design pattern that states that we can
(and sometimes should) separate data-update versus data-querying capabilities into
separate models. It tracks its ancestry back to a principle called command–query sep‐
aration (CQS), which was introduced by Bertrand Meyer in his book Object-Oriented

76 | Chapter 5: Service Design

Software Construction (Prentice-Hall, 1997). Meyer argued that data-altering opera‐
tions should be in different methods, separated from methods performing read-only
operations. CQRS takes this concept a large step further, instructing us to use entirely
different models for updates versus queries. This seemingly simple statement often
turns out to be powerful enough to save the day, especially in the complicated case of
the reports-centric microservices we mentioned earlier in this chapter.

Since reports usually need to aggregate and contrast data generated in different parts
of a large system, they often need to span multiple subsystems and bounded contexts
and almost always require access to data from multiple contexts. But it is only so if we
assume we have a single model for any entity, where we both query and update the
entity. If we instead use CQRS, the need to access data across multiple contexts (and
related problems) can be eliminated. With CQRS, the Shipment Management micro‐
service can “own” and encapsulate any updates related to package delivery, just noti‐
fying other contexts about events occurring. By subscribing to notifications of these
events, a reporting service such as Shipment Tracking can build completely inde‐
pendent, query-optimized model(s) that don’t need to be shared with any other
service.

Figure 5-4 shows a conceptual diagram that depicts CQRS for our Shipping, Inc.
application.

As you can see, thanks to CQRS, we were able to completely separate the data models
of the Shipment Management and Tracking microservices. In fact, Shipping Manage‐
ment doesn’t even need to know about the existence of the Tracking microservice,
and the only thing the Tracking microservice relies on is a stream of events to build
its query index. During runtime the Tracking microservice only queries its own
index. Furthermore, the Tracking microservice can include event and command data
from other microservices using the same flow, keeping its independence and loose
coupling.

The big win with using event sourcing and CQRS is that they allow us to design very
granular, loosely coupled components. With bounded contexts our boundaries have
to align with business capabilities and subdomain boundaries. With event sourcing,
we can literally create microservices so tiny that they just manage one type of event or
run a single report. Targeted use of event sourcing and CQRS can take us to the next
level of autonomous granularity in microservice architecture. As such, they play a
crucial role in the architectural style.

Data and Microservices | 77

Figure 5-4. Data flow in command-query responsibility segregation (CQRS)-based
model for Shipping, Inc.

Be careful not to abuse/overuse event sourcing and CQRS. You
should only use event sourcing and CQRS when necessary, since
they will complicate your implementation. Event sourcing and
CQRS are not an “architecture” for your entire system, rather they
are a powerful toolset to be used sparingly. There are still many use
cases in which the conventional, CRUD-based model is much sim‐
pler and should be preferred.

Distributed Transactions and Sagas
The shared data model is not the only use case that can introduce tight coupling
between microservices. Another important threat is workflows. A lot of real-life pro‐
cesses cannot be represented with a single, atomic operation, since they are a
sequence of steps. When we are dealing with such workflows, the result only makes
sense if all of the steps can be executed. In other words, if any step in the sequence
fails, the resulting state of the relevant system becomes invalid. You probably recog‐
nize this problem from RDBMS systems where we call such processes “transactions.”
However, database transactions are local, contained within the confines of a single

78 | Chapter 5: Service Design

database where their implementations predominantly rely on the use of a shared state
(i.e., we put locks on the rows and tables that participate in a transaction, guarantee‐
ing data consistency). Once the transaction is fully executed we can remove the locks,
or if any step of the transaction steps fails, we can roll back the steps already attemp‐
ted.

For distributed workflows and share-nothing environments (and microservice archi‐
tecture is both of those), we cannot use traditional transaction implementations with
data locks and ACID compliance, since such transactions require shared data and
local execution. Instead, an effective approach many teams use is known as “Sagas”.
Sagas were designed for long-lived, distributed transactions by Hector Garcia-Molina
and Kenneth Salem, and introduced in 1987 (yes, way before microservices or even
the Web) during their work at Princeton University.

Sagas are very powerful because they allow running transaction-like, reversible work‐
flows in distributed, loosely coupled environments without making any assumptions
on the reliability of each component of the complex system or the overall system
itself. The compromise here is that Sagas cannot always be rolled back to the exact
initial state of the system before the transaction attempt. But we can make a best
effort to bring the system to a state that is consistent with the initial state through
compensation.

In Sagas, every step in the workflow executes its portion of the work, registers a call‐
back to a “compensating transaction” in a message called a “routing slip,” and passes
the updated message down the activity chain. If any step downstream fails, that step
looks at the routing slip and invokes the most recent step’s compensating transaction,
passing back the routing slip. The previous step does the same thing, calling its prede‐
cessor compensating transaction and so on until all already executed transactions are
compensated.

Consider this example: let’s say a customer mailed a prepaid cashier’s check for $100
via Shipping, Inc.’s insured delivery. When the courier showed up at the destination,
they found out that the address was wrong and the resident wouldn’t accept the pack‐
age. Thus, Shipping, Inc. wasn’t able to complete the transaction. Since the package
was insured, it is Shipping, Inc.’s responsibility to “roll back” the transaction and
return the money to the sender. With ACID-compliant transactions, Shipping, Inc. is
supposed to bring the exact $100 check back to the original sender, restoring the sys‐
tem state to its exact initial value. Unfortunately, on the way back the package was
lost. Since Shipping, Inc. could no longer “roll back” the transaction, they decided to
reimburse the insured value of $100 by depositing that amount into the customer’s
account. Since this was an active, long-time Shipping, Inc. customer and a rational
human being, they didn’t care which $100 was returned to them. The system didn’t
return to its exact initial state, but the compensating transaction brought the environ‐
ment back to a consistent state. This is basically how Sagas work.

Distributed Transactions and Sagas | 79

ftp://ftp.cs.princeton.edu/reports/1987/070.pdf

Due to its highly fault-tolerant, distributed nature, Sagas are very well-suited to
replace traditional transactions when transactions across microservice boundaries are
required in a microservice architecture. If you want to learn more about Sagas and
see working code implementing a very expressive example related to travel booking,
check out the Saga example by Clemens Vasters.

Asynchronous Message-Passing and Microservices
Asynchronous message-passing plays a significant role in keeping things loosely cou‐
pled in a microservice architecture. You probably noticed that in one of the examples
earlier in this chapter, we used a message broker to deliver event notifications from
our Shipment Management microservice to the Shipment Tracking microservice in
an asynchronous manner. That said, letting microservices directly interact with mes‐
sage brokers (such as RabbitMQ, etc.) is rarely a good idea. If two microservices are
directly communicating via a message-queue channel, they are sharing a data space
(the channel) and we have already talked, at length, about the evils of two microservi‐
ces sharing a data space. Instead, what we can do is encapsulate message-passing
behind an independent microservice that can provide message-passing capability, in a
loosely coupled way, to all interested microservices.

The message-passing workflow we are most interested in, in the context of microser‐
vice architecture, is a simple publish/subscribe workflow. How do we express it as an
HTTP API/microservice in a standard way? We recommend basing such a workflow
on an existing standard, such as PubSubHubbub. Now to be fair, PubSubHubbub
wasn’t created for APIs or hypermedia APIs, it was created for RSS and Atom feeds in
the blogging context. That said, we can adapt it relatively well to serve a hypermedia
API-enabled workflow. To do so, we need to implement a flow similar to the one
shown in Figure 5-5.

Figure 5-5. Asynchronous message-passing implemented with a PubSubHubbub-
inspired flow

80 | Chapter 5: Service Design

http://api.co/1TSOxiI
https://github.com/pubsubhubbub/PubSubHubbub

We also need to standardize some hypermedia affordances:

rel="hub"

Refers to a hub that enables registration for notification of updates to the context.

rel="pingback"

Gives the address of the pingback resource for the link context.

rel="sub"

When included in a resource representation of an event, the "sub" (subscription)
link relation may identify a target resource that represents the ability to subscribe
to the pub/sub event-type resource in the link context.

rel="unsub"

When included in a resource representation of an event, the "unsub" (subscrip‐
tion cancellation) link relation may identify a target resource that represents the
ability to unsubscribe from the pub/sub event-type resource in the link context.

rel="event"

Resource representation of a subscribable events.

rel="events"

Link to a collection resource representing a list of subscribable events.

Dealing with Dependencies
Another important topic related to independent deployability is embedding of
dependencies. Let’s imagine that Shipping, Inc.’s currency rates microservice is being
hammered by user queries and requests from other microservices. It would cost us
much less if we hosted that microservice in a public cloud rather than on expensive
servers of our corporate data center. But it doesn’t seem possible to move the micro‐
service to another host, if it stores data in the same SQL or NoSQL database system as
all other microservices.

Please note that data tables are not shared, just the installation of the database-
management system. It seems like the logical conclusion is that we cannot have any
microservice share even the installation of a data storage system. Some may argue
that a microservice needs to “embed” every single dependency it may require, so that
the microservice can be deployed wherever and whenever, without any coordination
with the rest of the system.

A strict requirement of full dependency embedding can be a significant problem,
since for decades we have designed our architectures with centralized data storage, as
shown in Figure 5-6.

Dealing with Dependencies | 81

http://www.iana.org/assignments/link-relations/link-relations.xhtml

Figure 5-6. Components using a centralized pool of dependencies

Centralized data storage is operationally convenient: it allows dedicated, specialized
teams (DBAs, sysadmins) to maintain and fine-tune these complex systems, obscur‐
ing the complexity from the developers.

In contrast, microservices favor embedding of all their dependencies, in order to ach‐
ieve independent deployability. In such a scenario, every microservice manages and
embeds its database, key-value store, search index, queue, etc. Then moving this
microservice anywhere becomes trivial. This deployment would look like Figure 5-7.

82 | Chapter 5: Service Design

Figure 5-7. Components using fully embedded, isolated dependencies

The postulate of wholesale embedding of (data storage) dependencies looks beautiful
on the surface, but in practice it is extremely wasteful for all but the simplest use
cases. It is obvious that you will have a very hard time embedding entire Cassandra,
Oracle, or ElasticSearch clusters in each and every microservice you develop. Espe‐
cially if you are far down the microservices journey and possibly have hundreds of
microservices. This is just not doable. Neither is it necessary.

Dealing with Dependencies | 83

In reality, a microservice doesn’t have to carry along every single dependency (such as
a data storage system) in order to be mobile and freely move across the data centers.
Let us explain.

In his previous job, one of us (Irakli) traveled a lot for work. He’d acquired important
tips for doing it efficiently—tips that he was completely indifferent to during his pre‐
vious life as a casual traveler. As any frequent traveler will tell you, the most impor‐
tant rule for mobility is to keep your luggage light. You don’t have to pack literally
everything you may possibly need. For example, nobody packs shower-heads and
towels on a business trip: you know you will find those at the hotel. If you know that
the destination hotel has a convenience shop and your employer pays for incidentals,
you don’t even have to pack most toiletries. Irakli learned what he could count on
being available “onsite” and what he needed to always bring with him. And, to pack
light, he learned to limit his “dependencies” on a lot of things that were not needed as
part of his packing routine.

Likewise, the trick to microservice mobility is not packing everything but instead
ensuring that the deployment destination provides heavy assets, such as database
clusters, in a usable and auto-discoverable form at every destination where a micro‐
service may be deployed. Microservices should be written so that they can quickly
discover those assets upon deployment and start using them.

Let’s be clear: data sharing between microservices is still the ulti‐
mate no-no. Sharing data creates tight coupling between microser‐
vices, which kills their mobility. However, sharing a database
cluster installation is absolutely OK, given that each microservice
only accesses isolated, namespaced portions of it.

Pragmatic Mobility
Figure 5-8 shows what a proper, sophisticated microservices deployment should look
like in practice.

84 | Chapter 5: Service Design

Figure 5-8. Pragmatic approach: Components using a centralized pool of dependencies,
without sharing data spaces

If we decide to move Microservice 1 to another data center, it will expect that the new
data center also has a functioning Cassandra cluster with a compatible version (in our
earlier metaphor, the hotel provides towels we can use), but it will find a way to move
its slice of data and won’t depend on the existence or state of any other microservice
at the destination (Figure 5-9).

Dealing with Dependencies | 85

Figure 5-9. Pragmatic approach: Microservice 1’s move to different data center made
possible without data sharing

Microservices do not have to “travel” heavy and pack everything they may possibly
require. In complicated cases it is OK to have some reasonable expectations about the
destination environment, especially when it comes to complex data-storage capabili‐
ties.

The most important question we need to ask, when deciding on embedding depen‐
dencies versus “expecting” traits in an environment, is will our decision increase or
decrease mobility? Our goal is to maximize deployment mobility of a microservice,
which may mean different things in different contexts.

Summary
In this chapter we described a framework for effectively designing individual micro‐
services and reviewed core modeling tools that a microservice architect needs to have
in their toolbelt. We set out by demystifying the answer to one of the most commonly
asked questions in microservices: how do we properly size services and identify
boundaries? We started by clarifying the role of domain-driven design in the context
of microservice architecture, the importance of bounded contexts, and gave an exam‐
ple of a context map for a fictional package delivery company Shipping, Inc.

86 | Chapter 5: Service Design

We explained the overarching role of the “batch-size reduction” technique for sys‐
tems engineering, when achieving both speed and safety at scale is the desired out‐
come. We demonstrated that at certain levels of granularity architects may require
additional patterns, on top of the ones in domain-driven design, such as event sourc‐
ing, CQRS, and Sagas. We showed how these patterns can substantially alter our per‐
spective on model design and how that can lead to more loosely coupled, splittable
services.

Last, but not least, microservices are APIs, so going beyond code, implementation,
and deployment considerations, we dedicated a significant portion of the chapter to
explaining unique interface design needs for APIs that constitute a microservice.

Summary | 87

CHAPTER 6

System Design and Operations

Having introduced a system-level view of the microservice architecture and architec‐
tural perspective of the value proposition, as well as design considerations, it’s time to
discuss aspects of runtime, operational management of a microservice architecture.
The benefits of adopting a microservice architecture don’t necessarily come free—
they can shift complexity into operations. Generally speaking, teams adopting a
microservice architecture are expected to have a certain level of infrastructure auto‐
mation and operational maturity to be successful. Let’s see what this means in practi‐
cal terms.

In this chapter we will review key concepts of microservice operations such as inde‐
pendent deployability, the role of containers in cost-efficient deployments, and specif‐
ically, what role Docker can play in microservices, service discovery, security, routing,
transformation, and orchestration. Taken together, discussions of these topics, in the
context, will give you a solid foundation for understanding, designing, and executing
on microservice architecture’s operational needs.

Independent Deployability
One of the core principles of the microservice architectural style is the principle of
independent deployability—i.e., each microservice must be deployable completely
independent of any other microservice. Some of the most important benefits of the
architectural style rely on faithful adherence to this principle.

Independent deployability allows us to perform selective or on-demand scaling; if a
part of the system (e.g., a single microservice) experiences high load we can re-deploy
or move that microservice to an environment with more resources, without having to
scale up hardware capacity for the entire, typically large, enterprise system. For many

89

http://martinfowler.com/articles/microservices.html

organizations, the operational ability of selective scaling can save large amounts of
money and provide essential flexibility.

Remember the imaginary package-shipment startup Shipping, Inc. we introduced in
Chapter 5? As a parcel-delivery company, they need to accept packages, route them
through various sorting warehouses (hops on the route), and eventually deliver them
to their destinations.

Let’s consider an example of selective scaling for Shipping, Inc. This company stores
and operates sensitive customer information including demographic and financial
data for its customers. In particular, Shipping, Inc. collects credit card information
and, as such, falls under the auditing requirements of strict government regulation.
For security reasons, Shipping, Inc. deploys sensitive parts of the implementation at
an on-premise data center, but its CTO would still like to utilize “cloud computing,”
for cost and scalability reasons, when possible.

Scaling hardware resources on-premise can be extremely costly—we have to buy
expensive hardware in anticipation of the usage rather than in response to actual
usage. At the same time, the part of the application that gets hammered under load
and needs scaling may not contain any sensitive client or financial data. It can be
something as trivial as an API returning a list of US states or an API capable of con‐
verting various currency rates. The chief architect of Shipping, Inc. is confident that
their security team will easily allow deployment of such safe microservices to a pub‐
lic/private cloud, where scaling of resources is significantly cheaper. The question is—
could they deploy part of an application to a separate data center, a cloud-based one,
in this case? The way most, typically monolithic, enterprise systems are architected,
deploying selective parts of the application independently is either very hard or prac‐
tically impossible. Microservices, in contrast, emphasize the requirement of inde‐
pendent deployability to the level of core principle, thus giving us much needed
operational flexibility.

On top of operational cost saving and flexibility, another significant benefit of the
independent deployability is an organizational one. Generally speaking, two different
teams would be responsible for the development of separate microservices (e.g., Cus‐
tomer Management and Shipment Management). If the first team, which is responsi‐
ble for the Customer Management microservice, needs to make a change and re-
release, but Customer Management cannot be released independent of the Shipment
Management microservice, we now need to coordinate Customer Management’s
release with the team that owns Shipment Management. Such coordination can be
costly and complicated, since the latter team may have completely different priorities
from the team responsible for Customer Management. More often than not the
necessity of such coordination will delay a release. Now imagine that instead of just a
handful we potentially have hundreds of microservices maintained by dozens of
teams. Release coordination overhead can be devastating for such organizations,

90 | Chapter 6: System Design and Operations

leading to products that ship with significant delays or sometimes get obsolete by the
time they can be shipped. Eliminating costly cross-team coordination challenges is
indeed a significant motivation for microservice adopters.

More Servers, More Servers! My Kingdom for a Server!
To ensure independent deployability, we need to develop, package, and release every
microservice using an autonomous, isolated unit of environment. But what does
“autonomous, isolated unit of environment” mean in this context? What are some
examples of such units of environment?

Let’s assume we are developing a Java/JEE application. At first glance, something like
a WAR or EAR file may seem like an appropriate unit of encapsulation and isolation.
After all, that’s what these packaging formats were designed for—to distribute a col‐
lection of executable code and related resources that together form an independent
application, within the context of an application server.

In reality, lightweight packaging solutions, such as JAR, WAR, and EAR archives in
Java, Gem files (for Ruby), NPM modules (for Node), or PIP packages (for Python)
don’t provide sufficient modularity and the level of isolation required for microservi‐
ces. WAR files and Gem files still share system resources like disk, memory, shared
libraries, the operating system, etc. Case in point: a WAR or EAR file will typically
expect a specific version of Java SDK and application server (JBoss, WebSphere, Web‐
logic, etc.) to be present in the environment. They may also expect specific versions of
OS libraries in the environment. As any experienced sysadmin or DevOps engineer
knows, one application’s environmental expectations can be drastically different from
another’s, leading to version and dependency conflicts if we need to install both appli‐
cations on the same server. One of the core motivations of adopting a microservice
architecture is to avoid the need for complex coordination and conflict resolution,
thus packaging solutions that are incapable of avoiding such interdependencies are
not suitable for microservices. We need a higher level of component isolation to guar‐
antee independent deployability.

What if we deployed a microservice per physical server or per virtual machine? Well,
that would certainly meet the high bar of isolation demanded by microservices, but
what would be the financial cost of such a solution?

For companies that have been using microservice architecture for a number of years,
it is not uncommon to develop and maintain hundreds of microservices. Let’s assume
you are a mature microservices company with about 500 microservices. To deploy
these microservices in a reliable, redundant manner you will need at least three
servers/VMs per each microservice, resulting in 1,500 servers just for the production
system. Typically, most companies run more than one environment (QA, stage, inte‐
gration, etc.), which quickly multiplies the number of required servers.

More Servers, More Servers! My Kingdom for a Server! | 91

Here comes the bad news: thousands of servers cost a lot. Even if we use VMs and not
physical servers, even in the “cheapest” cloud-hosting environment the budget for a
setup utilizing thousands of servers would be significantly high, probably higher than
what most companies can afford or would like to spend. And then there’s that impor‐
tant question of development environments. Most developers like to have a working,
complete, if scaled down, model of the production environment on their worksta‐
tions. How many VMs can we realistically launch on a single laptop or desktop com‐
puter? Maybe five or ten, at most? Definitely not hundreds or thousands.

So, what does this quick, on-a-napkin-style calculation of microservices hosting costs
mean? Is a microservice architecture simply unrealistic and unattainable, from an
operational perspective? It probably was, for most companies, some number of years
ago. And that’s why you see larger companies, such as Amazon and Netflix, being the
pioneers of the architectural style—they were the few who could justify the costs.
Things, however, have changed significantly in recent years.

Microservice Architecture is a Product of Its Time

We often get asked—what is the fundamental difference between
microservice architecture and service-oriented architecture, espe‐
cially given that so many underlying principles seem similar? We
believe that the two architectural styles are creations of their
respective eras, roughly a decade apart. In those 10 years we, as an
industry, have gotten significantly more skilled in effective ways of
automating infrastructure operations. Microservice architecture is
leveraging the most advanced achievements in DevOps and contin‐
uous delivery, making the benefits of the architectural style avail‐
able and cost-effective to much wider audiences than just a handful
of large early adopters like Amazon or Netflix.

The reason microservice architecture is financially and operationally feasible has a lot
to do with containers.

The deployment unit universally used for releasing and shipping microservices is a
container. If you have never used containers before, you can think of a container as of
an extremely lightweight “virtual machine.” The technology is very different from
that of conventional VMs. It is based on a Linux kernel extension (LXC) that allows
running many isolated Linux environments (containers) on a single Linux host shar‐
ing the operating system kernel, which means we can run hundreds of containers on
a single server or VM and still achieve the environment isolation and autonomy that
is on par with running independent servers, and is therefore entirely acceptable for
our microservices needs.

Containers will not be limited to just Linux in the future. Microsoft is actively work‐
ing on supporting similar technology on the Windows platform.

92 | Chapter 6: System Design and Operations

http://api.co/1NZl5Hp
http://api.co/1NZl5Hp

Containers provide a modern isolation solution with practically zero overhead. While
we cannot run more than a handful of conventional VMs on a single host, it is com‐
pletely possible to run hundreds of containers on a single host. Currently the most
widely deployed container toolset is Docker, so in practice Docker and containers
have become somewhat synonymous. In reality, there are other up-and-coming con‐
tainer solutions, which may gain more prominence in the future.

Docker and Microservices
In this section we discuss Docker as it is the container toolset most widely deployed
in production today. However, as we already mentioned, alternative container solu‐
tions exist in varying stages of production readiness. Therefore, most things in this
section should be understood as relevant to containers in general, not just Docker
specifically.

At the beginning of 2016 (the time of writing of this book), most microservices
deployments are practically unthinkable without utilizing Docker containers. We
have discussed some of the practical reasons for this. That said, we shouldn’t think of
Docker or containers as tools designed just for the microservice architecture.

Containers in general, and Docker specifically, certainly exist outside microservice
architecture. As a matter of fact, if we look at the current systems operations land‐
scape we can see that the number of individuals and companies using containers
many times exceeds those implementing microservice architecture. Docker in and of
itself is significantly more common than the microservice architecture.

Containers were not created for microservices. They emerged as a powerful response
to a practical need: technology teams needed a capable toolset for universal and pre‐
dictable deployment of complex applications. Indeed, by packaging our application as
a Docker container, which assumes prebundling all the required dependencies at the
correct version numbers, we can enable others to reliably deploy it to any cloud or
on-premise hosting facility, without worrying about target environment and compati‐
bility. The only remaining deployment requirement is that the servers should be
Docker-enabled—a pretty low bar, in most cases. In comparison, if we just gave
somebody our application as an executable, without prebundled environmental
dependencies we would be setting them up for a load of dependency pain. Alterna‐
tively if we wanted to package the same software as a VM image, we would have to
create multiple VM images for several major platforms, since there is no single, domi‐
nant VM standard currently adopted by major players.

But compatibility is not the only win; there’s another benefit that is equally, if not
more, important when we consider containers versus VM images. Linux containers
use a layered filesystem architecture known as union mounting. This allows a great
extensibility and reusability not found in conventional VM architectures. With con‐

Docker and Microservices | 93

http://shop.oreilly.com/product/0636920035671.do

tainers, it is trivial to extend your image from the “base image.” If the base image
updates, your container will inherit the changes at the next rebuild. Such a layered,
inheritable build process promotes a collaborative development, multiplying the
efforts of many teams. Centralized registries, discovery services, and community-
oriented platforms such as Docker Hub and GitHub further facilitate quick adoption
and education in the space.

As a matter of fact, we could easily turn the tables and claim that it is Docker that will
be driving the adoption of microservices instead of vice versa. One of the reasons for
this claim is that Docker puts significant emphasis on the “Unix philosophy” of ship‐
ping containers, i.e., “do one thing, and do it well.” Indeed, this core principle is
prominently outlined in the Docker documentation itself:

Run only one process per container. In almost all cases, you should only run a single
process in a single container. Decoupling applications into multiple containers makes it
much easier to scale horizontally and reuse containers.

—Docker documentation

It is clear that with such principles at its core Docker philosophy is much closer to the
microservice architecture than a conventional, large monolithic architecture. When
you are shooting for “doing one thing” it makes little sense to containerize your
entire, huge, enterprise application as a single Docker container. Most certainly you
would want to first modularize the application into loosely coupled components that
communicate via standard network protocols, which, in essence, is what the micro‐
service architecture delivers. As such, if you start with a goal of containerizing your
large and complex application you will likely need a certain level of microservice
design in your complex application.

The way we like to look at it, Docker containers and microservice architecture are
two ends of the road that lead to the same ultimate goal of continuous delivery and
operational efficiency. You may start at either end, as long as the desired goals are
achieved.

If you are new to Docker and would like a quick sneak peek at Docker for microservi‐
ces, you can find one in a blog post Irakli recently published.

The Role of Service Discovery
If you are using Docker containers to package and deploy your microservices, you
can use a simple Docker Compose configuration to orchestrate multiple microservi‐
ces (and their containers) into a coherent application. As long as you are on a single
host (server) this configuration will allow multiple microservices to “discover” and
communicate with each other. This approach is commonly used in local development
and for quick prototyping.

94 | Chapter 6: System Design and Operations

http://api.co/1THnJyq
http://api.co/1TOgeLb

But in production environments, things can get significantly more complicated. Due
to reliability and redundancy needs, it is very unlikely that you will be using just one
Docker host in production. Instead, you will probably deploy at least three or more
Docker hosts, with a number of containers on each one of them.

Furthermore, if your services get significantly different levels of load, you may decide
to not deploy all services on all hosts but end up deploying high-load services on a
select number of hosts (let’s say ten of them), while low-load services may only be
deployed on three servers, and not necessarily the same ones. Additionally, there may
be security- and business-related reasons that may cause you to deploy some services
on certain hosts and other services on different ones.

In general, how you distribute your services across your available hosts will depend
on your business and technical needs and very likely may change over time. Hosts are
just servers, they are not guaranteed to last forever.

Figure 6-1 shows what the nonuniform distribution of your services may look like at
some point in time if you have four hosts with four containers.

Figure 6-1. Microservice deployment topology with nonuniform service distribution

The Role of Service Discovery | 95

Each instance of the microservice container in Figure 6-1 is depicted with a different
number, shape, and color. In this example, we have Microservice 1 deployed on all
four hosts, but Microservice 2 is only on hosts 1–3. Keep in mind that the deploy‐
ment topology may change at any time, based on load, business rules, which host is
available, and whether an instance of your microservice suddenly crashes or not.

Note that since typically many services are deployed on the same host, we cannot
address a microservice by just an IP address. There are usually too many microservi‐
ces, and the instances of those can go up and down at any time. If we allocated an IP
per microservice, the IP address allocation + assignment would become too compli‐
cated. Instead, we allocate an IP per host (server) and the microservice is fully
addressed with a combination of:

1. IP address (of the host)
2. Port number(s) the service is available at on the host

We already noted that the IPs a microservice is available at are ever-changing, but
what about the port? You might assume that we can assign fixed ports to individual
microservices, in essence saying, “our account management microservice always
launches on port 5555.” But this would not be a good idea. Generally speaking, many
different teams will need to independently launch microservices on, likely, a shared
pool of hosts. If we assumed that a specific microservice always launches on a specific
port of a host, we would require a high level of cross-team coordination to ensure
that multiple teams don’t accidentally claim the same port. But one of the main moti‐
vations of using a microservice architecture is eliminating the need for costly cross-
team coordination. Such coordination is untenable, in general. It is also unnecessary
since there are better ways to achieve the same goal.

This is where service discovery enters the microservices scene. We need some system
that will keep an eye on all services at all times and keep track of which service is
deployed on which IP/port combination at any given time, so that the clients of
microservices can be seamlessly routed accordingly.

As mentioned in previous chapters, there are several established solutions in the open
source space for service discovery. On one side of the spectrum we have tools such as
Etcd from CoreOs and Consul by HashiCorp. They are “low-level” tools providing a
high degree of control and visibility to an architect. On the other side of the spectrum
are tools that provide “container-scheduling” capabilities, alongside the service dis‐
covery. Kubernetes from Google is probably the most well-known in this category,
Docker Swarm being another, more recent player. With container-scheduling solu‐
tions, we get a high degree of automation and abstraction. In this scenario, instead of
deciding which container is launched on which servers, we just tell the system how
much of the host pool’s resources should be devoted to a particular service and
Kubernetes or Swarm takes care of balancing/rebalancing containers on the hosts,

96 | Chapter 6: System Design and Operations

based on these criteria. Another important technology utilizing containers is Meso‐
sphere. Mesosphere is even more abstracted than Kubernetes or Swarm, currently
marketed as “a data center operating system” that allows a higher degree of automa‐
tion, without having to worry about the many nodes deployed, and operating the
entire server cluster almost as if it were a single superserver.

There are no “better” tools when considering service discovery. As an architect, we
need to decide how much automation “magic” we want from our tools versus how
much control we need to retain for ourselves. Even within the same enterprise appli‐
cation, it is very likely that you may find Kubernetes a great fit for a certain batch of
microservices, whereas architects may decide that another class of microservices can
be better deployed if directly managed using something like Consul.

The Need for an API Gateway
A common pattern observed in virtually all microservice implementations is teams
securing API endpoints, provided by microservices, with an API gateway. Modern
API gateways provide an additional, critical feature required by microservices: trans‐
formation and orchestration. Last but not least, in most mature implementations,
API gateways cooperate with service discovery tools to route requests from the clients
of microservices. In this section of the chapter, we will look into each one of the API
gateway features and clarify their role in the overall architecture of the operations
layer for microservices.

Security
Microservice architecture is an architecture with a significantly high degree of free‐
dom. Or in other words, there are a lot more moving parts than in a monolithic
application. As we mentioned earlier, in mature microservices organizations where
the architecture is implemented for complex enterprise applications, it is common to
have hundreds of microservices deployed. Things can go horribly wrong security-
wise when there are many moving parts. We certainly need some law and order to
keep everything in control and safe. Which is why, in virtually all microservice imple‐
mentations, we see API endpoints provided by various microservices secured using a
capable API gateway.

APIs provided by microservices may call each other, may be called by “frontend,” i.e.,
public-facing APIs, or they may be directly called by API clients such as mobile appli‐
cations, web applications, and partner systems. Depending on the microservice itself,
the business needs of the organization, and the industry, market, or application con‐
text—all scenarios are fair game. To make sure we never compromise the security of
the overall system, the widely recommended approach is to secure invocation of
“public-facing” API endpoints of the microservices-enabled system using a capable
API gateway.

The Need for an API Gateway | 97

Based on our experience building microservices systems and helping a wide variety of
organizations do the same, we recommend a more radical approach than just secur‐
ing “public API endpoints.”

In reality the distinction between “public” and “private” APIs often ends up being
arbitrary. How certain are we that the API we think is “only internal” will never be
required by any outside system? As soon as we try to use an API over the public Web,
from our own web application or from a mobile application, as far as security is con‐
cerned, that endpoint is “public” and needs to be secured. We have mentioned Ama‐
zon multiple times in this book. Let’s remember what the big picture was for Amazon,
with Amazon Web Services: they in essence exposed the lowest level of the technical
stack possible—hardware resources such as disk, CPU, networking etc., used by their
ecommerce website—for anybody in the world to use and they made billions out of it.
So, why would we ever assume that we have some APIs that will forever be “internal
only”?

Sometimes, certain microservices are deemed “internal” and excluded from the secu‐
rity provided by an API Gateway, as we assume that they can never be reached by
external clients. This is dangerous since the assumption may, over time, become inva‐
lid. It’s better to always secure any API/microservice access with an API gateway. In
most cases the negligible overhead of introducing an API gateway in between service
calls is well worth the benefits.

Transformation and Orchestration
We have already mentioned that microservices are typically designed to provide a sin‐
gle capability. They are the Web’s version of embracing the Unix philosophy of “do
one thing, and do it well.” However, as any Unix developer will tell you, the single-
responsibility approach only works because Unix facilitates advanced orchestration of
its highly specialized utilities, through universal piping of inputs and outputs. Using
pipes, you can easily combine and chain Unix utilities to solve nontrivial problems
involving sophisticated process workflows. A critical need for a similar solution exists
in the space of APIs and microservices as well. Basically, to make microservices use‐
ful, we need an orchestration framework like Unix piping, but one geared to web
APIs.

Microservices, due to their narrow specialization and typically small size, are very
useful deployment units for the teams producing them. That said, they may or may
not be as convenient for consumption, depending on the client. The Web is a dis‐
tributed system. Due to its distributed nature, on the Web, so-called “chatty” inter‐
faces are shunned. Those are interfaces where you need to make many calls to get the
data required for a single task. This distaste for chatty interfaces is especially pro‐
nounced among mobile developers, since they often have to deal with unreliable,
intermittent, and slow connections. There are a few things a mobile developer loathes

98 | Chapter 6: System Design and Operations

more than an API interface that forces them to make multiple calls to retrieve some‐
thing they consider a single piece of information.

Let’s imagine that after successful completion of the APIs required for the mobile
application, the technical team behind Shipping, Inc.’s microservice architecture deci‐
ded to embark on a new journey of developing an “intelligent” inventory manage‐
ment system. The purpose of the new system is to analyze properly anonymized data
about millions of shipments passing through Shipping, Inc., combine this insight
with all of the metadata that is available on the goods being shipped, determine
behavioral patterns of the consumers, and utilizing human + machine algorithms
design a “recommendation engine” capable of suggesting optimal inventory levels to
Shipping, Inc.’s “platinum” customers. If everything works, those suggestions will be
able to help customers achieve unparalleled efficiency in managing product stock,
addressing one of the main concerns of any online retailer.

If the team is building this system using a microservice architecture, they could end
up creating two microservices for the main functionality:

1. Recommendations microservice, which takes user information in, and responds
with the list containing the recommendations—i.e., suggested stock levels for
various products that this customer typically ships.

2. Product Metadata microservice, which takes in an ID of a product type and
retrieves all kinds of useful metadata about it.

Such separation of concerns, into specialized microservices, makes complete sense
from the perspective of the API publisher, or as we may call them, the server-side
team. However, for the team that is actually implementing the end-user interface,
calling the preceding microservices is nothing but a headache. More likely than not,
the mobile team is working on a user screen where they are trying to display several
upcoming suggestions. Let’s say the page size is 20, so 20 suggestions at a time. With
the current, verbatim design of the microservices, the user-interface team will have to
make 21 HTTP calls: one to retrieve the recommendations list and then one for each
recommendation to retrieve the details, such as product name, dimensions, size,
price, etc.

At this point, the user-interface team is not happy. They wanted a single list; but
instead are forced to make multiple calls (the infamous “N+1 queries” problem,
resurfaced in APIs). Additionally, the calls to the Product Metadata microservice
return too much information (large payload problem), which is an issue for, say,
mobile devices on slow connections. And the end result is that the rendering of the
all-important mobile screen is slow and sluggish, leading to poor user experience.

Scenarios like the one just described are all too common. As a matter of fact, they
existed even before the dawn of the microservice architecture. For instance, the REST

The Need for an API Gateway | 99

http://api.co/1U7ZHw5

API style has been criticized a lot for “chatty interface.” We do not have to build our
microservice APIs in the RESTful style, but a similar problem still exists, since we
decided that our microservices need to do “one thing,” which can lead to chattiness.
Fortunately, since the “chattiness” problem in the APIs is not new, mature API gate‐
ways are perfectly equipped to deal with the problem. A capable API gateway will
allow you to declaratively, through configuration, create API interfaces that can
orchestrate backend microservices and “hide” their granularity behind a much more
developer-friendly interface and eliminate chattiness. In our example scenario, we
can quickly aggregate the N+1 calls into a single API call and optimize the response
payload. This gives mobile developers exactly what they need: a list of recommenda‐
tions via a single query, with exactly the metadata they required. The calls to back-
end microservices will be made by the API gateway. Good API gateways can also
parallelize the twenty calls to the Product Metadata microservice, making the aggre‐
gate call very fast and efficient.

Routing
We already mentioned that in order to properly discover microservices we need to
use a service discovery system. Service discovery systems such as Consul and etcd
will monitor your microservice instances and track metadata about what IPs and
ports each one of your microservices is available at, at any given time. However,
directly providing tuples of the IP/port combinations to route an API client is not an
adequate solution. A proper solution needs to abstract implementation details from
the client. An API client still expects to retrieve an API at a specific URI, regardless of
whether there’s a microservice architecture behind it and independent of how many
servers, Docker containers, or anything else is serving the request.

Some of the service discovery solutions (e.g., Consul, and etcd using SkyDNS) pro‐
vide a DNS-based interface to discovery. This can be very useful for debugging, but
still falls short of production needs because normal DNS queries only look up
domain/IP mapping, whereas for microservices we need domain mapping with an IP
+port combination. In both Consul and SkyDNS, you can actually use DNS to look
up both IP and port number, via an RFC 2782 SRV query, but realistically no API
client expects or will appreciate having to make SRV requests before calling your API.
This is not the norm. Instead, what we should do is let an API gateway hide the com‐
plexities of routing to a microservice from the client apps. An API gateway can inter‐
face with either HTTP or DNS interfaces of a service discovery system and route an
API client to the correct service when an external URI associated with the microser‐
vice is requested. You can also use a load balancer or smart-reverse proxy to achieve
the same goal, but since we already use API gateways to secure routes to microservi‐
ces, it makes a lot of sense for the routing requirement to also be implemented on the
gateway.

100 | Chapter 6: System Design and Operations

https://github.com/skynetservices/skydns
https://www.consul.io/docs/agent/dns.html

Monitoring and Alerting
As we have already mentioned, while microservice architecture delivers significant
benefits, it is also a system with a lot more moving parts than the alternative—mono‐
lith. As such, when implementing a microservice architecture, it becomes very
important to have extensive system-wide monitoring and to avoid cascading failures.

The same tools that we mentioned for service discovery can also provide powerful
monitoring and failover capabilities. Let’s take Consul as an example. Not only does
Consul know how many active containers exist for a specific service, marking a ser‐
vice broken if that number is zero, but Consul also allows us to deploy customized
health-check monitors for any service. This can be very useful. Indeed, just because a
container instance for a microservice is up and running doesn’t always mean the
microservice itself is healthy. We may want to additionally check that the microser‐
vice is responding on a specific port or a specific URL, possibly even checking that
the health ping returns predetermined response data.

In addition to the “pull” workflow in which Consul agents query a service, we can
also configure “push”-oriented health checks, where the microservice itself is respon‐
sible for periodically checking in, i.e., push predetermined payload to Consul. If Con‐
sul doesn’t receive such a “check-in,” the instance of the service will be marked
“broken.” This alternative workflow is very valuable for scheduled services that must
run on predetermined schedules. It is often hard to verify that scheduled jobs do run
as expected, but the “push”-based health-check workflow can give us exactly what we
need.

Once we set up health checks we can install an open source plug-in called Consul
Alerts, which can send service failure and recovery notifications to incident manage‐
ment services such as PagerDuty or OpsGenie. These are powerful services that allow
you to set up sophisticated incident-notification phone trees and/or notify your tech
team via email, SMS, and push notifications through their mobile apps. Since it is
2016 and everybody seems to be using Slack or HipChat, Consul Alerts also has sup‐
port for notifying these chat/communication systems, so that you can be alerted
about a service interruption even as you are sending your coworkers that day’s funny
animated .gif, or are, say, discussing product priorities for the upcoming cycle. I per‐
sonally use Slack for both, so no judging.

Summary
In this chapter we clarified the relationship between containers (such as Docker) and
microservices. While simply containerizing your application doesn’t lead you to a
microservice architecture, most microservices implementations do use containers as
they bring unparalleled cost savings and portability for autonomous deployment.
Further, we noted that containers were not created for microservices—they have their

Monitoring and Alerting | 101

https://github.com/AcalephStorage/consul-alerts
https://github.com/AcalephStorage/consul-alerts
https://www.pagerduty.com/
https://www.opsgenie.com/
https://slack.com/
https://www.hipchat.com/

own purpose and are actually much more widely adopted than microservice architec‐
ture. We also predicted that container adoption may, in effect, lead to increased popu‐
larity of microservices, since it is the architecture that best fits the container-based
deployment philosophy.

We also reviewed what is possibly the most important topic of microservices opera‐
tions—service discovery—explaining the various options currently available in open
source, the similarities and differences between them, and what choices systems
architects make when picking a particular solution.

We discussed the role of the API gateway and the core capabilities it provides for the
architectural style: security, routing, and transformation/orchestration. We also
looked at an example of an intelligent recommendation engine to explain the key role
of transformation/orchestration in the architectural style.

At the end of the chapter we discussed the role of monitoring for microservice archi‐
tecture, alternative workflow approaches of push-based health-checks versus pull-
based ones, and provided some example tools that can help teams set up
sophisticated monitoring and alerting workflows.

102 | Chapter 6: System Design and Operations

CHAPTER 7

Adopting Microservices in Practice

Throughout this book we’ve talked about companies that have enjoyed success with
the microservices style. In fact, a lot of the organizations that we’ve used to highlight
the microservice architecture are the same ones that pop up in most of the online lit‐
erature: Amazon, Netflix, and SoundCloud, among others. But chances are that your
business doesn’t look or act like one of these online companies. That’s not a bad thing.

Doing things in the microservices way can apply to almost any organization. We
believe that every organization that does business on the Internet has an opportunity
to improve with a focus on balancing safety and speed at scale. From this focus, you
can identify the principles and practices from our showcase microservices organiza‐
tions that will work for you.

We also know that most readers are already working in a company with active IT
services up and running in production. That means you’re likely dealing with an
existing legacy of culture, organizational structure, process, tools, services, and archi‐
tecture. You’re not going to be designing an optimized microservice-centric system
from scratch. To adopt the microservices way of building applications, you’ll need a
set of principles and practices that fit your unique set of constraints and coax the sys‐
tem toward an optimal balance of safety and speed.

In this chapter we will highlight some of the most common adoption challenges that
you will face when implementing a microservice-style architecture within an existing
organization. These are arranged in a kind of question-and-answer format to help
you zero in on the ones that interest you right now. While it isn’t an exhaustive list,
we hope it will help you tackle some of the biggest problems that mid- to large-sized
companies have when wrestling with a microservices implementation. Hopefully,
you’ll be able to refer back to these topics several times as you work through your
own microservice progress.

103

Solution Architecture Guidance
Solution architecture is distinct from individual service design elements because it
represents a macro view of our solution. Here are some issues you may encounter
when working at this macro-level view of the system.

How many bug fixes/features should be included in a single release?
Since releases are expected to happen frequently, each release will likely be small. You
probably can’t box up 50 changes to a single service component in a week. We hear
most organizations have a practice of limiting the number of changes. Netflix, for
example, tells teams to make only one significant change per release. For example, if
your team needs to refactor some of the internal code and start using a new data store
module, that would be two releases.

The biggest reason for limiting the number of changes in a release is to reduce uncer‐
tainty. If you release a component that contains multiple changes, the uncertainty is
increased by the number of interactions that occur between those changes. The math‐
ematical discipline of graph theory provides a simple formula to calculate those inter‐
actions: n(n–1)/2. Based on this, if you release a component that contains 5 changes
and it causes problems in production, you know that there are 10 possible ways in
which these 5 changes could interact to cause a problem. But if you release a compo‐
nent with 15 changes there is a potential for over 100 different ways in which those
changes can interact to cause problems—and that’s just internal problems.

Limit the number of changes in each release to increase the safety of each release.

When do I know our microservice transformation is done?
Technically, creating and maintaining a vital information system is never “done.” And
that is also true for one built in the microservices way. In our experience some archi‐
tects and developers spend a lot of time trying to identify the ideal solution or imple‐
mentation model for their system design. It rarely works. In fact, one of the
advantages of microservices is that change over time is not as costly or dangerous as
it might be in tightly coupled large-scope release models.

Trying to perfect “the system” is an impossible task since it will always be a moving
target. Often arriving at some “final state” marks the start of accumulating “technical
debt”—that status where the system is outdated and difficult to change. It helps to
remember that everything you build today will likely be obsolete within a few years
anyway.

104 | Chapter 7: Adopting Microservices in Practice

Since doing things in the microservices way means lots of small releases over time,
you’ll always be changing/improving something. This means you get lots of “done”
moments along the way and, in keeping with the theme of microservices, are able to
effect change over time “at scale.”

Organizational Guidance
From a microservice system perspective, organizational design includes the structure,
direction of authority, granularity, and composition of teams. A good microservice
system designer understands the implications of changing these organizational prop‐
erties and knows that good service design is a byproduct of good organizational
design.

How do I know if my organization is ready for microservices?
You can start by assessing your organization’s structure and associated culture. In a
1967 paper titled “How Committees Invent”, computer scientist Mel Conway argued
that the design of a software system will mimic the communication structure of the
organization that produced it. “Conway’s law,” as it came to be known, has had a
recent revival in microservices circles. There is good reason for this. As discussed ear‐
lier, the majority of microservice architecture pioneers began their quest for faster
software delivery by optimizing organizational design before addressing the software
architecture. Given this progression, these organizations landed on microservice
architecture as a style that aligned with their small, business-aligned teams, thus
revealing the wisdom of Conway’s decades-old assertion.

However, many organizations now evaluating microservice architecture are not fol‐
lowing the same path. In those cases, it is crucial to look at the organizational struc‐
ture. How are responsibilities divided between teams? Are they aligned to business
domains, or technology skillsets? At what level of the organization are development
and operations divided? How big are the teams? What skills do they have? How
dynamic is the communication and interaction between the teams who need to be
involved in the delivery lifecycle? In addition to these organizational variables, you
should evaluate the culture. How is power distributed between the teams? Is it cen‐
tralized at a high level, or decentralized among the delivery teams? Answering these
questions will help you understand what impacts these organizational factors will
have on your adoption efforts and resulting successes.

Organizational Guidance | 105

http://www.melconway.com/Home/Conways_Law.html

Assessing Your Organization
• How are responsibilities divided?
• Are responsibilities aligned to business or technology?
• Do you practice DevOps, or Dev and Ops?
• How big are the teams? What kinds of skills do they have?
• What are the dependencies for cross-team communication?
• What does the power distribution look like between teams?

The ideal organization for microservices has small, empowered teams responsible for
services that align with specific business domains. These teams feature all of the roles
necessary to deliver these services, such as product owners, architects, developers,
quality engineers, and operational engineers. The teams also need the right skills,
such as API design and development, and knowledge of distributed applications.
Organizations that mismatch any of these characteristics will pay a toll when attempt‐
ing to apply microservice architecture. Teams that are not empowered will experience
delays waiting for decisions to be made above their heads. Lack of business alignment
will lead to cross-team dependencies, causing further delays and architectural devia‐
tion. Teams that are too large create incomprehensible code bases that impede and
delay future changes. The higher up the divide between development and operations,
the less motivated the operations group will be to automate and optimize and the less
diligent developers will be in the operability of their software. Lastly, if the team
doesn’t have the right skills to build API-fronted services using distributed concepts,
costs could go up to cover training and/or contract hiring, or the solution could be
dragged away from the microservices approach as existing resources retreat to their
technological comfort zones.

Culture Guidance
Your organization’s culture is important because it shapes all of the atomic decisions
that people within the system will make. This large scope of influence is what makes
it such a powerful tool in your system design endeavor.

How do I introduce change?
...the challenge is to find small changes that can unfold in a way that creates large
effects...

—Gareth Morgan, author of Images of Organization

106 | Chapter 7: Adopting Microservices in Practice

If you aren’t working in a greenfield environment, chances are you’ll have inherited an
existing organizational design as well. Making changes to a working organization is
nontrivial and carries a much greater risk than toying with a solution architecture.
After all, if we make a mistake when refactoring our software we can always undo our
changes, but when we make a mistake when redesigning the reporting structure in an
organization the damage is not so easily undone.

You’re unlikely to hear anyone refer to organizational design using the term refactor‐
ing. You’re far more likely to hear the term organizational transformation, and if it’s an
area of interest to you, there is a wealth of material that can help you along the path to
change. But within the context of this book, the term refactoring makes a lot of sense.
What we are primarily interested in is a method for making changes to the organiza‐
tion in a way that is safe. Refactoring can help us with that.

In order to apply a refactoring strategy to the organizational design, you’ll need to:

1. Devise a way to test changes
2. Identify problem areas in your organizational design
3. Identify safe transformations (changes that don’t change existing behavior)

Refactoring the organization won’t help you do something you don’t already know
how to do. Your goal should be to do the same things, but improve the design of your
organization so you can do them better.

When you refactor an application you can measure and observe the performance of
the application; you can audit the source code, and you can comb through logs and
determine where most of the problems occur. But when dealing with the processes
and people that make up an organization things are a bit less black and white. To suc‐
cessfully identify where the refactoring opportunities are within the organization,
you’ll need to find some way to model the existing system in order to analyze and
measure its performance.

SoundCloud’s Phil Calçado has written about using a lean management technique
called value stream mapping as an initial step toward microservices. Value stream
maps are a great tool to use for this activity, but use whichever method you are com‐
fortable with to get a better understanding of how work is being done. Flowcharts,
business process models, and activity diagrams can all do the job in the right hands.

No matter how you do it, the goal in this step is to identify how software changes are
introduced to the system, who implements those changes, and the type of coordina‐
tion that is required for those changes to take place. For the microservice system we
are especially interested in identifying opportunities to improve the efficiency of
change. Gaining a total understanding of how your organization works may be too
large of an initial investment to undertake, so in practice you may need to focus only

Culture Guidance | 107

on the changes that occur the most often for the components that are the most vola‐
tile.

In particular, you should be looking for the bottlenecks that cause change to be
expensive. Which processes result in a queue or backlog? Are there particular central‐
ized functions such as audits, code reviews, and gating procedures that cause teams to
have to wait? Are there any parts of your process flow that make it difficult for multi‐
ple changes to be introduced at the same time due to resource availability or a need
for serialized process execution? Finding these bottlenecks will help you identify
good candidates for process and organizational refactoring as they should yield a
large benefit to the changeability and speed of release for the system.

Can I do microservices in a project-centric culture?
A hallmark of a microservices organization is that the teams that implement a feature,
application, or service continue to support, improve, and work on the code for its
lifetime. This product-centric perspective instills a sense of ownership of the compo‐
nent and reinforces the idea that deployed components will constantly be updated
and replaced. This notion of ownership is important enough that Martin Fowler has
made “products not projects” one of the primary characteristics for a microservice
application.

Typical project-centric cultures operate differently. Teams are formed to address a
particular problem (e.g., create a new component, add a feature, etc.) and disbanded
when that problem is solved. Often a good deal of knowledge about both the problem
and the solution gets lost when the team disbands. And, if there is a need to re-
address the same problem, or make additional changes to the same component, it
may be difficult to re-create the team or recover the lost knowledge. These challenges
usually mean changes happen less often and are more likely to result in bugs or par‐
tial solutions.

In truth, it is quite difficult to adopt the microservice style if you need to operate in
this type of culture. If changeability and speed of release are important properties for
your system, the long-term goal should be to transition to a style of building that
encourages team-based ownership of components.

Can I do microservices with outsourced workers?
A particular challenge for large companies trying to incorporate the ideal microservi‐
ces system is the trend toward outsourcing technology services. The act of hiring an
outside company to perform development and operations activities using workers
who are external to the organization seems at odds with the culture and organiza‐
tional principles we’ve described in this book. But with the right outsourcing struc‐
ture, a microservice system may lend itself well to being developed by an external
organization.

108 | Chapter 7: Adopting Microservices in Practice

http://martinfowler.com/articles/microservices.html

By embracing a decentralized way of working and standardizing on the output and
processes of service teams (containers and APIs), the outsourced development team
can be given enough autonomy to build a service that meets the capability require‐
ments of the owning organization. But this is only possible if the outsourced team
conforms to the principles that exemplify the microservices way: the teams should be
the right size, built to last for the perpetuity of the life of the service, and composed of
workers who are skilled, experienced, and capable enough to make good design and
implementation decisions autonomously.

In addition to team composition, the microservice designer should acknowledge that
a cross-pollination of cultures occurs whenever outsourcing is conducted. The impli‐
cation is that a desired organizational culture cannot simply be adopted by the out‐
sourced team, nor can the buying organization avoid having their culture changed by
the intermingling of work. This means that culture becomes an important element in
deciding which companies or people should be chosen to support the outsourcing
model.

Ultimately, the selection process for a microservices outsourcing model cannot be
optimized purely for low-cost work. You will need to carefully select a partner who is
amenable to the cultural traits you are looking for and possesses aspects of culture
you’d like to incorporate into your own system. The deal must also be structured to
incentivize the team dynamic that works best for building applications the microser‐
vices way—teams should be dedicated to services, workers should be capable of
working autonomously, and speed of high-quality delivery should be the primary
metric for success.

Tools and Process Guidance
The system behavior is also a result of the processes and tools that workers in the sys‐
tem use to do their job. In microservices systems, this usually includes tooling and
processes related to software development, code deployment, maintenance, and prod‐
uct management.

What kinds of tools and technology are required for microservices?
Chapter 4 introduced the importance of the microservices platform and Chapters 5-6
identified some particularly important tools that you can use to “power up” your plat‐
form and maximize both speed and safety of change. But these aren’t the only tools
you’ll need if you want to improve your chances of succeeding with microservices.

The ideal technological environment for microservices features cloud infrastructure,
which facilitates rapid provisioning and automated deployment. The use of contain‐
ers is particularly useful to enable portability and heterogeneity. Middleware for data
storage, integration, security, and operations should be web API-friendly in order to

Tools and Process Guidance | 109

facilitate automation and discovery, and should also be amenable to dynamic, decen‐
tralized distribution. The ideal programming languages for microservices are API
friendly as well, and should be functional while also matching the skillsets of your
organization. It is particularly useful to provide tools for developers that simplify
their tasks yet incorporate constraints that encourage good operational behavior of
their resulting code.

Straying from these technological traits can lead to adoption issues. Lack of cloud
infrastructure will lead to deployment delays and inflexible scaling. Lack of contain‐
ers—or reliance on older virtualization or app servers—could increase the cost of
resource utilization and lead to quality issues resulting from inconsistencies across
environments. Middleware that assumes strict centralized control will break the
decentralized organizational model and challenge the provisioning of ephemeral
environments. If used in a decentralized model, this specialized middleware could
also lead to skill challenges in the organization if every team is required to cultivate
expertise. Centralized or segregated data breaks the organizational model as well. It
also slows down delivery and impedes evolvability. Lack of developer tooling consis‐
tency could lead to duplicate work and lack of visibility or resiliency in the overall
system. Finally, a large dependency on legacy applications could limit the ability to
make changes.

What kinds of practices and processes will I need to support
microservices?
While we talked about the principles that underpin good microservices practices in
Chapter 4, we haven’t told you which specific practices or methodologies you should
use. Our advice is to focus on the principles first, but it’s worth taking a look at how
the companies that are known for doing microservices well build their software.

The ideal software development lifecycle for microservices is based on a product
mentality using Agile principles, which includes continuous integration and continu‐
ous delivery and features a high degree of automation in testing, deployment, and
operations. Attempting to apply microservice architecture in a differing environment
can subtract from its potential value. A Waterfall approach can lead to tight coupling
of services, making it difficult to manage the different change rates of those services
and inhibiting their evolution. Project-focused delivery assumes static requirements
and heavyweight change control, both impediments to fast software delivery. Being
unable to deploy frequently will lead to a “big bang” release mentality and bring with
it undue ceremony. If change frequency is increased in an environment that has a leg‐
acy of change intolerance, many of those overweight processes can stick around,
slowing down delivery, and introducing procedural fatigue as a new risk. Lack of
automation in the deployment lifecycle will have a negative compound effect on
speed to market, and lack of automation in operations will make it harder to deal
with the operational complexity of a distributed environment.

110 | Chapter 7: Adopting Microservices in Practice

http://agilemanifesto.org/principles.html

How do I govern a microservice system?
Aside from regulatory issues (e.g., certification, audits, etc.) there are typically three
ways in which you can address security and governance requirements in a microser‐
vice system: centralized, contextual, and decentralized.

Centralized controls
At the component level, there really isn’t anything special about securing a micro‐
service system. If you know how to secure an operating system, secure an API, or
secure an application you can apply all of the same mechanisms to a microservice
system. But when security mechanisms are introduced in the manner that most
experts are used to implementing them, you can inadvertently upset the system
optimization goals that you’ve worked hard to design into the architecture.

This is because security, controls, and governance policies are often implemented
in a centralized fashion. For example, if we have a need to authenticate, authorize,
and audit messages before they are processed, the most common architecture
pattern is to implement some form of central security enforcement component
within the architecture. Implementing a single, scalable component that can
manage a complex and expensive function like access control makes a lot of
sense. Assigning a separate team to manage and implement such a service also
makes a lot of sense. Unfortunately, services like access control are likely to be
used by every service in the infrastructure, which results in a common compo‐
nent that all of other services will grow dependent on. In other words, a bottle‐
neck can develop.

A centralized security component risks putting our system into a state of mechan‐
ical organization or centralized control. In the early days of a microservice archi‐
tecture it will be easy to set up the correct access and routing rules for a handful
of services, but as more services are introduced and as those services change, the
demand to modify the access control component is likely to outgrow the access
control team’s capacity to roll out changes in time.

For organizations that wish to prioritize control and security it may be reasonable
to trade the speed of change for improved system safety and security. However, if
you want to optimize for speed of implementation you’ll need to take a different
decentralized approach.

Decentralized controls
The implication here is that the individual microservice teams will need to man‐
age an infrastructure that includes security mechanisms that are bounded to the
service itself. The organization may standardize on the particular components
and libraries that are to be used in every microservice, but it will be the teams
themselves that are responsible for implementing security components and con‐

Tools and Process Guidance | 111

figuring them accordingly. It naturally follows that someone on the team must
also take on the role of becoming the security expert for the service.

Contextual controls
A third approach that an organization can take is to define subsystems within the
microservice architecture. Each subsystem may contain multiple services and
their services within the subsystem are able to share common resources such as
access control. Again, the organization may mandate the nature and requirement
for these security components to be in place, but it is up to a subsystem service
team to own and manage the configuration for the security component.

Security will always be an important design consideration for your microservice
system. Even the absence of security is an implicit trade-off. While decisions
about how and what to secure will be dependent on the risk profile of your orga‐
nization and nature of the application you are building, the decision about who
will manage the security implementation and where it will be implemented will
have a big impact on your ability to optimize for the system behavior that you
want.

Designing services that may be used by all other services in the system in itself is
not a problem. A commonly used service that is resilient, reliable, and available
will not impede the efforts of the rest of the service teams in the system. How‐
ever, a commonly used service becomes a problem if the cost of implementing,
configuring, and changing it becomes so high that it reduces the ability for ser‐
vice teams to make changes to the system.

Services Guidance
In a microservice system, the services form the atomic building blocks from which
the entire organism is built. The following are some additional questions and issues
we’ve identified when implementing well-designed microservices and APIs.

Should all microservices be coded in the same programming
language?
The short answer is “no.” The internal language of the component is not as important
as the external interface—the API—of that component. As long as two components
can use the same network protocols to exchange messages in an agreed-upon format
using shared terms, the programming language used to accomplish all this is not
important.

At the same time, many companies we talked to constrained the number of languages
supported in the organization in order to simplify support and training. While a
polyglot environment has advantages, too many languages results in added nonessen‐
tial complexity system developers and maintainers need to deal with.

112 | Chapter 7: Adopting Microservices in Practice

What do I do about orphaned components?
Over the life of a microservice implementation teams will come and go, and some‐
times a team might disband and this can result in an “orphaned” microservice. It’s not
a good idea to just let a service run along without someone to care for it. As Martin
Fowler points out in “Products not Projects”, “ownership” is an important organiza‐
tional aspect of microservices.

When a team is about to disband, that team needs to designate a new “owner” of the
microservice component. This might be one of the existing team members (“OK, I’ll
take responsibility for it”). It might be some other team that is willing to take care of
it. Or it might be someone who has taken on the special role of caring for “orphaned”
services. But someone needs to be designated as the “owner.”

It’s not safe to allow orphaned services to run in your infrastructure.

Summary
It is unlikely that the microservice system you design will be exactly like the ones that
Amazon, Netflix, SoundCloud, or any of the other companies you may have heard do
microservices correctly. Since there isn’t a formal definition for microservices, it’s easy
enough for you to call whatever you do a microservice architecture. What you call
your system is relatively unimportant. But if your goal is to improve the changeability
and adaptability of your system, following some of the principles we’ve outlined
throughout this book will help get you there.

In this chapter we’ve outlined some methods for dealing with some of the challenges
that many implementers face when introducing the microservice style to their organi‐
zations. But it is important that you decide if the benefits of a microservice system
outweigh the cost of changes that will be required to get there. It’s unlikely that every
organization needs to build applications in the microservices way. This doesn’t mean
that you can’t take advantage of innovative tools—you can use Docker containers
without rearchitecting your application and you can introduce modular services
without redesigning your team structure. But to really take advantage of this adaptive
way of building applications, you’ll need to eventually address all of the system
components.

Summary | 113

http://martinfowler.com/articles/microservices.html

CHAPTER 8

Epilogue

The best software architecture “knows” what changes often and makes that easy.
—Paul Clements, author of Software Architecture in Practice

While this book bears the title microservice architecture, you have likely noticed that
the central theme has been change. Specifically, we’ve focused on designing systems
that make change easier.

When we work in a business environment where the goals and processes change fre‐
quently, our software architecture needs to reflect that. When it doesn’t, the gap
between business practice and system functionality widens and we call that “technical
debt.” On the other hand, when you engineer your system to support change safely—
to allow replacing small interoperable parts without having to rebuild the entire sys‐
tem—then you’re making change easier and avoiding that widening gap between
practice and code.

Microservices are the small interoperable parts and microservice architecture is the
engineering practice that can make change easier. The process of working along the
path from your current architectural state and the desired future state where you can
harmonize the speed of change with the need for system safety is what we call the
microservices way.

Another key point to keep in mind is that there is no “all done” moment, that instant
when you’ll have everything in place, just the way you like it all running along
without the need for modification. This need for constant change is not a “bug” in the
way your software is engineered or implemented—it’s a feature of a vital, viable infor‐
mation system. While there may be times when things tend to calm down or seem to
run fairly quietly, they’re not likely to last very long.

As someone responsible for making sure IT practices keep in alignment with business
goals and objectives, you’ll find lots of opportunity for “wins,” but they might look a

115

bit different than you’d expect. For example, a “win” is when you release refactored
updates to core services without anyone even noticing. Or you complete a multiyear
migration from one data-storage system to another. Or you learn that other teams in
the company are now releasing customer-facing applications at a speed not previ‐
ously thought possible. If you’re lucky, someone will remember that all this was possi‐
ble because of the work you’ve been doing all along.

As you’ve seen from our examples, you don’t need to transform your organization,
culture, and processes all in one “big bang.” There are lots of small moves you can
implement as you learn from each attempt and gain experience in the microservices
way. And, you’ll need all that experience as you face new challenges to adapt what
you’ve built today to meet the unique goals and requirements of the future. Hopefully,
the descriptions, models, and guidance we’ve collected here can give you a set of tools
you can use to improve your organization’s software system starting today and well
into the future.

As we mentioned at the outset, we don’t think it’s important to agree upon a universal
definition for the term “microservice.” We don’t even expect the current popularity of
the term to last long. However, the principles that make microservices special—things
like immutability and modularity, speed and safety, resilience, and agility—are well-
known and lasting values. Technology advancements are already occurring as we
write this book. The world around us is changing. Concepts such as serverless archi‐
tectures, automated transport, virtual reality, and adaptive intelligent programs are all
generating interest. We can’t predict the future, and any of these technological or
social changes could have a profound impact on the industry we share. That may
mean that the range and types of tools available in the future may change in profound
ways. These potential changes can alter the implementation details and processes you
use to meet your goals but the underlying principles will stay the same.

And, even with all the possibilities of rapid change ahead, we think the microservices
way of developing software—the harmonic balance of speed and safety at scale—will
be valuable to you far into the future. So, when technology, society, and businesses
change around you, you can use the way to identify the best of the new principles and
patterns that will inevitably emerge from these important changes. That means you
have the opportunity to embrace change and more easily adapt to new ways of
designing, building, and managing the information systems of the future.

Nothing endures but change.
—Heraclitus

116 | Chapter 8: Epilogue

APPENDIX A

Microservice Architecture Reading List

There are a number of great resources out there for learning about microservice
architecture, many of which helped to shape this book. This appendix collects and
classifies the authors’ favorites.

Microservices 101
These materials are the best place to start learning about microservices and microser‐
vice architecture:

• Lewis, James, and Martin Fowler. “Microservices: A Definition of This New
Architectural Term”, March 25, 2014.

• Miller, Matt. “Innovate or Die: The Rise of Microservices”. The Wall Street Jour‐
nal, October 5, 2015.

• Newman, Sam. Building Microservices. O’Reilly Media, 2015.

Best Practices
These resources provide guidance on what to do—and what not to do—when it
comes to implementing a microservice architecture:

• Alagarasan, Vijay. “Seven Microservices Anti-patterns”, August 24, 2015.
• Cockcroft, Adrian. “State of the Art in Microservices”, December 4, 2014.
• Fowler, Martin. “Microservice Prerequisites”, August 28, 2014.
• Fowler, Martin. “Microservice Tradeoffs”, July 1, 2015.
• Humble, Jez. “Four Principles of Low-Risk Software Release”, February 16, 2012.

117

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://blogs.wsj.com/cio/2015/10/05/innovate-or-die-the-rise-of-microservices/
http://bit.ly/building-microservices
http://www.infoq.com/articles/seven-uservices-antipatterns
http://www.slideshare.net/adriancockcroft/dockercon-state-of-the-art-in-microservices
http://martinfowler.com/bliki/MicroservicePrerequisites.html
http://martinfowler.com/articles/microservice-trade-offs.html
http://www.informit.com/articles/article.aspx?p=1833567

• Humble, Jez, Chris Read, and Dan North. “The Deployment Production Line”. In
Proceedings of the conference on AGILE 2006, 113–118. IEEE Computer Society.

• Kniberg, Henrik, and Anders Ivarsson. “Scaling Agile at Spotify”, October 2012.
• Vasters, Clemens. “Sagas”, September 1, 2012.
• Wootton, Benjamin. “Microservices are Not a Free Lunch”, April 8, 2014.

Example Implementations
The following articles include overviews and insight from real-life microservice
implementations:

• Amazon Web Services
• Autoscout24
• CA Technologies (Rally)
• Disney
• Gilt

— http://www.infoq.com/presentations/microservices-dependencies
— http://www.infoq.com/news/2015/04/scaling-microservices-gilt

• ITV
• Jet.com
• Netflix

— http://techblog.netflix.com/2015/01/netflixs-viewing-data-how-we-know-
where.html

— https://yow.eventer.com/yow-2013-1080/cloud-native-architecture-at-netflix-
by-adrian-cockcroft-1364

• Nike
• SoundCloud

— https://www.thoughtworks.com/insights/blog/bff-soundcloud
— http://www.infoq.com/articles/microservices-evolution-soundcloud
— http://philcalcado.com/2015/09/08/how_we_ended_up_with_microservices.html

• Spotify
• Trinity Mirror Group

118 | Appendix A: Microservice Architecture Reading List

http://dl.acm.org/citation.cfm?id=1155519
https://dl.dropboxusercontent.com/u/1018963/Articles/SpotifyScaling.pdf
http://vasters.com/clemensv/2012/09/01/Sagas.aspx
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html
https://queue.acm.org/detail.cfm?id=1142065
http://www.infoq.com/news/2016/02/autoscout-microservices
https://www.rallydev.com/blog/engineering/introduction-microservices-0
http://www.computerworld.com/article/2999969/application-development/modular-software-creates-agility-and-complexity.html
http://www.infoq.com/presentations/microservices-dependencies
http://www.infoq.com/news/2015/04/scaling-microservices-gilt
https://skillsmatter.com/skillscasts/6186-domain-service-aggregators-a-structured-approach-to-microservice-composition
http://tech.just-eat.com/2016/03/08/tech-talk-rachel-reese-jet-com-microservices-in-the-real-world/
http://techblog.netflix.com/2015/01/netflixs-viewing-data-how-we-know-where.html
http://techblog.netflix.com/2015/01/netflixs-viewing-data-how-we-know-where.html
https://yow.eventer.com/yow-2013-1080/cloud-native-architecture-at-netflix-by-adrian-cockcroft-1364
https://yow.eventer.com/yow-2013-1080/cloud-native-architecture-at-netflix-by-adrian-cockcroft-1364
http://www.zdnet.com/article/how-nike-thinks-about-app-development-lots-of-micro-services/
https://www.thoughtworks.com/insights/blog/bff-soundcloud
http://www.infoq.com/articles/microservices-evolution-soundcloud
http://philcalcado.com/2015/09/08/how_we_ended_up_with_microservices.html
https://www.infoq.com/news/2015/12/microservices-spotify
http://www.computerweekly.com/news/4500271221/Trinity-Mirror-Group-uses-cloud-and-performance-monitoring-to-boost-website-users-experience

Foundations
The last set of resources includes the historical foundations for microservice
architecture:

• Arthur, W. Brian. The Nature of Technology. Simon & Schuster, 2009.
• Brooks, Fred. “No Silver Bullet”. Reproduced from The Mythical Man-Month,

Anniversary edition, Addison-Wesley, 1995.
• Conway, Mel. “Conway’s Law”, accessed May 25, 2016.
• Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of Software.

Prentice-Hall, 2003.
• Fielding, Roy. “Architectural Styles and the Design of Network-based Software

Architectures”. PhD diss., University of California, Irvine, 2000.
• Feldman, Stuart. “A Conversation with Alan Kay”. Queue 2(2004): 20–30.
• Mintzberg, Henry. Structure in Fives: Designing Effective Organizations. Pearson,

1992.
• Morgan, Gareth. Images of Organization. SAGE Publishing, 2007.
• Parnas, David. “On the Criteria to Be Used in Decomposing Systems Into Mod‐

ules”. Communications of the ACM 15(1972): 1053–1058.
• Poppendieck, Mary. “The New New Software Development Game”, Craft Con‐

ference video, April 2015.
• Ries, Eric. The Lean Startup. Crown Business, 2011.

Microservice Architecture Reading List | 119

http://tuvalu.santafe.edu/%7Ewbarthur/thenatureoftechnology.htm
http://worrydream.com/refs/Brooks-NoSilverBullet.pdf
http://www.melconway.com/Home/Conways_Law.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://queue.acm.org/detail.cfm?id=1039523
http://www.mintzberg.org/books/structure-5s-designing-effective-organizations
https://us.sagepub.com/en-us/nam/images-of-organization/book229704
https://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
https://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
http://www.ustream.tv/recorded/61477219/theater
http://theleanstartup.com/book

Index

A
adaptability, change and, 29
Agile Manifesto, 65
Air Force, US, 23
alerting, 101
Allspaw, John

on monitoring, 44
Amazon

and size of teams at, 56
automated testing of code, 51

Amazon machine images (AMIs), 52
Amazon Web Services, 13, 98
antifragility, 45
API design

and output standardization, 32
hypermedia-driven implementation, 68-70
message-oriented implementation, 67
standardization trade-offs, 33

API gateway, 97-100
routing, 100
security, 97
transformation and orchestration, 98-100

architectural policy services, 51
Arthur, W. Brian

on modularity, 17
asynchronous message-passing, 80
automated testing, 44
autonomy of microservices teams, 8
averages, drawbacks as basis for design, 23

B
batch-size reduction, 65
Bezos, Jeff

on size of teams at Amazon, 56

blue-green deployment, 44
boundaries

and batch-size reduction, 65
and bounded contexts, 64
and domain-driven design, 62
in service design, 62-66
ubiquitous language, 66

bounded contexts, 64
and business context, 66
optimal size of, 66

Brooks, Fred
and Conway’s Law, 55
on team size and communication overhead,

56
business context, bounded context and, 66

C
Cai, Beier

on efficiency benefits of microservice, 14
on governance at Hootsuite, 60

Calçado, Phil
and value stream mapping, 107
efficiency benefits of microservice, 15
on microservices, 3

capabilities, data vs., 70
capabilities-oriented design, 71
change

centrality to microservice architecture, 115
embracing, 29
introducing, 107-108
safety of, 9
speed of, 9
Vision Zero and, 1

chaos, tolerance for, 57

121

chatty interfaces, 98, 99
Cockcroft, Adrian

Netflix principles, 45
on microservices, 6

cohesion, 18
command query responsibility segregation

(CQRS), 76-78
command-query separation (CQS), 76
communication, culture and, 55
complex systems

emergence and, 26
Gall’s Law and, 17

components, orphaned, 113
Constantine, Larry

on cohesive architecture, 18
Consul, 101
Consul Alerts, 101
containers, 51, 92

(see also Docker)
controls

as illusion, 30
decentralization and, 8
practical guidance for, 111

Conway, Mel
on organizations and their communication

structures, 55, 105
Conway’s law, 55, 105
cost reduction, as goal of microservices, 43
culture

and communication, 55
and outsourced workers, 108
and team alignment, 55
as foundational element, 54-57
defined, 29
in systems approach, 29
innovation-fostering, 56
introducing change to, 107-108
practical guidance for, 106-109
project-centric, 108
Vision Zero and, 1

D
Daniels, Gilbert, 23
data sharing, 84
data, service design and, 70-78

and event sourcing, 72-75
and Shipping, Inc., 70
CQRS, 76-78
system model for Shipping, Inc., 75

data-centric design, 70
decentralization, 8
Decider (configuration tool), 53
decomposition, 62
dependencies

and pragmatic mobility, 85-86
in service design, 81-86

design process, 33-38
designer’s position in the organization, 38
development principles, 35-35
flaw of averages and, 23
implement/observe/adjust, 36
optimization goals, 34
sketching the system design, 35

development principles, 35-35
DevOps

logging and monitoring, 44
resilience through automated testing, 44

Disney
efficiency benefits of microservice, 14

distributed transactions, 78
DNS interfaces, 100
Docker

and operational management, 93-97
containers, 51

Docker Swarm, 96
domain-driven design (DDD), 62

(see also boundaries)
and bounded contexts, 64
and software system as model of a reality, 63
boundaries and, 62
optimal size of founded context, 66

Dunbar, Robin
on social groups, 55

E
Edwards, Damon

on culture, 54
emergent behavior, 26
Evans, Eric

DDD approach, 62
model-centric view of software system

design, 63
on combining contextual models, 64

event sourcing, 72-75

F
Facebook, 53
Fowler, Martin

122 | Index

on products over projects, 108

G
Gall’s Law, 17
Garrard, Clay

on efficiency benefits of microservice, 14
Gatekeeper (configuration tool), 53
Gilt, 14
goal orientation, 4
goal-oriented, layered approach, 17-21

and cohesion, 18
and maturity model, 19
and modularity, 17
and systematization, 18
definition, 17-21

goals
cost reduction, 43
for microservices way, 42
principles vs., 45
release speed improvement, 43
resilience improvement, 43
runtime visibility, 44
trade-offs in, 44

governance, 111
greenfield environments, 35
Gregory, James

on HTTP and Hypermedia, 68

H
hardware services, 50
harmony, of speed and safety, 10
Haufe-Lexware, 21
Heraclitus

on change, 116
Hock, Dee

on leaders, 30
holistic systems, 30
Hootsuite

efficiency benefits of microservice, 14
microservices way at, 59

Humble, Jez, 44
hypermedia-style APIs, 68-70
Hystrix, 54

I
immutability, 45
independent deployability, 89-93
innovation, fostering, 56

Invoke Media, 59

J
jaggedness, principle of, 24

K
Kay, Alan

on messages, 67
on systematization, 18

key performance indicator (KPI), 36
Kirkorian, Raffi, 53
Kubernetes, 96

L
language, ubiquitous, 66
Lean Startup, 65
Lewis, James, 4
Linux kernel extension (LXC), 92
local capabilities, 52-54

general tooling, 53
request routing, 53
runtime configuration, 53
service discovery, 53
system observability, 54

loose coupling, 68

M
maturity model, 19
McIlroy, Douglas

on Unix architecture principles, 46
mechanical organization, 111
Mesosphere, 97
message-oriented API design, 67
message-passing, 80
methodologies, practical guidance for, 110-112
Meyer, Bertrand

and CQS, 76
microservice (defined), 6
microservice architecture

minimum viable, 6
service-oriented architecture vs., 92

microservice concerns
local capabilities, 52-54
shared capabilities, 50-52

microservice system design model, 27
microservices way

adopting, 5-8
and decentralization, 8

Index | 123

and safety of change, 9
and speed of change, 9
and team autonomy, 8
balancing speed and safety, 10
basics of, 3-11
building at scale, 10
characteristics of, 7
definitions, 6
flexibility of application scenarios, 7
goals for, 42
origins, 4
principal concepts of, 4
real value of, 9-11

Mintzberg, Henry
on coordination mechanisms and stand‐

ards, 31
Mitchell, Melanie

on emergence and complexity, 26
mobility, pragmatic, 85-86
modularity, 17
monitoring, 44, 101
monoliths, 17, 37
Morgan, Gareth

on changes, 107

N
Netflix

and AMIs, 52
Hystrix, 54
message formats at, 67
operating principles at, 45
policy enforcement, 51
team leadership at, 57

Newman, Sam
microservices definition, 6
on bounded contexts, 64
on data vs. context, 70

O
observability tooling, 54
operating principles, 45-49

at Netflix, 45
in Unix system, 46
suggested principles, 47

operational management, 89-102
and service discovery, 94-97
API gateway, 97-100
Docker and, 93-97
independent deployability, 89-91

monitoring/alerting, 101
server minimization, 91-93

optimization goals, 34
orchestration, API gateway, 98-100
organizational design

and systems approach, 28
practical guidance for, 105

organizations
assessment guidelines, 106
culture (see culture)
system designers position in, 38

orphaned components, 113
outputs, standardization of, 32
outsourcing, 108

P
people, standardization of, 32
platforms, 49-54

local capabilities, 52-54
shared capabilities, 50-52

policy services, 51
practices, practical guidance for, 110-112
pragmatic mobility, 85-86
principle of jaggedness, 24
principles

development, 35-35
goals vs., 45
operating (see operating principles)

processes
choosing, 28
design (see design process)
practical guidance for, 110-112
security/governance requirements, 111
standardization of, 31

programming languages, 112
project-centric culture, 108

R
refactoring, 107
Reihnard, Holger

on goal-oriented approach, 21
releases, limiting number of changes in, 104
replaceability, 5
request routing, 53
resilience, 43
RESTful APIs, 69, 99
Ries, Eric

on Lean Startup, 65
road systems, 1

124 | Index

Rose, Todd
on averages, 24

routing, API gateway, 100
runtime visibility, 44

S
safety

and business value, 16
and systematization, 19
balancing with speed, 1, 10
of change, 9

Sagas, 78
scale/scaling

and independent deployability, 89-91
building at, 10
microservices and, 4
selective, 90

security
API gateway, 97
centralized controls, 111
contextual controls, 112
decentralized controls, 111
practical guidance for, 111

selective scaling, 90
separation of concerns (SoCs), 46
service design, 61-87

API design, 67-70
asynchronous message-passing, 80
boundaries, 62-66
data considerations, 70-78
dealing with dependencies, 81-86
distributed transactions, 78
Sagas, 78

service discovery
in operational management, 94-97
tools for, 53

service-oriented architecture (SOA), microser‐
vice architecture vs., 92

services
and orphaned components, 113
as atomic building block, 27
practical guidance for, 112
programming languages for, 112

shared capabilities, 50-52
architectural policy services, 51
code management, testing, and deployment,

51
data stores, 51
hardware services, 50

security and identity, 51
service orchestration, 51

Shipping, Inc. (imaginary startup)
and dependencies in service design, 81-86
CQRS for, 77
data in service design, 70
event sourcing at, 73-75
intelligent inventory management system,

99
Sagas at, 79
selective scaling at, 90
system model for, 75

sketching, 35
skills, standardization of, 32
Smircich, Linda

on culture, 54
solution architecture

as macro-level view of system, 28
practical guidance for, 104

SoundCloud, 15
speed

and business value, 15
and systematization, 19
as goal, 43
balancing with safety, 1, 10
of change, 9

Spotify, 56
standardization

in systems approach, 30-33
of outputs, 32
of people, 32
of process, 31
trade-offs in, 33

Stickdorn, Marc
on design process, 33

subsystems, decomposition of large systems
into, 62

Sweden, 1
system designers, 38
systematization of microservice architecture, 18
systems approach to microservices, 25-33

and culture, 29
and holistic system, 30
and organizational design, 28
and solution architecture, 28
embracing change, 29
process and tools, 28
service as building block, 27
standardization and coordination, 30-33

Index | 125

systems design, 25-39
and operations (see operational manage‐

ment)
and systems approach to microservices,

25-33
foundation for, 41-58
goals, 42
microservice system design model, 27
microservices design process, 33-38

T
teams

alignment, 55
autonomy of, 8
organizational design, 28
size of, 55

technical debt, 37, 104
testing, automated, 44
tight coupling

data sharing and, 84
waterfall approach and, 110

time, as essential element in microservice sys‐
tem, 29

tools
building, 48
choosing, 28
practical guidance for, 109

traffic systems, 1
transformation

API gateway, 98-100
as unending process, 104

Trenaman, Adrian
on microservice architecture at Gilt, 14

Twitter

Decider configuration tool, 53
Zipkin, 54

U
ubiquitous language, 66
Unix, 46
Urban, Steve

on team leadership at Netflix, 57
US Air Force, 23

V
value proposition, 13-21

architecture benefits, 13-15
business value, 15-16
goal-oriented, layered approach, 17-19

value stream mapping, 107
Vernon, Vaughn

on bounded context, 66
virtual machines (VMs), 50
visibility, runtime, 44
Vision Zero, 1
Vogels, Werner

on Amazon Web Services architecture, 13
on running what you build, 52

Y
Young, Greg

on event sourcing, 72
Yourdon, Edward

on cohesive architecture, 18

Z
Zipkin, 54

126 | Index

About the Authors
Irakli Nadareishvili is CTO and cofounder of a New York health tech startup Refer‐
Well. At any given time he can be found designing and implementing APIs, discus‐
sing distributed systems architecture, and expressing opinions about product
management. Prior to ReferWell, Irakli held leadership roles at the API Academy of
CA Technologies and NPR. Irakli is highly involved in the startup community and
has spent over a decade in Washington, DC building innovative products for media
companies and government and international organizations, while also being an
active open source contributor and advocate.

Ronnie Mitra is the Director of Design at CA’s API Academy, and is focused on help‐
ing people design better distributed systems. He travels around the world, helping
organizations adopt a design-centric approach to interface design and a system-
centric approach to application architecture.

Matt McLarty is Vice President of the API Academy at CA Technologies. The API
Academy helps companies thrive in the digital economy by providing expert guid‐
ance on strategy, architecture, and design for APIs.

In his role of Director of Architecture for the API Academy, Mike Amundsen heads
up the API Architecture and Design Practice in North America. He is responsible for
working with companies to provide insight on how best to capitalize on the myriad
opportunities APIs present to both consumers and the enterprise.

Amundsen has authored numerous books and papers on programming over the last
15 years.

Colophon
The animal on the cover of Microservice Architecture is a cowry snail, an ocean-
dwelling mollusk of the Cypraeidae family, found worldwide in tropical waters. There
are many species of different sizes and shell patterns, but all possess a very rounded
shell with a smooth glossy exterior. The texture of these shells is similar to porcelain,
which itself was named after the Italian term for these snails: porcellana. Cowrie shells
have historically been used as currency in several world cultures, and are still popular
in jewelry and decoration.

The shell of a cowry snail is also distinctive for its narrow toothed opening. It’s very
difficult for predators to get into, though some species (such as certain octopi and
carnivorous snails of the cone family) attack by injecting venom directly into the
cowry’s flesh.

Cowry snails themselves primarily feed on algae, but also eat sea sponges. They are
most active at night. During the day, the snails hide inside coral reefs or beneath

rocks. The part of the snail visible outside the shell is the mantle, a muscular fringed
appendage that not only provides locomotion but excretes calcium carbonate, the
substance that gradually builds up and maintains the shell around the animal.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Beauties of Land and Sea. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Who Should Read This Book
	What’s In This Book
	The Outline

	What’s Not In This Book
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Understanding Microservices
	Balancing Speed and Safety
	Chapter 1. The Microservices Way
	Understanding Microservices
	Adopting Microservices
	“What are microservices? Don’t I already have them?”
	“How could this work here?”
	“How would we deal with all the parts? Who is in charge?”

	The Microservices Way
	The Speed of Change
	The Safety of Change
	At Scale
	In Harmony

	Summary

	Chapter 2. The Microservices Value Proposition
	Microservice Architecture Benefits
	Deriving Business Value
	Defining a Goal-Oriented, Layered Approach
	Modularized Microservice Architecture
	Cohesive Microservice Architecture
	Systematized Microservice Architecture
	Maturity Model for Microservice Architecture Goals and Benefits

	Applying the Goal-Oriented, Layered Approach
	Summary

	Part II. Microservice Design Principles
	The Flaw of Averages
	Chapter 3. Designing Microservice Systems
	The Systems Approach to Microservices
	Service
	Solution
	Process and Tools
	Organization
	Culture
	Embracing Change
	Putting it Together: The Holistic System
	Standardization and Coordination

	A Microservices Design Process
	Set Optimization Goals
	Development Principles
	Sketch the System Design
	Implement, Observe, and Adjust
	The Microservices System Designer
	Summary

	Chapter 4. Establishing a Foundation
	Goals and Principles
	Goals for the Microservices Way
	Operating Principles

	Platforms
	Shared Capabilities
	Local Capabilities

	Culture
	Focus on Communication
	Aligning Your Teams
	Fostering Innovation

	Summary

	Part III. Microservices in Practice
	The Microservices Way at Hootsuite
	Chapter 5. Service Design
	Microservice Boundaries
	Microservice Boundaries and Domain-Driven Design
	Bounded Context
	Smaller Is Better
	Ubiquitous Language

	API Design for Microservices
	Messsage-Oriented
	Hypermedia-Driven

	Data and Microservices
	Shipping, Inc.
	Event Sourcing
	System Model for Shipping, Inc.
	CQRS

	Distributed Transactions and Sagas
	Asynchronous Message-Passing and Microservices
	Dealing with Dependencies
	Pragmatic Mobility

	Summary

	Chapter 6. System Design and Operations
	Independent Deployability
	More Servers, More Servers! My Kingdom for a Server!
	Docker and Microservices
	The Role of Service Discovery
	The Need for an API Gateway
	Security
	Transformation and Orchestration
	Routing

	Monitoring and Alerting
	Summary

	Chapter 7. Adopting Microservices in Practice
	Solution Architecture Guidance
	How many bug fixes/features should be included in a single release?
	When do I know our microservice transformation is done?

	Organizational Guidance
	How do I know if my organization is ready for microservices?

	Culture Guidance
	How do I introduce change?
	Can I do microservices in a project-centric culture?
	Can I do microservices with outsourced workers?

	Tools and Process Guidance
	What kinds of tools and technology are required for microservices?
	What kinds of practices and processes will I need to support microservices?
	How do I govern a microservice system?

	Services Guidance
	Should all microservices be coded in the same programming language?
	What do I do about orphaned components?

	Summary

	Chapter 8. Epilogue

	Appendix A. Microservice Architecture Reading List
	Microservices 101
	Best Practices
	Example Implementations
	Foundations

	Index
	About the Authors
	Colophon

